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Abstract

In this article, we survey recent work on some vanishing conjectures for the cohomology
of Shimura varieties with torsion coefficients, under both local and global conditions.
We discuss the p-adic geometry of Shimura varieties and of the associated Hodge–Tate
period morphism, and explain how this can be used to make progress on these conjectures.
Finally, we describe some applications of these results, in particular to the proof of the
Sato–Tate conjecture for elliptic curves over CM fields.
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1. Introduction

Shimura varieties are algebraic varieties defined over number fields and equipped
with many symmetries, which often provide a geometric realization of the Langlands cor-
respondence. After base change to C, they are closely related to certain locally symmetric
spaces, but the beauty of Shimura varieties lies in their rich arithmetic.

To describe a Shimura variety, one needs to start with a Shimura datum .G; X/.
Here, G is a connected reductive group over Q and X is a conjugacy class of homomor-
phisms h W ResC=RGm ! GR of algebraic groups over R. Both G and X are required to
satisfy certain highly restrictive axioms, cf. [22, §2.1]. In particular, this allows one to give
the conjugacy class X a more geometric flavor, as a variation of polarisable Hodge struc-
tures. One can show that such an X is a disjoint union of finitely many copies of Hermitian
symmetric domains.

Let K �G.Af / be a sufficiently small compact open subgroup (the precise technical
condition is called “neat”). The double quotient G.Q/nX � G.Af /=K, a priori a complex
manifold, comes from an algebraic variety SK defined over a number field E, called the reflex
field of the Shimura datum. The varieties SK are smooth and quasiprojective. Their étale
cohomology groups (with or without compact support) H �

.c/
.SK �E Q; Q`/ are equipped

with two kinds of symmetries. There is a Hecke symmetry coming from varying the level,
i.e., the compact open subgroup K, and considering various transition morphisms between
Shimura varieties at different levels. There is also a Galois symmetry, coming from the nat-
ural action of Gal.E=E/ on étale cohomology.

For this reason, Shimura varieties have played an important role in realizing
instances of the global Langlands correspondence over number fields. Indeed, a famous con-
jecture of Kottwitz predicts the relationship between the Galois representations occurring in
the `-adic étale cohomology of the Shimura varieties for G and those Galois representations
associated with (regular, C -algebraic) cuspidal automorphic representations of G. See [64,

Remark 1.1.1] for a modern formulation of this conjecture.
There is a complete classification of groups that admit a Shimura datum. For exam-

ple, if G D GSp2n, one can take X to be the Siegel double space®
Z 2 Mn.C/ j Z D Zt ; Im.Z/ positive or negative definite

¯
: (1.1)

The associated Shimura varieties are called Siegel modular varieties and they are moduli
spaces of principally polarized abelian varieties. Many other Shimura varieties – those of so-
called “abelian type” – can be studied using moduli-theoretic techniques, by relating them
to Siegel modular varieties. See [39] for an excellent introduction to the subject, which is
focused on examples.

In this article, we will be primarily concerned with the geometry of the Shimura vari-
eties SK , after base change to a p-adic field, as well as with their étale cohomology groups
H �

.c/
.SK �E Q; F`/ with torsion coefficients. These groups are much less understood than

their characteristic zero counterparts. We discuss certain conjectures about when these coho-
mology groups are expected to vanish, under both global and local conditions. Furthermore,
we explain how the geometry of the Hodge–Tate period morphism, introduced in [53] and
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refined in [17], can be used to make progress on these conjectures. Finally, we describe some
applications of these results, in particular to the proof of the Sato–Tate conjecture for elliptic
curves over CM fields [1].

2. A vanishing conjecture for locally symmetric spaces

Let G=Q be a connected reductive group. We consider the symmetric space asso-
ciated with the Lie group G.R/, which we define as X D G.R/=Kı

1Aı
1. Here, Kı

1 is the
connected component of the identity in a maximal compact subgroup K1 �G.R/, and Aı

1

is the connected component of the identity inside the real points of the maximal Q-split
torus in the center of G. Given a neat compact open subgroup K � G.Af /, we can form
the double quotient XK D G.Q/nX �G.Af /=K, which we call a locally symmetric space
for G. This is a smooth Riemannian manifold, which does not have a complex structure, in
general.

Example 2.1. If G D SL2=Q, we can identify X D SL2.R/=SO2.R/ with the upper half-
plane H2 D ¹z 2 C j Imz > 0º equipped with the hyperbolic metric, on which SL2.R/ acts
transitively by the isometries

z 7!
az C b

cz C d
for z 2 H2 and

 
a b

c d

!
2 SL2.R/:

Under this action, SO2.R/ is the stabilizer of the point i . By strong approximation for
SL2=Q, for any compact open subgroup K � SL2.bZ/, there is only one double coset
SL2.Q/n SL2.Af /=K. Write � D SL2.Q/ \ K, which will be a congruence subgroup
contained in SL2.Z/. The locally symmetric spaces XK can be identified with quotients
�nH2. For � neat, these quotients inherit the complex structure on H2 and can be viewed
as Riemann surfaces. Even more, these quotients arise from algebraic curves called modu-
lar curves, which are defined over finite extensions of Q. Modular curves are examples of
(connected) Shimura varieties. They represent moduli problems of elliptic curves endowed
with additional structures. Even though they are some of the simplest Shimura varieties (the
main complication being that they are noncompact), their geometry is already fascinating.

However, let F=Q be an imaginary quadratic field and take G D ResF=QSL2. Then
we can identify the symmetric space X D SL2.C/=SU2.R/ with 3-dimensional hyperbolic
space H3. Once again, we can identify the locally symmetric spaces XK with quotients
�nH3, where � D SL2.F /\K is a congruence subgroup. In this case, the locally symmet-
ric spaces are arithmetic hyperbolic 3-manifolds and do not admit a complex structure. In
particular, we cannot speak of Shimura varieties in this setting.

In general, Shimura varieties are closely related to locally symmetric spaces, as
in the first example, though the latter are much more general objects. For example, the
locally symmetric spaces for G D ResF=QGLn do not arise from Shimura varieties if n � 3,
and, for n D 2, they can only be related to Shimura varieties if F is a totally real field. In
some instances, such as for ResF=QGL2 with F a totally real field, one needs to replace
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G.R/=Kı
1Aı

1 by a slightly different quotient in order to obtain Shimura varieties.1 We now
define the invariants

l0 D rk
�
G.R/

�
� rk.K1/ � rk.A1/ and q0 D

1

2

�
dimR.X/ � l0

�
:

These were first introduced by Borel–Wallach in [5]. There, they show up naturally in
the computation of the .g; K1/-cohomology of tempered representations of G.R/. In the
Shimura variety setting, we consider the variants l0 D l0.Gad/ and q0 D q0.Gad/ because of
the different quotient used. In this case, l0.Gad/ can be shown to be equal to 0 by the second
axiom in the definition of a Shimura datum.

As K varies, we have a tower of locally symmetric spaces .XK/K , on which a spher-
ical Hecke algebra T for G acts by correspondences. The systems of Hecke eigenvalues
occurring in the cohomology groups H �

.c/
.XK ; C/ or, equivalently, the maximal ideals of T

in the support of these cohomology groups, can be related to automorphic representations
of G.Af / by work of Franke and Matsushima [29]. The goal of this section is to state a con-
jecture on the cohomology of locally symmetric spaces with torsion coefficients F`, where `

is a prime number. This conjecture is formulated in [25] (see the discussion around Conjec-
ture 3.3) and in [12, Conjecture B]. Roughly, it says that the part of the cohomology outside
the range of degrees Œq0; q0 C l0� is somehow degenerate. Note that this range of degrees is
symmetric about the middle 1

2
dimR X of the total range of cohomology and, in the Shimura

variety case, it equals the middle degree of cohomology.
To formulate this more precisely, we use the notion of a non-Eisenstein maximal

ideal in the Hecke algebra, for which we need to pass to the Galois side of the global Lang-
lands correspondence. For simplicity, we will restrict our formulation to the case of G D

ResF=QGLn for some number field F , although the conjecture makes sense more generally.
Let T be the abstract spherical Hecke algebra away from a finite set S of primes of F and
let m � T be a maximal ideal in the support of H �

.c/
.XK ; F`/. Assume that there exists a

continuous, semisimple Galois representation N�m W Gal.F =F /! GLn.F`/ associated with
m: by this, we mean that N�m is unramified at all the primes of F away from the finite set
S , and that, at any prime away from S , the Satake parameters of m match the Frobenius
eigenvalues of N�m. (The precise condition is in terms of the characteristic polynomial of N�m

applied to the Frobenius at such a prime and depends on various choices of normalizations.
See, for example, [1, Theorem 2.3.5] for a precise formulation.) Since the Galois representa-
tion is assumed to be semisimple and we are working with ResF=Q GLn, this property will
characterize N�m by the Cebotarev density theorem and the Brauer–Nesbitt theorem. We say
that m is non-Eisenstein if such a N�m is absolutely irreducible.

The existence of N�m as above should be thought of as a mod ` version of the global
Langlands correspondence, in the automorphic-to-Galois direction; in the case F DQ, this

1 We make a small abuse of notation by using X to denote both the conjugacy class from
the introduction, which is used in the definition of a Shimura datum, and the quotient
G.R/=Kı

1Aı
1 considered in this section. See [24, §2.4] for an extended discussion of

the various quotients.
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existence was conjectured by Ash [4]. The striking part of this conjecture is that it should
apply to torsion classes in the cohomology of locally symmetric spaces, not just to those
classes that lift to characteristic zero, and which can be related to automorphic representa-
tions of G. For general number fields, the existence of such Galois representations seems out
of reach at the moment, even for classes in characteristic zero!

However, let F be a CM field: using nonstandard terminology, we mean that F is
either a totally real field or a totally complex quadratic extension thereof. In this case, Scholze
constructed such Galois representations in the breakthrough paper [53]. This strengthened
previous work [33] that applied to cohomology with Q`-coefficients. Both these results
relied, in turn, on the construction of Galois representations in the self-dual case, due to
many people, including Clozel, Kottwitz, Harris–Taylor [34], Shin [61], and Chenevier–
Harris [21].

We can now state the promised vanishing conjecture for the cohomology of locally
symmetric spaces with F`-coefficients.

Conjecture 2.2. Assume that m � T is a non-Eisenstein maximal ideal in the support of
H �

.c/
.XK ; F`/. Then H i

.c/
.XK ; F`/m 6D 0 only if i 2 Œq0; q0 C l0�.

In the two examples discussed in Example 2.1, this conjecture can be verified “by
hand,” since one only needs to control cohomology in degree 0 (the top degree of cohomol-
ogy can be controlled using Poincaré duality). In the case of GL2 =Q, one can show that the
systems of Hecke eigenvalues m in the support of H 0.XK ; F`/ satisfy

N�m ' �˚ �cyclo � �; (2.1)

where � is a suitable mod ` character of Gal.Q=Q/ and �cyclo W Gal.Q=Q/ ! F�
`

is the
mod ` cyclotomic character. Later, we will introduce a local genericity condition at an auxil-
iary prime p 6D ` and we will see that the N�m in (2.1) also fail to satisfy genericity everywhere.
In addition to these and a few more low-dimensional examples, one can also consider the ana-
logue of Conjecture 2.2 for H �

.c/
.XK ; Q`/. This analogue is related to Arthur’s conjectures

on the cohomology of locally symmetric spaces [3] and can be verified for GLn over CM
fields using work of Franke and Borel–Wallach (see [1, Theorem 2.4.9]).

Conjecture 2.2 is motivated by the Calegari–Geraghty enhancement [12] of the clas-
sical Taylor–Wiles method for proving automorphy lifting theorems. The classical method
works well in settings where the (co)homology of locally symmetric spaces is concentrated
in one degree, for example, for GL2=Q after localizing at a non-Eisenstein maximal ideal,
or for definite unitary groups over totally real fields. In general, however, a certain numerical
coincidence that is used to compare the Galois and automorphic sides breaks down. Calegari
and Geraghty had a significant insight: they reinterpret the failure of the numerical coinci-
dence in terms of the invariant l0. More precisely, l0 arises naturally from a computation
on the Galois side, and the commutative algebra underlying the method can be adjusted if
one knows that the cohomology on the automorphic side, after localizing at a non-Eisenstein
maximal ideal, is concentrated in a range of degrees of length at most l0. For an overview of
the key ideas involved in the Calegari–Geraghty method, see [10, §10].
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In the case of Shimura varieties, Conjecture 2.2 predicts that the non-Eisenstein
part of the cohomology with F`-coefficients is concentrated in the middle degree. The ini-
tial progress on this conjecture in the Shimura variety setting had rather strong additional
assumptions: for example, one needed ` to be an unramified prime for the Shimura datum
and K` to be hyperspecial, as in the work of Dimitrov [23] and Lan–Suh [40,41]. The theory
of perfectoid Shimura varieties and their associated Hodge–Tate period morphism has been
a game-changer in this area. For the rest of this article, we will discuss more recent progress
on Conjecture 2.2 and related questions in the special case of Shimura varieties, as well as
applications that go beyond the setting of Shimura varieties.

3. The Hodge–Tate period morphism

The Hodge–Tate period morphism was introduced by Scholze in his breakthrough
paper [53] and it was subsequently refined in [17]. It gives an entirely new way to think about
the geometry and cohomology of Shimura varieties. In the past decade, it had numerous
striking applications to the Langlands programme: to Scholze’s construction of Galois rep-
resentations for torsion classes, to the vanishing theorems discussed in Sections 4 and 5, to
the construction of higher Coleman theory by Boxer and Pilloni [8], and to a radically new
approach to the Fontaine–Mazur conjecture due to Pan [48].

For simplicity, let us consider a Shimura datum .G;X/ of of Hodge type. By this, we
mean that .G;X/ admits a closed embedding into a Siegel datum . QG; QX/, where QGDGSp2n,
for some n 2 Z�1, and QX is as in (1.1). For example, .G; X/ could be a Shimura datum of
PEL type arising from a unitary similitude group: the corresponding Shimura varieties will
represent a moduli problem of abelian varieties equipped with extra structures (polarizations,
endomorphisms, and level structures). This unitary case will be the main example to keep in
mind, as this will also play a central role in Section 4.

For some representative h 2 X , we consider the Hodge cocharacter

� D h �R Cj1st Gm factor W Gm;C ! GC:

The axioms in the definition of the Shimura datum imply that � is minuscule. The reflex
field E is the field of definition of the conjugacy class ¹�º; it is a finite extension of Q

and the corresponding Shimura varieties admit canonical models over E. The cocharacter
� also determines two opposite parabolic subgroups P std

� and P�, whose conjugacy classes
are defined over E. These are given by

P std
� D

°
g 2 G j lim

t!1
ad
�
�.t/

�
g exists

±
; P �

D

°
g 2 G j lim

t!0
ad
�
�.t/

�
g exists

±
:

We let Flstd and Fl denote the associated flag varieties, which are also defined over E.
Here is a more moduli-theoretic way to think about these the two parabolics. The

chosen symplectic embedding .G; X/ ,! . QG; QX/ gives rise to a faithful representation V of
G. The embedding also gives rise to an abelian scheme AK over the Shimura variety SK at
some level K D G.Af / \ QK, obtained by restricting the universal abelian scheme over the
Siegel modular variety at level QK � QG.Af /. The cocharacter � induces a grading of VC ,
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which in turn defines two filtrations on VC , a descending one Fil� and an ascending one Fil�.
The parabolic P std

� is the stabilizer of Fil�, which is morally the Hodge–de Rham filtration
on the Betti cohomology of AK . There is a holomorphic, G.R/-equivariant embedding

�dR W X ,! Flstd.C/ D G.C/=P std
� (3.1)

called the Borel embedding, defined by h 7! Fil�.�h/. The axioms of a Shimura datum
imply that X is a variation of polarisable Hodge structures of abelian varieties. Moduli-
theoretically, �dR sends a Hodge structure, such as

H 1.A; Q/˝Q C ' H 0
�
A; �1

A

�
˚H 1.A; OA/;

to the associated Hodge–de Rham filtration, e.g., H 0.A; �1
A/ � H 1.A; Q/ ˝Q C. The

embedding �dR is an example of a period morphism. Historically, it has played an impor-
tant role in the construction of canonical models of automorphic vector bundles over E (or
even integrally), such as in work of Harris and Milne.

On the other hand, the parabolic subgroup P� is the stabilizer of the ascending
filtration Fil�. This gives rise to an antiholomorphic embedding

X ,! Fl.C/ D G.C/=P�: (3.2)

Morally, P� is the stabilizer of the Hodge–Tate filtration on the p-adic étale cohomology
of AK . The Hodge–Tate period morphism will be a p-adic analogue of the embedding (3.1)
(or perhaps of the embedding (3.2), depending on one’s perspective).

Let p be a rational prime, p j p a prime of E, and let C be the completion of an
algebraic closure of Ep. We consider the adic spaces �K and F` over Spa.C; OC / corre-
sponding to the algebraic varieties SK and Fl over E. A striking result of Scholze shows that
the tower of Shimura varieties .�KpKp /Kp acquires the structure of a perfectoid space (in the
sense of [51]) as Kp varies over compact open subgroups of G.Qp/. More precisely, the fol-
lowing result was established in [53, §3,4] and later refined in [17, §2], by correctly identifying
the target of the Hodge–Tate period morphism.

Theorem 3.1. There exists a unique perfectoid space �Kp satisfying �Kp � lim
 �Kp

�KpKp ,2

in the sense of [55, Definition 2.4.1], and a G.Qp/-equivariant morphism of adic spaces

�HT W �Kp ! F`:

Moreover, �HT is equivariant for the usual action of Hecke operators away from p on �Kp

and their trivial action on F`.

In the Siegel case G D GSp2n=Q, one can describe the Hodge–Tate period mor-
phism �HT from a moduli-theoretic perspective as follows. An abelian variety A=C , equipped
with a trivialization TpA ' Z2n

p will be sent to the first piece of the Hodge–Tate filtration

Lie A � TpA˝Zp C ' C 2n:

2 It is enough to consider the Shimura varieties as adic spaces over Ep and the tower still
acquires a perfectoid structure in a noncanonical way. We work over C for simplicity and
also because this gives rise to the étale cohomology groups we want to understand.
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Dually, one has the Hodge–Tate filtration on the p-adic étale cohomology of A:

0! H 1.A; OA/! H 1
Ket.A; Zp/˝Zp C ! H 0

�
A; �1

A=C

�
.�1/! 0; (3.3)

where .�1/ denotes a Tate twist (which is important for keeping track of the Galois action).
To show that the morphism defined this way on Spa.C; C C/-points comes from a morphism
of adic spaces, it is important to know that the filtration (3.3) varies continuously. At the
same time, to extend the result to Shimura varieties of Hodge type and to cut down the
image to F`, one needs to keep track of Hodge tensors carefully. Both problems are solved
via relative p-adic Hodge theory for the morphism AK ! �K , where AK is the restriction
to �K of a universal abelian scheme over an ambient Siegel modular variety. See [13, §3] for
an overview.

Theorem 3.1 can be extended to minimal and toroidal compactifications of Siegel
modular varieties, cf. [53] and [49]. Moreover, there is a natural affinoid cover of F` such
that the preimage under �HT of each affinoid in the cover is an affinoid perfectoid subspace
of ��

Kp . The underlying reason for this is the fact that the partial minimal compactification
of the ordinary locus is affine. The perfectoid structure on ��

Kp and the affinoid nature of
the Hodge–Tate period morphism play an important role in Scholze’s p-adic interpolation
argument, that is key for the construction of Galois representations associated with torsion
classes. See also [44] for an exposition of the main ideas.

Theorem 3.1 can also be extended to minimal and toroidal compactifications of
Shimura varieties of Hodge type and even abelian type, cf. [32, 58] and [8], although there
are some technical issues at the boundary. For example, the cleanest formulation currently
available in full generality is that the relationship ��

Kp D lim
 �Kp

��
KpKp

, for a perfectoid space
��

Kp , holds in Scholze’s category of diamonds [54].

Example 3.2. To see where the perfectoid structure on �Kp comes from, it is instructive to
consider the case of modular curves and study the geometry of their special fibers: we are
particularly interested in the geometry of the so-called Deligne–Rapoport model. Set G D

GL2 =Q. Let K0
p D GL2.Zp/, the hyperspecial compact open subgroup and let SKpK0

p
=Fp

be the special fiber of the integral model over Z.p/ of the modular curve at this level. This is
a smooth curve over Fp that represents a moduli problem .E; ˛/ of elliptic curves equipped
with prime-to-p level structures (determined by the prime-to-p level Kp). The isogeny class
of the p-divisible group EŒp1� induces the Newton stratification

SKpK0
p
D S

ord
KpK0

p
t S

ss
KpK0

p
(3.4)

into an open dense ordinary stratum S
ord
KpK0

p
(where EŒp1� is isogenous to �p1 �Qp=Zp)

and a closed supersingular stratum S
ss
KpK0

p
consisting of finitely many points (where EŒp1�

is connected).
Now let K1

p �GL2.Qp/ be the Iwahori subgroup and SKpK1
p
=Fp be the special fiber

of the integral model of the modular curve at this level. This represents a moduli problem
.E; ˛; D/ of elliptic curves equipped with prime-to-p level structures and also with a level
structure at p given by a finite flat subgroup scheme D�EŒp� of order p. Again, we have the
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preimage of the Newton stratification SKpK1
p
D S

ord
KpK1

p
t S

ss
KpK1

p
. The modular curve at this

level is not smooth, but rather a union of irreducible components that intersect transversely
at the finitely many supersingular points.

The open and dense ordinary locus S
ord
KpK1

p
is a disjoint union of two Kottwitz–

Rapoport strata: the one where D ' �p and the one where D ' Z=pZ. Both of these
Kottwitz–Rapoport strata can be shown to be abstractly isomorphic to the ordinary stra-
tum at hyperspecial level. If we restrict the natural forgetful map S

ord
KpK1

p
! S

ord
KpK0

p
to the

Kottwitz–Rapoport stratum where D ' Z=pZ, the map can be identified (up to an isomor-
phism) with the geometric Frobenius. (The restriction of the map to the Kottwitz–Rapoport
stratum where D ' �p is an isomorphism.)

SKpK1
p

SKpK0
p

Frobp Š

(3.5)

On the adic generic fiber, one can extend this picture to an anticanonical ordinary tower,
where the transition morphisms reduce modulo p to (powers of) the geometric Frobenius,
giving a perfectoid space in the limit. To extend beyond the ordinary locus, Scholze uses the
theory of the canonical subgroup, the action of GL2.Qp/ at infinite level, and a rudimentary
form of the Hodge–Tate period morphism that is just defined on the underlying topological
spaces.

The above strategy generalizes relatively cleanly to higher-dimensional Siegel mod-
ular varieties, modulo subtleties at the boundary. To extend Theorem 3.1 to general Shimura
varieties of Hodge type, Scholze considers an embedding at infinite level into a Siegel modu-
lar variety. It is surprisingly subtle to understand directly the perfectoid structure on a general
Shimura variety of Hodge type (especially in the case when GQp is nonsplit) and this is
related to the discussion in Section 5. This is also related to the fact that the geometry of the
EKOR stratification is more intricate when GQp is nonsplit.

For simplicity, let us now assume that .G; X/ is a Shimura datum of PEL type and
that p is an unramified prime for this Shimura datum. Recall the Kottwitz set B.G/ classify-
ing isocrystals with GQp -structure. The Hodge cocharacter � defines a subset B.G; ��1/ �

B.G/ of ��1-admissible elements. The special fiber of the Shimura variety with hyperspe-
cial level at p admits a Newton stratification

SKpK0
p
D

G
b2B.G;��1/

S
b

KpK0
p

into locally closed strata indexed by this subset. This stratification is in terms of isogeny
classes of p-divisible groups with GQp -structure and generalizes the stratification (3.4) from
the modular curve case.

For each b 2 B.G; ��1/, one can choose a (completely slope divisible) p-divisible
group with GQp -structure Xb=Fp and define the corresponding Oort central leaf. This is a
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smooth closed subscheme C Xb of the Newton stratum S
b

KpK0
p
, such that the isomorphism

class of the p-divisible group with GQp -structure over each geometric point of the leaf is
constant and equal to that of Xb:

C Xb D
®
x 2 S

b

KpK0
p
j AKpK0

p

�
p1

�
� �. Nx/ ' Xb � �. Nx/

¯
:

In general, there can be infinitely many leaves inside a given Newton stratum. Over each
central leaf, one has the perfect Igusa variety Igb=Fp , a profinite cover of C Xb which
parametrizes trivializations of the universal p-divisible group with GQp -structure.

Variants of Igusa varieties were introduced in [34] in the special case of Shimura
varieties of Harris–Taylor type. They were defined more generally for Shimura varieties of
PEL type by Mantovan [43] and their `-adic cohomology was computed in many cases by
Shin using a counting point formula [59–61]. All these authors consider Igusa varieties as pro-
finite étale covers of central leaves, which trivialize the graded pieces of the slope filtration
on the universal p-divisible group. Taking perfection gives a more elegant moduli-theoretic
interpretation, while preserving `-adic cohomology. However, the coherent cohomology of
Igusa varieties is also important for defining and studying p-adic families of automorphic
forms on G, as pioneered by Katz and Hida. Taking perfection is too crude for this purpose.

While the central leaf C Xb depends on the choice of Xb in its isogeny class, one can
show that the perfect Igusa variety Igb only depends on the isogeny class: this follows from
the equivalent moduli-theoretic description in [17, Lemma 4.3.4] (see also [19, Lemma 4.2.2],
which keeps track of the extra structures more carefully). In particular, the pair .G; �/ is
not determined by the Igusa variety Igb – it can happen that Igusa varieties that are a priori
obtained from different Shimura varieties are isomorphic. See [19, Theorem 4.2.4] for an exam-
ple and [57] for a systematic analysis of this phenomenon in the function field setting.

Because Igb=Fp is perfect, the base change Igb
�Fp

OC =p admits a canonical lift to
a flat formal scheme over Spf OC . We let Igb denote the adic generic fiber of this lift, which
is a perfectoid space over Spa.C; OC /. The spaces Igb and Igb have naturally isomorphic
`-adic cohomology groups and they both have an action of a locally profinite group Gb.Qp/,
where Gb is an inner form of a Levi subgroup of G.

For each b 2B.G;��1/, one can also consider the associated Rapoport–Zink space,
a moduli space of p-divisible groups with GQp -structure that is a local analogue of a Shimura
variety. Concretely in the PEL case, one considers a moduli problem of p-divisible groups
equipped with GQp -structure, satisfying the Kottwitz determinant condition with respect
to �, and with a modulo p quasiisogeny to the fixed p-divisible group Xb . This moduli
problem was shown by Rapoport–Zink [50] to be representable by a formal scheme over
Spf O MEp

, where MEp is the completion of the maximal unramified extension of Ep. We let
Mb denote the adic generic fiber of this formal scheme,3 base changed to Spa.C; OC /, and
let Mb

1 denote the corresponding infinite-level Rapoport–Zink space. The latter object can

3 As a consequence of the comparison with moduli spaces of local shtukas in [56], one
obtains a group-theoretic characterization of Rapoport–Zink spaces as local Shimura vari-
eties determined by the tuple .G; b; �/. We suppress .G; �/ from the notation for simplicity.
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be shown to be a perfectoid space using the techniques of [55], by which the infinite-level
Rapoport–Zink space admits a local analogue of the Hodge–Tate period morphism

�b
HT WM

b
1 ! F`:

It turns out that the geometry of �HT is intricately tied up with the geometry of its local
analogues �b

HT. The following result is a conceptually cleaner, infinite-level version of the
Mantovan product formula established in [43], which describes Newton strata inside Shimura
varieties in terms of a product of Igusa varieties and Rapoport–Zink spaces.

Theorem 3.3. There exists a Newton stratification

F` D
G

b2B.G;��1/

F`b

into locally closed strata.
For each b 2 B.G; ��1/, one can consider the Newton stratum �ıb

Kp as a locally
closed subspace of the good reduction locus �ı

Kp . There exists a Cartesian diagram of dia-
monds over Spd.C; OC /

Mb
1 �Spd.C;OC / Igb //

��

Mb
1

�b
HT
��

�ıb
Kp

�HT // F`b :

Moreover, each vertical map is a pro-étale torsor for the group diamond QGb (identified with
AutG.eXb/, in the notation of [17, §4]).

The decomposition into Newton strata is defined in [17, §3]. Morally, one first con-
structs a map of v-stacks F`! BunG , where the latter is the v-stack of G-bundles on the
Fargues–Fontaine curve. To construct this map of v-stacks, it is convenient to notice that
one can identify the diamond associated to F` with the minuscule Schubert cell defined by
� inside the BC

dR-Grassmannian for G. Once the map to BunG is in the picture, one uses
Fargues’s result that the points of BunG are in bijection with the Kottwitz set B.G/, cf. [27]
(see also [2] for an alternative proof that also works in equal characteristic). Moreover, the
Newton decomposition is a stratification, in the sense that, for b 2 B.G; �/, we have

F`b D

G
b0�b

F`b0

;

where � denotes the Bruhat order. The latter fact follows from a recent result of Viehmann,
see [63, Theorem 1.1].

On rank one points, �HT is compatible with the two different ways of defining the
Newton stratification: via pullback from SKpK0

p
on �Kp and via pullback from BunG on F`.

The behavior is more subtle on higher rank points. This is related to the fact that the closure
relations are reversed in the two settings: the basic locus inside SKpK0

p
is the unique closed

stratum, whereas each basic stratum inside BunG is open. On the other hand, the (�)-ordinary
locus is open and dense inside SKpK0

p
, whereas it is a zero-dimensional closed stratum inside
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F`. The infinite-level product formula is established in [17, §4], although it is formulated in
terms of functors on Perf MEp

.4 This was extended to Shimura varieties of Hodge type by
Hamacher [31].

Assume that the Shimura varieties SK are compact. We have the following conse-
quence for the fibers of �HT: let Nx W Spa.C;C C/!F`b be a geometric point. Then there is an
inclusion of Igb into ��1

HT . Nx/, which identifies the target with the canonical compactification
of the source, in the sense of [54, Proposition 18.6]. In [18, Theorem 1.10], we extend the com-
putation of the fibers to minimal and toroidal compactifications of (noncompact) Shimura
varieties attached to quasisplit unitary groups. In this case, the fibers can be obtained from
partial minimal and toroidal compactifications of Igusa varieties. It would be interesting to
extend the whole infinite-level product formula to compactifications.

Example 3.4. We make the geometry of �HT explicit in the case of the modular curve, i.e.,
for G D GL2 =Q. In this case, we identify F` D P 1;ad and we have the decomposition into
Newton strata

��
Kp

�HT

��

D �
�;ord
Kp

��

t � ss
Kp

��

P 1;ad D P 1;ad.Qp/ t �:

The ordinary locus inside P 1;ad consists of the set of points defined over Qp and the basic /
supersingular locus is its complement �, the Drinfeld upper half-plane.

The fibers of �HT over the ordinary locus are “perfectoid versions” of Igusa curves.
The infinite-level version of the product formula reduces, in this case, to the statement that the
ordinary locus is parabolically induced from Igord, as in [19, §6]. The fibers of �HT over the
supersingular locus are profinite sets: the corresponding Igusa varieties can be identified with
double cosets D�nD�.Ap

f
/=Kp , where D=Q is the quaternion algebra ramified precisely at

1 and p. This precise result is established in [35], although the idea goes back to Deuring–
Serre. One should be able to give an analogous description for basic Igusa varieties in much
greater generality – this is closely related to Rapoport–Zink uniformization.

4. Cohomology with mod ` coefficients

In this section, we outline some recent strategies for computing the cohomology of
Shimura varieties with modulo ` coefficients using the p-adic Hodge–Tate period morphism,
where ` and p are two distinct primes. We emphasize the strategies developed in [17–19,38].

We will assume throughout that .G; X/ is a Shimura datum of abelian type and,
in practice, we will focus on two examples: the case of Shimura varieties associated with
unitary similitude groups and the case of Hilbert modular varieties. Let m � T be a max-

4 The result precedes the notion of diamonds and, in order to ensure that �ıb
Kp is a diamond,

one needs to take care in defining it. At hyperspecial level, one should consider the adic
generic fiber of the formal completion of the integral model of the Shimura variety along
the Newton stratum indexed by b in its special fiber.

1755 The cohomology of Shimura varieties with torsion coefficients



imal ideal in the support of H �
.c/

.SK.C/; F`/. By work of Scholze (cf. [53, Theorem 4.3.1])
and by the construction of Galois representations in the essentially self-dual case, we know
in many cases how to associate a global modulo ` Galois representation N�m to the max-
imal ideal m. Therefore, the non-Eisenstein condition makes sense, and one can at least
formulate Conjecture 2.2. In order to make progress on this conjecture, we impose a local
representation-theoretic condition at the prime p, which we treat as an auxiliary prime.

Definition 4.1. Let F be a finite field of characteristic `.

(1) Let p 6D ` be a prime, K=Qp be a finite extension, and N� WGal.K=K/!GLn.F/

be a continuous representation. We say that N� is generic if it is unramified and
the eigenvalues (with multiplicity) ˛1; : : : ;˛n 2F` of N�.FrobK/ satisfy ˛i = j̨ 6D

jOK=mK j for i 6D j .

(2) Let F be a number field and N� W Gal.F =F /! GLn.F/ be a continuous repre-
sentation. We say that a prime p 6D ` is decomposed generic for N� if p splits
completely in F and, for every prime p j p of F , N�jGal.F p=Fp/ is generic. We say
that N� is decomposed generic if there exists a prime p 6D ` which is decomposed
generic for N�. (If one such prime exists, then infinitely many do.)

Remark 4.2. The condition for the local representation N� of Gal.K=K/ to be generic implies
that any lift to characteristic 0 of N� corresponds under the local Langlands correspondence
to a generic principal series representation of GLn.K/. Such a representation can never arise
from a nonsplit inner form of GLn =K via the Jacquet–Langlands correspondence. For this
reason, a generic N� cannot be the modulo ` reduction of the L-parameter of a smooth repre-
sentation of a nonsplit inner form of GLn =K.

A semisimple 2-dimensional representation N� of Gal.Q=Q/ is either decomposed
generic or it satisfies (2.1): the case where N� is a direct sum of two characters can be analyzed
by hand, and the case where N� is absolutely irreducible follows from the paragraph after
Theorem 3.1 in [37]. More generally, the condition for a global representation N� of Gal.F =F /

to be decomposed generic can be ensured when N� has large image. For example, if ` > 2, F

is a totally real field, and N� is a totally odd 2-dimensional representation with nonsolvable
image, then N� is decomposed generic (cf. [19, Lemma 7.1.8]).

Let F be an imaginary CM field. Let .B;�;V; h�; �i/ be a PEL datum of type A, where
B is a central simple algebra with center F . We let .G;X/ be the associated Shimura datum.
For a neat compact open subgroup K � G.Af /, we let SK=E be the associated Shimura
variety, of dimension d . The following conjecture is a slightly different formulation of [38,

Conjecture 1.2], with essentially the same content.

Conjecture 4.3. Let m� T be a maximal ideal in the support of H i
.c/

.SK.C/; F`/. Assume
that N�m is decomposed generic. Then the following statements hold true:

(1) if H i
c .SK.C/; F`/m 6D 0, then i � d ;

(2) if H i .SK.C/; F`/m 6D 0, then i � d .
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If the Shimura varieties SK are compact, or if we additionally assume m to be non-
Eisenstein, Conjecture 4.3 implies a significant part of Conjecture 2.2 for Shimura varieties
of PEL type A. Analogues of Conjecture 4.3 can be formulated (and are perhaps within
reach) for other Shimura varieties, such as Siegel modular varieties.

Theorem 4.4 ([17] strengthened in [38]). Assume that G is anisotropic modulo center, so
that the Shimura varieties SK are compact. Then Conjecture 4.3 holds true.

Theorem 4.5 ([18] strengthened in [38]). Assume that B DF , V DF 2n and G is a quasisplit
group of unitary similitudes. Then Conjecture 4.3 holds true.

Remark 4.6. The more recent results of [38] have significantly fewer technical assumptions
than the earlier ones of [17] and [18]. For example, Koshikawa’s version of Theorem 4.5
allows F to be an imaginary quadratic field. It seems nontrivial to obtain this case with
the methods of [18]. In the noncompact case, his results rely on the geometric constructions
in [18], in particular on the semiperversity result for Shimura varieties attached to quasisplit
unitary groups that is established there. As he notes, a generalization of this semiperversity
result should lead to a full proof of Conjecture 4.3 for Shimura varieties of PEL type A. The
more general semiperversity result will be obtained in the upcoming PhD thesis of Mafalda
Santos.

In the case of Harris–Taylor Shimura varieties, Theorem 4.4 was first proved by
Boyer [9]. Boyer’s argument uses the integral models of Shimura varieties of Harris–Taylor
type, but it is close in spirit to the argument carried out in [17] on the generic fiber. What
is really interesting about Boyer’s results is that he goes beyond genericity, in the following
sense. Given the eigenvalues (with multiplicity) ˛1; : : : ; ˛n of N�m.Frobp/, with p j p the rel-
evant prime of F ,5 one can define a “defect” that measures how far N�m is from being generic
at p. Concretely, set ıp.m/ to be equal to the length of the maximal chain of eigenvalues
where the successive terms have ratio equal to jOFp=mFp j. Boyer shows that the cohomol-
ogy groups H i

.c/
.SK.C/;F`/m are nonzero at most in the range Œd � ıp.m/; d C ıp.m/�. As

noted by both Emerton and Koshikawa, such a result is consistent with Arthur’s conjectures
on the cohomology of Shimura varieties with C-coefficients and points towards a modulo `

analogue of these conjectures.

Let us also discuss the analogous vanishing result in the Hilbert case. Let F be a
totally real field of degree g and let G D ResF=Q GL2. For a neat compact open subgroup
K � G.Af /, we let SK=Q be the corresponding Hilbert modular variety, of dimension g.

Theorem 4.7 ([19, Theorem A]). Let ` > 2 and m � T be a maximal ideal in the support of
H i

.c/
.SK.C/;F`/. Assume that the image of N�m is not solvable, which implies that N�m is abso-

lutely irreducible and decomposed generic. Then H i
c .SK.C/; F`/m D H i .SK.C/; F`/m is

nonzero only for i D g.

5 In this special case, one does not have to impose the condition that p splits completely in F ,
and it suffices to have genericity at one prime p j p.
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The same result holds for all quaternionic Shimura varieties, and we can even prove
the analogue of Boyer’s result that goes beyond genericity in all these settings. As an applica-
tion, we deduce (under some technical assumptions) that the p-adic local Langlands corre-
spondence for GL2.Qp/ occurs in the completed cohomology of Hilbert modular varieties,
when p is a prime that splits completely in F . This uses the axiomatic approach via patching
introduced in [14] and further developed in [15,30].

We now outline the original strategy for proving Theorem 4.4, which was introduced
in [17]. Let p be a prime and K D KpKp � G.Af / be a neat compact open subgroup. The
Hodge–Tate period morphism gives rise to a T -equivariant diagram

�Kp

{{

�HT

""

�KpKp F`:

(4.1)

The standard comparison theorems between various cohomology theories allow us to iden-
tify H �

.c/
.SK.C/; F`/m with H �

.c/
.�K ; F`/m. The arrow on the left-hand side of (4.1) is a

Kp-torsor, so the Hochschild–Serre spectral sequence allows us to recover H �
.c/

.�K ; F`/m

from H �
.c/

.�Kp ;F`/m. The idea is now to compute H �
.c/

.�Kp ;F`/m in two stages: first under-
stand the complex of sheaves .R�HT�F`/m on F`, then compute the total cohomology using
the Leray–Serre spectral sequence.

Two miraculous things happen that greatly simplify the structure of .R�HT�F`/m.
The first is that .R�HT�F`/m behaves like a perverse sheaf on F`. This is because �HT is
simultaneously affinoid, as discussed after Theorem 3.1, and partially proper, because the
Shimura varieties were assumed to be compact. In particular, the restriction of .R�HT�F`/m

to a highest-dimensional stratum in its support is concentrated in one degree. By the com-
putation of the fibers of �HT, this implies that the cohomology groups R�.Igb; Z`/m

are concentrated in one degree and torsion-free. The second miracle is that, whenever
the group Gb.Qp/ acting on Igb comes from a nonquasisplit inner form, the localiza-
tion R�.Igb; Q`/m vanishes. This uses the genericity of N�m at each p j p and suggests
that the cohomology of Igusa varieties satisfies some form of local–global compatibility.
Finally, the condition that p splits completely in F guarantees that the only Newton stratum
for which Gb is quasisplit is the ordinary one. Therefore, the hypotheses of Theorem 4.4
guarantee that .R�HT�F`/m is as simple as possible – it is supported in one degree on a
zero-dimensional stratum!

The computation of R�.Igb; Q`/m, at least at the level of the Grothendieck group,
can be done using the trace formula method pioneered by Shin [60]. This is the method used
for Shimura varieties of PEL type A in [17] and [18]. For inner forms of ResF=Q GL2, with
F a totally real field, one can avoid these difficult computations, cf. [19]. In this setting, one
can reinterpret results of Tian–Xiao [62] on geometric instances of the Jacquet–Langlands
correspondence as giving rise to exotic isomorphisms between Igusa varieties arising from
different Shimura varieties. This is what happens for the basic stratum in Example 3.4. Then
one can conclude by applying the classical Jacquet–Langlands correspondence.
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In [38], Koshikawa introduces a novel and complementary strategy for proving these
kinds of vanishing theorems. He shows that, under the same genericity assumption in Defi-
nition 4.1, only the restriction of .R�HT�F`/m to the ordinary locus contributes to the total
cohomology of the Shimura variety. To achieve this, he proves the analogous generic vanish-
ing theorem for the cohomology R�c.Mb; Z`/mp of the Rapoport–Zink space, where mp

is a maximal ideal of the local spherical Hecke algebra at p. This relies on the recent work
of Fargues–Scholze on the geometrization of the local Langlands conjecture [28].

Koshikawa’s strategy is more flexible, allowing him to handle with ease the case
where F is an imaginary quadratic field. On the other hand, the original approach also
gives information about the complexes of sheaves .R�HT�F`/m, rather than just about the
cohomology groups H �

.c/
.SK.C/; F`/m. These complexes should play an important role for

questions of local–global compatibility in Fargues’s geometrization conjecture, cf. [26, §7].

5. Cohomology with mod p and p-adic coefficients

The most general method for constructing p-adic families of automorphic forms
from the cohomology of locally symmetric spaces is via completed cohomology. First intro-
duced by Emerton in [24], this has the following definition:

QH �
�
Kp; Zp

�
D lim
 �

n

�
lim
�!
Kp

H �
�
XKpKp ; Z=pn

��
;

where Kp � G.Af / is a sufficiently small, fixed tame level, and Kp � G.Qp/ runs over
compact open subgroups. This space has an action of the spherical Hecke algebra T , built
from Hecke operators away from p, as well as an action of the group G.Qp/. One can make
the analogous definition for completed cohomology with compact support, and a variant
gives completed homology and completed Borel–Moore homology. See [25] for an excellent
survey that gives motivation, examples, and sketches the basic properties of these spaces.

Motivated by heuristics from the p-adic Langlands programme, Calegari and Emer-
ton made several conjectures about the range of degrees in which one can have nonzero
completed (co)homology and about the codimension of completed homology over the com-
pleted group rings ZpJKpK. See [11, Conjecture 1.5] for the original formulation and [32,

Conjecture 1.3] for a slightly different formulation, which emphasizes the natural implica-
tions between the various conjectures. In particular, Calegari–Emerton conjectured that

QH i
c

�
Kp; Zp

�
D QH i

�
Kp; Zp

�
D 0 for i > q0:

For Shimura varieties of preabelian type, the Calegari–Emerton conjectures were proved
by Hansen–Johansson in [32], building on work of Scholze who proved the vanishing of
completed cohomology with compact support for Shimura varieties of Hodge type [53].

We sketch Scholze’s argument, which illustrates the role of p-adic geometry in this
result. It is enough to show that

QH i
c

�
Kp; Fp

�
D lim
�!
Kp

H i
c

�
SKpKp .C/; Fp

�
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vanishes for i > d D dimE SK . Since .G; X/ is a Shimura datum of Hodge type, we are
in the setting of Theorem 3.1 – in fact, we know that the minimal compactification ��

Kp is
perfectoid. The primitive comparison theorem of [52] gives an almost isomorphism between
QH i

c .Kp; Fp/ ˝ OC =p and H i
Ket.�

�
Kp ; IC=p/, where IC � OC is the subsheaf of sections

that vanish along the boundary. On an affinoid perfectoid space, Scholze proved the almost
vanishing of the étale cohomology of OC=p in degree i > 0. With some care at the boundary,
one deduces that it is enough to prove that the analytic cohomology groups H i

an.��
Kp ;IC=p/

are almost 0 in degree i > d . This final step follows from a theorem of Scheiderer on the
cohomological dimension of spectral spaces.

In [20] and [16], we study Shimura varieties with unipotent level at p. More precisely,
assume that .G; X/ is a Shimura datum of Hodge type and that GQp is split. Choose a split
model of G and a Borel subgroup B over Zp , and let U � B be the unipotent radical.

Theorem 5.1 ([16, Theorem 1.1]). Let H � U.Zp/ be a closed subgroup. We have

lim
�!

Kp�H

H i
c

�
SKpKp .C/; Fp

�
D 0 for i > d:

This result is stronger than the Calegari–Emerton conjecture for completed coho-
mology with compact support, since we can take H D ¹1º and recover Scholze’s result
discussed above. In addition to the argument sketched above, the key new idea needed for
Theorem 5.1 is that the Bruhat decomposition on the Hodge–Tate period domain F` remem-
bers how far different subspaces of ��

KpU.Zp/
are from being perfectoid.

Example 5.2. Assume that G D GL2 =Q, so that we are working in the modular curve case.
The Bruhat decomposition is given by P 1;ad D A1;ad t ¹1º, with the two Bruhat cells in
natural bijection with the two components of the ordinary locus in (3.5). We have a morphism
of sites

�HT=U.Zp/ W
�
��

KpU.Zp/

�
Ket !

ˇ̌
P 1;ad ˇ̌=U.Zp/;

where we take the quotient jP 1;adj=U.Zp/ only as a topological space. The preimage of
jA1;adj=U.Zp/ in �KpU.Zp/ is a perfectoid space, as proved by Ludwig in [42]. The preimage
of j1j=U.Zp/ has a Zp-cover that is an affinoid perfectoid space. This allows us to bound
the support of each Ri �HT�=U.Zp/.I

C=p/, and we conclude by the Leray spectral sequence.

More generally, the Bruhat decomposition G D
F

w2W P� BwP� gives a decom-
position F` D

F
w2W P� F`w into locally closed Schubert cells indexed by certain Weyl

group elements. For each F`w=U.Zp/, we can quantify how far its preimage in ��
KpU.Zp/

is from being a perfectoid space, which depends on the length of the Weyl group element w.
The assumption that GQp is split guarantees that all the Weyl group elements lie in the
ordinary locus inside F`, which greatly simplifies the analysis. However, the analogue of
Theorem 5.1 may hold even without the assumption that GQp is split, and even when the
ordinary locus is empty. There is some evidence in this direction, e.g., by using embeddings
into higher-dimensional Shimura varieties attached to split groups, or by using the results
of [36] to handle the Harris–Taylor case, as in the upcoming PhD thesis of Louis Jaburi.
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The Bruhat decomposition on F` has more recently been used by Boxer and Pilloni
to define a version of higher Coleman theory indexed by each w 2W P� in [8]. The develop-
ment of higher Coleman and higher Hida theories shows that the geometric theory of p-adic
automorphic forms on Shimura varieties is much richer than previously expected. Further-
more, the Bruhat decomposition indicates the form a p-adic Eichler–Shimura isomorphism
should take, relating completed cohomology to these more geometric theories. In joint work
in progress with Mantovan and Newton, we use the geometry described in Example 5.2 to
give a new proof of the ordinary Eichler–Shimura isomorphism due to Ohta [46, 47]. Our
result decomposes the ordinary completed cohomology of the modular curve in terms of
Hida theory and higher Hida theory, the latter recently developed by Boxer and Pilloni in [7].

Theorem 5.1 seems far away from Conjecture 2.2, because it concerns Shimura
varieties with “infinite level” at p. However, one could ask whether a version of Theorem 5.1
holds already at level B.Zp/, at least after applying an ordinary idempotent, as in Hida
theory. If that were the case, the control theorems in Hida theory (specifically the result
known as independence of level) and a careful application of Poincaré duality would imply
that an ` D p analogue of Conjecture 4.3 holds, with generic replaced by ordinary. More
precisely, in this case, the “auxiliary prime” p where we impose a representation-theoretic
condition is no longer auxiliary but rather equal to `.

6. Applications beyond Shimura varieties

While the focus of this article has been the cohomology of Shimura varieties, The-
orems 4.5 and 5.1 have surprising applications to understanding the cohomology of more
general locally symmetric spaces. For example, let F be an imaginary CM field and G D

ResF=Q GLn. Then G can be realized as the Levi quotient of the Siegel maximal parabolic
of a quasisplit unitary group QG. The Borel–Serre compactification QXBS

QK
for the locally sym-

metric spaces associated with the unitary group QG gives rise to a Hecke-equivariant long
exact sequence of the form

� � � ! H i
c

�
QX QK ; Z=`nZ

�
! H i

�
QX QK ; Z=`nZ

�
! H i

�
@ QX QK ; Z=`nZ

�
! H iC1

c

�
QX QK ; Z=`nZ

�
! � � � ; (6.1)

where @ QX QK D
QXBS

QK
n QX QK is the boundary of the Borel–Serre compactification. The usual and

compactly supported cohomology of QX QK can be simplified to some extent by applying either
of the two vanishing theorems. On the other hand, the cohomology of XK can be shown to
contribute to the cohomology of @ QX QK , in some more or less controlled fashion.

Let m � T be a non-Eisenstein maximal ideal in the support of R�.XK ; Z`/ and
let T .K/m denote the quotient of T that acts faithfully on R�.XK ; Z`/m. In addition to
the residual Galois representation N�m, Scholze associates to m a deformation �m valued in
T .K/m=I , for some nilpotent ideal I . This was subsequently shown by Newton and Thorne
in [45] to satisfy I 4 D 0. In [20], we used a variant of Theorem 5.1 together with the excision
sequence (6.1) to eliminate this nilpotent ideal entirely, under the assumption that ` splits
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completely in the CM field F . This leads to a more natural statement on the existence of
Galois representations in this setting.

The Galois representations �m are expected to satisfy a certain property known
as local–global compatibility, which is particularly subtle to state and prove at primes
above `. For example, after inverting `, the �m are expected to be de Rham, in the sense
of Fontaine, but it is less clear what the right condition should be for torsion Galois rep-
resentations. In another application, Theorem 4.5 is crucially used in [1] together with the
excision sequence (6.1) to prove that �m satisfies the expected local–global compatibility
at primes above ` in two restricted families of cases: the ordinary case and the Fontaine–
Laffaille case.6 In joint work in progress with Newton, we should be able to extend these
methods to cover significantly more.

The local–global compatibility results established in [1] are already extremely
useful: they help us implement the Calegari–Geraghty method unconditionally for the first
time in arbitrary dimension. A striking application is the following result.

Theorem 6.1 ([1, Theorem 1.0.1]). Let F be a CM field and E=F be an elliptic curve that
does not have complex multiplication. Then E is potentially automorphic and satisfies the
Sato–Tate conjecture.

The potential automorphy of E was established at the same time in work of Boxer–
Calegari–Gee–Pilloni [6], who also showed the potential automorphy of abelian surfaces
over totally real fields. Their work relies on the Calegari–Geraghty method for the coherent
cohomology of Shimura varieties and uses a preliminary version of higher Hida theory, due
to Pilloni, as a key ingredient.
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