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Abstract

The Markoff equation x2 C y2 C z2 D 3xyz, which arose in his spectacular thesis in
1879, is ubiquitous in a tremendous variety of contexts. After reviewing some of these, we
discuss Hasse principle, asymptotics of integer points, and, in particular, recent progress
towards establishing forms of strong approximation on varieties of Markoff type, as well as
ensuing implications, diophantine and dynamical.
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Important though the general concepts and propositions may be with which the
modern industrious passion for axiomatizing and generalizing has presented us,
in algebra perhaps more than anywhere else, nevertheless I am convinced that the
special problems in all their complexity constitute the stock and core of mathe-
matics; and to master their difficulties requires on the whole the harder labor.

Hermann Weyl, The Classical Groups, 1939

1. Introduction

1.1. Andrei Andreevich Markov is one of the towering peaks of the illustrious Saint
Petersburg school of number theory, alongside with Chebyshev and Linnik. A singular char-
acteristic of this school is a deep, often subterranean, interaction between arithmetic/combi-
natorics and probability/dynamics. While Markov is perhaps most widely known today for
the chains named after him, it is in the context of his arguably deepest work on the minima of
binary quadratic forms and badly approximable numbers1 that the following equation, now
bearing his name, was born:

x2
1 C x2

2 C x2
3 D 3x1x2x3; (1.1)

describing a Markoff surface X � A3. Markoff triples M are the solutions of (1.1) with pos-
itive integral coordinates. Markoff numbers M � N are obtained as coordinates of elements
of M. The Markoff sequence Ms is the set of largest coordinates of an m 2 M counted with
multiplicity; the uniqueness conjecture of Frobenius [62] asserts that M D Ms .

All elements of M are gotten from the root solution r D .1; 1; 1/ by repeated appli-
cations of an element in a set S , consisting of � 2 †3, the permutations of the coordinates of
.x1; x2; x3/, and of the Vieta involutions R1;R2;R3 of A3, with R1.x1; x2; x3/ D .3x2x3 �

x1; x2; x3/ and R2; R3 defined similarly. Denoting by � the nonlinear group of affine mor-
phisms of A3 generated by S , the set of Markoff triples M can be identified with the orbit
of the root r under the action of � , that is to say, M D � � r , giving rise to the Markoff tree
[8]:

.1; 1; 1/ � .1; 1; 2/ � .2; 1; 5/

� .5; 1; 13/
˝ .13;1;34/ <

.34;1;89/ < ���
���

.13;34;1325/ < ���
���

.5;13;194/ <
.194;13;7561/ < ���

���

.5;194;2897/ < ���
���

.2; 5; 29/
˝ .29;5;433/ <

.433;5;6466/ < ���
���

.29;433;37666/ < ���
���

.2;29;169/ <
.169;29;14701/ < ���

���

.2;169;985/ < ���
���

1 This work of Markoff and some of the subsequent appearances of his equation in a tremen-
dous variety of different contexts are briefly discussed in Section 2.
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The first few members of M are

1; 2; 5; 13; 29; 34; 89; 169; 194; 233; 433; 610; 985; : : :

The sequence Ms is sparse, as shown by Zagier [147]:X
m2Ms

m�T

1 � c.log T /2 as T ! 1 .c > 0/: (1.2)

1.2. The origins of investigations which underlie “the stock and core” of this report
date back to August of 2005 and involve a “special problem” pertaining to Markoff numbers;
here is Peter Sarnak’s recollection [126]: “For me the starting point of this investigation was in
2005 when Michel and Venkatesh asked me about the existence of poorly distributed closed
geodesics on the modular surface. It was clear that Markov’s constructions of his geodesics
using his Markov equation provided what they wanted but they preferred quadratic forms
with square free discriminant. This raised the question of sieving in this context of an orbit
of a group of (nonlinear) morphisms of affine space. The kind of issues that one quickly faces
in attempting to execute such a sieve are questions of the image of the orbit when reduced
mod q and interestingly whether certain graphs associated with these orbits are expander
families.2 Gamburd in his thesis had established the expander property in some simpler but
similar settings and he and I began a lengthy investigation into this sieving problem in the
simpler setting when the group of affine morphisms acts linearly (or what we call now the
affine linear sieve).”

The question posed by Michel and Venkatesh arose in the course of their joint work
with Einsiedler and Lindenstrauss [58,59] on generalizations of Duke’s theorem [57]; formu-
lated in terms of Markoff numbers, it leads to the following:

Conjecture 1. There are infinitely many square-free Markoff numbers.

As detailed in [21], an application of sieve methods in the setting of affine orbits
leads to and demands an affirmative answer to the question as to whether Markoff graphs,
obtained as a modular reduction of the Markoff tree,3 form a family of expanders. Numerical
experiments by de Courcy-Ireland and Lee [55], as well as results detailed in Section 2.5,
are compelling in favor of the following superstrong approximation conjecture for Markoff
graphs:

Conjecture 2. The family of Markoff graphs X�.p/ forms a family of expanders.

Before attacking this conjecture, asserting high connectivity of Markoff graphs, one
has to confront the question of their connectivity, that is to say, the issue of the strong approx-
imation for Markoff graphs:

2 See [125] and [81] for definition and properties of expanders.
3 Let p be a large prime and denote by X�.p/ D X.p/n.0; 0; 0/ the solutions of (1.1) modulo

p with the removal of .0; 0; 0/. The Markoff graphs are obtained by joining each x in X�.p/

to Rj .x/; j D 1; 2; 3. They were considered first by Arthur Baragar in his thesis [3].
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Figure 1

Markoff graph mod 7. In [54] it is proved that the Markoff graphs are not planar for primes greater than 7.

Conjecture 3. The map �p W M ! X�.p/ is onto, that is to say, Markoff graphs X�.p/ are
connected.

While Conjectures 1 and 2 have withstood our protracted attack over the past 17
years, much progress has been made on parallel questions in the case of affine linear maps.
We will return to the recent resolution of Conjecture 3, and resulting progress on diophantine
properties of Markoff numbers in Section 1.5.

1.3. Before describing the general setting of Affine Linear Sieve, it is instructive to
briefly examine an example which is in many ways parallel to the Markoff situation, namely
integral Apollonian packings [63,127]. A theorem of Descartes asserts that x1;x2;x3;x4 2 R4

are the curvatures of four mutually tangent circles in the plane if

2.x2
1 C x2

2 C x2
3 C x2

4/ D .x1 C x2 C x3 C x4/2: (1.3)

Given an initial configuration of 4 such circles, we fill in repeatedly the lune regions with
the unique circle which is tangent to 3 sides (which is possible by a theorem of Apollonius).
In this way we get a packing of the outside circle by circles giving an Apollonian packing.
The interesting diophantine feature is that if the initial curvatures are integral then so are the
curvatures of the entire packing.

The numbers in the circles in Figure 2 indicate their curvatures; note that by conven-
tion the outer circle has negative curvature. Viewing equation (1.3) as a quadratic equation
in x1, we see that the two solutions are related as x1 C x0

1 D 2x2 C 2x3 C 2x4, the crucial
point being that the Vieta involutions in this case are given by linear maps A1; A2; A3; A4

where Aj .ek/ D �3ek C 2.e1 C e2 C e3 C e4/ if k D j and Aj .ek/ D ek if k ¤ j

(e1; e2; e3; e4 are the standard basis vectors). The configurations of 4 mutually tangent
circles in the packing with initial configuration a D .a1; a2; a3; a4/ consist of points x in
the orbit O D ƒ � a where ƒ D hA1; A2; A3; A4i is the Apollonian group. The elements Aj
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Figure 2

Integral Apollonian packing .�11; 21; 24; 28/.

preserve F given by

F.x1; x2; x3; x4/ D 2.x2
1 C x2

2 C x2
3 C x2

4/ � .x1 C x2 C x3; Cx4/2;

and hence ƒ � OF .Z/. The group ƒ is Zariski dense in OF , but it is thin in OF .Z/. For
example, j¹ 2 OF .Z/ W jj jj � T ºj � c1T 2 as T ! 1, while j¹ 2 ƒ W jj jj � T ºj � c1T ı ,
where4 ı D 1:3 : : : is the Hausdorff dimension of the limit set of ƒ.

The general setting of Affine Linear Sieve, introduced in [20,21], is as follows. For
j D 1; 2; : : : ; k, let Aj be invertible integer coefficient polynomial maps from Zn to Zn

(here n � 1 and the inverses of Aj ’s are assumed to be of the same type). Let ƒ be the group
generated by A1; : : : ; Ak and let O D ƒb be the orbit of some b 2 Zn under ƒ. Given a
polynomial f 2 QŒx1; :::; xn� which is integral on O, the aim is to show that there are many
points x 2 O at which f .x/ has few or even the least possible number of prime factors, in
particular that such points are Zariski dense in the Zariski closure, Zcl.O/ of O. Let O.f; r/

denote the set of x 2 O for which f .x/ has at most r prime factors. As r ! 1, the sets
O.f; r/ increase and potentially at some point become Zariski dense. Define the saturation
number r0.O; f / to be the least integer r such that Zcl.O.f; r// D Zcl.O/. It is by no means
obvious that it is finite or even if one should expect it to be so, in general. If it is finite, we say
that the pair .O; f / saturates. In the case of linear maps, the theory by now is quite advanced
and the basic result pertaining to the finiteness of the saturation number in all cases where it
is expected to hold, namely in the case of the Levi factor of G D Zcl.ƒ/ being semisimple,5

has been established [123]. Both strong and superstrong approximation, particularly for thin

4 This result can be deduced from the work of Lax and Phillips [93]. A beautiful overview of
striking developments pertaining to dynamics on geometrically finite hyperbolic manifolds
with applications to Apollonian circle packings (and beyond) is contained in Hee Oh’s ICM
report [114].

5 On the other hand, as detailed in [21, 85, 123], when torus intervenes, the saturation most
likely fails. Tori pose particularly difficult problems, in terms of sparsity of elements in an
orbit, strong approximation and diophantine properties: see [104] for a discussion of Artin’s
Conjecture in the context of strong approximation.
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groups such as the Apollonian group, are crucial ingredients in executing Brun combinatorial
sieve in this setting.

1.4. The strong approximation for SLn.Z/, asserting that the reduction �q modulo
q is onto, is a consequence of the Chinese remainder theorem; its extension to arithmetic
groups is far less elementary but well understood [118]. If S is a finite symmetric generating
set of SLn.Z/, strong approximation is equivalent to the assertion that the Cayley graphs
G .SLn.Z=qZ/; �q.S// are connected. The quantification of this statement, asserting that
they are in fact highly-connected, that is to say, form a family of expanders, is what we mean
by superstrong approximation. The proof of the expansion property for SL2.Z/ has its roots
in Selberg’s celebrated lower bound [131] of 3

16
for the first eigenvalue of the Laplacian on the

hyperbolic surfaces associated with congruence subgroups of SL2.Z/. The generalization of
the expansion property to G.Z/ where G is a semisimple matrix group defined over Q is
also known thanks to developments towards the general Ramanujan conjectures that have
been established; this expansion property is also referred to as property � for congruence
subgroups [133].

Let � be a finitely generated subgroup of GLn.Z/ and let G D Zcl.�/. The dis-
cussion of the previous paragraph applies if � is of finite index in G.Z/. However, if �

is thin, that is to say, of infinite index in G.Z/, then vol.G.R/n�/ D 1 and the tech-
niques used to prove both of these properties do not apply. It is remarkable that, under
suitable natural hypothesis, strong approximation continues to hold in this thin context, as
proved by Matthews, Vaserstein, and Weisfeiler in 1984 [105,143]. That the expansion prop-
erty might continue to hold for thin groups was first suggested by Lubotzky and Weiss in
1993 [101]; for SL2.Z/, the issue is neatly encapsulated in the following 1–2–3 question of
Lubotzky [99]. For a prime p � 5 and i D 1; 2; 3, let us define S i

p D
®�

1 i
0 1

�
;
�

1 0
i 1

�¯
. Let

G i
p D G .SL2.Z=pZ/ ;S i

p/, the Cayley graph of SL2.Z=pZ/ with respect to S i
p . By Selberg’s

theorem, G 1
p and G 2

p are families of expander graphs. However, the group h
�

1 3
0 1

�
;
�

1 0
3 1

�
i has

infinite index in SL2.Z/ and thus does not come under the purview of Selberg’s theorem.
In my thesis [66], extending the work of Sarnak and Xue [129], [128] for cocompact

arithmetic lattices, a generalization of Selberg’s theorem for infinite index “congruence” sub-
groups of SL2.Z/ was proved; for such subgroups with a high enough Hausdorff dimension
of the limit set, a spectral gap property was established. Following the groundbreaking work
of Helfgott [77] (which builds crucially on sum–product estimate in Fp due to Bourgain, Katz,
and Tao [27]), Bourgain and Gamburd [13] gave a complete answer to Lubotzky’s question.
The method introduced in [12,13] and developed in a series of papers [14–19] became known
as “Bourgain–Gamburd expansion machine”; thanks to a number of major developments by
many people [22,28,35,82,91,115,120,122,124], the general superstrong approximation for thin
groups is now known. The state-of-the-art is summarized in Thin groups and superstrong
approximation [36] which contains an expanded version of most of the invited lectures from
the eponymous MSRI “Hot Topics” workshop, in the surveys by Breuillard [33] and Helfgott
[78], and in the book by Tao “Expansion in finite simple groups of Lie type” [140].
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1.5. We return to the progress on Conjecture 3 [23–26]. Our first result [25] asserts
that there is a very large orbit.

Theorem 1. Fix " > 0. Then for p large prime, there is a � orbit C.p/ in X�.p/ for which

jX�.p/nC.p/j � p" (1.4)

(note that jX�.p/j � p2), and any � orbit D.p/ satisfies6

jD.p/j � .log p/
1
3 : (1.5)

The proof, discussed in section 3, establishes the strong approximation conjecture,
unless p2 � 1 is a very smooth number. In particular, the set of primes for which the strong
approximation conjecture fails is very small.

Theorem 2. Let E be the set of primes for which the strong approximation conjecture fails.
For " > 0, the number of primes p � T with p 2 E is at most T ", for T large.

Very recently, in a remarkable breakthrough, using geometric techniques involv-
ing Hurwitz stacks, degeneration, and some Galois theory, William Chen [45] proved the
following result:

Theorem 3. Every � orbit D.p/ has size divisible by p.

Combining Theorems 1 and 3 establishes Conjecture 3 for all sufficiently large
primes; in combination with the following result established in [26], namely

Theorem 4. Assume that X�.Z=pZ/ is connected. Then X�.Z=pkZ/ is connected for all k.

it yields

Theorem 5. For all sufficiently large primes p, the group � acts minimally on X�.Zp/.

We remark that Theorem 5 is not true for X�.R/; cf. section 4.1. While Conjec-
ture 1 remains out of reach, the progress on strong approximation allows us to establish the
following result on the diophantine7 properties of Markoff numbers [25]:

Theorem 6. Almost all Markoff numbers are composite, that is,X
p2M s

p prime; p�T

1 D o
� X

m2M s

m�T

1
�
:

It is worth contrasting this result with the state of knowledge regarding the sequence
Hn D 2n C b, which is just a little more sparse than the sequence of Markoff numbers, for
which, by Zagier’s result (1.2), we have Mn � A

p
n. Even assuming the generalized Riemann

Hypothesis, which allowed Hooley [79] to give a conditional proof of Artin’s conjecture (cf.
footnote 5), was not sufficient to establish that almost all members of the sequence Hn are
composite: the conditional proof in [80] necessitated postulating additional “Hypothesis A.”

6 The exponent 1
3 in (1.5) has been improved to 7

9 in [87].
7 We remark that in [52] Corvaja and Zannier showed that the greatest prime factor of xy for

a Markoff triple .x; y; z/ tends to infinity.
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1.6. The methods of proof of Theorems 1, 2, 4 discussed in Section 3 are robust
enough to enable handling their extension to more general Markoff-type cubic surfaces,
namely

Xk W ˆ.x1; x2; x3/ D x2
1 C x2

2 C x2
3 � x1x2x3 D k; (1.6)

where the real dynamics was studied by Goldman [73], as discussed in Section 4.1; the family
of surfaces SA;B;C;D � C3 given by

x2
1 C x2

2 C x2
3 C x1x2x3 D Ax1 C Bx2 C Cx3 C D; (1.7)

where the real dynamics was studied by Cantat [38], as discussed in Section 4.2; those in [60]

and even the general such nondegenerate cubic surface

Y D Y.˛; ˇ; ; ı/ W

3X
i;j D1

˛ij xi xj C

3X
j D1

ǰ xj C  D ıx1x2x3; (1.8)

with ˛ij ; ǰ ; ; ı being integers.
The group �Y is again generated by the corresponding Vieta involutions R1;R2;R3.

For such a Y and action �Y , one must first show that there are only finitely many finite orbits
in Y. NQ/, and that these may be determined effectively. The analogue of Conjecture 1 for Y

is that for p large, �Y has one big orbit on Y.Z=pZ/ and that the remaining orbits, if there
are any, correspond to one of the finite NQ orbits determined above.

The determination of the finite orbits of � on Xk. NQ/ and on SA;B;C;D. NQ/ has been
carried out in [56] and [96], respectively. Remarkably for these, the � action on affine 3-
space corresponds to the (nonlinear) monodromy group for Painlevé VI equations on their
parameter spaces. In this way the finite orbits in question turn out to correspond bijectively
to those Painlevé VI’s which are algebraic functions of their independent variable.

In this setting of the more general surfaces Y in (1.8), strong approximation for
Y.ZS /, where S is the set of primes dividing ˛11; ˛22; ˛33 (so that �Y preserves the
S -integers ZS ), will follow from Conjecture 1 for Y (and the results we can prove towards
it, as in Theorem 2) once we have a point of infinite order in Y.ZS /. If there is no such
point, we can increase S or replace Z by OK , the ring of integers in a number field K=Q, to
produce such a point and with it strong approximation for Y

�
.OK/S

�
.

Vojta’s conjectures and the results proven towards them [51,141] assert that cubic and
higher-degree affine surfaces typically have few S -integral points. In the rare cases where
these points are Zariski dense, such as tori (e.g., N.x1;x2;x3/ D k where N is the norm form
of a cubic extension of Q), strong approximation fails. So these Markoff surfaces appear to
be rather special affine cubic surfaces not only having a Zariski dense set of integral points,
but also a robust strong approximation.

1.7. Zagier’s result (1.2) can be viewed as a statement about asymptotic growth of
integral points on the Markoff variety, jX.Z/ \ B.T /j � .log T /2. In Section 5 we discuss
the work in [68], establishing an asymptotic formula for the number of integer solutions to
the Markoff–Hurwitz equation

x2
1 C x2

2 C � � � C x2
n D ax1x2 � � � xn C k; (1.9)
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giving an interpretation of the exponent of growth, which for n > 3 is not integral, in terms
of the unique parameter for which there exists a certain conformal measure on a projective
space.

1.8. The issue of the existence of a single integral solution to (1.9) for general a

and k, even for n D 3, is quite subtle; see [112,130]. In the work of Ghosh and Sarnak [71], the
Hasse principle is established to hold for Markoff-type cubic surfaces X.k/ given by (1.6) for
almost all k, but it also fails to hold for infinitely many k; this work is discussed in Section 6.

1.9. Regrettably, the space/time constraints prevented us from covering cognate
results pertaining to arithmetic and dynamics on K3 surfaces; see [37,65,106,108,109,135] and
references therein. The Markoff equation over quadratic imaginary fields is studied in [134].
Potential cryptographic applications of Markoff graphs are discussed in [64].

1.10. To conclude this introduction, let us note that Xk is the relative character
variety of representations of the fundamental group of a surface of genus 1 with one puncture
to SL2. The action of the mapping class group is that of � . More generally, the (affine) relative
character variety Vk of representation of �1.†g;n/, a surface of genus g with n punctures,
into SL2 is defined over Z, and one can study the diophantine properties of Vk.Z/. In the
work of Whang [144–146], it was shown that Vk has a projective compactification relative
to which Vk is “log-Calabi–Yau.” According to the conjectures of Vojta, this places Vk as
being in the same threshold setting as affine cubic surfaces. Moreover, Vk.Z/ has a full
descent in that the mapping class group acts via nonlinear morphisms on Vk.Z/ with finitely
many orbits. These and more general character varieties connected with higher Teichmüller
theory offer a rich family of threshold affine varieties for which one can approach the study
of integral points.

2. The unreasonable(?) ubiquity of Markoff equation

Markoff equation and numbers appear in a surprising variety of contexts: see, for
example, [1] (subtitled Mathematical Journey from Irrational Numbers to Perfect Matchings)
and the references therein.

2.1. The Markoff chain. Equation (1.1) was discovered by Markoff in 1879 in his
work on badly approximable numbers. As the sentiment8 expressed by Frobenius [62] in
1913 seems to remain true today, we briefly review the context and statement of Markoff’s
theorem.

Let ˛ be an irrational number. A celebrated theorem of Hurwitz asserts that ˛ admits
infinitely many rational approximations p=q such that j˛ �

p
q

j < 1p
5q2

, and, moreover, that
if ˛ is GL2.Z/-equivalent to the Golden Ratio �1 D .1 C

p
5/=2, in the sense that ˛ D

a�1Cb
c�1Cd

8 “Trotz der außerordentlich merkwürdigen und wichtigen Resultate scheinen diese
schwiergen Untersuchungen wenig bekannt zu sein” [In spite of the extraordinarily note-
worthy and important results these difficult investigations seem to be little known]
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for some integers a; b; c; d with ad � bc D ˙1, the above result is sharp and the constant
1p
5

cannot be replaced by any smaller.
Suppose next that ˛ is not GL2.Z/-equivalent to �1. Then the result of Markoff’s

doctoral advisors, Korkine and Zolotareff, [88] asserts that ˛ admits infinitely many rational
approximations p=q such that j˛ �

p
q

j < 1p
8q2

, and, moreover, that the constant 1p
8

is sharp
if and only if ˛ is GL2.Z/-equivalent �2 D 1 C

p
2.

The general result found by Markoff in his Habilitation and published in 1879 and
1880 in Mathematische Annalen is as follows.

Markoff’s Theorem. Let M D ¹1; 2; 5; 13; 29; 34; 89; 169; 194; : : : º be the sequence of
Markoff numbers. There is a sequence of associated quadratic irrationals �i 2 Q.

p
�i /,

where �i D 9m2
i � 4 and mi is the i th element of the sequence, with the following property.

Let ˛ be a real irrational, not GL2.Z/-equivalent to any of the numbers �i whenever mi <

mj . Then ˛ admits infinitely many rational approximations p=q with
ˇ̌̌̌
˛ �

p
q

ˇ̌̌̌
<

mjp
�j q2 ; the

constant mj =
p

�j is sharp if and only if ˛ is GL2.Z/-equivalent to �h, for some h such that
mh D mj .

2.2. Continued fractions and binary quadratic forms. The first paper by Markoff
[102] used the theory of continued fractions, while the second memoir [103] was based on
the theory of binary indefinite quadratic forms, with the final result stated as a theorem on
minima of binary indefinite quadratic forms.

The alternative approach based on indefinite binary quadratic forms was the subject
of an important memoir by Frobenius [62] and complete details were finally provided by
Remak [121] and much simplified by Cassels [39,40].

2.3. The geometry of Markoff numbers. A third way of looking at the problem,
via hyperbolic geometry, was introduced by Gorshkov [74] in his thesis of 1953, but published
only in 1977. The connection with hyperbolic geometry was rediscovered, in a somewhat
different way, by Cohn [46]. The paper by Caroline Series [132] contains a beautiful exposition
of the problem in this context.

2.4. Cohn tree and Nielsen transformations. Cohn is also credited for the inter-
pretation of the problem [47] in the context of primitive words in F2, the free group on two
generators. Its automorphism group ˚2 D Aut.F2/ is generated by the following Nielsen
transformations: .a; b/P D .b; a/, .a; b/� D .a�1; b/, .a; b/U D .a�1; ab/. Let V D �U .
Then .a; b/V D .a; ab/.
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The Cohn tree is a binary tree with root ab, branching to the top with U and to the
bottom with V ,

ab

� abb
˝ abbb <

abbbb < ���
���

aababab < ���
���

aabab <
ababbabb < ���

���

aaabaab < ���
���

aab
˝ ababb <

abbabbb < ���
���

aabaabab < ���
���

aaab <
abababb < ���

���

aaaab < ���
���

Markoff numbers are obtained from the Cohn tree by taking a third of the trace of
the matrix obtained by substituting the matrices A D

�
5 2
2 1

�
and B D

�
2 1
1 1

�
in place of a, b

and performing the matrix multiplication.

2.5. Nielsen systems and product replacement graphs. Conjecture 3 is a special
case of Conjecture Q made by McCullough and Wanderley [107] in the context of Nielsen
systems and product replacement graphs.

Given a group G, the product replacement graph �k.G/ introduced in [42] in
connection with computing in finite groups is defined as follows. The vertices of �k.G/

consist of all k-tuples of generators .g1; : : : ; gk/ of the group G. For every .i; j /, 1 � i ,
j � k, i ¤ j , there is an edge corresponding to transformations L˙

i;j and R˙
i;j , where

R˙
i;j W .g1; : : : ; gi ; : : : ; gk/ ! .g1; : : : ; gi � g˙1

j ; : : : ; gk/ and L˙
i;j defined similarly. The

graphs �k.G/ are regular, of degree 4 k .k � 1/, possibly with loops and multiple edges.
The connectivity of �k.G/ has been the subject of intensive recent investigations; for
G D SL2.p/ and k � 3, it was established by Gilman in [72].

In the case of the free group Fk , the moves L˙
i;j and R˙

i;j defined above corre-
spond to Nielsen moves on �k.Fk/. For every group G, the set �k.G/ can be identified with
E D Epi.Fk ;G/, the set of epimorphisms from Fk onto G, and the group A D Aut.Fk/ acts
on E in the following way: if ˛ 2 A and ' 2 E, ˛.'/ D ' � ˛�1. A long-standing problem
is whether Aut.Fk/ has property (T) for k � 4; in [100] Lubotzky and Pak observed that a
positive answer to this problem implies the expansion of �k.G/ for all G and proved that
�k.G/ are expanders when G is nilpotent of class l and both k and l are fixed. Property (T)
for Aut.Fk/ for k � 5 was recently established in [84].9 Note that Aut.F2/ and Aut.F3/ do
not satisfy property (T), while the problem is still open for k D 4.

In a joint work with Pak [69], we established a connection between the expansion
coefficient of the product replacement graph �k.G/ and the minimal expansion coefficient
of a Cayley graph of G with k generators, and, in particular, proved that for k > 3 the product

9 The proof stems from the groundbreaking observation by Ozawa [116] that G satisfies
Kazhdan’s property (T) if there exist � > 0 and finitely many elements �i of RŒG� such that
�2 � �� D

P
i ��

i �i where � is the Laplacian of the finite symmetric generating set of G.
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replacement graphs �k.SL.2; p// form an expander family under assumption of strong uni-
form expansion of SL.2; p/ on k generators. In a joint work with Breuillard [34], combining
the “expansion machine” [13] with the uniform Tits Alternative10 established by Breuillard
[32], we proved that Cayley graphs of SL.2;p/ are strongly uniformly expanding for infinitely
many primes of density one. Consequently, the following form of nonlinear superstrong
approximation is obtained:

Theorem 7. Let k > 3. The family of product replacement graphs ¹�k.SL.2; pn//ºn forms
a family of expanders for infinitely many primes pn of density one.

As detailed in [107], the situation is different for the product replacement graph of
SL.2; Fp/ on 2 generators, due to Fricke identity for 2 � 2 matrices M and N :

tr.M/2
C tr.N /2

C tr.MN /2
D tr.M/tr.N /tr.MN / C tr.ŒM; N �/ C 2: (2.1)

Letting x1 D tr.M/, x2 D tr.N /, x3 D tr.MN /, the Q conjecture11 in [107] amounts to the
assertion of the strong approximation for the surfaces

Xk W ˆ.x1; x2; x3/ D k; (2.2)

ˆ.x1; x2; x3/ D x2
1 C x2

2 C x2
3 � x1x2x3; (2.3)

and k D tr.ŒM; N �/ C 2, with Markoff surface12 being the special case corresponding to
tr.ŒM; N �/ D �2.

3. Strong approximation

We give a brief overview of the methods and tools used in the proof of Theorems 1
and 2 and some comments about their extensions to the setting of more general surfaces
of Markoff type. Theorem 1, in the weaker form that jC.p/j � jX�.p/j as p ! 1, can
be viewed as the finite field analogue of [73] where it is shown that the action of � on the
compact real components of the relative character variety of the mapping class group of
the once punctured torus is ergodic. As in [73] our proof makes use of the rotations �ij ı Rj ,
i 6D j , where �ij permutes xi and xj . These preserve the conic sections gotten by intersecting
X�.p/ with the planes yk D xk (k different from i and j ). If �ij ı Rj has order t1 (here
t1jp.p � 1/.p C 1/), then x and these t1 points of the conic section are connected (i.e., are
in the same � orbit). If t1 is maximal (i.e., is p;p � 1, or p C 1), then this entire conic section
is connected and such conic sections in different planes which intersect are also connected.
This leads to a large component which we denote by C.p/.

10 This states that if the subgroup of GLd .K/ (where K is an algebraic number field) gener-
ated by F is not virtually solvable, then there is some N 2 N, depending only on d , such
that .F [ F �1 [ ¹1º/N contains two elements that generate a nonabelian free group.

11 See the paper of Will Chen [45] for the discussion of the relation between this conjecture
and the connectivity properties of the moduli spaces of elliptic curves with G D SL.2; p/

structures.
12 Note that the congruence x2 C y2 C z2 � xyz .mod 3/ has no nontrivial solutions.
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If our starting rotation has order t1 which is not maximal, then the idea is to ensure
that among the t1 points to which it is connected, at least one has a corresponding rotation
of order t2 > t1, and then to repeat. To ensure that one can progress in this way, a critical
equation over Fp intervenes:8̂<̂

:x C
b

x
D y C

1

y
; b 6D 1;

x 2 H1; y 2 H2 with H1; H2 subgroups of F�
p (or F�

p2 ):
(3.1)

If t1 D jH1j � p1=2Cı (with ı small and fixed), one can apply the proven Riemann Hypoth-
esis for curves over finite fields [142] to count the number of solutions to (3.1). Together with
a simple inclusion/exclusion argument, this shows that one of the t1 points connected to our
starting x has a corresponding maximal rotation and hence x is connected to C.p/.

If jH1j � p1=2Cı then RH for these curves is of little use (their genus is too large),
and we have to proceed using other methods. We assume that jH1j � jH2j so that the trivial
upper bound for the number of solutions to (3.1) is 2jH2j. What we need is a power saving in
this upper bound in the case that jH2j is close to jH1j, that is, a bound of the form C� jH1j� ,
with � < 1, C� < 1 (both fixed).

In the prime modulus case, there are several ways to proceed. The first and second
methods are related to “elementary” proofs of the Riemann Hypothesis for curves. One
can use auxiliary polynomials as in Stepanov’s proof [137] of the Riemann Hypothesis
for curves to give the desired power saving with an explicit � (cf. [76] which deals with
x C y D 1 and jH1j D jH2j in (3.1)). The second method, giving the best upper bound,
namely 20 max¹.jH1j:jH2j/1=3; jH1j:jH2j

p
º, is due to Corvaja and Zannier [53]. It uses their

method for estimating the greatest common divisor of u � 1 and v � 1 in terms of the degrees
of u and v and their supports, as well as (hyper) Wronskians.

The third method is based on Szemerédi–Trotter theorem for modular hyperbolas
[11], whose proof uses crucially expansion and L2-flattening lemma in SL2.Z=pZ/ [16].

Theorem 8. Let ˆ W Fp ! Mat2.Fp/ be such that det ˆ does not vanish identically and
Imˆ \ PGL2.Fp/ is not contained in a set of the form F�

p � gH for some g 2 SL2.Fp/ and
H a proper subgroup of SL2.Fp/. Then the following holds:

Given " > 0; r > 1, there is ı > 0 such that if A � P 1.Fp/ and L � Fp satisfy

1 � jAj < p1�"; (3.2)

log jAj < r log jLj; (3.3)

then
j¹.x; y; t/ 2 A � A � LI y D �ˆ.t/.x/ºj < jAj

1�ı
jLj; (3.4)

where for g D
�

a b
c d

�
, �g.x/ D

axCb
cxCd

.

While producing poor exponents � , this method is robust and works in the gener-
ality that the superstrong approximation for SL2.Z=qZ/ has been established; in particular,
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the analogue of Theorem 8 for Z=pnZ, which follows from expansion in SL2.Z=pnZ/,
established13 in [16], plays crucial role in the proof of Theorem 4 in [26].

The above leads to a proof of part 1 of Theorem 1. To continue, one needs to deal
with t1 which is very small (here jH1j D t1 which divides p2 � 1).

To handle these, we lift to characteristic zero and examine the finite orbits of � in
X. NQ/. In fact, by the Chebotarev Density Theorem, a necessary condition for Conjecture 3
to hold is that there are no such orbits other than ¹0º. Again using the rotations in the conic
sections by planes, one finds that any such finite orbit must be among the solutions with tj ’s
roots of unity to

.t1 C t�1
1 /2

C .t2 C t�1
2 /2

C .t3 C t�1
3 /2

D .t1 C t�1
1 /.t2 C t�1

2 /.t3 C t�1
3 /: (3.5)

For this particular surface X , one can show using the inequality between the geometric and
arithmetic means, that (3.5) has no nontrivial solutions for complex numbers with jtj j D 1.
For the more general surfaces Xk , SA;B;C;D , and those in (1.8), there is a variety of solutions
with jtj j D 1. However, Lang’s Gm Conjecture which is established effectively (see [2,92])
yields that there are only finitely many solutions to these equations in roots of unity. This
allows for an explicit determination of the finite orbits of �Y in Y. NQ/ (as noted earlier for the
cubic surfaces SA;B;C;D , the long list of these orbits [96] correspond to the algebraic Painlevé
VI’s). This NQ analysis leads to part 2 of Theorem 1 and, combined with the discussion above,
it yields a proof of Conjecture 3, at least if p2 � 1 is not very smooth. To prove Theorem 2,
we need to show that there are very few primes for which the above arguments fail. This
is done by extending the arguments and results in [43] and [44] concerning points .x; y/ on
irreducible curves over Fp for which ord.x/ C ord.y/ is small (here ord.x/ is the order of x

in F�
p ).

The proof of Theorem 6 in the stronger form that all Markoff numbers are highly
composite, that is, for every � � 1, as T ! 1,X

m2M s ;m�T
m has at most

� distinct prime factors

1 D o
� X

m2M s

m�T

1
�
;

makes use of counting points on X�.Z/ of height at most T and, in particular, Mirzakhani’s
orbit equidistribution [111], as well as the transitivity properties of � on X�.q/ for q a product
of suitable primes p. The latter are provided by the results of Meiri and Puder [110]. For
p � 1.4/ for which the induced permutation action of � on X�.p/ is transitive, they show
that the resulting permutation group is essentially the full symmetric or alternating group on
X�.p/. Applying Goursat’s (disjointness) Lemma leads to the �-action on X�.p1p2 � � � pk/

being transitive for any such primes p1 < p2 < � � � < pk .

13 The proof of this expansion result, in turn, builds crucially on Bourgain’s sum-product the-
orem in Z=pnZ in [10], which is intimately realted to his discretized sum-product theorem
[9]; the origins, nature and impact of the latter are discussed in [67].
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Figure 3

Level set � D �2:1.

Figure 4

Level set � D �1:9.

4. Real dynamics on surfaces of Markoff type

4.1. In this section we discuss the work of Goldman [73] pertaining to modular
group action on real SL.2/-characters of a one-holed torus. The fundamental group � of
the one-holed torus is the free group of rank two. The mapping class group of the 1-holed
torus is isomorphic to the outer automorphism group Out.�/ Š GL.2; Z/ of � and acts
on the moduli space of equivalence classes of SL.2; C/-representations of � ; this moduli
space identifies naturally with affine 3-space C3, using the traces of two generators of � and
of their product as coordinates. In these coordinates, the trace of the commutator of the two
generators (representing the boundary curve of the torus) is given by �.x;y; z/ D x2 C y2 C

z2 � xyz � 2, which is preserved under the action of Out.�/, and the action of Out.�/ on
C3 is commensurable with the action of the group � of polynomial automorphisms of C3

which preserve �. Figures 3–8 show level sets of �.
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Figure 5

Level set � D 1:9.

Figure 6

Level set � D 2:1.

In [73] Goldman studied the dynamics of the �-action on the set of real points of this
moduli space, and more precisely on the level sets ��1.t/ \ R3, for t 2 R. The action of �

preserves a Poisson structure defining a �-invariant area form on each level set. It is shown
that for t < 2 the �-action is properly discontinuous on the four contractible components
of each level set and ergodic on the compact component (which is empty if t < �2); the
contractible components correspond to Teichmüller spaces of complete hyperbolic structures
on a one-holed torus if t � �2, and of a torus with a single cone point singularity if �2 < t <

2. For t D 2, the level set consists of characters of reducible representations and comprises
two ergodic components, for 2 < t � 18 the action of � on a level set is ergodic, and for t > 18

the moduli space contains characters of discrete representations uniformizing a three-holed
sphere and the action is ergodic on the complement.

4.2. The main objective of [38] is the dynamical description of elements of the
mapping class group of the four-punctured sphere acting on two-dimensional slices of its
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Figure 7

Level set � D 2:1.

Figure 8

Level set � D 4.

character variety. It also contains three striking applications of this analysis to the dynam-
ics of the mapping class group on the character variety, to the spectrum of certain discrete
Schrödinger equations, and to Painlevé sixth equation. Cantat considers the space of rep-
resentations of the free group given by the presentation F3 D h˛; ˇ; ; ıj˛ˇı D 1i into
SL.2; C/ modulo conjugacy. By fixing the trace of the images of the four generators, one
obtains a space that is naturally parameterized by a cubic surface SA;B;C;D � C3 given by
x2 C y2 C z2 C xyz D Ax C By C C z C D for some parameters A; B; C; D 2 C. This
surface admits three natural involutions sx ; sy ; sz which fix two out of the three coordinates
and transform the last to the other root of the quadratic. These involutions generate a group
� of affine automorphisms. Automorphisms of F3 act by composition on the space of rep-
resentations by preserving the trace, and the group of outer automorphisms of F3 acts on
SA;B;C;D in such a way that its image contains � as a finite index subgroup.

An element f 2 � is called hyperbolic if it corresponds to a pseudo-Anosov auto-
morphism in the mapping class group, or, equivalently, if it is not conjugated to the product of
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Figure 9

S.�0:2;�0:2;�0:2;4:39/.

Figure 10

Projection of the stable manifold.

Figure 11

S.0;0;0;3/.
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Figure 12

Projection of the intersection of the stable manifold with the upper part of the surface.

Figure 13

S.0;0;0;4:1/.

Figure 14

Projection of the intersection of the stable manifold with the upper part of the surface.
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one or two involutions as above. Take f 2 � of hyperbolic type, and compactify SA;B;C;D

by taking its closure in P 3. The divisor at infinity is a cycle of three rational curves. By
conjugating f in a suitable way, one can make it algebraically stable in the sense of For-
naess and Sibony [61], so that it contracts all curves at infinity to a single superattracting
fixed point. One can then prove that at that point the map is locally conjugated to a mono-
mial map whose spectral radius �.f / is greater than 1. This enables one to define the
Green functions G˙f D limn �.f /�n logC

jf ˙nj, and show that they are plurisubharmonic,
continuous, and possess natural invariance properties. It follows that the positive measure
�f D dd cGCf ^ dd cG�f is well defined and f -invariant. Moreover, �f turns out to
be mixing and the unique measure of maximal entropy equal to log �.f /. All these prop-
erties are reminiscent of the dynamics of Hénon mappings in the complex plane, and are
proved analogously. Next, assume all coefficients A; B; C; D are real, and suppose the real
part SA;B;C;D.R/ is connected (in which case it is homeomorphic to the sphere minus four
points). The main theorem of the paper states that the support of the measure �f is then
included in SA;B;C;D.R/ and that the induced map on SA;B;C;D.R/ is uniformly hyperbolic
on its nonwandering set. The proof of this striking theorem uses deep results by Bedford
and Smillie [6] on the characterization of nonhyperbolic real Hénon maps having the same
entropy as their complexification and relies on a delicate geometrical analysis of the possi-
bilities for the intersection of stable and unstable manifolds in SA;B;C;D.R/.

5. An asymptotic formula for integer points on

Markoff–Hurwitz varieties

For integer parameters n � 3, a � 1, and k 2 Z, consider the Diophantine equation

x2
1 C x2

2 C � � � C x2
n D ax1x2 � � � xn C k: (5.1)

We call this the generalized14 Markoff–Hurwitz equation. In this section we count solutions
to (5.1) in integers, which we call Markoff–Hurwitz tuples. More precisely, let V be the affine
subvariety of Cn cut out by (5.1). In a joint work with Magee and Ronan [68], we investi-
gated the asymptotic size of the set V.Z/ \ B.R/ where B.R/ is the ball of radius R in the
`1-norm on Rn � Cn. Perhaps somewhat surprisingly, the asymptotic growth for n � 4

is not of the order .log R/n�1, as was first noticed by Baragar [4], who subsequently in [5]

proved that there is a number ˇ D ˇ.n/ such that when k D 0, if V.Z/ � ¹.0; 0; : : : ; 0/º is
nonempty then

jV.Z/ \ B.R/j D .log R/ˇCo.1/ (5.2)

as R ! 1.

14 Hurwitz [83] considered the case k D 0.

1819 Arithmetic and dynamics on varieties of Markoff type



In [5] the following bounds for the exponents ˇ.n/ were also obtained:

ˇ.3/ D 2;

ˇ.4/ 2 .2:430; 2:477/; (5.3)

ˇ.5/ 2 .2:730; 2:798/;

ˇ.6/ 2 .2:963; 3:048/;

and, in general,
log.n � 1/

log 2
< ˇ.n/ <

log.n � 1/

log 2
C o.n�0:58/:

The following problems were posed by Silverman in 1995 [136] (in the setting of
k D 0):

Problem 1. Is there is a true asymptotic formula for jV.Z/ \ B.R/j with main term pro-
portional to log.R/ˇ ?

Problem 2. Is ˇ.n/ irrational?

In [68] a complete answer to Problem 1 was obtained by extending Baragar’s expo-
nential rate of growth estimate to a true asymptotic formula.15

When k > 0, there are certain exceptional families of solutions to (5.1) that have a
different quality of growth and, for fixed k; a; n, we write E for the set of exceptional tuples.
We obtain the following theorem for the asymptotic number of Markoff–Hurwitz tuples:

Theorem 9. For each .n; a; k/ with V.Z/ � E infinite, there is a positive constant c D

c.n; a; k/ such that

j.V .Z/ � E/ \ B.R/j D c.log R/ˇ
C o..log R/ˇ /:

Here ˇ is the same constant as in (5.2).

After renormalizing (5.1), which allows us to set a D 1, and rearranging entries,
Markoff–Hurwitz transformations induce the moves

�j .z1; : : : ; zn/ D

 
z1; : : : ; bzj ; : : : ; zn;

 Y
i¤j

zi

!
� zj

!
; 1 � j � n � 1; (5.4)

on ordered tuples of real numbers. Above,b� denotes omission. If sufficiently many of the zi

are large, the move �j can be approximated by

z 7! .z1; : : : ; bzj ; : : : ; zn;
Y
i¤j

zi /

15 The techniques in [5] “were inspired in part by Boyd’s work on the Apollonian packing
problem [29–31]”. Boyd’s result was extended to a true asymptotic formula in the work of
Kontorovich and Oh [86].
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to high accuracy relative to the largest entries of z. When the zi are positive, at the level of
logarithms this corresponds to

.log z1; log z2; : : : ; log zn/ 7! .log z1; : : : ; 1log zj ; : : : ; log zn;
X
i¤j

log zi /:

Thus one is naturally led to study the linear semigroup generated by linear maps

j .y1; y2; : : : ; yn/ D .y1; : : : ; byj ; : : : ; yn;
X
i¤j

yi / (5.5)

on ordered n-tuples .y1; : : : ; yn/.
Let

� D h1; : : : ; n�1iC;

where we have written a “C” to indicate we are generating a semigroup, not a group.
An important idea in [68] that explains why we are able to make progress on the

counting problem is that we replace the generators of � with the countably infinite generating
set T� D ¹A

n�1j W A 2 Z�0; 1 � j � n � 2º and then consider the semigroup � 0 D hT�iC.
Both � and � 0 preserve the nonnegative ordered hyperplane

H �
®
.y1; : : : ; yn/ 2 Rn

�0 W y1 � y2 � � � � � yn;

n�1X
j D1

yj D yn

¯
� Rn

�0I (5.6)

any element of � maps ordered tuples in Rn
�0 into H . Therefore the study of orbits of � and

� 0 on ordered tuples boils down to the study of orbits in H . We can use the basis

ej D .0; : : : ; 0; 1„ƒ‚…
j

; 0; : : : ; 0; 1/

for the subspace spanned by H . This basis clarifies the action of � 0.
When n D 3, the linear map � W H ! H defined by

�.a; b; a C b/ D order.b � a; a; b/; (5.7)

where order puts a tuple in ascending order from left to right, is such that for j D 1; 2 we
have �j :y D y for all y 2 H . Repeatedly applying the map � to a triple .a; b; a C b/ with
a � b 2 Z performs the Euclidean algorithm on a; b. However, one application of � corre-
sponds in general to less than one step of the algorithm. Replacing � with � 0 corresponds to
speeding this up so one whole step of the Euclidean algorithm corresponds to one semigroup
generator. As for counting, the orbit of .0; 1; 1/ under � is precisely those .a; b; a C b/ with
.a; b/ D 1 and thus can be counted by elementary methods.

When n D 3, the semigroup � 0 is generated by

gA WD A
2 1 D

 
0 1

1 A C 1

!
with respect to the basis ¹e1; e2º. These generators are classically connected with continued
fractions by the formulae 

0 1

1 A1

! 
0 1

1 A2

!
: : :

 
0 1

1 Ak

!
D

 
? b

? d

!
;

b

d
D

1

A1 C
1

A2C
::: 1

Ak

:
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Figure 15

When n D 4, the semigroup elements map � D H=RC into a strictly smaller subset. After iteration, this leads to
more and more empty space (see also Figure 16). This does not occur when n D 3, as one can also see from the
picture: the action of the group elements 2 and 3 on the vertical coordinate axis is a copy of the n D 3 dynamics.

When n D 4, the semigroup � acts in the basis given by the ei as

1 D

0B@ 0 1 0

0 0 1

1 1 1

1CA ; 2 D

0B@ 1 0 0

0 0 1

1 1 1

1CA ; 3 D

0B@ 1 0 0

0 1 0

1 1 1

1CA :

This semigroup appears naturally in different areas of mathematics. In most situations that
this semigroup appears, as is the case in [68], the dynamics of the projective linear action of
� on R3

C=RC becomes relevant. Up to the minor modification of possibly multiplying the
generators on the left or right by permutation matrices, the iterated function system given by
the projective linear action of � on R3

C=RC has a fractal attracting set that is known as the
Rauzy gasket [95].

So the semigroups � and � 0 are natural extensions of the Euclidean algorithm and
continued fractions semigroup to higher dimensions. Writing � D H=RC, we can view �

as a subset of Rn�2. The key distinction that appears when n � 4 is that

� ¤

n�1[
j D1

j .�/

and so the induced dynamics on H=RC has “holes” as we illustrate in Figure 15.
Structure of the proof and the difficulties that arise. Here we highlight some of the

main difficulties that must be overcome during the proof of Theorem 9. It is illuminating
to recall the methods used by Lalley16 in [90] where the action of a Schottky subgroup G

16 See Mark Policott’s ICM report [119] for an overview of recent developments pertaining to
dynamical zeta functions and thermodynamic formalism.
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of SL2.R/ on the hyperbolic upper half-plane H is considered. Lalley obtains that, for any
x 2 H, the number N .x; r/ of elements  of G such that

dH.i; x/ � dH.i; x/ � r;

where dH is hyperbolic distance, satisfies N .x; r/ � Ceır , where ı D ı.G/ is the Hausdorff
dimension of the limit set of G, and C D C.G;x/ > 0. Lalley’s proof incorporates at various
stages the following arguments:

Shell argument. By repeated application of a “renewal equation,” the quantity N .x; r/ is
related to a sum of N .y; r 0/, where the sum is over y on a shell of radius � cr in
a Cayley tree of G, and r 0 is a translate of r that corrects for the passage between x

and y. The purpose of this shell argument is that now, the points y lie close to @H.

Passage to the boundary. Each of the resulting N .y; r 0/ is compared to an analogous quan-
tity N �.y�; r 0/ where y� is a point in @H close to y. Because each y is close to
@H, the errors incurred are acceptable.

Transfer operator techniques. Asymptotic formulas for N �.y�; r 0/ are obtained using the
renewal method and spectral estimates for transfer operators. This gives asymptotic
formulas for N .y; r 0/. The main terms of the asymptotic formulas satisfy recursive
relationships between different y.

Recombination. One finally has to recombine all the asymptotic formulas obtained for
N .y; r 0/ to obtain an asymptotic formula for N .x; r/. This is done using the recur-
sive formulas obtained in the previous step.

Trying to follow the method outlined above for this orbital counting problem, we first
need a suitable replacement for @H. Our idea is to use the projectivization of the hyperplane
H ; we call this set �. We compare points in the orbit of ƒ (generated by �j in (5.4) to
points in � by taking logarithms of all coordinates and then projectivizing. This process
does not necessarily lead to a point in �; there is an important parameter ˛.z/ D

Qn�2
j D1 zj

that appears throughout the paper and measures how good the fit is. If ˛.z/ is large, then one
can, in analogy with Lalley’s setting, think of z as being “close to the boundary.”

For Lalley, the word length of  is roughly proportional to the quantity dH.i; x/ �

dH.i; x/ with respect to which he counts. This implies, during the shell argument, that all
the elements of the shell are roughly the same distance from @H. However, for us, there are
arbitrarily long words in the generators of ƒ for which ˛.z/ is small. We solve this problem
using “acceleration,” by replacing ƒ by ƒ0, and instead aim to follow Lalley’s argument for
orbits of ƒ0. This has the immediate benefit that we can guarantee that elements z of shells
of radius L, with respect to ƒ0, have large ˛.z/, if we make L appropriately large.

However, the acceleration also has some costs to be paid. The first issue arising
is that now ƒ0 has countably many generators, so shells for word length on ƒ0 are not
finite. Instead of using shells, we use intersections of shells with the elements of the ƒ0-orbit
whose coordinates are not too large. The second issue is that the original ƒ-orbit breaks up
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Figure 16

In the same setting (n D 4) of Figure 15, we show in black the images of � under the action of all words of length
10 in the generators ¹1; 2; 3º.

into countably many ƒ0-orbits. So we not only have to perform the recombination argument
for ƒ0, but then have to perform an extra summation over the countably many ƒ0-orbits.

After setting up our shell argument appropriately, we must perform the passage to
the boundary (i.e., �). To this end, we compare orbits of ƒ0 to orbits of � 0, where � 0 is the
linear semigroup. To get this to work, we must exploit the following “shadowing” feature of
the map log that takes logarithms of all entries of a vector. It says (roughly) that if log.z/ is
within � of y 2 H , with � on the scale of ˛.z/�2, then for all � 2 ƒ0, log.�.z// is within �

of .log.z//, where  2 � 0 is matched with � in a natural way.
The completion of the proof relies on spectral estimates for transfer operators asso-

ciated to the projective linear action of � 0 on �. There are three key issues arising here.
First, to obtain the spectral estimates we need, we must establish that the action of � 0 on
� is uniformly contracting; it is important to note that this argument would not work if the
acceleration had not been performed previously. Secondly, we need to establish that the rel-
evant “log-Jacobian” cocycle over the dynamical system is not cohomologous to a lattice
cocycle. Finally, but importantly, we must obtain spectral estimates for transfer operators
acting on C 1.�/ which is accomplished by adapting Liverani’s approach to spectral esti-
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mates from [97]. See section 4 of [68], and references therein, for the discussion of Gauss
map and Gauss measure [70,89] in this context.

The question of whether ˇ is irrational (Problem 2) remains a tantalizing open ques-
tion, and one may wonder whether it is even algebraic. Our methods do give some partial
insight into the nature of this mysterious number in terms of the action of � 0 on H=RC.

Theorem 10. The number ˇ is the unique parameter in .1; 1/ such that there exists a prob-
ability measure �ˇ on � D H=RC with the propertyZ

w2�

f .w/d�ˇ .w/ D

X
2T�

Z
w2�

f .:w/jJacw./j
ˇ

n�1 d�ˇ .w/

for all f 2 C 0.�/. We call �ˇ a conformal measure.

Theorem 10 can be viewed as a partial analog of the connection between the expo-
nent of growth of a finitely generated Fuchsian group and the Hausdorff dimension of its limit
set as a result of Patterson–Sullivan theory [117,138,139]. In our setting, the lack of any sym-
metric space means the parameter ˇ is not in any obvious way connected to the Hausdorff
dimension of the compact � 0-invariant subset of �.

The issue of the existence of a single integral solution for general a and k is very
subtle, even for n D 3, as discussed in the next section.

6. Hasse principle on surfaces of Markoff type

Little is known about the values at integers assumed by affine cubic forms17 F in
three variables. For k ¤ 0, set

Vk;F D ¹x D .x1; x2; x3/ W F.x/ D kº: (6.1)

The basic question is for which k is Vk;F .Z/ ¤ ;, or, more generally, infinite or Zariski
dense in Vk;F ?

A prime example is F D S , the sum of three cubes,

S.x1; x2; x3/ D x3
1 C x3

2 C x3
3 : (6.2)

There are obvious local congruence obstructions, namely that Vk;S .Z/ D ; if
k � 4; 5 .mod 9/, but beyond that, it is possible that the answers to all three questions
are yes for all the other k’s, which we call the admissible values (see [50, 113]). It is known
that strong approximation in its strongest form fails for Vk;S .Z/; the global obstruction
coming from an application of cubic reciprocity [41, 49, 75]). Moreover, the authors of [94]

and [7] show that V1;S .Z/ is Zariski dense in V1;S .
In [71] Ghosh and Sarnak investigate the Markoff form F D M ,

M.x/ D x2
1 C x2

2 C x2
3 � x1x2x3: (6.3)

17 By an affine form f in n variables we mean f 2 ZŒx1; : : : ; xn� whose leading homogeneous
term f0 is nondegenerate and such that f � k is (absolutely) irreducible for all constants k.
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Figure 17

Lattice points and fundamental set for k D 3685.

Figure 18

Closeup of fundamental set for k D 3685.

Except for the case of the Cayley cubic with k D 4, VkIM .Z/ decomposes into a finite number
hM .k/ of �-orbits. For example, if k D 0, then hM .k/ D 2 corresponds to the orbits of
.0; 0; 0/ and .3; 3; 3/. In order to study hM .k/ both theoretically and numerically, they give
an explicit reduction (descent) for the action of � on Vk;M .Z/. For this purpose, it is con-
venient to remove an explicit set of special admissible k’s, namely those for which there
is a point in Vk;M .Z/ with jxj j D 0; 1 or 2. These k’s take the form (i) k D u2 C v2,
(ii) 4.k � 1/ D u2 C 3v2, or (iii) k D 4 C u2. The number of these special k’s (referred to
as exceptional) with 0 � k � K is asymptotic to C 0 Kp

log K
. The remaining admissible k’s

are called generic (all negative admissible k’s are generic). For them Ghosh and Sarnak give
the following elegant reduced forms:
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Figure 19

Lattice points and fundamental set for k D �3691.

Figure 20

Closeup of fundamental set for k D �3691.

Proposition 11. (1) Let k � 5 be generic and consider the compact set

FC

k
D ¹u 2 R3

W 3 � u1 � u2 � u3 ; u2
1 C u2

2 C u2
3 C u1u2u3 D kº:

The points in FC

k
.Z/ D FC

k
\ Z3 are �-inequivalent, and any x 2 Vk;M .Z/

is �-equivalent to a unique point u0 D .�u1; u2; u3/ with u D .u1; u2; u3/ 2

FC

k
.Z/.

(2) Let k < 0 be admissible and consider the compact set

F�
k D ¹u 2 R3

W 3 � u1 � u2 � u3 �
1

2
u1u2 ; u2

1 C u2
2 C u2

3 � u1u2u3 D kº:

The points in F�
k

.Z/ D F�
k

\ Z3 are �-inequivalent, and any x 2 Vk;M .Z/ is
�-equivalent to a unique point u D .u1; u2; u3/ 2 F�

k
.Z/.

Some consequences of this are as follows: As k ! ˙1, we have

hM .k/ �" jkj
1
3 C":
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This follows from the fact that when considering the values taken by the corresponding indef-
inite quadratic form in the y and z variables, for each fixed x, the units are bounded in number
due to the restrictions imposed by the fundamental sets.

Let h˙
M .k/ D jF˙

k
.Z/j where ˙ D sgn.k/, this being defined for any k. Then for

generic k, h˙
M .k/ D hM .k/ while otherwise hM .k/ � h˙

M .k/. We haveX
k¤4

jkj�K

h˙
M .k/ � C ˙K.log K/2; (6.4)

where C ˙ > 0 and K ! 1.
So on average the numbers hM .k/ are small. The explicit fundamental domains

allow for the numerical computations; these indicate thatX
0<k�K

k admissible
hM .k/D0

1 � C0K� ; (6.5)

with C0 > 0 and � � 0:8875 : : : .
The main result in [71] concerns the values assumed by M and the Hasse failures

in (6.5):

Theorem 12. (i) There are infinitely many Hasse failures. More precisely, the
number of 0 < k � K and �K � k < 0 for which the Hasse principle fails is
at least

p
K.log K/� 1

4 for K large.

(ii) Fix t � 0. Then as K ! 1,

#
®
jkj � K W k admissible; hM .k/ D 0

¯
D o.K/:

Hasse failures are produced by an obstruction via quadratic reciprocity. They come
in two types: one via direct use of reciprocity and the second also incorporating the descent
group. Recently Colliot-Thélène, Wei, and Xu [48] and, independently, Loughran and
Mitankin [98] have shown that the obstruction of the first (but not the second type) can
be explained in terms of integral Brauer–Manin obstruction. For example, if k D 4 C 2�2,
with � having all of its prime factors congruent to ˙1 .mod 8/ and � congruent to
0; ˙3; ˙4 .mod 9/, then k is admissible but Vk;M .Z/ D ;.

Part .i i/ of the theorem is proved by comparing the number of points on Vk;M .Z/

in certain tentacled regions gotten by special plane sections, with the expected number of
solutions according to a product of local densities; the crucial point being that the variance
of this comparison goes to zero on averaging jkj � K. As detailed in [71], this moving plane
quadric method applies to more general cubic surfaces including those that do not carry
morphisms.
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