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ABSTRACT

This paper reports on some recent progress that have been made on the so-called Gan—
Gross—Prasad conjectures through the use of relative trace formulae. In their global
aspects, these conjectures, as well as certain refinements first proposed by Ichino—Ikeda,
give precise relations between the central values of some higher-rank L-functions and
automorphic periods. There are also local counterparts describing branching laws between
representations of classical groups. In both cases, approaches through relative trace for-
mulae have shown to be very successful and have even lead to complete proofs, at least in
the case of unitary groups. However, the works leading to these definite results have also
been the occasion to develop further and gain new insights on these fundamental tools of
the still emerging relative Langlands program.
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In broad terms, the Gan—Gross—Prasad conjectures concern two interrelated ques-
tions in the fields of representation theory and automorphic forms. On the one hand, these
conjectures predict highly-sophisticated descriptions of some branching laws between repre-
sentations of classical groups (that is, orthogonal, symplectic/metaplectic, or unitary groups)
over local fields which can be seen as direct descendants of classical results of H. Weyl on
similar branching problems for compact Lie groups. The predictions are given in terms of
the recently established local Langlands correspondence for these groups that provides a
parameterization of the irreducible representations in terms of data of arithmetic nature. On
the other hand, the Gan—Gross—Prasad conjectures also give far-reaching higher-rank gener-
alizations of certain celebrated relations between special values of L-functions and period
integrals. We start this paper by discussing two, by now well-known, examples of the former
kind of relations.

First, we briefly review Hecke’s integral representation for L-functions of modular
forms. Let S>(I"1 (V)) be the space of cuspidal modular form of weight 2 for the group

Iy (N) = {y eSLy(Z) |y = (é :) mod N}.

It consists in the holomorphic functions f : H — C, where H = {x +iy | x,y € R,y > 0}
is Poincaré upper half-plane, satisfying the functional equation

az+b\ 5 a b
f(cz+d)—(cz+d) f(2), V(C d) e I'1(N) 0.1)

and that are “vanishing at the cusps,” a condition imposing in some sense means that f is
rapidly decreasing modulo the above symmetries. Another more geometric way to describe
S>(T'1(N)) is as a space of holomorphic differential forms: for f € S>(I'1(N)), the form
wr = f(z)dz descends to the open modular curve Y (N) = I't (NV)\H (a Riemann surface
as soon as N > 3) and the vanishing at the cusps condition translates to the fact that this form
extends holomorphically to the canonical compactification X; (N) of Y7 (N). Moreover, the
map f > wy yields an isomorphism S»(I'1 (N)) ~ Q!(Xo(N)).

It follows from the functional equation (0.1) that every f € S»(I'1(N)) is periodic
of period 1 and thus admits a Fourier expansion

f=Y ang". q=e*", 0.2)
n=1
where the fact that the sum is restricted to positive integers is part of the assumption that f
vanishes at the cusps. The Hecke L-function of f is then defined as the Dirichlet series

L(s, f) = ;‘—

n=1
converging absolutely in the range 9 (s) > 2. Hecke has shown that this can also essentially
be expressed as the Mellin transform of the restriction of f to the imaginary line,

@) T()LGs. f) = /0 Fiy)y*\dy. 03)
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This formula implies at once two essential analytic properties of L(s, f): its analytic con-
tinuation to the complex plane and a functional equation of the form s <> 2 — 5. Moreover,
it also has interesting arithmetic content: when specialized to the central value s = 1 and
combined with a theorem of Drinfeld and Manin, it allows showing that the ratio between
the central value of the L-function of a (modular) elliptic curve and its (unique) real period
is always rational as predicted by a refinement of the Birch—Swinnerton-Dyer conjecture.

The above formula of Hecke can be reformulated (and slightly generalized) in the
language of adelic groups and automorphic forms as follows. Let & be a cuspidal auto-
morphic representation of PGL,(A), where A = R x ]_[; Qp denotes the adele ring of the
rationals. This roughly means that 7 is an irreducible representation realized in a space of
smooth and rapidly decreasing functions on PGL;(Q)\ PGL,(A). Then, for every ¢ € 7 we
have an identity of the following shape:

1
/ p(a)da ~ L(—, n), (0.4)
AQ\A(A) 2

where 4 = (* *) is the standard split torus in PGL, and L(s, i) is the L-function of ,
a particular instance of the notion of automorphic L-functions defined by Langlands. For
specific i’s, this recovers Hecke’s formula (0.3) for s = 1, although L (s, 7r) then coincides
with the L-functions of a modular form only up to a renormalization that moves its center
of symmetry to 1/2. Moreover, the ~ sign means that the equality only holds up to other,
arguably more elementary, multiplicative factors.

Let E/Q be a quadratic extension. In the 1980s, Waldspurger [46] has established
another striking formula for the central value of the base-change L-function

L(s,mg) = L(s,m)L(s, 7 ® xg)

where yg : AX/Q is the idele class character associated to the extension E/Q. Wald-
spurger’s formula roughly takes the following shape:

2 1
- L(z, nE) 0.5)

for ¢ € m, where T is a torus in PGL, isomorphic to Resg/r (G)/Gm (Resg,r denot-

o(t)dt

/T(Q)\T(A)

ing Weil’s restriction of scalars). This result has lead in the subsequent years to strik-
ing arithmetic applications such as to the Birch—Swinnerton-Dyer conjecture or to p-adic
L-functions.

Although of a similar shape, the two formulas (0.4) and (0.5) also have important
differences, e.g., the left-hand side of (0.5) is typically far more algebraic in nature, and
indeed sometimes just reduces to a finite sum, whereas the formula (0.4) can be deformed to
all complex number s, giving an integral representation of the L-function L (s, r) as Hecke’s
original formula, and typically carries information that is more transcendental.

The left-hand sides of (0.4) and (0.5) are particular instances of automorphic periods
that can be informally defined as the integral of an automorphic form over a subgroup. We
can also consider these two period integrals in a more representation-theoretic way as giving
explicit A(A)- or T'(A)-invariant linear forms on 7. This point of view rapidly leads to a local
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related problem which, given a place v of Q, aims to describe the irreducible representations
of PGL,(Qy) admitting a nonzero A(Qy)- or T (Q,)-invariant linear form. It turns out that
for the torus A the answer is always positive except for some degenerate one-dimensional
representations. On the other hand, the answer for the torus 7 is far more subtle and involves
local e-factors as shown by Tunnell and Saito [44].

A natural generalization of Hecke’s formula (0.4) is given by the theory of so-called
Rankin-Selberg convolutions as developed by Jacquet Piatetski-Shapiro and Shalika [31]. On
the other hand, the Gan—Gross—Prasad conjectures [23] aim to give far-reaching higher-rank
generalizations of the above result of Waldspurger as well as of the theorem of Tunnell-Saito.

There has been a lot of progress on these conjectures, as well as some refinements
thereof, in recent years, in particular in the case of unitary groups. In this paper, we will
survey some of these developments with a particular emphasis on the use of (various forms
of) relative trace formulae. Actually, a point I will try to advocate here is that the long journey
towards the Gan—Gross—Prasad conjectures was also the occasion to develop and discover
new features of these trace formulae.

The content is roughly divided as follows. In the first section, we review the local
conjectures of Gan—Gross—Prasad and discuss their proofs in some cases based on some local
trace formulae. Then, in Section 2, we introduce the global conjectures for unitary groups, as
well as their refinements by Ichino—Ikeda, and describe an approach to both of them through
a comparison of global relative trace formulae proposed by Jacquet and Rallis. The next two
sections, Sections 3 and 4, are devoted to explaining the various ingredients needed to carry
out this comparison effectively. In the final Section 5, we offer few thoughts about possible
future developments.

1. THE LOCAL CONJECTURES AND MULTIPLICITY FORMULAE

1.1. The branching problem

Let F be a local field (of any characteristic) and E be either a separable quadratic
extension of F' or F itself. In the case where [E : F] = 2, we let ¢ denote the nontrivial
F-automorphism of E and otherwise, to obtain uniform notation, we simply set c = 1. Let
V be a Hermitian or quadratic space over E i.e. a finite dimensional E-vector space equipped
with a nondegenerate c-sesquilinear form

h:VxV —>E

satisfying i (v, w) = h(w, v)€ forevery v,w € V.Let W C V be a nondegenerate subspace
and let U(V) (resp. U(W)) be the group of E-linear automorphisms g € GLg (V') (resp.
g € GLEg (W)) that preserve the form & and are of determinant one when £ = F. In other
words, U(V'), U(W) are the unitary groups associated of the Hermitian spaces V', W when
[E : F] = 2 and the special orthogonal groups of the quadratic spaces V, W when E = F.
Note that there is a natural embedding U(W) — U(V') given by extending the action of
g € U(W) trivially on the orthogonal complement Z = W+ of W in V. We assume that

Z is odd-dimensional and U(Z) is quasisplit. (1.1
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Concretely, this means that there exists a basis (z;)—r<i<r of Z and v € F* such that
h(zi,zj) =vé;—j for—r <i, j <r.Let N C U(V) be the unipotent radical of a parabolic
subgroup P C U(V) stabilizing a maximal flag of isotropic subspaces in Z, e.g., with a basis
as before, we can take the flag £z, C Ez, ® Ez,—1 C---C Ez, & --- & Ez;. Then, U(W)
normalizes N and Gan—-Gross—Prasad construct a certain conjugacy class of U(W )-invariant
characters £ : N — C*. Concretely, we can take

r—1
Ew) = w(Z h(uzi,z_i_l)), u €N,
i=0

where ¥ : F — C* is a nontrivial character.

The local GGP conjectures roughly address the following branching problems: for
smooth irreducible complex representations (77, V) and (o, V) of U(V') and U(W) respec-
tively, determine the dimension (also called multiplicity) of the following intertwining space:

m(m,0) = dimHomU(W)xN(V,,, Vo ® §). (1.2)

Here, when F is Archimedean by a smooth representation we actually mean an admissible
smooth Fréchet representation of moderate growth in the sense of Casselman—Wallach [19].
Moreover, in this case Vy, Vi, are Fréchet spaces and by definition Homyuwyxy (Vz, Vo @ &)
only consists in the continuous U(W') x N -equivariant intertwining maps.

By deep theorems of Aizenbud—Gourevitch—Rallis—Schiffmann [2] in the p-adic
case and Sun—Zhu [42] in the Archimedean case, the branching multiplicity m (7, o) is known
to always be at most 1 (at least when F is of characteristic 0, see [37] for the case of positive
characteristic). Thus, the question reduces to determine when m (7, o) is nonzero.

Gan, Gross, and Prasad formulated a precise answer to this question, under some
restrictions on the representations 7 and o, based on the so-called Langlands correspon-
dences for the groups U(V') and U(W). More precisely, these give ways to parametrize
smooth irreducible representations of those groups in terms of L-parameters which are cer-
tain kind of morphisms

¢: L >LUW) or FUW)

from a group £ r which can be taken to be either the Weil group W (in the Archimedean
case) or a product Wr x SL;(C) (in the non-Archimedean case) to a semidirect product
Lyw) = zT(V) x Wg or LUW) = (ﬁﬂ\/) X W known as the L-group. In the cases at
hand, the connected components U/(V) and (ﬁﬂ\/ ) turn out to be either complex general
linear groups (in the unitary case) or complex special orthogonal/symplectic groups (in the
orthogonal case) and the relevant sets of L-parameters can be more concretely described
as sets of complex representations of £ g of fixed dimension and satisfying certain proper-
ties of (conjugate-)self-duality. We refer the reader to [23, §8] for details and content ourself
to briefly sketch this alternative description for unitary groups: the L-parameters for U(V")
can be equivalently described as isomorphism classes of n = dim(V')-dimensional com-
plex semisimple representations ¢ : £g — GL(M) which are conjugate-self-dual of sign
(=1)""1. Here, ¢ is said to be conjugate-self-dual if there is an isomorphism T : M — M V°
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with its conjugate-contragredient ¢pV° : £ — GL(M V) obtained by twisting the contra-
gredient by any chosen lift o € £ \ £ g of ¢ and it is, moreover, said to be of sign ¢ € {£} if
the isomorphism 7" can be chosen so that ' T¢(6?) = T . Besides these L-parameters ¢, the
local Langlands correspondence is also supposed to associate to irreducible representations
irreducible characters of the finite group of components

S¢ = 1o (Centlﬁ)(qﬂ)

of the centralizer of the image of ¢ in l7(—l7) For the group considered here, Sy is always a
2-group and moreover, once again, it also admits a more concrete description, e.g., if U(V)
is a unitary group and we identify ¢ with a (—1)"~!-conjugate-self-dual representation of
£ g as before, this can be decomposed into irreducible representations as follows:

¢ =EPnigi Pmit; P ikt & ¢ (1.3)
iel jeJ keK
where the ¢;’s (resp. ¢;’s) are irreducible conjugate-self-dual of the same sign (—1)"~!
(resp. of opposite sign (—1)") whereas the ¢ ’s are irreducible but not conjugate-self-dual
and using this decomposition we have

Se =EPz/2Ze;. (1.4)
iel

We are now ready to state a version of the local Langlands correspondence, includ-
ing an essential refinement by Vogan [45], necessary for the local Gan—Gross—Prasad conjec-
ture. It turns out to be more easily described if we consider more than one group at the same
time: besides U(V) ! itself, we need to consider its pure inner forms which here consist
of the groups U(V') where V' runs over the isomorphism classes of Hermitian/quadratic
spaces of the same dimension as V' and of the same discriminant in the orthogonal case.
If F is non-Archimedean, and provided V' is not an hyperbolic quadratic plane, there are
always two such isomorphism classes of Hermitian/quadratic spaces and thus as many pure
inner forms whereas if F' is Archimedean, by their classification using signatures there are
dim(V') + 1 (resp. w for dim(V') odd, w for dim(V') even) pure inner
forms in the unitary case (resp. orthogonal case). For such a pure inner form, let us denote by
Irr(U(V')) the set of isomorphism classes of smooth irreducible representations of U(V").
Then, modulo the auxilliary choice of a quasisplit pure inner form U(V’) and a Whittaker
datum on it* that we will suppress from the notation, the local Langlands correspondence

posits the existence of a natural decomposition into finite sets called L-packets

| () =| | ).
Vv’ ¢

where the left union runs over all pure inner forms whereas the right union is over all
L-parameters ¢ : £ — LU(V) (the pure inner forms all share the same L-group) together

1 Of course, the following discussion also applies to U(W).
2 A Whittaker datum of U(V") is a pair (N, 0) consisting of a maximal unipotent subgroup
N C U(V') and a generic character § : N — C*. This datum only matters up to conjugacy.
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with bijections

T(¢) = S,

(1.5)
(P, x) <X,

with the character group S’; of Sg. Thus, in a sense the correspondence gives a way to
parameterize the admissible duals of all the pure inner forms of U(V') at the same time.
However, there is a precise recipe for the characters S‘;V' corresponding to the intersec-
tion IV’ (¢) = (¢) N TIrr(U(V')) and therefore this also induces a parameterization of
the individual admissible duals Irr(U(V’)). Moreover, the naturality condition can be made
precise through the so-called endoscopic relations that characterize the Langlands param-
eterization uniquely in terms of the known correspondence for GL,.? For real groups, the
correspondence was constructed long ago by Langlands and is known to satisfy the endo-
scopic relations thanks to the work of Shelstad. In his monumental work [7], Arthur has
established, among other things, the existence of this correspondence for quasisplit special
orthogonal or symplectic p-adic groups (with an important technical caveat for even special
orthogonal groups SO(2n) where the correspondence is only proven up to conjugation by
the full orthogonal group O(2n)). This work was subsequently extended in [39] and [34] to
include unitary groups (not necessarily quasisplit).

For the purpose of stating the local Gan—Gross—Prasad conjecture, we will also need
to vary the two groups U(V'), U(W'). However, we will need these to vary in a compatible
way in order for the multiplicity (1.2) to still be well-defined. More precisely, the relevant
pure inner forms of U(V') x U(W) are defined by varying the small Hermitian/quadratic
space W while keeping the orthogonal complement Z = W fixed: these are the groups of
the form U(V') x U(W’) where W' is a Hermitian/quadratic space of the same dimension
as W, and same discriminant in the orthogonal case, whereas V"’ is given by the orthogonal
sum V' = W’ @+ Z. Since the orthogonal complement Z is the same, for each relevant
pure inner form U(V') x U(W’) we can define as before a multiplicity function (7, o) €
Irr(U(V'")) x Ir(U(W)) + m(x, 0).

We are now ready to formulate the local Gan—Gross—Prasad conjecture except for
one technical but important detail: as alluded to above, the local Langlands correspondences,
and more particularly the bijections (1.5), depend on the choice of Whittaker data on some
pure inner forms of U(V') and U(W). Actually, it turns out that there exists a unique relevant
pure inner form U(V) x U(W,,) which is quasisplit and on which we can fix a Whittaker
datum through the choice of a nontrivial character ¥ : E — C* that is, moreover, trivial for
F in the unitary case (see [23, §12] for details). With these prerequisites in place, we can now
state:

Conjecture 1.1 (Gan—Gross—Prasad). Let ¢ : £ — LU(V) and ¢’ - £ — LUW) be
L-parameters for U(V') and U(W), respectively. Assume that the corresponding L-packets

3 This situation is peculiar to classical groups because those can be realized as twisted endo-
scopic groups of some GLy .
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I1(¢), T1(¢") are generic, that is, they contain one representation which is generic with
respect to each Whittaker datum. Then:

(1) There exists a unique pair
(r.0) e | |1V (¢) x T (¢).
W/

where the union runs over relevant pure inner forms, such that m(w,0) = 1.

(2) The unique characters y € 3; and y' € §¢7 such that w = w(p, x) and
o =7 (¢, x') are given by explicit formulas involving local root numbers, e.g.,
in the unitary case, identifying ¢, ¢’ with conjugate-self-dual representations of
£ g and using the description (1.4) of S¢/ in terms of the decomposition (1.3),
we have

x(ei) = e(pi ® ¢'.Y25), foralli €1. (1.6)

Here § stands for the discriminant of the odd dimensional Hermitian space
among (Vys, Wys), Vas5(2) := ¥ (26z) and e(¢; ® ¢', Was) denotes the local
root number of the Weil or Weil-Deligne representation ¢; ® ¢’ associated to
this additive character [43].

When (dim(V), dim(W)) = (3, 2) (quadratic case) or (dim(V'), dim(W)) = (2,1)
(Hermitian case), the above conjecture essentially reduces to the result of Tunnell and Saito
[44] on restrictions of irreducible representations of GL(2) to a maximal torus mentioned in
the introduction. There has been a lot of recent progress towards Conjecture 1.1 and here is
the status of what is currently known in the characteristic zero case:

Theorem 1.1. Assume that F is of characteristic 0. Then:

(1) Both (1) and (2) of Conjecture 1.1 hold true in the following cases: if V, W are
Hermitian spaces (i.e., in the unitary case) or if these are quadratic spaces and
F is p-adic.

(2) Conjecture 1.1 (1) is verified when V, W are quadratic spaces and F is
Archimedean.

The first real breakthrough on Conjecture 1.1 was made by Waldspurger who estab-
lished in a stunning series of papers [38,47-49], the last one in collaboration with Meeglin,
the full conjecture for p-adic special orthogonal groups under the assumption that the local
Langlands correspondence is known for those groups and have expected properties. In my
PhD thesis [8-16], I extended the method to deal with p-adic unitary groups therefore obtain-
ing the conjecture under the slightly weaker assumption that the parameters ¢, ¢’ are tem-
pered which means that the corresponding L-packets consist of tempered representations.
The extension to generic L-packets was carried out in the appendix to [24] using crucially a
result of Heiermann. Later, I revisited Waldspurger’s method which is based on a novel sort
of local trace formulae, putting it on firmer grounds, and in the monograph [12] I established
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part (1) of the conjecture (sometimes called the multiplicity one property for L-packets) for
unitary groups over arbitrary fields of characteristic 0, thus reproving part of my thesis in the
p-adic case, and still under the assumption that L-parameters are tempered which as we will
see is quite natural from the method. In the meantime, H. He [28] has developed a different
approach to the conjecture based on the local 6-correspondence and very special features of
the representation theory of real unitary groups (in particular, this approach cannot deal with
p-adic groups) which allowed him to prove the full conjecture for those groups whenever
¢ and ¢’ are discrete parameters (a stronger condition than being tempered). Recently, this
technique was enhanced by H. Xue [54] who was able to show the conjecture for real unitary
groups without any restriction. Finally, in the recent preprint [36] Z. Luo adapted my previ-
ous work to deal with real special orthogonal groups proving the multiplicity one property
for tempered L-packets.

1.2. Approach through local trace formulae

Let me give more details on the general structure of the approach taken by Wald-
spurger which was clarified and then further refined in [12]. It is mainly based on one com-
pletely novel ingredient that is a formula expressing the multiplicity m(m, o) in terms of
the Harish-Chandra characters of & and o. To be more specific, we recall a deep result of
Harish-Chandra asserting that the distribution-character of a smooth irreducible representa-
tion 7, i.e. the distribution f € CX°(U(V)) + Trace w(f), can be represented by a locally
L' function ®, known as its Harish-Chandra character. The aforementioned formula gives
an identity roughly of the form:

m(mw,0) = /::j " cr(X)ce (x " Vdx, 1.7

where I"(V, W) is a certain set of semisimple conjugacy classes in U(V') equipped with
some measure dx reminiscent of Weyl integration formula (although it is more singular
than measures coming from maximal tori, e.g., singular orbits are typically not negligible for
dx), ¢z (x) and ¢, (x 1) are renormalized values for the characters ®; and @, respectively
(although these characters are smooth on open dense subsets of regular semisimple elements,
they typically blow up at the singular conjugacy classes in I'(V, W); the renormalization is
based on further results of Harish-Chandra describing the local behavior of characters near
singular elements), and finally the “reg” sign indicates that the integral itself has sometimes
to be regularized in a certain way (or put another way, it is improperly convergent). Originally,
formula (1.7) was only proven to hold for fempered representations but through the process of
reducing the general conjecture to the tempered case, it was eventually shown a posteriori to
hold for every irreducible representations belonging to generic L-packets. In the degenerate
case where U(V') is compact, the right-hand side of the integral formula (1.7) reduces to
the L?-scalar product of ® |y(w) and O, and the formula itself is an easy consequence
of the orthogonality relations of characters, but in general the formula looks much more
mysterious.

Let us sketch very briefly how we can deduce from formula (1.7) the first part of
Conjecture 1.1 for tempered parameters (multiplicity one in tempered L-packets). The idea,
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due to Waldspurger, is to take advantage of inner cancellations in the sum

IDITLLED SEND SR | D G@ehdx (8)

W’ (z,0) w’ (JT,U)EHV/(¢)XHW/ %) VW)
that can be deduced from certain character relations (which are basic instances of the already

mentioned endoscopic relations). The first step is to rewrite the sum as
reg
)

Z/ cy (¥)ey (x""dx (1.9)
W YT W

where @Z, =2 renv'(g) On> @gf/ =Y sen (4 O and cg/ (x), cgf/ (x~1!) are renormal-
ized values for those characters as before. The first property of the Langlands correspondence
that we need is that @gl, ®3}f/ are stable, i.e., are constant on the union of semisimple regular
conjugacy classes that become the same over an algebraic closure (a so-called regular stable
conjugacy class). It follows from this stability property that the renormalized functions c Js/ /,
c;‘,ﬂ are also invariant under a suitable extension of stable conjugation for singular elements.

Consequently, the sum of multiplicities can be further rewritten as

reg

Y. mmo)=) cyg ey (v Hdy. (1.10)

W' (r.0) W T(V/,W’)/stab

where T'(V', W') /stab stands for the space of stable conjugacy classes in I'(V’, W’). At this
point, it is convenient to make the simplifying assumption that F is p-adic and W is not
a split quadratic space of dimension < 2. Then, there are exactly two relevant pure inner
forms U(V) x U(W) and U(V’) x U(W') with, say, the first one quasisplit. Moreover, the
character relations in this case read

OF (y) =evOy () (resp. OF (y) = ew®F ()
for certain signs ey, ey € {£1} satisfying eyeyr = —1 and for every regular stable con-
jugacy classes y, v’ in U(V), U(V’) (resp. in U(W), U(W’)) that are related by a cer-
tain correspondence (which is just an identity of characteristic polynomials except in the

even orthogonal case). This correspondence actually naturally extends to give an embedding
V', W’)/stab — T'(V,W)/stab, y’ > y, for which we have
cy ey () =—cy (V)ey (V).

This implies that in the right-hand side of (1.10), all the terms indexed by I'(V’, W’)/stab
can be cancelled with the corresponding terms coming from their images in I'(V, W) /stab.
The only remaining contribution, it turns out, is that of the trivial conjugacy class:

D) mro) =cy (e (1) (1.11)

W' (7,0)
which, by a result of Rodier, can be interpreted as the number of representations in the packet
MY (¢) ® W (¢') that are generic with respect to a certain Whittaker datum (actually really
an average of such numbers over all Whittaker data in the unitary case). By a third property of

tempered L-packets (existence and unicity of a generic representation for a given Whittaker
datum), this number is just 1 and this immediately implies the first part of Conjecture 1.1.
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The proof of the multiplicity formula (1.7), on the other hand, is much more
involved. Set G = U(W) x U(V) and H = U(W) x N that we see as a subgroup of G
through the natural diagonal embedding. Then, following the approach that I have devel-
oped in [12], (1.7) can be deduced from a certain simple trace formula for the “space”
X = (H,£)\G. More precisely, this trace formula is roughly seeking to compute the trace
of the convolution operators

¢ € L*(X.§) = (R()$)(x) Z/Gf(g)¢>(xg)dg, for f € C*(G).

where L2(X, £) denotes the Hilbert space of measurable functions ¢ on G satisfying
¢(hg) = E(h)p(g) for (h,g) € H x G and fH\G|qb(x)|2dx < oo. It is classical, and easy
to see, that these operators are given by kernels,

(R(f)¢)(X)=/XKf(X’y)¢(y)dy, for (f.¢) € C°(G) x L*(X. ).

where K¢ (x,y) = [5 f(x"'hy)&(h)dh. Thus, at a formal level (hence the quotation marks)
we have

“TraceR(f)z/ Kr(x,x)dx”.
X

However, neither of the two sides above make sense in general: the convolution operator is
not of trace-class and the kernel not integrable over the diagonal. The basic idea is then to
restrict oneself to a subspace of test functions for which at least one of the two expressions is
meaningful. A convenient such subspace is that of strongly cuspidal functions introduced by
Waldspurger in [47]: a function f € C°(G) is strongly cuspidal if for every proper parabolic
subgroup P = MU < G, we have

/f(mu)duzo, Ym e M.
U

Moreover, as is shown in [12], for f € C2°(G) strongly cuspidal, the integral

I = [ Krrnds

is absolutely convergent (the argument of [12] is given in the context of Gan—Gross—Prasad
for unitary groups but it can be adapted to a much more general context). Then, the afore-
mentioned simple local trace formula expands the distribution f — J(f) in two different

ways:

Theorem 1.2. For every strongly cuspidal f € C>°(G), we have the identities

reg R
/ cr(x)dx =J(f) = / m(IT)0r (IT)d 1T, (1.12)
T X(G)

VW)

where

* cy(x) is the renormalized value of a function x — 0 (x) constructed from
weighted orbital integrals of f in the sense of Arthur [3] and whose local behavior
is similar to that of Harish-Chandra characters on the group G;
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e X (G) is a certain space of virtual representations of G obtained by parabolic
induction from the so-called elliptic representations (as defined in [6]1) of Levi
subgroups and f +— 0r(I1) is a weighted character in the sense of Arthur [4];

e Finally, for an irreducible representation I1 = n ® o of G, m(I1) is defined as
the multiplicity m(m, V) with oV the smooth contragredient of o.

We refer the reader to [12] for precise definitions of all the terms and a proof in the
case of unitary groups. This was adapted in [36] to special orthogonal groups. The deduction
of the integral formula (1.7) roughly goes as follows: we first show the multiplicity formula
for representations that are properly parabolically induced by expressing both sides in terms
of the inducing data and applying an induction hypothesis whereas for the remaining rep-
resentations, the so-called elliptic representations, the formula can be obtained by applying
the trace formula (1.12) to some sort of pseudocoefficient.

Finally, let us say a word on how the more refined part (2) of Conjecture 1.1 can
be proven using this approach (so far it has only been done for p-adic groups in [49] and
[9], following the previous slightly different method of Waldspurger, but there is little doubt
that the techniques developed in [12] should allow to treat the case of real groups in a simi-
lar way). For Langlands parameters ¢, ¢’ as in Conjecture 1.1, as well as characters y € S;,
X € S’;r, combining the multiplicity formula (1.7) with the general endoscopic character rela-
tions that characterize the Langlands correspondences for U(V') and U(W), we can express
m(w(p, x),o(¢’, x')) as a sum of integrals of (renormalized) twisted characters on some
products GL, (E) x GL,,(E). The remaining ingredient is to relate these integrals of twisted
characters to the epsilon factors of pairs defined by Jacquet—Piatetski-Shapiro—Shalika in
[31]. More precisely, these expressions involve the twisted characters of tempered irreducible
representations 7%, 6L of general linear groups GL,, (E), GL,, (E), with n = m of distinct
parities, which are self-dual (in the orthogonal case) or conjugate-self-dual (in the unitary
case). These properties of (conjugate-)self-duality imply that 7" and ¢S extend to rep-
resentations 79", o of the nonconnected groups GL,(E) x (6,) and GL,,(E) x {6,
respectively, where 0; (k = n, m) denotes the automorphism g > “(g¢)~!. The twisted
characters in question are then the restrictions ® c. and ®;cL of the Harish-Chandra char-
acters of 7 and o6 to the nonneutral components GL, (E) =GL,(E)b, and GL,, (E) =
GL,, (E)6,,, respectively. Replacing the functions ¢, ¢y by similar suitable renormaliza-
tions of these twisted characters at singular semisimple conjugacy classes, there is a formula
very analogous to (1.7) for the e-factor of pair e(7S% x o, ).

For p-adic fields, this formula was established in [48] in the self-dual case and in [8]
in the conjugate-self-dual case. The proof follows closely that of (1.7) and is based on a local
trace formula very similar to that of Theorem 1.2 for the natural action of G := GL, (E) x
GL,,(E) on the homogeneous space X’ = H'\G’ where G’ = GL,(E) X GL,,(E) and
H’ = GL,,(E) x N'is the semidirect product with a unipotent subgroup N’ whose definition
is analogous to that of N. More precisely, there is also a similar unitary character & of
N’ that is GL,,(E)-invariant and the twisted trace formula we are mentioning is roughly
trying to compute the trace of convolution operators R(f) of functions f € C°(G’) on
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L?(X’,&'). Rather than describing it in details, let us just explain how the e-factors show up
in the analysis. As in Theorem 1.2, one of the main ingredient on the spectral side of this
trace formula is a twisted multiplicity m (7" ® oS%) which computes the trace of a natural
operator on the space of intertwiners

Hompg (7" ® oL, §). (1.13)

The operator in question is given by £ > £ o (7L ® 6%L) () where 6 € GL, (E) x GLy (E)
is a certain element stabilizing the pair (H, £) (which is anyway needed to extend the right
action of G’ on L2(X’, ') to an action of G'). Actually, it turns out that the space (1.13) is
always one-dimensional and a reformulation of the so-called local functional equation from
[31] shows that this operator is essentially acting (for suitable normalizations of 76L, gOL

and up to more elementary factors) as multiplication by the e-factor e( x o, V).

2. THE GLOBAL GAN—-GROSS—PRASAD CONJECTURES AND

ICHINO-IKEDA REFINEMENTS

2.1. Statements and results

We now move to a global setting. Let £/ F be a quadratic extension of number fields
and W C V be Hermitian spaces over E satisfying condition (1.1) (there are similar, and
actually prior, conjectures for orthogonal groups, but here we will concentrate on unitary
groups for which much more is known). By a construction similar to that from the previ-
ous section, we may obtain from these data a triple (G, H, §) where G = U(V) x U(W),
H = U(W) x N is a subgroup of G (which we will this time consider as algebraic groups
over F)and & : N(A ) — C* is acharacter on the adelic points of N trivial on the subgroup
N(F) and that extends to a character of H(A ) trivial on U(W)(AF).

The global analog of the previous branching problem is that of characterizing the
nonvanishing of the automorphic period associated to the pair (H, £). More precisely, if
T =my @MW = sasp(G(F)\G(AF)) is a cuspidal automorphic representation of G(A r ),
we consider the automorphic period

Prug:m—C,
Prelg) = / o()E(h)dh, @1
[H]

where here and throughout the rest of the paper, for a linear algebraic group R over F,
we denote by [R] = R(F)\R(AF) the corresponding automorphic quotient. On the other
hand, let 7 = 7y,g ® nw,E be the (weak) base-change of 7 to GL,(AEg) x GL,,(AE)
where (n, m) = (dim(V), dim(W)). Here, ny, g, 7w, g are automorphic representations
whose Satake parameters at almost every unramified places are the image by the base-change
homomorphisms LU (V) — LResE/F GL, E, Lyw) — LResE/F GL,,E (where Resg/ p
denotes Weil’s restriction of scalars) of the local Satake parameters of my, ww, respec-
tively. The existence of these weak base-changes in general is one of the main results of
[34,39]. Also, although 7y g, mw, g are not always cuspidal, they are isobaric sums of cusp-
idal representations which implies, by a result of Jacquet and Shalika, that they are uniquely
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determined by their Satake parameters at almost all places hence that the weak base-change
g is unique. We denote by

L(s,mg) = L(s,my,E X Tw,E)

the corresponding completed Rankin—Selberg L-function associated to wy, g and ww,g.

Define the automorphic L-packet of 7 as the set of cuspidal automorphic repre-
sentations 7’ of the various pure inner form G’ = U(V’) x U(W’) of G with the same
base-change 7y, = 7 as 7. By the Jacquet—Shalika theorem again and injectivity of base-
change homomorphisms at the level of conjugacy classes, it is equivalent to asking that &
and 7’ are nearly equivalent, that is, 7, >~ n{, for almost all places v (this makes sense since
G, ~ G/, for almost all v). Moreover, for a relevant pure inner form G’ of G, we can define a
pair (H', £’) in exactly the same way as (H, £). The global version of the Gan-Gross—Prasad
conjecture can now be stated as follows:

Conjecture 2.1 (Gan—Gross—Prasad [23]). Assume that wg is generic. Then, the following

assertions are equivalent:
(1) L(L, 7g) #0;

(2) There exists a relevant pure inner form G' = UW') x U(V') of G (see Sec-
tion 1.1 for the definition of a relevant pure inner form), a cuspidal automorphic
representation ' of G' (A F) in the same automorphic L-packet as w and a form
@' € i’ such that

Pr g (¢') # 0.

When (dim(V'), dim(W)) = (2, 1), the conjecture essentially reduces to the cele-
brated theorem of Waldspurger [46] on toric periods for GL,. Actually, as explained in the
introduction, Waldspurger’s result is more precise and gives an explicit identity relating (the
square of) #g (¢) to the central value L(%, TE).

There is also a similar conjecture for special orthogonal groups which actually
predates the one for unitary groups [26] (as well as other conjectures for the so-called Fourier—
Jacobi periods on unitary and symplectic/metaplectic groups stated in [23]). In [3e], Ichino
and Tkeda have proposed a refinement of this conjecture for SO(n) x SO(n — 1) in the form
of a precise identity generalizing Waldspurger’s formula. Subsequently, similar refinements
have been proposed by R. N. Harris [27], for U(n) x U(n — 1), and then by Y. Liu [35] for
general Bessel periods on orthogonal or unitary groups.

In order to state this refinement, we need to introduce two extra ingredients, namely
local periods and a certain finite group S, of endoscopic nature.

We start with the local periods. We endow H (A g) with its global Tamagawa mea-
sure dh (this is the measure with which we will normalize the period integral (2.1)) and
we fix a factorization dh = [[, dh, into a product of local Haar measures. We also fix a
decomposition 7 = ®; 1, of 7 into smooth irreducible representations of the localizations
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G, = G(Fy) as well as a factorization (-, -)pet = [, (-, -)» Of the Petersson inner product

2
(¢, @)pet =[ lo()|dg
G(F)\G(Ar)

(which we also normalize using the Tamagawa measure on G (A r)) into local invariant inner
products. The local periods are now given by the sesquilinear forms

reg
PH g Qv ® ¢l € Ty ® Ty > /H (o (ho)@v. @3), Ev(hy) dhy. 2.2)

The above integral of matrix coefficient is actually not convergent in general and has to be
regularized (hence the “reg” sign above the integral). This regularization is, moreover, only
possible under the extra assumption that the local component ,, is tempered. It is expected
(under the Generalized Ramanujan Conjecture) that the hypothesis of the base-change 7 g
being generic implies that each of the local component 7, is tempered, but this is far from
being known in general. Assuming now that 7, is tempered at every place v, an unramified

G(0y) .

computation shows that for almost all places v, if ¢, € is a spherical vector such that

{0y, @y)y = 1, we have

L(%7 T[E,U)

P , =A)—
H,E,v(‘Pv (Pv) vL(l,n'v,Ad)

where L(%, 7Ew), L(1, my, Ad) denote the local Rankin—Selberg and adjoint L-factors of
g and m, respectively, whereas A, stands for the product of local abelian L-factors

n
AU = 1_[ L(l’ nlEv/Fv)

i=1

with g, / F, the quadratic character associated to the local extension E, / F;, andn = dim(V).
The normalized local periods are then defined by

1 L, 7y, Ad)

Py e (@v-0v) = 1—

Hag’v U L ( 2, ,U)

Finally, writing the base-change 7y, and 7w g as isobaric sums

Hév(‘ﬂvv@v)

av,e =nyg B--Bryg, awe =awB---Bay,

of cuspidal automorphic representations of some general linear groups, we set
Sz = (Z/2Z)F+!. Tt serves as a substitute for the centralizer of the, yet nonexistent in
general, global Langlands parameter of 7.

Conjecture 2.2 (Ichino-Ikeda, N. Harris, Y. Liu). Assume that for every place v of F, my

is a tempered representation. Then, for every factorizable vector ¢ = ®:j @y € 1, we have

2 _ L( TTE)
|Pae@)]” =187 AL Ad)l"[ Phe.0(00- 90) 23)
where A = [1i_, L(i, r)iE/F) and L(s, 7w, Ad) =[], L(s, 7wy, Ad) denotes the completed
adjoint L-function of 7.
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Note that at a formal level, that is, formally expanding L-functions as Euler products
outside the range of convergence, the above formula can be rewritten in the more compact
way as

/
2 _
| Pre@)| = 18217 [ [ P (0. 00). 2.4)
v

where the prime symbol on the product sign indicates that it is not convergent and has to be
suitably reinterpreted “in the sense of L-functions” as identity (2.3).

Thanks to the work of many authors that we are going to summarize in the next
sections, it is now relatively easy to state the current status on these two conjectures:

Theorem 2.1. Both Conjectures 2.1 and 2.2 hold in full generality.

The rest of this paper is devoted to reviewing the long series of works leading to
the above theorem. They all stem from a strategy originally proposed by Jacquet and Rallis
[32] of comparing two relative trace formulae. Let us mention here that there has actually
been other fruitful approaches to the global Gan—Gross—Prasad conjecture among which
one of the most notable has been the method pioneered by Ginzburg—Jiang—Rallis [25] using
automorphic descent and that has recently seen much development with the work [33] of
Jiang and L. Zhang proving in full generality the implication (2) = (1) of Conjecture 2.1.

2.2. The approach of Jacquet—Rallis

In [32], Jacquet and Rallis have proposed a way to attack the Gan—Gross—Prasad
conjecture for unitary groups through a comparison of relative trace formulae. They only
consider the case where dim(W) = dim(V') — 1 (in which case H = U(W) and the character
& is trivial) and we assume throughout that this condition is satisfied. The global relative trace
formulae considered here are powerful analytic tools introduced originally by Jacquet and
that relate automorphic periods to more geometric distributions known as relative orbital
integrals.

Let us be more specific in the case at hand. For f € C>°(G(AF)), a global test
function, we let

Kr(x,y)= Y f&7'yy). x.y€GF\G(Ar),
yeG(F)

be its automorphic kernel which describes the operator R( f) of right convolution by f on
the space of automorphic forms. The first trace formula introduced by Jacquet and Rallis is
formally obtained by expanding the (usually divergent) expression

W= [ Kyl h)ddhs @5)
[H]x[H]

in two different ways. More precisely, but still at a formal level, this distribution can be
expanded as

4 > 06.)=J(fH= > 2a(R()Pu(@) +. (2.6)

S€eH(F)\G(F)/H(F) ¢’€¢A’cusp(G)
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where the right sum runs over an orthonormal basis for the space of cuspidal automorphic
forms whereas the left sum is indexed by the so-called regular semisimple double cosets
of H(F) in G(F). Here, an element § € G is called (relatively) regular semisimple if its
stabilizer under the H x H -action is trivial and the corresponding orbit is (Zariski) closed.

We denote by G, the nonempty Zariski open subset of regular semisimple elements and for
§ € Gi(F),

06. f) = f F(8h)dhidhs

H(Ap)xH(AF)
denotes the corresponding relative orbital integral of f at §. The left suspension points
in (2.6) represent the remaining contributions from singular orbits whereas the right suspen-
sion points indicate the contribution of the continuous spectrum (both of which are somehow
responsible for the divergence of the original expression (2.5)).
The second trace formula introduced by Jacquet and Rallis has to do with the fol-
lowing triple of groups:

H, = ResE/F GLn,E — G = ResE/F GLn+1,E XReSE/F GLn,E <~ H,
= GLp+1,F X GLy,F,

where n = dim(W), the first embedding is the diagonal one and the second embedding
is the natural one. Note that G’ is the group on which the base-change 7g “lives.” For
S’ € CX(G'(AF)), we write (again formally)

I(f/) = / Kf/(h],hz)ﬂ(hz)dh]dhz (27)
[H1]x[H>]

where K is the automorphic kernel of f” and n : [H,] — {#£1} is the automorphic character
defined by 7(gn, gnt+1) = NE,/F(detg,)" ' nE/F(det gn41)". This formal distribution can
be analogously expanded as

o > Onr. fY=1(fN= Y Pu,(R()0)Prp (@) + .
VEHI(F)\G;S(F)/HZ(F) ‘pE'A’cusp(G/)
(2.8)

where G stands for the open subset of regular and semisimple elements under the H; x Ho-
action, the relative orbital integrals are given by
0y 1) = | S/ hayhon(ha)didiy
Hy(Ap)xH2(AF)
and #g,, #H,,y denote the automorphic period integrals over [H] and [H5] twisted by 7,
respectively.

The discussion so far is, of course, oversimplifying and ignoring serious analyti-
cal and convergence issues (we will come back to this later). However, as a motivation for
considering this relative trace formula on G’, we have the following results on automorphic
periods:

e The period &Py, is a Rankin—Selberg period studied by Jacquet—Piatetskii-
Shapiro—Shalika that essentially represents the central value L(%, IT) on
IT— €74)cusp(G/);
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* The period $p,,, was studied by Rallis and Flicker who have shown that it detects
exactly the cuspidal automorphic IT’s that come by base-change from G (i.e., it
is nonzero precisely on those cuspidal representations of the form wg, for & a
cuspidal automorphic representation of G).

Thus, on a very formal and sketchy sense, the Gan—Gross—Prasad conjecture implies that
the spectral sides of I( f) should somehow “match” that of J( /). The idea of Jacquet and
Rallis was to make precise the existence of such a comparison, from which the global Gan—
Gross—Prasad conjecture was eventually to be deduced, by equalling the geometric sides
term by term. As a first step, they define a correspondence of orbits, which here takes the
form of a natural embedding between regular semisimple cosets

H(\Gr(k)/H (k) — Hi(k)\G (k)/Hz(k), 8> y. 29

for every field extension k/F. Using this correspondence, they then introduced a related
notion of local transfer (or matching): for a place v of F, two test functions f,, € C°(Gy)
and f; € C(G)) are said to be transfers of each other (simply denoted by f, < f, for
short) if for every § € H(Fy)\G(Fy)/H(F,) we have an identity

0(8» fv) = Qv(y)oﬂv (V’ fv/)v (210)

where y € Hy(Fy)\G,,(F,)/H2(Fy) is the image of § by the above correspondence,
O(8, fy) and Oy, (y, f,) are local relative orbital integrals defined in the same way as
their global counterparts (replacing in the domain of integration, adelic groups by the cor-
responding local groups) and y + €2,(y) is a certain transfer factor which in particular has
the effect of making the right-hand side above Hy(F,) x H,(F,)-invariant in y.

As in the usual paradigm of endoscopy, to make this notion useful and allow for
a global comparison we basically need two local ingredients: first the existence of local
transfer (i.e., for every f, € C°(Gy) there exists f, € C°(G)) such that f, < f, and
conversely, every f, admits a transfer f,) and then a fundamental lemma (saying, at least,
that 1g(0,) < 1g/(0,) for almost all v).

3. COMPARISON: LOCAL TRANSFER AND FUNDAMENTAL LEMMA

A first breakthrough on the Jacquet—Rallis approach to the Gan—Gross—Prasad con-
jecture was made in [57] by Wei Zhang who proved the existence of the local transfer at all
non-Archimedean places. His strategy for doing so roughly goes as follows:

» The first step is to reduce to a statement on Lie algebras using some avatar of
the exponential map (also known as Cayley map): we are then left with proving
the existence of a similar transfer between the orbital integrals for the adjoint
action of U(W,) on u(V,) = Lie(U(V},)) and for the adjoint action of GL,, (F})

on gl 1 (F).

e Then, a crucial ingredient in Zhang’s proof is to show that the transfer at the
Lie algebra level essentially commutes (i.e., up to some explicit multiplicative
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constants) with 3 different partial Fourier transforms %7, #,, and ¥3 that can nat-
urally be defined on the two spaces C°(u(Vy)), C°(gl, 1 (Fy)). One of them,
that we will denote by 7, is the Fourier transform with respect to “the last row and
column” on gl,, . ; (F) or u(V,) when realizing the latter in matrix form using a
basis adapted to the decomposition V,, = W,, & W,-. (Recall that we are assum-
ing that dim(WvL) = 1.) For this, Zhang develops some relative trace formulae
for the aforementioned actions on g[,, , ; (F,) and u(V}) and combines them with
a clever induction argument.

* Finally, the proof of the existence of transfer on Lie algebras is obtained by com-
bining the second step with a certain uncertainty principle due to Aizenbud [1],
which allows reducing the construction of the transfer to functions that are sup-
ported away from the relative nilpotent cones (i.e., the set of elements whose orbit
closure contains an element of the center of the Lie algebra), as well as a standard
descent argument whose essence goes back to Harish-Chandra.

It is noteworthy to mention that this result was subsequently extended, following the same
strategy, by H. Xue [53] to Archimedean places, although the final result there is slightly
weaker. (More precisely, Xue was only able to show that a dense subspace of test functions
admit a transfer but also observed that it is sufficient for all expected applications.)

The Jacquet—Rallis fundamental lemma for its part, was proven earlier by Yun
[55] in the case of fields of positive characteristic following and adapting the geometric-
cohomological approach based on Hitchin fibrations that was developed by Ngoé in the
context of the endoscopic fundamental lemma. This result was then transferred to fields
of characteristic zero, but of sufficiently large residual characteristic, using model-theoretic
techniques by Julia Gordon in the appendix of [55].

Later, in [14], I found a completely new and elementary proof of this fundamental
lemma. The argument, despite that of Gordon—Yun, works directly in characteristic zero and
is purely based on techniques from harmonic analysis. Thus, we have:

Theorem 3.1 (Yun—Gordon, Beuzart-Plessis). Let v be a place of F of residue character-
istic not 2 that is unramified in E and assume that the Hermitian spaces W, WvL both
admit self-dual lattices LYV and L,‘le. Set Ly =LY @ LII:Vi (a self-dual lattice in V,) and
K, = Stabg, (L, x LY) for the stabilizer in G, = U(V,) x U(W,) of the lattices L,
and LgV (a hyperspecial compact subgroup of Gy). Then, setting K, = GL,11(OF,) x
GL,(OE,), we have 1k, <> 1.

More precisely, in [14] I proved a Lie algebra analog of the Jacquet—Rallis funda-
mental lemma (of which the original statement can easily be reduced; at least in residual char-
acteristic not 2) stating that the relative orbital integrals of 1,,(z,) match those of 141, . (95,)
in a suitable sense (where u(L,) denotes the lattice in 11(V},) stabilizing L, ). The argument
is based on a hidden SL(2) symmetry involving a Weil representation. More specifically, we
consider the Weil representations of SL(2, F},) associated to the quadratic form ¢ sending a
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matrix of sizen + 1,

A b
X =
(C A')’

either in gl,, ;(Fy) or in u(V;), to g(X) = cb (where here, 4 is a square-matrix, b is
a column vector, and ¢ a row vector all of size n). Using the aforementioned result of
Zhang that the transfer commutes with the partial Fourier transform %7, it can be shown
that these representations descend to spaces of relative orbital integrals on C>°(u(V5))
and C°(gl,, ;. {(Fy)) and coincide on their intersections (identifying the spaces of regular
semisimple orbits through a correspondence similar to (2.9)). Consider then the difference

d:X e u(Vv)rs/U(WU) = O(X, lu(L},/)) — Wy (Y)O,]v (Y, 19[n+1((9Fv))’

where u(V;),s denotes the Lie algebra analog of the relative regular semisimple locus, Y is
the image of X by a correspondence of orbits 1u(Vy)/U(Wy) — gl (Fy)rs/ GLy (Fy)
similar to (2.9) and w,(Y') is the Lie algebra counterpart of the transfer factor. The funda-
mental lemma then states that ® is identically zero. The proof proceeds roughly in three
steps:

* First, we show that ®(X) = 0 for |g(X)| = 1. When |¢(X)| = 1, this requires an
inductive argument on n. Moreover, this vanishing can be reformulated by saying

that & is fixed by the subgroup ((1) pfvi ) through the Weil representation.

* Secondly, we remark that @ is also fixed by w = (9 7' ). This comes from the fact
that the action of w descends from the partial Fourier transform 7 which leaves

(for a suitable normalization) the functions lu( LYy 1g y invariant.

n+l(0Fv

* Finally, as SL,(F}) is generated by ((1) ”IF; ) and w, we infer that ® is fixed by

SL,(Fy) from which it is relatively straightforward to deduce & = 0.

It is also worth mentioning that in a very interesting work, Jingwei Xiao [51] has
shown that the Jacquet—Rallis fundamental lemma implies the (usual) endocospic funda-
mental lemma for unitary groups. Thus, combining his argument with the proof outlined
above yields a completely elementary proof of the Langlands—Shelstad fundamental lemma
for unitary groups!

The two previous results on smooth transfer and the fundamental lemma are already
enough to imply the Gan—Gross—Prasad Conjecture 2.1 under some local restrictions on the
cuspidal representation 7 (originating from the use of simple versions of the Jacquet—Rallis
trace formulae, allowing to bypass all convergence issues) as was done by W. Zhang in [57].
However, to derive the refinement of Conjecture 2.2 following the same strategy, we need an
extra local ingredient relating the local periods of Ichino—Ikeda to similar local distributions
associated to the Rankin—Selberg and Flicker—Rallis periods. More precisely, by the work of
Jacquet—Piatetskii-Shapiro—Shalika, on the one hand, and Flicker—Rallis, on the other hand,
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it is known that the two automorphic periods $x, and $p, , admit factorizations of the form

<7)1"11 (p) = l—[ j)Hl,v(Wq),v)7 3.1

1
’?Hz,n((p) = Z l_[ ?Hz,n,v(Ww,v) 3.2)
v

for ¢ a factorizable vector in a given cuspidal automorphic representation IT = I1,1; ® I1,
of G'(AF), where

Wi(g) = /[N,] oW (0" du = [ W)

denotes a factorization of the Whittaker function of ¢ (here N’ stands for the standard max-
imal unipotent subgroup of G’ and ¥’ is a nondegenerate character of [N']), P, v, P00
are explicit linear forms on the local Whittaker model W(IT,, ¥,) of IT, and the products
in (3.1), (3.2) are to be regularized and understood “in the sense of L-functions” in a way
similar to (2.4).

Based on the factorizations (3.1) and (3.2), the contribution of IT to the spectral
expansion (2.8) can be shown to itself admit a factorization roughly as the product of local
distributions (called relative characters) I, defined by

(/)= Y, Poo(L()DW)PrneWa),  f, € CX(Gy),
WyeW(Iy,¥ry)
where the sum runs over a suitable orthonormal basis of the Whittaker model. On the other
hand, from the Ichino-lkeda Conjecture 2.2, we expect the contribution of 7 <> Acysp(G)
to the spectral expansion of (2.6) to essentially factorize into the product of the local relative
characters (where again the sum is taken over an orthonormal basis)

I, (fo) = Z tr/)H,v(n'v(fv)(pvv(pv), So ECL?O(Gv)-
PvEMY

In [56], W. Zhang has conjectured that the local Jacquet—Rallis transfer f,, <> fv/
also satisfies certain precise spectral relations involving the above relative characters. This
is exactly the extra local ingredient needed to finish the proof of the Ichino—Ikeda conjecture
based on a comparison of the Jacquet—Rallis trace formulae. This conjecture was shown in
[56] to hold for unramified and supercuspidal representations, and the method was further
extended and amplified in [13], allowing to prove the conjecture for all (tempered) represen-
tations at non-Archimedean places. Later, in [15] [ gave a better proof of this conjecture which
also has the advantage of working uniformly at all places (including Archimedean ones). To
state the result, we introduce some terminology/notation: for a place v of F' and a smooth
irreducible representation m, of G,, we denote by g , the local base-change of m,, that is,
the smooth irreducible representation of G, whose L-parameter is given by composing that
of 7, with the natural embedding of L-groups *G, — LG;, and, moreover, we say that i,
is Hy-distinguished if Hompg, (7, C) # 0, that is, with the notation of Section 1.1, if the
multiplicity m(7wy) equals 1.
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Theorem 3.2. There exist explicit local constants (ky)y indexed by the set of all places of F
and satisfying the product formula [ |, ky = 1 such that the following property is verified: for
every place v, every tempered representation 1y of Gy which is H,-distinguished and every
pair (fy, f) € CX(Gy) x C(G)) of matching functions (that is, f, <> f,), we have

Iy 5 (fy) = kv, (fo)- (3.3)

Moreover, the above identities characterize the Jacquet—Rallis transfer, that is, if two func-
tions fy € CX(Gy), f, € CX(G,) satisfy (3.3) for every tempered irreducible representa-
tion 1ty of Gy that is H,-distinguished, then these functions are transfers of each other.

The proof given in [15] of the above theorem is mainly based on another ingredient
of independent interest which is an explicit Plancherel decomposition for the space G,/ H> ,
or rather, decomposing this quotient as a product in a natural way, for the symmetric vari-
ety GL,(Ey)/ GL, (Fy). This spectral decomposition is roughly obtained by applying the
Plancherel formula for the group GL, (E,) to a family of zeta integrals, depending on a
complex parameter s, introduced by Flicker and Rallis [22] and that represents local Asai
L-factors and taking the residue at s = 1 of the resulting expression. We will not describe
the exact process here, but just mention that this settles in the case at hand a general conjec-
ture of Sakellaridis—Venkatesh [41] on the spectral decomposition of spherical varieties. This
Plancherel formula is then used to write the explicit spectral expansion for a local analog of
the Jacquet—Rallis trace formula (2.8) which is then compared with a local counterpart of the
trace formula (2.6) yielding as a consequence Theorem 3.2 above. Moreover, as another by-
product of this local comparison, we also get a formula conjectured by Hiraga—Ichino-Ikeda
for the formal degree of discrete series [29] in the case of unitary groups.

4. GLOBAL ANALYSIS OF JACQUET—RALLIS TRACE FORMULAE

With all the local ingredients explained in the previous section in place, the only
remaining tasks to finish the program initiated by Jacquet and Rallis to prove the Gan—
Gross—Prasad and Ichino-Ikeda conjectures are global. More specifically, although simple
versions of the Jacquet—Rallis trace formulae have been successfully used to establish these
conjectures under some local restrictions [13,57], in order to detect all the relevant cuspi-
dal representations of unitary groups, we need more refined versions of the geometric and
spectral expansions of (2.6) and (2.8).

As a first important step in that direction, Zydor [58,59] has completely regularized
the singular contributions to the geometric sides. We can summarize his main results as fol-
lows: for all test functions f € C°(G(AF))and f' € C2°(G'(AF)), there exist “canonical”
regularization of the (usually divergent) integrals (2.5) and (2.7), that we will still denote by
J(f)and I(f"), as well as decompositions

J(fHy= > 06.[f) ad I(f)= > On(v. f). (D)

8e(H\G//H)(F) ye€(HI\G'//H2)(F)
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where H\G//H and H,\G'//H, stand for the corresponding categorical quotients and
0(6,-), Oy(y,-) are distributions supported on the union of the adelic double cosets with
images 6 and y in (H\G//H)(AF) and (H\G'//H>)(AF), respectively, which coincide
with the previously defined relative orbital integrals when § and y are regular semisimple.

Zydor obtains these regularized orbital integrals by adapting a truncation proce-
dure developed by Arthur in the context of the usual trace formula to the relative setting at
hand. It should be emphasized that contrary to what happens with Arthur’s trace formula,
the resulting distributions are directly invariant (in a relative sense, that is, here under the
natural action of H x H or H; x H3) and do not depend on any auxiliary choice (such as
that of a maximal compact subgroup). It is in this sense that the regularizations of Zydor are
really “canonical.” It should be mentioned that another, different, approach to such regular-
ization was proposed by Sakellaridis [4e] in the context of general relative trace formulae.
It is based on analyzing the exponents at infinity of generalized theta series together with a
natural procedure to regularize integrals of multiplicative functions when the corresponding
character is nontrivial.

Before we even consider the analogous, more subtle, regularization problem on the
spectral side, there appears the natural question of how to compare the singular contribu-
tions to the refined geometric expansions of (4.1). This issue was completely resolved in a
very long paper [20] by Chaudouard and Zydor. To state their main result, it is convenient
to again consider the relevant pure inner forms of G (as defined in Section 1.1): for every
Hermitian space W’ of the same dimension as W, we have a relevant pure inner form G W=
U(V')y x U(W') with its diagonal subgroup H"' = U(W') where V' = W' &1+ WL More-
over, the correspondence of orbits (2.9) extends to an isomorphism between categorical
quotients,

H\G//H ~ H\\G'//H,, 4.2)

and for every W' as before, HY'\G"'//HW' can naturally be identified with H\G//H.
With these preliminaries, the main result of Chaudouard and Zydor can now be stated as
follows:

Theorem 4.1 (Chaudouard—Zydor). Assume that | W — [ va/ eCX (G W' (AF)), where
W’ runs over all isomorphism classes of Hermitian spaces of dimension n, and
f =1Tl, fi € CX(G'(AF)) are factorizable test functions such that for every place v,
and each W', f' and f! are Jacquet-Rallis transfers of each other (that is, )" < f).
Then, for every § € (H\G//H)(F) with image y € (H1\G'//H3)(F) by (4.2), we have

Y06, 7)) = 0y £). (4.3)
Wl
It should be noted that when §, hence also y, is regular semisimple, the left-hand sum
in (4.3) only contains one nonidentically vanishing term but that in general more than one

relevant pure inner forms can contribute. Also, the above result extends to nonfactorizable
test functions, provided the wording is changed suitably.
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The next natural step would be to develop regularized spectral expansions similar
to (4.1). As a first result in that direction, Zydor has shown decompositions of the form

)= D ) and I(f)= Y Le(f) (44)
X€X(G) X' €X(G)
where X (G) and X (G’) stand for the set of cuspidal data of the groups G and G’ respec-
tively, that is the sets of pairs (M, o) where M is a Levi subgroup (of G or G’) and o is a
cuspidal automorphic representation of M (A ) taken up to conjugacy (by G(F) or G'(F)).
According to Langlands theory of pseudo-Eisenstein series, these sets index natural equiv-
ariant Hilbertian decompositions:

L’ (6) = @ Ly(6). L (6= P Ly(6").

XEX(G) X E€X(G)

The automorphic kernels Ky, Ky, decompose accordingly into series Ky = ZX Ky,
Ko=) v K,y where Ky, and Ky, are kernel functions representing the restrictions
R, (f) and R,/ (f') of the right convolution operators R(f) and R(f”) to L)Z(([G]) and
L)Z(,([G’ 1), respectively. The distributions f + J,(f) and f’ +— I,/(f’) are then roughly
defined by applying the same regularization procedure that Zydor used for the expressions
J(f) and I(f’) up to replacing the integrands by Ky, and Ky, respectively, that is, in
symbolic terms:

reg

Jy(f) = /H o Kz (hi,hy)dhidhs,
e 1] .5)
IX’(f/) = /[ Kf/’x/(hl,hz)?](hz)dhldhz.

H\]x[H>]

However, the expansions (4.4) are of little use as they stand and need to be suitably
refined to allow for a meaningful comparison of the trace formulae. In Arthur’s terminol-
ogy, (4.4) are coarse spectral expansions and we need refined spectral expansions for each
of the terms Jy (f) or I,/ (f").

This problem has so far proved to be a very difficult for general cuspidal data y
and y’. However, a recent result of mine in collaboration with Y. Liu, W. Zhang, and X. Zhu
[17] allows isolating in the coarse spectral expansions (4.4) the only terms that are eventually
of interest consequently reducing the problem to some very particular cuspidal data y’ of G'.

The result proved in [17] is very general so let us place ourself for one moment
in the framework of an arbitrary connected reductive group G over the number field F.
Let ¥ be a set of non-Archimedean places of F' (possibly infinite) such that for each v €
¥, the group G, is unramified and fix a hyperspecial compact subgroup K, C G, with
K, = G(Oy) for almost all v € 3. We let X'5(G) be the set of X-unramified cuspidal data
of G, that is, the cuspidal data represented by pairs (M, o) with o unramified at all places
of v € ¥ (with respect to K, or, rather, the hyperspecial subgroup it induces in M,,)). For
x € Xx(G), we define its X-near equivalence class, henceforth denoted by Nx(x), as the
set of all cuspidal data y’ € X'5;(G) such that if y and y’ are represented by pairs (M, o) and
(M’,0") respectively, then there exist automorphic unramified characters A and 1’ of M (A r)
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and M’(A ), respectively, with the property that for every v € X the Satake parameters of
the unique K,-unramified subquotients in / I?U V(0p ® Ay) and 1 gf (0, ® Al,) (where P, P’
are arbitrary chosen parabolics with Levi components M, M) are isomorphic. We also fix a
compact-open subgroup K =[], g X Ky of G(Af) (where Sy denotes the set of finite places
of F and K, coincides with the previous choice of hyperspecial subgroup when v € ) and
we define the Schwartz space of K -biinvariant functions on G(A ) as the restricted tensor
product

/
Sk(G(AF)) = 8(G(Foo)) ® X Ce(Ku\Go/Ky),
VESy

where C.(K,\G,/K,) denotes the space of bi-K,-invariant compactly supported func-
tions on G, (that is the K,-spherical Hecke algebra when v € X), Fy is the product of
the Archimedean completions of F and §(G(F)) stands for the Schwartz space of the
reductive Lie group G(F) in the sense of [19]. More precisely, § (G(Fx)) is the space of
smooth functions f : G(Fs) — C such that for every polynomial differential operator on
G(Fw), the derivatives Df is bounded or, equivalently, such that for every left- (or right-
)invariant differential operator X, X f" is decreasing faster than the inverse of any polynomial
on G(Fy).

The Schwartz space S (G (Fs)) is naturally a Fréchet algebra under the convolution
product and we also set

Moo(G) = Endeont, s (G (Foo))—bimod (S (G(Foo)))

for the space of continuous endomorphisms of § (G(Fwo)) seen as a bimodule over itself. This
is an algebra acting on any smooth admissible Fréchet representation of moderate growth of
G (Fw) in the sense of Casselman—Wallach. Moreover, as an application of a form of Schur
lemma, for every irreducible Casselman—Wallach representation o, of G(F) and every
Moo € Moo(G) there exists a scalar floo(7Too) € C such that oo (hoo) = Moo (o)l d. Thus,
Mso(G) can be seen as some big algebra of multipliers for §(G(Fs)). We also define the
algebra of X-multipliers as the restricted tensor product

!/
Mz (G) = Moo(G) Q) H (G, Ky).
vVEY
where, for v € X, #(Gy, Ky) = C.(Ky\G,/Ky) is the spherical Hecke algebra. Then,
Mx(G) acts naturally on the global Schwartz space Sx (G(AF)), and we shall denote this
action as the convolution product *. One of the main result of [17] can now be stated as
follows:

Theorem 4.2 (Beuzart-Plessis—Liu—Zhang—Zhu). Let y € Xx(G). Then, there exists a mul-
tiplier |1y, € Mx(G) such that for every Schwartz function f € Sx(G(AF)) and every other
cuspidal datum y' € Xx(G), we have

Ry (f) ifx € Ns().

Ry (py * f) = )
0 otherwise.
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The above theorem can be roughly paraphrased by saying that the multiplier
“isolates” the near-equivalence class Nx(y) from the other cuspidal data. A large part of
the proof given in [17] consists in establishing the existence of a large subalgebra of Moo (G)
which admits an explicit spectral description, that is, through its action on irreducible
Casselman—Wallach representations of G(Fs,). The algebra thus constructed generalizes
Arthur’s multipliers [5] and, moreover, builds on previous work of Delorme [21].

Going back to the setting of the Jacquet—Rallis trace formulae, the above theorem
can be applied to isolate in the expansions (4.4) the automorphic L-packet of a given cuspidal
automorphic representation 7z of G(A g), on the one hand, and the cuspidal datum y of G’
“supporting” its base-change 7 g, on the other hand. Moreover, essentially using the spectral
characterization of Theorem 3.2 for the transfer, this can be done by multipliers i, € Mx(G)
and u, € Mx(G’) that are compatible with the Jacquet-Rallis transfer in the following sense:
if f =11, fo € Sk(G(Af)) and f' =[], fy € Sk’(G'(AF)) are transfers of each other
then so are py * f and pu, * f’ (where here we take X to consist of almost all places
that split in E and for K, K’ arbitrary compact-open subgroups of G(Ar), G'(Ay) that are
hyperspecial at places in X). All in all, applying these multipliers to global test functions f
and f' that are transfers of each other, and comparing the geometric expansions (4.1), we
obtain an identity of the following shape:

Y Y T = L),

W' 5 Acp(GW)

np=nEg
where the outside left sum runs over isomorphism classes of Hermitian spaces of the same
dimension as W (or, equivalently, relevant pure inner forms of G). Besides, as a consequence
of the local Gan—Gross—Prasad conjecture, when m g is generic, the left-hand side contains at
most one nonzero term. Thus, as a final step to establish the Gan—Gross—Prasad and Ichino—
Ikeda conjectures, it only remains to analyze the distribution 7,,. When the base-change
g is itself cuspidal, that is, when y = {(G’, mg)}, by the works of Jacquet—Piatetski-
Shapiro—Shalika and Flicker—Rallis already recalled, I, essentially factors as the product
of the local relative characters I, and Theorem 3.2 then allows to conclude. However,
in general a similar factorization of [, is far from obvious and was actually established in
my joint work with Chaudouard and Zydor [16]. It is exactly of the shape predicted by the
Ichino-Ikeda conjecture. More precisely:

Theorem 4.3 (Beuzart-Plessis—Chaudouard—Zydor). Let 7w be a cuspidal automorphic rep-
resentation of G(A f) whose base-change g is generic. Let y be the cuspidal datum of G’
such that g contributes to the spectral decomposition of L)Z(([G/ D). Then, for every factor-
izable test function f' =[], f, € $(G'(AF)), we have

1 /
LN =150 [ 11, (£ (4.6)

where the product has to be understood, as for (2.4), “in the sense of L-functions.”
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In [16], two proofs are actually given of the above theorem: one using truncations
operators and the other one based on the global theory of Zeta integrals. For both methods,
a crucial step is to spectrally expand the restriction of the Flicker—Rallis period (that is, the
integral over [ H]) to functions ¢ € L)Z( ([G']) that are sufficiently rapidly decreasing. A con-
sequence of this computation is that this period only depends on the 7 g -component of ¢ and
it is mainly for this reason that the contribution of y to the Jacquet—Rallis trace formula 7 ( /)
is eventually discrete (although in the case at hand, L)Z(([G’ ]) usually has a purely continuous
spectrum). For this, the truncation method is based on the work of Jacquet—Lapid—Rogawski
who have defined and studied generalizations of Arthur’s truncation operator to the setting
of Galois periods and proved analogs of the Maass—Selberg relations in this context. On the
other hand, the other method starts by expressing the Flicker—Rallis period as a residue of
the integral over [H;] of ¢ against an Eisenstein series. Unfolding carefully this expression
as in the work of Flicker—Rallis, we can rewrite it as a Zeta integral of the sort that repre-
sents Asai L-functions. The precise location of the poles of these L-functions, as well as an
explicit residue computation of a family of distributions, then allows to conclude.

Finally, let me mention that in work in progress with P.-H. Chaudouard, we are able
to analyze the contributions to the Jacquet—Rallis trace formula of more general cuspidal data
x € X (G') than that appearing in Theorem [16]. The final result is similar to (4.6) except that
the right-hand side has to be integrated over a certain family of automorphic representations
7 of G(AF). More precisely, our results include some cuspidal data supporting the base-
changes of automorphic representations of G = U(V') x U(W) that are Eisenstein in the first
factor and cuspidal in the second. In this particular case, the contribution of the correspond-
ing cuspidal datum to the trace formula J( /) is absolutely convergent and a refined spectral
expansion can readily be obtained as an integral of Gan—Gross—Prasad periods between a
cusp form and an Eisenstein series. These last periods are related, by some unfolding, to
Bessel periods of cusp forms on smaller unitary groups. For this reason, our extension of
Theorem 4.3 with Chaudouard should have similar applications to the Gan—Gross—Prasad
and Ichino—Ikeda conjectures for general Bessel periods.

5. LOOKING FORWARD

As illustrated in the previous sections, various trace formula approaches to the Gan—
Gross—Prasad conjectures for unitary groups have been very successful. However, despite
these favorable and definite results, these developments also raise interesting questions or
have lead to fertile new research direction:

* First, there is the question of whether similar techniques can be applied to prove
the global Gan—Gross—Prasad conjectures for other groups. Indeed, the original
conjectures in [23] also include general Bessel periods on (product of) orthogonal
groups SO(n) x SO(m) (n # m [2]), as well as so-called Fourier—Jacobi periods
on unitary groups U(n) x U(m) (n = m [2]) or symplectic/metaplectic groups
Mp(n) x Sp(m). In the case of U(n) x U(n), a relative trace formula approach
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has been proposed by Y. Liu and further developed by H. Xue [52]. However,
the situation is not as complete as for the Jacquet—Rallis trace formulae in the
case of U(n + 1) x U(n). It would be interesting to see if the latest develop-
ments, in particular those from my joint work with Chaudouard and Zydor [16],
can be adapted to this setting. This could possibly lead to a proof of the Gan—
Gross—Prasad conjecture for general Fourier—Jacobi periods on unitary groups.
The situation for orthogonal and symplectic/metaplectic groups is much less sat-
isfactory and there is no clear approach through a comparison of relative trace
formulae, yet. This is due in particular to the fact that, instead of the Flicker—
Rallis periods, in these cases we are naturally lead to consider period integrals
originally studied by Bump—Ginzburg that detect cuspidal automorphic represen-
tations of GL(n) of orthogonal type. These period integrals involve the product
of two exceptional theta series on a double cover of GL(n) and do not have any
obvious geometric realizations (except when n = 2). This makes the task of writ-
ing a geometric expansion for the corresponding trace formulae quite unclear. It
would certainly be interesting to see if the recent Hamiltonian duality picture of
Ben Zvi—Sakellaridis—Venkatesh can shed some light on this matter (in particular,
by associating a Hamiltonian space to the Bump—Ginzburg periods).

In the local setting, the new trace formulae first discovered by Waldspurger [47]
and further developed in [12] seem to be of quite broad applicability to all kind
of distinction problems. Actually, similar trace formulae have already been estab-
lished in other contexts [11, 18, 58] with new applications in the spirit of “rela-
tive Langlands functorialities” each time. However, all these developments have
been made on a case-by-case basis so far and it would be very interesting and
instructive to elaborate a general theory. In particular, in view of the proposal
by Sakellaridis—Venkatesh [41] of a general framework for the relative Langlands
program, we could hope to establish general local relative trace formulae for the
L? spaces of spherical varieties X and relate those to the dual group construction
of Sakellaridis—Venkatesh.

Finally, in a slightly different direction the general isolation Theorem 4.2 clearly
has the potential to be applied in other context, e.g., it would be interesting to
see if it can be used as a technical device to simplify some other known com-
parison of trace formulae. Another intriguing question is to look for a precise
spectral description of the (abstract) multiplier algebra Moo (G) and in [17], we
actually argue that M, (G) should be seen as the natural Archimedean analog of
the Bernstein center for p-adic groups.
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