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Abstract

Arithmetic dynamics is a relatively new field in which classical problems from number
theory and algebraic geometry are reformulated in the setting of dynamical systems. Thus,
for example, rational points on algebraic varieties become rational points in orbits, and
torsion points on abelian varieties become points having finite orbits. Moduli problems
also appear, where, for example, the complex multiplication points in the moduli space
of abelian varieties correspond to the postcritically finite points in the moduli space of
rational maps. In this article we give a survey of some of the major problems motivating
the field of arithmetic dynamics, and some of the progress that has been made during the
past 20 years.
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1. Introduction

This article is a survey of the comparatively new field of Arithmetic Dynamics, a field
where arithmetic and dynamics join forces.1 But the word “arithmetic” in “arithmetic dynam-
ics” is itself short for “arithmetic geometry,” a field where the venerable subjects of number
theory and algebraic geometry meet. Thus arithmetic dynamics is a melting pot filled with
ingredients from three classical areas of mathematics.

Number
Theory

Algebraic
Geometry

Dynamical
Systems

Arithmetic Dynamics

In this article we will discuss arithmetic dynamics over global fields, which for the
sake of exposition we will generally take to be number fields, i.e., finite extensions of Q.
Our primary focus will be dynamical analogues and generalizations of famous theorems and
conjectures in arithmetic geometry, centered around the following five major topics that have
helped drive the development of arithmetic dynamics over the past few decades:

• Topic #1: Dynamical Uniform Boundedness

• Topic #2: Dynamical Moduli Spaces

• Topic #3: Dynamical Unlikely Intersections

• Topic #4: Dynatomic and Arboreal Representations

• Topic #5: Dynamical and Arithmetic Complexity

Remark 1.1. Of course, our chosen five topics do not fully cover the varied problems that
fall under the rubric of arithmetic dynamics over global fields. And there are also highly
active areas of arithmetic dynamics in which people study dynamical systems defined over
non-archimedean fields such as Qp and Cp and over finite fields Fq . We refer the interested
reader to the survey article [10] for a more extensive discussion.

1 As Jung might have said: “The meeting of two mathematical fields is like the contact of two
chemical substances: if there is any reaction, both are transformed.”
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2. Definitions and terminology

An abstract dynamical system is simply an object X and an endomorphism (self-
map)2

f W X ! X:

The iterates of f are denoted by

f n
D f ı f ı � � � ı f„ ƒ‚ …

n copies of f

;

and the (forward) f -orbit of an element x 2 X is its image for the iterates of f ,3

Of .x/ D
®
f n.x/ W n � 0

¯
:

We say that x 2 X is f -periodic if

f n.x/ D x for some n � 1,

in which case the smallest such n is the (exact) period of x. A point x 2 X is f -preperiodic
if its f -orbit Of .x/ is finite, or equivalently, if f m.x/ is periodic for some m � 0.

Two dynamical systems f1; f2 W X ! X are isomorphic if there is an automor-
phism ' 2 Aut.X/ such that

f2 D f
'

1 D '�1
ı f1 ı ': (2.1)

Note that (2.1) is a good notion of isomorphism for dynamics, since it respects iteration,

.f '/n
D .'�1

ı f ı '/n
D '�1

ı f n
ı ' D .f n/' :

In particular, orbits and (pre)periodic points of the isomorphic dynamical systems f and f '

are more-or-less identical, since

Of ' .x/D '�1
�
Of

�
'.x/

��
; Per.f '/D '�1

�
Per.f /

�
; PrePer.f '/D '�1

�
PrePer.f /

�
:

We conclude this section with a brief discussion of endomorphisms f W P 1 ! P 1

i.e., rational functions of one variable. For P 2 P 1, we choose a local parameter zP at P

and define P to be a critical point of f if
df

dzP

.P / D 0: (2.2)

The vanishing condition (2.2) is independent of the choice of zP , and counted with appro-
priate multiplicities, the map f has 2 deg.f / � 2 critical points.4

2 To avoid complications, we always work in a subcategory of the category of sets, i.e., all of
our objects are sets.

3 More generally, let F D ¹f1; : : : ; fr º be a set of endomorphisms of X , and let hF i be the
semigroup of maps generated by arbitrary composition of elements of F . Then the F -orbit
of x is the set OF .x/ D ¹f .x/ W f 2 hF iº.

4 More precisely, this is true as long as f is separable, so in particular it is always true in
characteristic 0.
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Arithmetic Geometry Dynamical Systems
rational and integral
points on varieties

rational and integral
points in orbits

torsion points on
abelian varieties

periodic and preperiodic
points of rational maps

abelian varieties with
complex multiplication

postcritically finite
rational maps

Table 1

A dictionary for Arithmetic Dynamics [82, §6.5]

The critical points of an endomorphism f of P 1 are the points at which f fails to
be locally bijective. Their location crucially affects the dynamics of f .

Definition 2.1. A (separable) endomorphism f W P 1 ! P 1 is postcritically finite (PCF) if
all of its critical points are preperiodic. PCF maps play a key role in the study of dynamics
on P 1.

3. A dictionary for arithmetic dynamics

Table 1 gives three fundamental analogies that are used to travel between the worlds
of arithmetic geometry and dynamical systems. The associations described in the first two
lines of Table 1 are fairly tight, in the sense that they may be used to reformulate many stan-
dard results and conjectures in arithmetic geometry as dynamical statements. The following
two examples illustrate these connections.

Example 3.1. Let A be an abelian group, let P 2 A, and let fP W A! A be the translation-
by-P map, i.e., fP .Q/ D QC P . Then the subgroup of A generated by P is the union of
two orbits

ZP D OfP
.0/ [Of�P

.0/:

More generally, for any finite set of elements P1; : : : ; Pr 2 A, we let P D ¹˙P1; : : : ;˙Prº,
and then the subgroup hP i generated by P1; : : : ; Pr is the generalized orbit

hP i D OP .0/ D
®
fP .0/ W P 2 hP i

¯
:

In this way, statements about finitely generated subgroups of abelian varieties may be refor-
mulated as statements about orbits.

Example 3.2. Let G be a group, let d � 2, and let fd W G ! G be the d -power map
fd .g/ D gd . Then it is an easy exercise to check that

PrePer.f / D Gtors;
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i.e., the elements of G that are preperiodic for the d -power map are exactly the elements
of G having finite order. In this way statements about torsion points on abelian varieties may
be reformulated as statements about preperiodic points for the multiplication-by-d map.

Remark 3.3. Examples 3.1 and 3.2 help to justify the associations described in the first two
lines of Table 1. The third line is a bit more nebulous. It is a rough analogy based on the
following reasoning:5

• The CM points in the moduli space Ag of abelian varieties of dimension g are
associated to abelian varieties that have a special algebraic property, namely
their endomorphism ring is unusually large. The set of CM points is a count-
able, Zariski-dense set of points in Ag whose coordinates are algebraic numbers.

• The PCF points in the moduli space M1
d

of endomorphisms of P 1 are associated
to maps that have a special dynamical property, namely the orbits of their critical
points are unusually small. The set of PCF points is a countable, Zariski-dense
set of points in M1

d
whose coordinates are algebraic numbers.

Section 6 describes some progress that helps to justify the third analogy in Table 1. But
we must also note that the analogy is not perfect. In particular, CM abelian varieties are
abundant in all dimensions, i.e., CM points are Zariski-dense in Ag for all g � 1. However,
evidence suggests that for N � 2, PCF maps are not Zariski dense in the moduli space MN

d

of endomorphisms of P N ; cf. [34].

4. Topic #1: Dynamical uniform boundedness

The prototype and motivation for the dynamical uniform boundedness conjecture is
the following famous theorem.

Theorem 4.1 ([54]). Let E=Q be an elliptic curve defined over Q. Then

#E.Q/tors � 16:

Remark 4.2. Mazur’s theorem was generalized by Kamienny [37] to number fields of small
degree, and then by Merel [58], who proved that for all number fields K=Q and for all elliptic
curves E=K, there is a uniform bound

#E.K/tors � C; where C depends only on the degree ŒK W Q�.

A long-standing conjecture says that the same should be true for abelian varieties A=K of
any dimension, where the upper bound depends on ŒK W Q� and dim.A/.

Using the dictionary in Table 1, the theorems of Mazur–Kamienny–Merel and the
conjectural abelian variety generalization lead us to a major motivating problem in arithmetic
dynamics.

5 See Section 5 for the construction of the moduli space MN
d

.
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Conjecture 4.3 (Dynamical uniform boundedness conjecture, [62]). Fix integers N � 1,
d � 2, and D � 1. There is a constant C.N; d; D/ such that for all degree-d morphisms
f W P N ! P N defined over a number field K of degree ŒK W Q� D D, the number of
K-rational preperiodic points is uniformly bounded,

# PrePer
�
f; P N .K/

�
� C.N; d; D/:

Remark 4.4. See also [79] for an earlier dynamical uniform boundedness conjecture for K3
surfaces admitting noncommuting involutions.

Remark 4.5. Although Conjecture 4.3 only deals with preperiodic points in projective
space, it can be used to prove the uniform boundedness conjecture for abelian varieties
alluded to in Remark 4.2 [21].

Remark 4.6. Conjecture 4.3 has been generalized to cover quite general families of dynam-
ical systems; see [72, Question 3.2].

Conjecture 4.3 seems out of reach at present. Indeed, even quite special cases present
challenges that have not been overcome. We briefly summarize what is known and conjec-
tured in the simplest nontrivial case, which is quadratic polynomials over Q.

Theorem/Conjecture 4.7. For c 2 Q, let fc.x/ D x2 C c.

(a) Theorem. For each n2 ¹1;2;3º, there are infinitely many c 2Q such that fc.x/

has a Q-rational point of period n.

(b) Theorem. For all c 2 Q, the polynomial fc.x/ does not have a Q-rational
point …

– of order 4 [60];

– of order 5 [25];

– of order 6, conditional on the Birch–Swinnerton-Dyer conjecture
[86].

(c) Conjecture. For all n � 4, the polynomial fc.x/ does not have a Q-rational
point of period n; see [91]6 and [25].

Remark 4.8. Just as there are elliptic modular curves X ell
1 .n/ whose points classify pairs

.E; P / consisting of an elliptic curve E and an n-torsion point P , there are so-called
dynatomic modular curves X

dyn
1 .n/ whose points classify pairs .c; ˛/ such that ˛ is a point

of period n for the polynomial fc.x/ D x2 C c. Mazur’s method for proving Theorem 4.1
is to show that X ell

1 .n/ has no (noncuspidal) Q-rational points by mapping X ell
1 .n/ into a

carefully chosen quotient A of its Jacobian variety and showing that the group A.Q/ is

6 Although in fairness it should be noted that [91] suggests the opposite conclusion, stating:
“Are there any rational periodic orbits of a quadratic x2 C c of period greater than 3? The
results for periods 1, 2, and 3 would lead one to suspect that there must be.”
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finite. The proof of Theorem 4.7 starts similarly using X
dyn
1 .n/ instead of X ell

1 .n/, but in this
situation, the Jacobian generally does not have a quotient whose group of rational points is
finite. Current methods, such as Chabauty–Coleman, for explicitly determining the rational
points on curves of high genus (barely) suffice to handle X

dyn
1 .n/ for n � 6. The difficulty,

or more concretely the difference, between the elliptic curve and dynamical settings centers
around the lack of a theory of Hecke correspondences in the dynamical case. (Mea culpa:
This simplified explanation is not entirely accurate, but it is meant to convey the overall
strategy of the proofs.)

Remark 4.9. Contingent on an appropriate version of the abcd -conjecture, the uniform
boundedness conjecture has been proven for the family of polynomials xd C c [47], and
more recently for all polynomials [46]. An alternative proof, also using the abc-conjecture
and only valid over Q, says that if d is sufficiently large and c ¤ �1, then xd C c has no
Q-rational periodic points other than fixed points [68].7

Remark 4.10. A function field analogue of the uniform boundedness conjecture for xd C c

is proven in [17,18]. In the function field setting, the uniformity in the degree ŒK WQ� described
in Conjecture 4.3 is replaced by a bound that depends on the gonality8 of the field extension.

5. Topic #2: Dynamical moduli spaces

We fix a field K and consider parameter and moduli spaces for the set of rational
self-maps of P N

K . A rational map f W P N
K Ü P N

K of degree-d is specified by an .N C 1/-
tuple of degree-d homogeneous polynomials,

f D Œf0; : : : ; fN �; f0; : : : ; fN 2 KŒX0; : : : ; Xn�;

such that f0; : : : ; fN have no common factors. The map f is a morphism if f0; : : : ; fN

have no common roots in P N . NK/. We label the coefficients of f0; : : : ; fN in some specified
order as a1.f /;a2.f /; : : : ; a�.f /, where �D �.N;d/ WD

�
N Cd

d

�
.N C 1/. Then each such f

determines a point
f D

�
a1.f /; : : : ; a�.f /

�
2 P ��1:

There is a homogeneous polynomial R 2ZŒa1; : : : ; a� � called the Macaulay resultant having
the property that

f D Œf0; : : : ; fN � is a morphism” R
�
a1.f /; : : : ; a�.f /

�
¤ 0:

The parameter space of degree-d endomorphisms of P N is

EndN
d D

®
f 2 P ��1

W R.f / ¤ 0
¯
:

7 We remark that it is easy to prove uniform boundedness for xd C c over Q when d is odd,
and more generally over any field K=Q with a real embedding. Indeed, it is an elementary
fact that if f W R ! R is any nondecreasing function, then f has no nonfixed periodic
points; cf. [64].

8 The gonality of an algebraic curve X , or its function field, is the minimal degree of a non-
constant map X ! P1.
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The isomorphism class of dynamical systems associated to f is the set of all conjugates, i.e.,
the set of all

f '
D '�1

ı f ı '; where ' 2 Aut.P N / D PGLN C1.

Conjugation gives an algebraic action of PGLN C1 on the parameter space EndN
d via

PGLN C1 �EndN
d ! EndN

d ; .'; f / 7! f ' ; (5.1)

and this action extends naturally to P � .

Definition 5.1. The moduli space of degree-d dynamical systems on P N is the quotient
space of EndN

d for the conjugation action (5.1),

MN
d D EndN

d = PGLN C1 : (5.2)

It is natural to ask whether the quotient (5.2) can be given some nice sort of structure.
Geometric invariant theory (GIT) [63] provides a powerful tool for studying quotients of a
variety (or scheme) X by an infinite algebraic group G. GIT says that there are stable and
semistable loci X s � X ss � X such that there exist quotient varieties (or schemes) X s==G

and X ss==G having many agreeable properties.9

Theorem 5.2. Let N � 1 and d � 2.

(a) The quotient space MN
d

.C/D EndN
d .C/= PGLN C1.C/ has a natural structure

as an orbifold over C [59].

(b) The quotient space MN
d
D EndN

d = PGLN C1 has a natural structure as a GIT
quotient scheme over Z; see [80] for N D 1 and [44,69] for N � 1.10

It is clear that MN
d

is unirational, i.e., it is rationally finitely covered by a projec-
tive space, since EndN

d is itself an open subset of a projective space. A subtler question is
whether MN

d
is rational.

Theorem 5.3. Let d � 2.

(a) There is an isomorphism M1
2 Š A2, and the semi-stable GIT compactification

of M1
2 as the quotient of the semi-stable locus in P 5 is isomorphic to P 2 [59,80].

(b) The space M1
d

is rational, i.e., there exists a birational map P 2d�2 Ü M1
d

[44].

Question 5.4. Is MN
d

rational for all d � 2 and all N � 1?

9 For example, over C the stable GIT quotient satisfies .X s==G/.C/ D X s.C/=G.C/, i.e.,
the geometric points of the stable quotient X s==G are the G.C/-orbits of the geometric
points of X . And the semistable GIT quotient has the property that .X ss==G/.C/ is proper,
i.e., it is compact, so it provides a natural compactification of the stable quotient.

10 More precisely, the parameter space EndN
d

is in the GIT stable locus for the action
of SLN C1 on P� linearized relative to the line bundle OP� .1/, and thus the quotient MN

d

exists as a GIT quotient scheme over Z.
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Just as is done with the moduli space of abelian varieties, it is advantageous to add
level structure to dynamical moduli spaces by specifying maps together with points or cycles
of various shapes. We start with the case of a single periodic point, and then consider more
complicated level structures.

Definition 5.5. For N � 1, n � 1, and d � 2, we write

EndN
d Œn� D

®
.f; P / 2 EndN

d �P N
W P has exact f -period n

¯
:

Thus the points of EndN
d Œn� classify maps with a marked point of exact period n.

More generally, we define a (preperiodic) portrait P to be the directed graph of
a self-map of a finite set of points. (See Figure 1 for an example of a portrait.) Then for a
portait P having k vertices, we let11

EndN
d ŒP � D

8̂<̂
:.f; P1; : : : ; Pk/ 2 EndN

d �.P N /k
W

P1; : : : ; Pk are f -preperiodic and
f W ¹P1; : : : ; Pkº ! ¹P1; : : : ; Pkº

is a model for the portrait P

9>=>; :

There is a natural action of ' 2 PGLN C1 on EndN
d ŒP � given by

.f; P1; : : : ; Pk/'
D

�
f ' ; '�1.P1/; : : : ; '�1.Pk/

�
:

We denote the resulting quotient space by

MN
d ŒP � D EndN

d ŒP �= PGLN C1 : (5.3)

If Cn is a portrait consisting of a single n-cycle, then EndN
d ŒCn� Š EndN

d Œn�, and we
write MN

d
Œn� for MN

d
ŒCn�.

Figure 1

A portrait consisting of a 3-cycle, a 4-cycle, and three other preperiodic points

Theorem 5.6 ([20]). Let P be a preperiodic portrait.12 Then the quotient space MN
d

ŒP �

described in (5.3) exists13 as a GIT geometric quotient scheme over Z.

11 This definition of EndN
d

ŒP � conveys the right idea; see [20] for a rigorous definition.
12 More generally, one can construct the moduli space MN

d
ŒP � associated to a portrait P that

includes nonpreperiodic points and/or whose vertices are assigned multiplicities.
13 There is a precise combinatorial-geometric characterization of the portraits P for

which M1
d

ŒP �.C/ ¤ ;, but analogous characterizations for N � 2 and/or in positive
characteristic are not currently known.
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It is known [87] that the moduli space Ag of principally polarized abelian varieties
is of general type for all g � 9. Analogous results for dynamical moduli spaces are still
unknown, but our dictionary yields some conjectures.14

Conjecture 5.7. Let N � 1 and d � 2.

(a) For all n � 1, the moduli space MN
d

Œn� is irreducible.

(b) For all sufficiently large n, depending on N and d , the moduli space MN
d

Œn� is
a variety of general type.

Remark 5.8. The moduli space M1
2Œn� of degree-2 endomorphisms of P 1 is a finite cover

of M1
2 Š A2, so it is a surface. It is known to be irreducible for all n � 1 [48]. For 1 � n � 5,

the surface M1
2Œn� is a rational surface, while M1

2Œ6� is a surface of general type [12].

Remark 5.9. Tai’s proof [87] that Ag is of general type relies on the theory of theta func-
tions, which are used to create sections of the canonical bundle. There are similarly naturally
defined functions on MN

d
, and more generally on MN

d
Œn�, that are defined using multiplier

systems.15 For N D 1, it is known that a multiplier system of sufficiently high degree gives a
map M1

d
! Ar that is (essentially) finite-to-one16 onto its image [55]. So although the anal-

ogy between theta functions on Ag and multiplier system functions on MN
d

is tenuous at
best, the latter currently provide one of the most natural ways to create dynamically defined
functions on dynamical moduli spaces.

A map f 2 EndN
d .K/ defined over K with a K-rational n-periodic point P 2P N.K/

gives a K-rational point hf; P i 2MN
d

Œn�.K/. The dynamical uniform boundedness conjec-
ture (Conjecture 4.3) is thus closely related to the question of K-rational points on dynamical
moduli spaces. We formulate a uniform boundedness conjecture for such spaces.

Conjecture 5.10 (Dynamical uniform boundedness conjecture: version 2). Fix integers
N � 1, d � 2, and D � 1. There is a constant C 0.N;d; D/ such that for all number fields K

of degree ŒK W Q� D D and all preperiodic portraits P ,�
#¹vertices of P º � C 0.N; d; D/

�
H)MN

d ŒP �.K/ D ;:

14 See [10, Conjecture 10.13] for a generalization of Conjecture 5.7 that deals with quite
general dynamical moduli spaces that classify families of maps with marked periodic points
of large period, including bounds on their number of components, Kodaira dimension, and
gonality.

15 Briefly, for N D 1, let k � 1, let f 2 End1
d

, and let P1; : : : ; Pr be the periodic points
of f with period dividing k. The derivatives .f k/0.Pi / are PGL2-conjugate independent,
and the k-level multiplier system of f is the list ƒk.f / of the elementary symmetric func-
tions of .f k/0.P1/; : : : ; .f k/0.Pr /. Then ƒk.f / gives a well-defined morphism ƒk.f / W

M1
d
! Ar .

16 More precisely, the map is finite-to-one unless n is a square, in which case it maps the j -
line of flexible Lattès maps to a single point. This is thus one of those results that’s “true
except in the obvious cases where it is false.”
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Remark 5.11. It is clear that Conjecture 5.10 implies Conjecture 4.3. The opposite impli-
cation is also true, but the proof is more difficult due to the Field-of-Moduli versus Field-of-
Definition Problem. The key step, proven in [19] and [20, Sections 16–17], is to show that every
point in MN

d
ŒP �.K/ is represented by a point in EndN

d ŒP �.L/ defined over an extension L=K

whose degree is bounded solely by d and N . When N D 1, one can take ŒL W K� � 2 [32],
but for N � 2 it is an open question whether ŒL W K� needs to depend on d .

Within MN
d

and its GIT semistable compactification M
N

d lie many interesting sub-
varieties. For example:

• The space of polynomial maps17

PolyN
d D

®
f 2MN

d W f comes from a morphism AN
! AN

¯
is a subvariety of MN

d
satisfying dim.Poly1

d / D N
N C1

dim.MN
d

/.

• Iteration of dominant rational maps presents its own interesting challenges; see
Section 8 for some examples. The set of degree d dominant rational maps
P N Ü P N is a Zariski open subvariety of P ��1.C/ [81, Proposition 7], but
the locus of points in .M

N

d XMN
d

/.C/ arising from dominant rational maps is
not well understood; cf. [42].

The spaces of polynomial maps and dominant rational maps have large dimension.
At the other extreme are various 1-parameter families of maps that have been much studied,
starting with the ubiquitous family of quadratic polynomials

fc.x/ D x2
C c

that gives a line A1 in M1
2 ŠA2. Adding level structure leads to a dynamical analogue of the

classical elliptic modular curve X ell
1 .n/ that classifies pairs .E; P / consisting of an elliptic

curve E and an n-torsion point P . In the dynamical setting, we replace the n-torsion point
with a point of period n, but the following example shows that some care is needed.

Example 5.12. The polynomial f .x/ D x2 �
3
4

has no points of exact period 2, since

f .x/ � x D .2x C 1/.2x � 3/ and f 2.x/ � x D .2x C 1/3.2x � 3/:

But since f 2.x/�x
f .x/�x

D .2xC 1/2, we say that x D�1
2

is a point of formal period 2 for f .x/.18

17 For example, the space Poly1
d
�M1

d
is the space of polynomials xd C a2xd�2C � � � C ad

modulo the conjugation x ! �x for a primitive .d � 1/-root of unity �, so Poly1
d

is a quo-
tient of Ad�1 by a finite group.

18 In general, points of formal period n for the polynomial f .x/ are roots of the dynatomic
polynomial

f̂ .x/ WD
Y
d jn

�
f d .x/ � x

��.n=d/
;

where � is the Möbius function. Dynatomic polynomials are thus dynamical analogues of
classical cyclotomic polynomials, but with the caveat that f̂ .x/ may have roots of mul-
tiplicity greater than 1, even in characteristic 0. In higher dimension, the points of formal
period n give a dynatomic 0-cycle whose effectivity is proven in [33].
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Definition 5.13. The level n dynatomic curve19 (associated to x2 C c) is the affine curve

Y
dyn

1 .n/ D
®
.c; ˛/ 2 A2

W ˛ is a point of formal period n for fc.x/ D x2
C c

¯
:

The desingularized projective completion of Y
dyn

1 .n/ is denoted X
dyn
1 .n/. The points in the

complement X
dyn
1 .n/ X Y

dyn
1 .n/, which correspond to degenerate maps, are called cusps.20

Points in Y
dyn

1 .n/.K/ classify quadratic polynomials defined over K having a
K-rational point of period n, so a version of Theorem/Conjecture 4.7 says that

Exercise X
dyn
1 .n/ Š P 1 for n 2 ¹1; 2; 3º;

Theorem X
dyn
1 .n/.Q/ D ¹cuspsº for n 2 ¹4; 5; 6º;

Conjecture X
dyn
1 .n/.Q/ D ¹cuspsº for all n � 4.

Much is known about the geometry of X
dyn
1 .n/, as summarized in the next result,

although we note that even the proof that X
dyn
1 .n/ is geometrically irreducible relies on

dynamical properties of x2 C c as reflected in the geometry of the Mandelbrot set.

Theorem 5.14. Let X
dyn
1 .n/ be the smooth projective dynatomic curve associated to

x2 C c.

(a) The dynatomic modular curve X
dyn
1 .n/ is geometrically irreducible over C [13,

41,76].21

(b) There is an explicit, but rather complicated, formula for the genus of
X

dyn
1 .n/ [61]. In any case, genus.Xdyn

1 .n//!1 as n!1.

(c) The gonality22 of X
dyn
1 .n/ goes to1 as n!1 [18].

6. Topic #3: Dynamical unlikely intersections

The guiding philosophy of unlikely intersections in arithmetic geometry is the fol-
lowing general, albeit somewhat vague, principle.

19 There are dynatomic curves associated to many other interesting 1-parameter fami-
lies of maps, including, for example, the family of degree-d unicritical polynomials
fd;c.x/ D xd C c and the family of degree-2 rational maps gb.x/ D x=.x2 C b/ that
admit a nontrivial automorphism gb.�x/ D �gb.x/.

20 We mention that there is a natural action of f on Y
dyn
1 .n/ defined by .c; ˛/ 7! .c; f .˛//,

and that the quotient curve Y
dyn
0 .n/ D Y

dyn
1 .n/=hf i and its completion X

dyn
0 .n/ provide

analogues of the elliptic modular curve X ell
0 .n/.

21 More generally, the dynatomic modular curves associated to the family of unicritical poly-
nomials xd C c are irreducible. However, the dynatomic modular curves associated to the
family x=.x2 C b/ turn out to be reducible for even n; see [48].

22 The gonality of an algebraic curve X is the minimal degree of a nonconstant map X ! P1.
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The Tao of Unlikely Intersections
Let X be an algebraic variety, let Y � X be an algebraic subvariety
of X , and let � � X be an “interesting” countable subset of X . Then

� \ Y is sparse (except when it is “obviously” not).

Slightly more precisely, if � \ Y is Zariski dense in Y , then there
should be a geometric reason that explains its density.

We recall two famous unlikely intersection theorems from arithmetic geometry,
which we initially state in an intuitively appealing, though somewhat whimsical, manner.

Theorem 6.1 (Mordell–Lang conjecture, [23,90]). Let A=C be an abelian variety, let Y �A

be a subvariety of A, and let � � A.C/ be a finitely generated subgroup of A. Then23

� \ Y is not Zariski dense in Y (except when it “obviously” is).

Theorem 6.2 (Manin–Mumford conjecture, [73, 74]). Let A=C be an abelian variety, and
let Y � A be a subvariety of A. Then

Ators \ Y is not Zariski dense in Y (except when it “obviously” is).

The actual statements of Theorems 6.1 and 6.2 explain quite precisely that if Y is
saturated with special points, then there is a geometric reason for that saturation.

Theorem 6.3 (Rigorous formulation of Theorems 6.1 and 6.2). If � \ Y or Ators \ Y is
Zariski dense in Y , then Y is necessarily a translate of an abelian subvariety of A by a
torsion point of A.

Remark 6.4. Theorems 6.1 and 6.2 may be combined and strengthened by replacing the
abelian variety A with a semi-abelian variety and by replacing � with its divisible sub-
group

S
n�0Œn��1.�/; see [56].

Theorem 6.1 says that points in a finitely generated subgroup � generally do not lie
on a subvariety. According to Table 1, for the dynamical analogue of Theorem 6.1 we should
replace the group � with the points in an orbit. This leads to our first dynamical unlikely
intersection conjecture.

Conjecture 6.5 (Dynamical Mordell–Lang conjecture). Let X=C be a smooth quasipro-
jective variety, let f W X ! X be a regular self-map of X , let P 2 X.C/ be a point with
infinite f -orbit, and let Y � X be a subvariety of X . Then

Of .P / \ Y is not Zariski dense in Y (except when it “obviously” is).

Rigorous Formulation #1. If Of .P / \ Y is Zariski dense, then Y is f -periodic.24

23 The proof of Theorem 6.1 uses methods from Diophantine approximation. An earlier proof
in the case that Y is a curve of genus at least 2 used moduli-theoretic techniques [22].

24 We says that Z is f -periodic if there is an integer n > 0 such that f n.Z/ D Z.
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Rigorous Formulation #2. The set®
n � 0 W f n.P / 2 Y

¯
is a finite union of one-sided arithmetic progressions [29].25

Example 6.6. Among the known cases of the dynamical Mordell–Lang conjecture, we cite
the following:

Unramified maps. Conjecture 6.5 is true for étale morphisms of quasiprojective
varieties [7]. See the monograph [8] for additional information.

Endomorphisms of A2. Conjecture 6.5 is true for all endomorphisms of A2

defined over NQ [92].

Split endomorphisms. Conjecture 6.5 is true for split endomorphisms of .P 1/n,
which are maps of the form f1.P1/ � � � � � fn.Pn/ [11], and more generally for
certain skew-split endomorphisms [31].

Remark 6.7. The dynamical Mordell–Lang conjecture has also been investigated in charac-
teristic p, although the statement may need a tweak. For example, if f is a projective surface
automorphism or a birational endomorphism of A2 whose dynamical degree (see Section 8)
satisfies ıf > 1, then Conjecture 6.5 is true in all characteristics [94]. For other results in
finite characteristic, see, for example, [8,14,26].

We now turn to Theorem 6.2, which asserts that torsion points generally do not
lie on a subvariety. According to Table 1, for the dynamical analogue we should replace the
torsion points with preperiodic points, leading to our second dynamical unlikely intersection
conjecture.

Conjecture 6.8 (Dynamical Manin–Mumford conjecture). Let X=C be a smooth quasi-
projective variety, let f WX !X be a regular self-map of X , and let Y �X be a subvariety
of X . Then

PrePer.f / \ Y is not Zariski dense in Y (except when it “obviously” is).

Unfortunately, the following natural rigorous formulation of Conjecture 6.8 turns
out to be false.

Incorrect Rigorous Formulation of Conjecture 6.8.
If PrePer.f / \ Y is Zariski dense in Y , then Y is f -preperiodic.

See [30] for a counterexample, and for an alternative formulation of Conjecture 6.8
that requires more stringent hypotheses on f and Y .

Both the Mumford–Manin and Mordell–Lang conjectures concern how special
points lie on subvarieties of a given variety. The André–Oort conjecture has a similar flavor,

25 A one-sided arithmetic progression is a set of integers of the form ¹ak C b W k 2 Nº for
some fixed a; b 2 N. N.B. We allow a D 0.
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but the ambient variety is a moduli space and the specialness of the points comes from the
properties of the objects that they represent. The André–Oort conjecture is easy to state as
long as we are willing to sweep some quite technical definitions under the rug!26

Conjecture 6.9 (André–Oort conjecture). Let � be a Shimura variety, let � � � be a set of
special points of � , and let Y � � be an irreducible subvariety such that � \ Y is Zariski
dense in Y . Then Y is a special subvariety of � .

The rough idea is that � is a moduli space whose points classify a certain class of
abelian varieties, a collection of special points T � � consists of points whose associated
abelian varieties have an additional special structure, and a special subvariety is one in which
every associated abelian variety has the T property for geometric reasons. The André–Oort
conjecture has been proven in many cases, including for � DAd

1 [70] and for � DAg [71,88].
We describe two sample dynamical unlikely intersection theorems that take place

in the moduli space of unicritical polynomials, which are polynomials of the form xd C c.
We view the first as a mixed unlikely intersection, because it involves one moduli parameter
and two orbit parameters.

Theorem 6.10 ([3]). Let d � 2, and let a; b 2 C be complex numbers with a2 ¤ b2. Then®
c 2 C„ƒ‚…

moduli parameter

W a and b are both preperiodic„ ƒ‚ …
special orbit parameters

for xd
C c

¯
is a finite set.

The second result has more of the flavor of the André–Oort conjecture in that it
involves only moduli parameters and follows the dictionary in Table 1 by replacing complex
multiplication abelian varieties with postcritically finite rational maps.

Theorem 6.11 ([28]). Let d � 2, and let Y � A2 be an irreducible curve that is not a line
of one of the following forms:

vertical line ¹.a; t/ W t 2 A1
º; horizontal line ¹.t; b/ W t 2 A1

º;

shifted diagonal line ¹.t; �t/ W t 2 A1
º, where �d�1

D 1.

Then ®
.a; b/ 2 Y W x2

C a and x2
C b are both PCF„ ƒ‚ …

special moduli parameters

¯
is a finite set.

A conjectural generalization of Theorem 6.10 allows both the map x2 C c and the
points a and b to vary simultaneously.

Conjecture 6.12 ([15,27]). Let d � 2, let T be an irreducible curve, and let

˛ W T ! P 1; ˇ W T ! P 1; and f W T ! End1
d

be morphisms, i.e., ˛ and ˇ are 1-parameter families of points in P 1 and f is a 1-parameter

26 See, for example, [89] for the precise definition of Shimura variety, special point, and spe-
cial subvariety.
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family of degree-d endomorphisms of P 1. Assume that the families ˛ and ˇ are not f -
dynamically related.27 Then

¹t 2 T W ˛t and ˇt are both preperiodic for ftº is a finite set.

Formulating a general dynamical André–Oort conjecture is more complicated. The
first step is to construct an appropriate moduli space of rational maps with marked critical
points:28

Mcrit
d WD

´
.f; P1; : : : ; P2d�2/ W

f 2 End1
d and P1; : : : ; P2d�2

are critical points of f

µ
= PGL2 :

Conjecture 6.13 (Dynamical André–Oort Conjecture, [4,82]). Let Y �Mcrit
d

be an algebraic
subvariety such that the PCF maps in Y are Zariski dense in Y . Then Y is cut out by “critical
orbit relations.”

Formulas of the form f n.Pi / D f m.Pj / define critical point relations,29 but other
relations may arise from symmetries of f , and even subtler relations may come from “hidden
relations” due to subdynamical systems. See [82, Remark 6.58] for an example due to Ingram.
Thus for now we do not have a good geometric description of the phrase “critical orbit
relations” in general, but there is such a description for 1-dimensional families, i.e., for
Conjecture 6.13 with dim.Y / D 1 [4]. In this case the conjecture has been proven for 1-
dimensional families of polynomials [24], but it remains open for rational maps.

7. Topic #4: Dynatomic and arboreal representations

The focus of this section is on the arithmetic of fields generated by the coordinates of
dynamically interesting points. We let K=Q be a number field, and we start with a motivating
result from arithmetic geometry. Let E=K be an elliptic curve, and let

�ell
E=K;` W Gal. NK=K/! Aut

�
T`.E/

�
Š GL2.Z`/ (7.1)

be the representation that describes the action of the Galois group on the `-power torsion
points of E. A famous theorem characterizes the image.30

27 Intuitively, the families ˛ and ˇ are f -dynamically related if there is a relationship between
the f -orbits of ˛ and ˇ that holds identically for all parameter values in T . However, there
are some subtleties; see [10, Definition 11.2] for a discussion and the precise, albeit
somewhat technical, definition.

28 It is easy to construct the GIT quotient for maps f having 2d � 2 distinct marked critical
points, but some care is needed to handle maps having higher multiplicity critical points;
see [20].

29 One might view these f n.Pi / D f m.Pj / relations as dynamical analogues of Hecke corre-
spondences, although the analogy is somewhat tenuous.

30 A 19th century precursor to Serre’s theorem is a fundamental result on cyclotomic fields. It
says that the cyclotomic representation �cyclo W Gal. NK=K/! Aut.�`1 / Š Z�

`
describing

the action of the Galois group on `-power roots of unity is surjective when K DQ, and that
the image of �cyclo has finite index in Z�

`
for all K.

1697 Survey lecture on arithmetic dynamics



Theorem 7.1 (Serre’s Image-of-Galois Theorem, [77, 78]). Assume that E does not have
complex multiplication.

(a) For all sufficiently large primes `, the Galois representation �ell
E=K;`

is surjec-
tive.

(b) For all primes `, the image of the Galois representation �ell
E=K;`

is a subgroup
of finite index in GL2.Z`/.

There are analogous conjectures, and some theorems, for the Galois representations
associated to higher-dimensional abelian varieties. We consider two analogues in arithmetic
dynamics.

7.1. Topic #4(a): Dynatomic representations
Let

f W P N
! P N

be a morphism of degree d � 2 defined over K, and let

Per�
n.f / D

®
P 2 P N . NK/ W P is f -periodic with exact period n

¯
:

The action of f on Per�
n.f / splits it into a disjoint union of directed n-cycles, and the action

of Gal. NK=K/ on Per�
n.f / respects the cycle structure. The analogue of GL2 in (7.1) is thus

the group of automorphisms of the graph

Pn;� D a disjoint union of � directed n-gons.

The abstract automorphism group of the directed graph Pn;� is naturally described as a
wreath product in which an automorphism of Pn;� is characterized as a permutation of the �

polygons combined with a rotation of each polygon:

Aut.Pn;�/ Š .Z=nZ/ o �� Š .Z=nZ/� Ì �� :

Definition 7.2. Let f 2 Endd
N .K/. The n-level dynatomic representation of f over K is the

homomorphism

�
dyn
K;n;f

W Gal. NK=K/! Aut.Pn;�.f //; where �.f / D
1

n
# Per�

n.f /:

The analogue of Serre’s theorem would assert that if f has no automorphisms,31

then �
dyn
K;n;f

is surjective for sufficiently large n. It seems too much to ask that this be true
for all maps, so we pose the following challenge:

Question 7.3 (Dynatomic Image-of-Galois Problem). Let K=Q be a number field, let
N � 1, and let d � 2. Characterize the maps f 2 EndN

d .K/ for which there is a con-
stant C.f / such that for all n � 1,

Image.�
dyn
K;f;n

/ has index at most C.f / in Aut.Pn;�.f //.

31 The automorphism group of f is Aut.f / D ¹' 2 PGLN C1 W '
�1 ı f ı ' D f º. The ele-

ments of Gal. NK=K/ commute with the action of AutK .f /, so if AutK .f / ¤ .1/, then the
image of �

dyn
K;n;f

is restricted, just as the image of �ell
E=K;`

is restricted if E has CM.
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7.2. Topic #4(b): Arboreal representations
The dynatomic extensions described in Section 7.1 are generated by points with

finite orbits. In this section we consider arboreal extensions, which are extensions generated
by backward orbits.

Example 7.4. We illustrate with the map f .x/ D xd ."
Dynatomic extension. Field generated by roots of xdn

D x for n � 1.
Arboreal extension. Field generated by roots of xdn

D a for n � 1.

#
(7.2)

Thus (7.2) suggests that dynatomic extensions resemble cyclotomic extensions, while the
arboreal extensions resemble Kummer extensions; although we readily admit that this is far
from a perfect analogy.

Definition 7.5. Let f W P N ! P N be a morphism of degree d � 2 defined over K, and
let P 2 P N .K/. The inverse image tree of f rooted at P is the (disjoint) union of the
inverse images of P by the iterates of f :

Tf;P D

[
n�0

f �n.P / D
[
n�0

®
Q 2 P N . NK/ W f n.Q/ D P

¯
:

We say that f is arboreally complete at P if #f �n.P / D d nN for all n � 0, in which
case Tf;P is a complete rooted d N-ary tree, where f maps the points in f �n�1.P / to the
points in f �n.P /. Figure 2 illustrates a complete inverse image tree for a degree-2 map
f W P 1 ! P 1.

• • • • • • • •

• • • •

• •

•
Figure 2

A complete binary inverse image tree

The points in the iterated inverse image of P generate a (generally infinite) algebraic
extension of K, so the Galois group Gal. NK=K/ acts on the points in Tf;P . And since the
action of the Galois group commutes with the map f , the action of Gal. NK=K/ on Tf;P

preserves the tree structure. Thus in this case, the analogue of GL2 in (7.1) is the group of
automorphisms of the tree Tf;P , which leads us to our primary object of study.
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Definition 7.6. Let f 2 Endd
N .K/, and let P 2 P N .K/. The arboreal representation

(over K) of f rooted at P is the homomorphism

�
dyn
K;f;P

W Gal. NK=K/! Aut.Tf;P /:

The Odoni32 index over K of f at P is the index of the image in the full tree automorphism
group,

�K.f; P / D
�
Aut.Tf;P / W Image.�

dyn
K;f;P

/
�
:

As in the dynatomic case, it is again too much to hope that the image of �
dyn
K;f;P

has
finite index in Aut.Tf;P / for all f , but we might expect this to be true for most f . This leads
to a number of fundamental questions.

Question 7.7 (Arboreal Image-of-Galois Problem). (a) Let K=Q be a number
field, and let N � 1 and d � 2. Characterize the maps f 2 EndN

d .K/ and
points P 2 P N .K/ whose Odoni index �K.f; P / is finite, especially when f

is arboreally complete at P .

(b) (Generalized Odoni conjecture) For all number fields K=Q and all N � 1

and d � 2, does there exist a point P 2 P N .K/ and a map f 2 EndN
d .K/

that is arboreally complete at P such that �K.f; P / D 1?

(c) Fix a number field K=Q and integers N � 1 and d � 2. Is it true that
�K.f; P / D 1 for “almost all” pairs .f; P / in EndN

d .K/ � P N .K/ for some
appropriate sense of density?

Remark 7.8. Odoni’s original conjecture was both more restrictive and stronger than Ques-
tion 7.7(b) in that he considered only N D 1 and polynomial maps. Odoni asked if for
all K=Q and all d � 2, there exists a degree-d monic polynomial f .x/ 2 KŒx� and a
point ˛ 2K such that Tf;˛ is a complete d -ary tree and such that �K.f; ˛/D 1. Odoni’s con-
jecture was proven over Q for prime values of d in [45], and then in full generality in [85]. We
mention that Odoni originally conjectured that the statement should hold for all Hilbertian
fields, but this was recently resolved in the negative [36].

Remark 7.9. We close with the well-known observation that the automorphism group of
an n-level complete rooted regular tree (labeling the levels 0; 1; 2; : : : ; n) is an n-fold wreath
product of the symmetric group. Hence if f is arboreally complete at P , then the automor-
phism group of Tf;P is the inverse limit

Aut.Tf;P / Š lim
 �

�dN o �dN o � � � o �dN„ ƒ‚ …
n-fold iterated wreath product with n ! 1

:

32 Named in honor of R. W. K. Odoni, who appears to have been the first to seriously
study such problems in a series of papers [65–67], in one of which he proves that
�Q.x2 � x C 1; 0/ D 1.
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The profinite group G. NK=K/ then acts continuously on the profinite group Aut.Tf;P /, just
as in arithmetic geometry G. NK=K/ acts continuously on the Tate module T`.A/D lim

 �
AŒ`n�

of an abelian variety A=K.

8. Topic #5: Dynamical and arithmetic complexity

We informally define the complexity of a mathematical object to be a rough estimate
for how much space it takes to store the object:

h.X/ D complexity of object X

� # of basic storage units (e.g., bits, scalars) required to describe X:

Example 8.1. The complexity of a nonzero integer c 2 Z is the number of bits needed to
describe c, so roughly log jcj.

Example 8.2. The complexity of a nonzero polynomial f .x/ 2KŒx� is the number of coef-
ficients needed to describe f , so roughly deg.f /.

For a sequence of objects X D .Xn/n�1 whose complexity is expected to grow
exponentially, we define the sequential complexity of X to be the limit33

�.X/ D lim
n!1

h.Xn/1=n:

Example 8.3. Let f W P N Ü P N be a degree-d dominant rational map, i.e., a map given
by homogeneous degree-d polynomials Œf0; : : : ; fN � in CŒx0; : : : ; xN � having no common
factors. Then h.f /D deg.f /D d . The sequential complexity of the sequence of iterates f n

is called the dynamical degree of f and is denoted

ıf D lim
n!1

.deg f n/1=n: (8.1)

Example 8.4. Let P D Œc0; : : : ; cN � 2 P N .Q/ be a point written with relatively prime inte-
ger coordinates. Then

h.P / D log max jci j: (8.2)

More generally, if K=Q is a number field, then there is a well-defined Weil height function34

h W P N .K/! Œ0;1/ (8.3)

33 In cases where the limit is not known to exist, we may consider the upper and lower sequen-
tial complexities

�.X/ D lim sup
n!1

h.Xn/1=n and �.X/ D lim inf
n!1

h.Xn/1=n:

34 The Weil height of a point P D Œa0; : : : ; aN � 2 PN .K/ may be defined as follows: Let
d D ŒK WQ�, write the fractional ideal generated by a0; : : : ; aN as AB�1 with relatively
prime integral ideals A and B, and let �1; : : : ; �d W K ,!C be the distinct complex embed-
dings of K. Then

h.P / D
1

d
log jNK=Q.B/j C

1

d

dX
iD1

log max
0�j �N

j�i .aj /j:
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that generalizes (8.2). The height of a point P 2 P N .K/ measures the complexity of the
coordinates of P .

Now let K=Q be a number field, let P 2 P N .K/, and let f W P N Ü P N be a
dominant rational map defined over K. Then the sequential complexity of the orbit Of .P /

is called the arithmetic degree of the f -orbit of P and is denoted

f̨ .P / D lim
n!1

h
�
f n.P /

�1=n
: (8.4)

The notation in Table 2 will be used throughout the remainder of this section. We
will generalize the complexity measures from Examples 8.3 and 8.4 and describe a number
of results and questions.

Definition 8.5. The (first) dynamical degree of a dominant rational map f W X Ü X is

ıf D lim
n!1

�
degX .f n/

�1=n
: (8.5)

The limit (8.5) converges and is independent of the choice of the ample divisor H

used to define degX [16].35 Dynamical degrees on P N were first studied in the 1990s [2,9,75].
A long-standing question concerning the algebraicity of the dynamical degree was recently
answered in the negative.

Theorem 8.6 ([5, 6]). For all N � 2, there exist dominant rational maps f W P N Ü P N

defined over Q such that ıf is a transcendental number. For N � 3, there exist such maps
that are birational automorphisms of P N .

K a number field with algebraic closure NK
X a smooth projective variety of dimension d defined over K

f a dominant rational map f W X Ü X defined over K

Xf D ¹P 2 X. NK/ W f is well-defined at f n.P / all n � 0º

degX .f / D .f �H/ �H d�1, where H is an ample divisor on X , and this formula
is a d -fold intersection index

hX the height on X coming from a projective embedding � W X ,! P N , i.e.,
hX D h ı �, where h is the Weil height (8.3) on P N

hC

X D max¹1; hXº

Table 2

Notation for Section 8

35 The convergence of (8.5) when X D PN is a fun exercise using deg.f ı g/ �

.deg f /.deg g/.
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There is an arithmetic analogue of the dynamical degree that measures the average
arithmetic complexity of the algebraic points in an orbit. But since rational maps may not be
defined everywhere, the next definition must restrict attention to Xf , the points in X where
the full forward orbit of f is well defined.36

Definition 8.7. Let f W X Ü X be a dominant rational map defined over K, and let P 2

Xf . NK/. The arithmetic degree of the f -orbit of P is

f̨ .P / D lim
n!1

hC

X

�
f n.P /

�1=n
: (8.6)

Question 8.8. Does the limit (8.6) always exist?

In any case, we may consider the upper and lower arithmetic degrees f̨ .P / and
f̨ .P / defined using, respectively, the liminf and the limsup. It is not hard to show that

these quantities are independent of the choice of the complexity function hC

X . It is also easy
to show that f̨ .P / is finite, but more difficult to show that there is a uniform geometric
bound, as in the next result.

Theorem 8.9 ([50]). Let f W X Ü X be a dominant rational map defined over K, and
let P 2 Xf . NK/. Then

f̨ .P / � ıf :

Moral of Theorem 8.9. The arithmetic complexity of an orbit is no worse
than the dynamical complexity of the map.

Theorem 8.9 suggests a natural question. When do the arithmetic and dynamical
complexities coincide?

Conjecture 8.10 ([39,40])). Let f W X Ü X be a dominant rational map defined over K,
and let P 2 Xf . NK/. Then

Of .P / is Zariski dense in X H) f̨ .P / D ıf :

Moral of Conjecture 8.10. An orbit with maximal geometric complexity
also has maximal arithmetic complexity.

Question 8.11. Does X. NK/ always contain a point with Zariski dense f -orbit? The answer
is clearly no. For example, if there exists a dominant rational map ' W X Ü P 1 satisfying
' ı f D ', then each f -orbit lies in a fiber of '. Xie asks whether this is the only obstruction.
An affirmative answer for certain maps in dimension 2 is given in [35,93].

36 The complement X X Xf is a countable union of proper subvarieties, so cardinality consid-
erations show that Xf .C/ is nonempty; but the situation is less clear for a countable field
such as NQ. It is shown in [1] that Xf . NQ/ is Zariski dense in X .
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Example 8.12. It is easy to prove Conjecture 8.10 for morphisms f of P N , since in that
case ıf D deg.f /, and the theory of canonical heights implies that

f̨ .P / D

8<: deg.f / if #Of .P / D1,

1 if P is f -prepediodic.

More generally, a similar argument works for endomorphisms of any smooth projective vari-
ety whose Néron–Severi group has rank 1 [38]. But the conjecture is still open for dominant
rational maps of P N , and for morphisms of more general varieties.

Example 8.13. The past decade has been significant progress on various cases of Conjec-
ture 8.10, especially in the case of morphisms, using an assortment of tools ranging from
linear-forms-in-logarithms to canonical heights for nef divisors to the minimal model pro-
gram in algebraic geometry. In particular, Conjecture 8.10 has been proven for

• group endomorphisms (homomorphisms composed with translations) of semi-
abelian varieties (extensions of abelian varieties by algebraic tori) [39,52,83,84],

• endomorphisms of (not necessarily smooth) projective surfaces [38,53,57],

• extensions to P N of regular affine automorphisms of AN [38],

• endomorphisms of hyperkähler varieties [43],

• endomorphisms of degree greater than 1 of smooth projective threefolds of
Kodaira dimension 0 [43],

• endomorphisms of normal projective varieties such that Pic0
˝Q D 0 and with

nef cone generated by finitely many semi-ample integral divisors [49], and

• smooth projective threefolds having at least one int-amplified37 endomorphism,
and surjective endomorphisms of smooth rationally connected projective varieties
[51].

Remark 8.14. Various generalizations of Conjecture 8.10 have been proposed. We mention
in particular the Small Arithmetic Non-Density Conjecture [51], which says that points of
small arithmetic degree are not Zariski dense when f is a morphism. However, as the authors
observe, their conjecture is only for morphisms, since it may fail for dominant rational maps.
The authors of [51] prove the SAND conjecture for many of the cases listed in Example 8.13.

Conjecture 8.10 is a relatively coarse estimate for the height growth of points in
Zariski-dense orbits. An affirmative answer to the following question would yield a quanti-
tative version of the conjecture.

37 A morphism f W X ! X is int-amplified if there exists an ample Cartier divisor H such
that f �H �H is also ample.
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Question 8.15 ([10, Question 14.5]). Let f W X Ü X be a dominant rational map defined
over K, and let P 2 Xf . NK/ be a point whose orbit Of .P / is Zariski dense in X . Do there
exist (integers) 0 � f̀ � N and kf � 0 such that

h
�
f n.P /

�
� ın

f � n
f̀ � .log n/kf ;

where the implied constants depend on f and P , but not on n? If ıf > 1, is it further true
that kf D 0?
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