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Abstract

The Mordell Conjecture states that a smooth projective curve of genus at least 2 defined
over number field F admits only finitely many F -rational points. It was proved by Falt-
ings in the 1980s and again using a different strategy by Vojta. Despite there being two
different proofs of the Mordell Conjecture, many important questions regarding the set of
F -rational points remain open. This survey concerns recent developments towards upper
bounds on the number of rational points in connection with a question of Mazur.
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1. Introduction

Mordell’s Conjecture asserts the finiteness of the set of rational solutions®
.x; y/ 2 Q2

W P.x; y/ D 0
¯

for certain bivariate polynomials P 2 QŒX; Y �.
To make the statement and results precise, we will adopt the language of projective

algebraic curves. Indeed, for the study of the zero set, we may assume that P is irreducible,
even as a polynomial in CŒX; Y �. Moreover, its homogenization defines a projective curve
in the projective plane. The classical procedure of normalization allows us to resolve any
singularities. The result is an irreducible smooth projective curve defined overQ. Its complex
points define a compact Riemann surface of genus g 2 ¹0; 1; 2; : : :º.

Conversely, let us assumewe are presentedwith a smooth projective curveC defined
over Q that is irreducible as a curve taken over C. The genus g of C.C/ taken as a Riemann
surface has important consequences for arithmetic questions on C.Q/. Indeed, Mordell’s
Conjecture, proved by Faltings [25], states that #C.Q/ is finite if g � 2.

We begin by formulating the Mordell Conjecture in slightly higher generality. We
then discuss the history of results towards this conjecture. Finally, we give an overview of the
proof of a joint work by Ziyang Gao, Vesselin Dimitrov, and the author towards a question
of Mazur regarding upper bounds for the cardinality #C.Q/. The upper bound will depend
on the genus g and the Mordell–Weil rank of the Jacobian of C . For a special case of this
result that does not make reference to Jacobians, we refer to Section 6.

1.1. The Mordell Conjecture
We begin by recalling Faltings’s Theorem [25], a finiteness statement originally con-

jectured by Mordell [48]. By a curve we mean a geometrically irreducible projective variety
of dimension 1. Throughout, we let F denote a number field and F a fixed algebraic closure
of F .

Theorem 1.1 (Faltings [25]). Let C be a smooth curve of genus at least 2 defined over a
number field F . Then C.F / is finite.

If the genus of C is small, then one cannot expect finiteness. Indeed, the set C.F /

is nonempty after replacing F by a suitable finite extension. If C has genus 0, then C is
isomorphic to the projective line and thus C.F / is infinite. If C has genus 1, then C together
with a point in C.F / is an elliptic curve. In particular, we obtain an algebraic group. After
possibly extending F again, we may assume that C.F / contains a point of infinite order. So
C.F / is infinite.

To prove the Mordell Conjecture, Faltings first proved the Shafarevich Conjecture
for abelian varieties. At the time, the latter was known to imply the Mordell Conjecture
thanks to a construction of Kodaira–Parshin.

Later, Vojta [62] gave a different proof of the Mordell Conjecture that is rooted in
diophantine approximation. Bombieri [8] then simplified Vojta’s proof.Wewill recall Vojta’s
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approach for curves in Section 3. The technical heart is the Vojta inequality which we for-
mulate below as Theorem 3.1.

Faltings generalized Vojta’s proof of the Mordell Conjecture to cover subvarieties
of any dimension of an abelian variety. Indeed, Faltings [26, 27] and Hindry [36] proved the
Mordell–Lang Conjecture for subvarieties of abelian varieties. Let A be an abelian variety
defined over F and suppose � is a subgroup of A.F /. The division closure of � is the
subgroup ®

P 2 A.F / W there exists an integer n � 1 with nP 2 �
¯

of A.F /. For example, the division closure of the trivial subgroup � D ¹0º is the subgroup
Ators of all points of finite order of A.F /. The following theorem holds for all base fields of
characteristic 0.

Theorem 1.2 (Mordell–Lang conjecture, Faltings, Hindry). Let A be an abelian variety
defined over F and let � be the division closure of a finitely generated subgroup of A.F /. If
V is an irreducible closed subvariety of A, then the Zariski closure of V.F / \ � in V is a
finite union of translates of algebraic subgroups of A.

The special case when � D Ators is called the Manin–Mumford Conjecture and was
proved by Raynaud [53].

More recently, Lawrence and Venkatesh [41] gave yet another proof of the Mordell
Conjecture. It was inspired by Faltings’s original approach and the method of Chabauty–
Kim. We refer to the survey [6] on these developments.

In this survey we concentrate mainly on the case of curves and comment on possible
extensions to the higher dimensional case.

1.2. Some remarks on effectivity
Despite the variety of approaches to the Mordell Conjecture, no effective proof is

known. For example, if the curve C is presented explicitly as the vanishing locus of homo-
geneous polynomial equations with rational coefficients, say, then in full generality we know
no algorithm that produces the finite list of rational points ofC . The question of effectivity is
already open in genus 2, for example, for the family Y 2 D X5 C t parametrized by t . Prov-
ing an effective version of the Mordell Conjecture is among the most important outstanding
problems in diophantine geometry.

Although no general algorithm that determines the set of rational points is currently
known, it is sometimes possible to determine the set of rational points. For example, we refer
to the Chabauty–Colemanmethod [13,15]which provides a clean upper bound for the number
of rational points subject to a hypothesis on the Mordell–Weil rank of the Jacobian of C .
In several applications, this bound equals a lower bound for the number of rational points
coming from a list of known rational points. Moreover, aspects of Kim’s generalization of
the Chabauty method were used by Balakrishnan, Dogra, Müller, Tuitman, and Vonk [5] to
compute all rational points of the split Cartan modular curve of level 13 which appears in
relation to Serre’s uniformity question. A different approach motivated by work of Dem-
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janenko and the theory of unlikely intersections was developed in a program by Checcoli,
Veneziano, Viada [14]. Here too a condition on the rank of the curve’s Jacobian is required
for the method to apply. An remarkable aspect to this approach is that the authors obtain an
explicit upper bound for the height of a rational point.

1.3. The number of rational points: conjectures and results
GivenC and F as in Theorem 1.1, which invariants ofC need to appear in an upper

bound for #C.F /?

Example 1.3. (i) Consider the hyperelliptic curve C presented by

y2
D .x � 1/ � � � .x � 2022/:

Its genus equals .2022 � 2/=2 D 1010. Then C contains the rational points
.1; 0/; : : : ; .2022; 0/. Together with the two points at infinity, we obtain at least
2024 rational points. This example easily generalizes to higher genus. For any
g � 2 and square-free f 2 QŒX� of degree 2g C 2, the equation y2 D f .x/

determines a hyperelliptic curveC of genus g. If f splits into (pairwise distinct)
linear factors over Q, then #C.Q/ � 2g C 4. So any upper bound for #C.Q/

must depend on the genus.
This lower bound is far from the truth. Stoll discovered a genus 2 curve defined
overQwith 642 rational points in a family of such curves constructed by Elkies.
Mestre showed that for all g � 2 there is a smooth curve of genus g defined over
Q with at least 8g C 16 rational points.

(ii) Let us now fix the curve C and let the number field F vary. We take C as
the genus 2 hyperelliptic curve presented by y2 D x5 C 1. Consider an integer
n � 0 and the points ¹.m; ˙.m5 C 1/1=2/ W m 2 ¹0; : : : ; nºº. So C.F / has at
least 2n C 2 C 1 elements where F D Q..m5 C 1/1=2/m2¹1;:::;nº. Any upper
bound C.F /, even for C fixed, must depend on F .
Gabriel Dill pointed out that the number of F -points grows at least logarithmi-
cally in the degree ŒF W Q� in this case. Indeed, ŒF W Q� � 2n, so #C.F / � 2n �

2.logŒF W Q�/= log 2.
Let us consider the modular curve X0.37/ which has genus 2 and is defined
over Q. Let p be one of the infinitely many prime numbers for which the
Legendre symbol satisfies .�p=37/ D 1; so 37 splits in the quadratic field
K D Q.

p
�p/. Let F denote the Hilbert Class Field of K. There is an elliptic

curve E defined over F with complex multiplication by the ring of integers
of K. Moreover, E admits an isogeny of degree 37 to an elliptic curve defined
over F . Thus X0.37/ has an F -rational point. The Galois group Gal.F=K/

acts on the F -rational points of X0.37/. It is also known to act transitively on
the moduli of elliptic curves with the same endomorphism ring as E. Thus
#X0.37/.F / is no less than ŒF W K� which equals the class number of K by
Class Field Theory. So #X0.37/.F / � ŒF W K� D ŒF W Q�=2. By the Landau–
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Siegel Theorem, ŒF W Q� ! 1 as p ! 1. In particular, any upper bound for
#X0.37/.F / must grow at least linearly in ŒF W Q�.

The Uniformity Conjecture by Caporaso–Harris–Mazur [11] predicts that the genus
and base field of a curve are the only invariants required for a general upper bound.

Conjecture 1.4 (Caporaso–Harris–Mazur). Let g � 2 be an integer and F a number field.
There exists c.g; F / � 1 such that if C is a smooth curve of genus g defined over F , then
#C.F / � c.g; F /.

Caporaso, Harris, and Mazur showed that the Uniformity Conjecture follows from
theWeak Lang Conjecture which is an extension of the Mordell Conjecture to higher dimen-
sion. It states that if V is a smooth projective variety defined over F of positive dimension
and general type, then V.F / is not Zariski dense in V . Pacelli [50] showed that #C.F / is
bounded from above in function of g and ŒF W Q� under the Weak Lang Conjecture after
Abramovich [1] treated the case of quadratic and cubic extensions earlier. A refined version
of theWeak LangConjecture implies, again bywork of Caporaso–Harris–Mazur, that #C.F /

can be bounded from above in function of the genus, if we omit finitelymanyF -isomorphism
classes of C , see also [12] for a correction. Rémond [56] has evidence towards this stronger
version of the Uniformity Conjecture. Alpoge [2] showed that, on average, a smooth curve
of genus 2 defined over Q has a uniformly bounded number of rational points.

Mazur [46] posed the following question, which is a weaker version of the Unifor-
mity Conjecture. We let Jac.C / denote the Jacobian of a smooth curve C defined over a
field. Then Jac.C / is a principally polarized abelian variety whose dimension equals the
genus of C . If the base field is a number field F , then Jac.C /.F / is a finitely generated
abelian group by the Mordell–Weil Theorem.

Question 1.5 (Mazur [46, p. 223]). Let g � 2 and r be integers and let F be a number field.
There exists c.g; r; F / � 1 such that if C is a smooth curve of genus g defined over F such
that the rank of theMordell–Weil group satisfies rkJac.C /.F / � r , then #C.F / � c.g;r;F /.

Let us review some work on upper bounds for #C.F /. Parshin [59] showed how
to extract an upper bound for the number of rational points from Faltings’s theorem. In his
original paper, Vojta [62] gave a blueprint on how to bound from above the number of rational
points for a general C . This bound was refined by Bombieri [8] and de Diego [19]. However,
these works did not provide an answer to Mazur’s question.

To formulate de Diego’s results we need some additional notation. We also require
the Weil height on projective space and the Néron–Tate (or canonical) height, they are both
defined in Section 2. Let S be an irreducible, smooth, quasiprojective variety defined over
a number field F and presented with an immersion S � P n defined over F . De Diego’s
Theorem holds for a smooth family of curves parametrized by the base S . Indeed, let C ! S

be a smooth morphism such that each fiber is a smooth curve of genus g � 2. We writeCs for
the fiber of C ! S above s 2 S.F /. This is a smooth curve defined over F . Let Ks denote
the canonical class on Cs , we identify it with a divisor class modulo linear equivalence of
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degree 2g � 2. If P 2 Cs.F /, then .2g � 2/ŒP � � Ks is well defined as a divisor class of
degree 0. So it represents a point in Jac.Cs/. In this way we obtain a morphism

js W Cs ! Jac.Cs/ given by P 7!
�
.2g � 2/ŒP � � Ks

�
= � :

Let �s denote the theta divisor on Jac.Cs/ and Ohs D OhCs ;�s
the canonical height on Jac.Cs/

attached to this divisor.

Theorem 1.6 (de Diego [19]). There exists c.C / > 1 such that if F 0=F is a finite extension
and s 2 S.F 0/, then

#
®
P 2 Cs.F 0/ W Ohs

�
js.P /

�
� c.C /

�
1 C h.s/

�¯
º �

55

2
� 7rk Jac.C /.F 0/:

Roughly speaking, this theorem tells us that the number of points of Cs of suffi-
ciently large canonical height is bounded as in Mazur’s question. We will often call these
points large points. It is striking that the constant 7 is admissible for all genera; a fact that
already appeared in Bombieri’s work [8]. For smooth curves of genus 2 defined over Q with
a marked Weierstrass point, Alpoge [2] improved 7 to 1:872.

Observe that ®
P 2 Cs.F 0/ W Ohs

�
js.P /

�
< c.C /

�
1 C h.s/

�¯
(1.1)

is finite by the Northcott property for height functions which we will review in Section 2.
To obtain a positive answer to Mazur’s question we need, roughly speaking, to get a simi-
lar bound as in Theorem 1.6 for the cardinality of (1.1). There are quantitative versions of
Northcott’s Theorem. Estimating the cardinality (1.1) with these does, however, introduce a
dependence on h.s/.

Work of David–Philippon [17] and Rémond [54] further clarified the other
value c.C /. Indeed, David and Philippon proved a lower bound for the canonical height
that, when combined with Rémond’s explicit version of the Vojta inequality, yields the next
theorem. To state their result, we momentarily shift our focus from families of smooth curves
and their Jacobians to a curve immersed in an abelian variety.

Theorem 1.7 (Rémond [17, p. 643]). Let A be a g-dimensional principally polarized abelian
variety defined over F . Let � be the division closure of a finitely generated subgroup of A.F /

of rank r and let C � A be a curve that is not smooth of genus 1. Then C.F / \ � is finite of
cardinality at most �

234h0.A/ degC
�g20.rC1/

:

Here degC is the degree of C with respect to the principal polarization. Moreover,
h0.A/ is a height of the abelian variety A whose definition involves classical theta functions
and the degree ŒF W Q�. Roughly speaking, h0.A/ encodes a bound for the coefficients needed
to reconstruct the abelian variety A. Mazur’s question does not allow for a dependence on
h0.A/. The hypothesis that C is not smooth of genus 1 is natural and cannot be dropped in
general. It is equivalent to stating that C is not a translate of an algebraic subgroup of A.
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David and Philippon’s contribution to Theorem 1.7 was their lower bound for the
canonical height, see [17, Théorème 1.4]. Rémond [54]made Vojta’s approach (and an inequal-
ity of Mumford) completely explicit. David–Philippon and Rémond have a result for sub-
varieties of A of any dimension. In other words, they provide an explicit version of the
Mordell–Lang Conjecture.

David and Philippon’s approach to Mazur’s question and its higher-dimensional
counterparts is via a strong quantitative version of the Bogomolov Conjecture on points of
small height. A suitable version is Conjecture 1.5 [18] where the lower bound for the canon-
ical height grows linearly in the Faltings height. We refer to [18, Théorème 1.11] regarding the
connection to rational points and more generally the Mordell–Lang Conjecture.

David and Philippon were able to strengthen their height lower bound when A is
a power of an elliptic curve. This provided more evidence towards a positive answer for
Mazur’s question. Here is a version of their result for curves; their general result holds for
subvarieties of a power of an elliptic curve.

Theorem 1.8 (David and Philippon [18, Théorème 1.13]). Let E be an elliptic curve defined
over F and let g � 2 be an integer. Suppose � is the division closure of a finitely generated
subgroup of Eg.F / of rank r . If C � Eg is a curve that is not smooth of genus 1, then
#C.F / \ � � deg.C /7g18.1Cr/.

Thanks to a specialization argument, David and Philippon extended the above result
to include the case where F is an arbitrary field of characteristic 0. David, Nakamaye, and
Philippon [16] then proved the existence of a .g � 2/-dimensional family of curves of genus g

for which Mazur’s question has a positive answer.
We nowvery briefly turn to some cardinality estimates using the Chabauty–Coleman

method, which is based on p-adic analysis. It can produce finiteness of C.F / with a clean
cardinality estimate subject to a restriction on the rank of the Mordell–Weil group.

Theorem 1.9 (Coleman [15]). Suppose C is a smooth curve of genus g � 2 defined over Q

with rk Jac.C /.Q/ � g � 1. If p > 2g is a prime number where C has good reduction QC ,
then #C.Q/ � 2g � 2 C # QC .Fp/.

In combination with the Hasse–Weil bound # QC .Fp/ � p C 1 C 2g
p

p, the estimate
above yields a bound for #C.Q/ in terms of g and p alone. Observe that a dependence in
the arithmetic of C appears through the prime p. Stoll was able to remove this dependence
for hyperelliptic curves at the cost of a stronger restriction on the rank of the Mordell–Weil
group.

Theorem 1.10 (Stoll [58]). Let g � 2 and d � 1 be integers. There exists c.g; d/ > 0 with
the following property. Suppose C is a smooth hyperelliptic curve of genus g defined over
F with ŒF W Q� � d . If rk Jac.C /.Q/ � g � 3, then #C.F / � c.g; d/.

Later, Katz, Rabinoff, and Zureick-Brown dropped the hyperellipticity condition.
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Theorem 1.11 (Katz, Rabinoff, and Zureick-Brown [38]). Let g � 2 and d � 1 be integers.
There exists c.g;d/ > 0 with the following property. Suppose C is a smooth curve of genus g

defined over F with ŒF W Q� � d . If rk Jac.C /.Q/ � g � 3, then #C.F / � c.g; d/.

After this detour to the Chabauty–Coleman method, we return to Vojta’s method.
Vesselin Dimitrov, Ziyang Gao, and the author have recently proved a lower bound for the
canonical height that can be used as a replacement for the lower bounds by David and
Philippon [17, 18] in the context of Mordell’s Conjecture. We recall this height inequality
in Section 4.2 below. Indeed, it led to a positive answer to a strengthening of Mazur’s ques-
tion. The following result is new already in genus 2.

Theorem 1.12 (Dimitrov, Gao, and Habegger [24, Theorem 1.1]). Let g � 2 and d � 1 be
integers, there exist c0.g; d/ > 1 and c.g; d/ > 1 with the following property. Suppose C is
a smooth curve of genus g defined over a number field F such that ŒF W Q� � d . Then

#C.F / � c0.g; d/ � c.g; d/rk Jac.C /.F /:

Regarding the Caporaso–Harris–Mazur Uniformity Conjecture, we ask

Question 1.13. Can the cardinality #C.F / be bounded from above by a function that is
polynomial in ŒF W Q� and g?

No one currently knows an algorithm that computes the rank of the Mordell–Weil
group Jac.C /.F /. However, upper bounds for this rank follow, for example, from the Ooe–
Top Theorem [49]. We discuss this in more depth in Section 6.

Our results also cover points on C that lie in the division closure of a finitely gen-
erated subgroup. Let Q denote the algebraic closure of Q in C. The Jacobian Jac.C / of a
smooth curve C of genus g defined over Q corresponds to a Q-point of the coarse moduli
space Ag of g-dimensional principally polarized abelian varieties. We let ŒJac.C /� denote
the point of Ag.Q/ corresponding to Jac.C / with its canonical principal polarization.

For example, if g D 1 then Ag D A1 is the affine line. If E is an elliptic curve
defined over Q, then ŒE� is the j -invariant of E.

In general,Ag is a quasiprojective variety of dimension g.g C 1/=2 defined overQ.
We may fix an immersion � W Ag ,! P n into projective space. Then the absolute logarithmic
Weil height h, see Section 2 for a definition, pulls back to a function h ı � W Ag.Q/ ! Œ0;1/.

If C is a smooth curve of genus g � 1 defined over Q and if P0 2 C.Q/, then a
point P 2 C.Q/ defines a divisor ŒP � � ŒP0� of degree 0. One obtains a closed immersion

C ,! Jac.C / from P 7!
�
ŒP � � ŒP0�

�
= �

where� again denotes linear equivalence, induces a closed immersion.Wewill writeC � P0

for the image of C in Jac.C /.

Theorem 1.14 (Dimitrov, Gao, and Habegger [24, Theorem 1.2]). Let g � 2 be an integer.
There exist c.g; �/ > 1, c0.g; �/ > 0, and c00.g; �/ > 0 that depend on g and the immersion �

with the following property. Suppose C is a smooth curve of genus g defined over Q and let
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P0 2 C.Q/. Let � be the division closure of a finitely generated subgroup of Jac.C /.Q/ of
rank r . If

h
�
�
��
Jac.C /

���
� c00.g; �/ then #.C � P0/.Q/ \ � � c0.g; �/c.g; �/r :

In particular, we may take � D Jac.C /tors and r D 0. Thus the theorem yields a
uniform bound for the number of torsion points that lie onC � P0 if the height of �.ŒJac.C /�/

is sufficiently large.
Suppose that C is defined over a number field F . Then ŒJac.C /� is an F -rational

point of the moduli space Ag . If we impose also h.�.ŒJac.C /�// < c00.g; �/, then ŒJac.C /�

lies in a finite set by the Northcott property. Thus Jac.C / is in one of at most finitely many
Q-isomorphism classes and so is C by the Torelli Theorem.

Raynaud proved the following result which is the Manin–Mumford Conjecture for
curves.

Theorem 1.15 (Raynaud [52]). Let C be smooth curve defined over C of genus at least 2.
Then .C � P0/ \ Jac.C /tors is finite.

Theorem 1.14 gives evidence towards the Uniform Manin–Mumford Conjecture
which states that .C � P0/ \ Jac.C /tors is bounded from above in terms of the genus g

only for any smooth curve C of genus g � 2 defined over any field in characteristic 0.
Using a different approach involving equidistribution and motivated by dynamical

systems, DeMarco, Krieger, and Ye [20] had made substantial progress towards the Uniform
Manin–Mumford Conjecture. They proved it for smooth curves of genus 2 defined over C

that are double covers of an elliptic curve when the base point P0 is a Weierstrass point.
In a preprint, Kühne [39] complemented the method in [24] using ideas from equidis-

tribution to prove the Uniform Manin–Mumford Conjecture.

Theorem 1.16 (Kühne [39]). Let g � 2 be an integer. There exist c.g/ > 1 and c0.g/ > 1 that
depend on g with the following property. Suppose C is a smooth curve of genus g defined
over C and let P0 2 C.C/. Let � be the division closure of a finitely generated subgroup of
Jac.C /.C/ of rank r . Then #.C � P0/.C/ \ � � c0.g/c.g/r .

In contrast to Theorem 1.14, Kühne is able to handle curves C defined over Q for
which ŒJac.C /� has height less than c00.g; �/. Once uniformity is established for all curves
over Q, Kühne is able to pass to the base field C using a specialization argument laid out by
Dimitrov, Gao, and the author [22]which relies on a result ofMasser [43]. Kühne thus answers
an older question of Mazur, see the top of page 234 [45], and obtains the full Mordell–Lang
variant for curves.

DeMarco and Mavraki’s [21] work on a relative version of the Bogomolov conjec-
ture, see [72] and [22], motivated Kühne [39,40] to extend the reach of Arakelovian equidistri-
bution methods of Szpiro–Ullmo–Zhang [60] and Yuan [65] to families of abelian varieties
over a quasiprojective base. For algebraic curves, this settles the uniform Bogomolov and
the uniform Manin–Mumford conjectures.
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Yuan [66] recently gave another proof of Theorem 1.16. His method also runs via
a uniform Bogomolov theorem and thus contains aspects related to height lower bounds.
However, Yuan’s approach relies on arithmetic bigness, rather than on equidistribution. It is
independent of the approaches mentioned above and uses a new theory of adelic line bundles
over quasiprojective varieties developed by Yuan and Zhang [67] which generalizes Zhang’s
theory [70] in the projective case. They derive a height inequality for a polarized dynamical
system, see Theorem 1.3.2 and Section 6 [67], that extends our own bound. One aspect of
Yuan’s method is that it works for global fields in any characteristic.

We come to some questions regarding the base constant c.g/ in the estimates above.
In the context of Mordell’s Conjecture, Bombieri observed that the number of large points
is bounded by a multiple of 7rk Jac.C /.F /.

Question 1.17. Can the base 7 in the estimate for the number of large points as in Theo-
rem 1.6 be replaced by a function in g that tends to 1 for g ! 1?

Alpoge [2] used the Kabatiansky–Levenshtein estimates on spherical codes to
improve on the constant 7 in genus 2. It is quite possible that Alpoge’s approach will shed
light on this last question.

Concerning the constant c.g/ in Theorem 1.16, we pose the following two questions
which also cover the moderate, i.e., nonlarge, points. They were inspired by questions of
Helfgott.

Question 1.18. Can we choose the c.g/ in Theorem 1.16 such that there exists B � 1 with
c.g/ � B for all integers g � 2?

Question 1.19. Can we choose the c.g/ in Theorem 1.16 with limg!1 c.g/ D 1?

Recently, Gao, Ge, and Kühne [32] completed the proof of the Uniform Mordell–
Lang Conjecture for a subvariety V of a polarized abelian variety A of any dimension.
Uniformity here amounts to bounding the number of irreducible components of the Zariski
closure in Theorem 1.2 from above by c0.dimA;degV /c.dimA;degV /r . Their result holds
over all base fields in characteristic 0.

We refer to the comprehensive survey by Gao [31] that gives an overview of these
recent developments and how they are interlinked.

Here is a brief overview of this survey. In Section 2 we recall some fundamental
properties of two height functions: theWeil and Néron–Tate heights. They play a central role
in the proof of Theorem 1.12. Then in Section 3 we describe Vojta’s approach to the Mordell
Conjecture. Later we return to the two height functions and describe their interactions on a
family of abelian varieties. This is done in Section 4. Here we also describe the Betti map,
an important analytic tool. In Section 5 we sketch how all this fits together in the proof of
Theorem 1.12. In the final section we discuss an estimate for the number of rational points
on a hyperelliptic curve that does not make reference to Jacobians.
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2. Heights

Height functions are at the heart of Vojta’s proof of the Mordell Conjecture and
subsequent results such as Theorem 1.12. We will review two flavors of heights. The first one
is the absolute logarithmic Weil height which is defined on algebraic points of the projective
space. One can also use it to define a class of height functions on a projective variety equipped
with an invertible sheaf. The second height function is the canonical or Néron–Tate height
on an abelian variety, also equipped with an invertible sheaf. The latter is compatible with
the group structure on the abelian variety.

2.1. The absolute logarithmic Weil height
We review here briefly the main properties of the Weil height. For a thorough treat-

ment, we refer to [9, Chapters 1 and 2] or [37, Part B].
We begin by defining the height of a rational point on projective space P n.

Definition 2.1. Let P 2 P n.Q/. There exist projective coordinates .x0; : : : ; xn/ 2

ZnC1 n ¹0º of P D Œx0 W � � � W xn� with gcd.x0; : : : ; xn/ D 1. Then we set

h.P / D logmax
®
jx0j; : : : ; jxnj

¯
:

The vector .x0; : : : ; xn/ is uniquely determined up to a sign, and so h.P / is well
defined. For example, h.Œ2 W 4 W 6�/ D h.Œ1 W 2 W 3�/ D h.Œ1=3 W 2=3 W 1�/ D log 3.

The following theorem is a straightforward consequence of the definition of theWeil
height.

Theorem 2.2 (Northcott property). The set ¹P 2 P n.Q/ W h.P / � Bº is finite for all B .

Defining the height of an algebraic point in P n.Q/ requires some basic algebraic
number theory. Indeed, let K be a number field. We let MK denote the set of absolute values
j � j W K ! Œ0; 1/ that extend either the standard absolute value on Q or a p-adic absolute
value for some prime p. ThenMK is called the set of places ofK. For each v 2 MK , one sets
dv D ŒKv W Qw � where Kv is a completion of K with respect to v and Qw is the completion
of Q in Kv with respect to w D vjQ.

Definition 2.3. Let P 2 P n.Q/ and let K be a number field such that P D Œx0 W � � � W xn�

where .x0; : : : ; xn/ 2 KnC1 n ¹0º. The absolute logarithmic Weil height, or just Weil height,
is

h.P / D
1

ŒK W Q�

X
v2MK

dv logmax
®
jx0jv; : : : ; jxnjv

¯
: (2.1)

The normalization constants dv are chosen such that the product formulaY
v2MK

jxj
dv
v D 1

holds for all x 2 K n ¹0º. This guarantees that the right-hand side of (2.1) is independent of
the choice of projective coordinates of P . In particular, we may assume that some projective
coordinate ofP equals 1. Thus h.P / � 0 for allP 2 P n.Q/. Moreover, h.P / is independent
of the field K containing the projective coordinates.
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For applications to diophantine geometry, it is useful to have a height function
defined on algebraic points of an irreducible projective variety V defined overQ. But without
additional data there is no reasonable way to define a height on V.Q/.

However, if V is a subvariety of the projective space P n, then we may restrict the
Weil height h W P n.Q/ ! R to a function V.Q/ ! R. Slightly more generally, if V ! P n

is an immersion, then we may pull back the Weil height to V.Q/.
Recall that an immersion V ! P n is induced by a tuple of .n C 1/ global sections

of a very ample invertible sheaf on V . Conversely, given a very ample invertible sheaf L

on V , we can fix a basis of the vector space of global sections of L and obtain an immersion
�L W V ! P n. So we obtain a function h ı �L W V.Q/ ! Œ0; 1/. There is a wrinkle here,
this function depends not only on .V; L/ but also on the basis of the vector space of global
sections. A different basis will lead to a function V.Q/ ! Œ0; 1/ that differs from h ı �L

by a bounded function on V.Q/. We define hV;L to be the equivalence class of functions
V.Q/ ! R modulo bounded functions that contains h ı �L.

If L is an ample invertible sheaf on V , then there exists an integer n � 1 such that
L˝n is very ample. We then define hV;L D

1
n

hV;L˝n ; this is again only defined up to a
bounded function on V.Q/. The equivalence class does not depend on the choice of n.

Finally, an arbitrary invertible sheaf L in the Picard group Pic.V / of V is of the
form F ˝ M˝.�1/ with F and M ample on V . The difference hV;F � hV;M is well defined
up to a bounded function on V.Q/. It does not depend on the pair F ; M with difference L,
and we denote it by hV;L. It is called the Weil height attached to .V; L/.

Theorem 2.4. Let us keep the notation above. In particular, V is an irreducible projective
variety defined over Q.

(i) The association L 7! hV;L is a group homomorphism with target the group of
real-valued maps V.Q/ ! R modulo bounded functions.

(ii) For V equal to projective space and L the hyperplane bundle O.1/, the Weil
height from Definition 2.3 represents hPn;O.1/.

(iii) Suppose W is a further irreducible projective variety defined over Q and f W

W ! V is a morphism. For all L 2 Pic.V / we have hV;L ı f D hW;f �L.
As usual, this equality is understood as an equality of equivalence classes of
functions.

(iv) Suppose L 2 Pic.V / admits a nonzero global section s. Then hV;L is bounded
from below on the complement of the vanishing locus of s. In particular, hV;L

is bounded from below on a Zariski open and dense subset of V .

Suppose that V is defined over a number field F � Q and L 2 Pic.V / is ample.
Then the Northcott property holds for points of bounded degree, i.e.,®

P 2 V.F / W h0
V;L.P / � B and

�
F.P / W F

�
� D

¯
is finite where h0

V;L
denotes any representative of hV;L.
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Let V be an irreducible projective variety defined over Q. We conclude this sec-
tion by discussing a powerful tool to translate geometric information, here on intersection
numbers, into an inequality of heights. The basic question is the following. Given invertible
sheaves F and M on V , under what conditions can one bound hV;M from above in terms
of hV;F ?

(i) We first consider the special case V D P n. As Pic.P n/ is isomorphic to Z,
any Weil height is some integral multiple of hPn;O.1/. So hV;F and hV;M are
Z-linearly dependent.

(ii) Let us again suppose that V is general and that F is ample. Then there exists an
integer k � 1 such that F ˝k ˝ M˝.�1/ is ample. So for some positive integer
l � 1 the power F ˝kl ˝ M˝.�l/ is very ample. In particular, it admits a global
section that does not vanish at a prescribed point of V.Q/. Theorem 2.4, parts
(i) and (iv), imply

klhV;F � lhV;M D hV;F ˝kl ˝M˝.�l/ � 0I

this must be parsed as an inequality between functions on V.Q/ defined up to
addition of a bounded function. We conclude

hV;M � khV;F : (2.2)

(iii) For some applications, such as Theorem 1.12, the ampleness hypothesis on F

in (i) is not flexible enough. Moreover, we would like some way to estimate the
factor k in (2.2) from above. We now describe a criterion of Siu that provides a
solution to these two issues.
An invertible sheaf L 2 Pic.V / is called big if

lim inf
k!1

dimH 0.V; L˝k/

kdimV
> 0I

here H 0.V; L/ denotes the vector space of global sections of L.
If L is a big invertible sheaf, then L˝k has a nonzero global section for some
k � 1. Then using (i) and (iv) of Theorem 2.4 we see that hV;L D

1
k

hV;L˝k is
bounded from below on a Zariski open and dense subset of V .
For example, if L D F ˝ M˝.�1/ is big, then, again by Theorem 2.4(i), we
find hV;F � hV;M on a Zariski open and dense subset of V .
We now come Siu’s Criterion; it ensures that F ˝ M˝.�1/ is big. An invertible
sheaf L 2 Pic.V / is called nef, or numerically effective, if .L � ŒC �/ � 0 for all
irreducible curves C � V .
Siu’s Criterion requires thatF andM are both nef and that the intersection num-
bers on V satisfy .F � dimV / > .dimV /.F �.dimV �1/ � M/. With these hypotheses
F ˝ M˝.�1/ is big; see [42, Theorem 2.2.15].
Say F and M are nef and .F � dimV / > 0. Let k and l be positive integers with

.dimV /
.F �.dimV �1/ � M/

.F � dimV /
<

k

l
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then F ˝k ˝ M˝.�l/ is big. So

hV;MjU �
k

l
hV;F jU

holds on some Zariski open and dense U � V .
This allows us to compare the heights hV;M and hV;F if we have information
on the intersection numbers, at least on a rather large subset of V.Q/.

Yuan [65] proved an arithmetic version of this criterion in his work on equidistribu-
tion. The author [34] used Siu’s Criterion to study unlikely intersections in abelian varieties.

2.2. The canonical height on an abelian variety
Let F � Q be a number field and A an abelian variety defined over F . If L is

an invertible sheaf on A, then we have the Weil height hA;L from Section 2.1. Recall that
hA;L is only defined up to addition of a bounded function on A.Q/. For abelian varieties,
there is a canonical choice of function in the equivalence class hA;L called the canonical or
Néron–Tate height. A general reference for this section is [9, Chapter 9].

For an integer n 2 Z, let Œn� denote the multiplication-by-n endomorphism of A.
Then L is called even or symmetric if there is an isomorphism Œ�1��L Š L. It is called
odd or antisymmetric if Œ�1��L Š L˝.�1/. If L is any ample invertible sheaf on A, then
L ˝ Œ�1��L is ample and even. So any abelian variety admits an even, ample invert-
ible sheaf.

Suppose that L is even. Then Œ2��L Š L˝4 is a consequence of the Theorem of the
Cube. So Theorem 2.4 implies hA;L ı Œ2� D 4hA;L as classes and by iteration hA;L ı Œ2k � D

4khA;L for all k � 1. We fix a representative h0
A;L

of hA;L and find h0
A;L

ı Œ2k � D

4kh0
A;L

C Ok.1/ on A.Q/. Tate’s Limit Argument is used to show convergence in the fol-
lowing definition.

Definition 2.6. Let L be an even invertible sheaf on A and let P 2 A.Q/. Then the limit

OhA;L.P / D lim
k!1

h0
A;L

.P /

4k
(2.3)

exists and is independent of the choice of representative h0
A;L

of hA;L. The real-valued func-
tion P 7! OhA;L.P / is called the canonical or Néron–Tate height (on A attached to L).

If L is even, then (2.3) immediately implies OhA;L.Œ2�.P // D 4 OhA;L.P / for all
P 2 A.Q/. If P has finite order, then Œ2m�.P / D Œ2n�.P / for distinct integers 0 � m < n

by the Pigeonhole Principle. Thus OhA;L.P / D 0.
There is nothing special about Œ2�. Indeed, one can replace Œ2� by Œm� in (2.3) for any

integer m � 2; one then needs to replace 4k in the denominator by m2k .
What happens if L is an odd invertible sheaf? In this case, Œ2��L Š L˝2. Then a

similar limit (2.3) exists, but now we need to divide by 2k .
The set of odd invertible sheaves is a divisible subgroup of Pic.A/. From this, one

can show that, after possibly extending the base field F , any invertible sheaf L on A decom-

1851 The number of rational points on a curve of genus at least two



poses as LC ˝ L� with LC even and L� odd. One then defines OhA;L D OhA;LC
C OhA;L�

;
the decomposition of L is not quite unique, but this ambiguity does not affect OhA;L.

For our purposes, we often restrict to even invertible sheaves.
Let us collect the some important facts about the Néron–Tate height.

Theorem 2.7. Let us keep the notation above. In particular, A is an abelian variety defined
over a number field F � Q.

(i) Then association L 7! OhA;L is a group homomorphism from Pic.V / to the addi-
tive group of real-valued maps A.Q/ ! R.

Suppose L is an invertible sheaf on A.

(ii) The Néron–Tate height OhA;L represents the Weil height hA;L.

(iii) If L is even, then the parallelogram equality

OhA;L.P C Q/ C OhA;L.P � Q/ D 2 OhA;L.P / C 2 OhA;L.Q/

holds for all P; Q 2 A.Q/.

(iv) If L is even and ample, then OhA;L takes nonnegative values and vanishes pre-
cisely on Ators.

(v) If L is even and ample, then OhA;L induces a well-defined map A.Q/ ˝ R !

Œ0; 1/. It is the square of a norm k � k on the R-vector space A.Q/ ˝ R and
satisfies the parallelogram equality.

The norm k � k allows us to do geometry in the R-vector space A.Q/ ˝ R (which
is infinite dimensional if dimA � 1). Indeed, for z; w 2 A.Q/ ˝ R, we define

hP; Qi D
1

2

�
kP C Qk

2
� kP k

2
� kQk

2
�
:

Then h�; �i is a positive definite, symmetric, bilinear form.
By abuse of notation, we also write kP k and hP; Qi for P; Q 2 A.Q/. In this

notation we have hP; P i D OhA;L.P /.
The Mordell–Weil Theorem implies that A.F / ˝ R is finite dimensional. We will

see that k � k is a suitable norm to do Euclidean geometry in A.F / ˝ R.

3. Vojta’s approach to the Mordell Conjecture

Recall that the Mordell Conjecture was proved first by Faltings. In this section we
briefly describe Vojta’s approach to theMordell Conjecture [62]. At the core is the deep Vojta
inequality which we state here for a curve in an abelian variety.

Let A be an abelian variety defined over a number field F � Q. Let L be an ample
and even invertible sheaf on A. We write k � k D Oh

1=2

A;L
for the norm on A.Q/ ˝ R defined in

Theorem 2.7.
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Theorem 3.1 (Vojta’s inequality). Let C � A be a curve that is defined over F and that is
not a translate of an algebraic subgroup of A. There are c1 > 1, c2 > 1, and c3 > 0 with the
following property. If P; Q 2 C.Q/ satisfy

hP; Qi �

�
1 �

1

c1

�
kP kkQk

and
kQk � c2kP k;

then kP k � c3.

We refer also to Rémond’s work [55] for a completely explicit version of Vojta’s
inequality.

The values c1; c2; c3 depend on the curve C . One remarkable aspect is that Vojta’s
inequality is a statement about pairs of Q-points of the curve C . So all three values c1; c2; c3

are “absolute,” i.e., we can take them as independent of the base field F of A and C . Both
c1 and c2 are of “geometric nature.” They depend only on the degree of C with respect
to L and other discrete data attached to A and C . In contrast, c3 is of “arithmetic nature.”
Roughly speaking, it depends on suitable heights of coefficients that define the curve C in
some projective embedding.

Let us now sketch a proof of Mordell’s Conjecture using the Vojta inequality and
the classical Mordell–Weil Theorem.

Suppose C has genus g � 2. Without loss of generality, C.F / 6D ;. So we fix a
base point P0 2 C.F /, then P 7! P � P0 induces an immersion C ! Jac.C /. So we may
assume that C is a curve inside the g-dimensionalA D Jac.C /. Note that C is not a translate
of an algebraic subgroup of its Jacobian since g � 2.

We observe that C.F / D C.Q/ \ Jac.C /.F /.
By theNorthcott property, stated belowTheorem 2.4, combinedwith Theorem 2.7(ii)

we find that the “ball” ®
P 2 C.F / W kP k

2
� B

¯
(3.1)

is finite for all B .
We split the set of points C.F / into two subsets:®

P 2 C.F / W kP k
2 > c3

¯
(large points),®

P 2 C.F / W kP k
2

� c3

¯
(moderate points).

By the finiteness statement around (3.1), it suffices to show that there are at most
finitely many large points.

For any z 2 Jac.C /.F / ˝ R, we define the truncated cone

T .z/ D
®
w 2 Jac.C /.F / ˝ R W hz; wi � .1 � 1=c1/kzkkwk and kwk

2 > c3

¯
� Jac.C /.F / ˝ R:

By the Mordell–Weil Theorem, Jac.C /.F / ˝ R is a finite-dimensional R-vector
space. So the unit sphere with respect to the norm k � k coming from the Néron–Tate height
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is compact. Therefore, ¹w 2 Jac.C /.F / ˝ R W kwk2 > c3º is covered by a finite union
T .z1/ [ � � � [ T .zN /. Using a sphere packing argument, one can arrange that N is bounded
from above by c0 � crk Jac.C /.F / where c0 > 0 and c > 1 depend only on c1. This observation
will be important for deriving uniform bounds for #C.F /.

Any large point inC.F / has image in some T .zj / from above. After possibly adjust-
ing N , one can arrange that each zj is the image of a point Pj 2 C.F / with kPj k2 > c3

for all j 2 ¹1; : : : ; N º. If Q 2 C.F / has image in T .zj /, then Vojta’s inequality implies
OhL.Q/1=2 D kQk � c2kPj k. But then Q 2 C.F / lies in a finite ball as in (3.1). So the
number of possible Q that come to lie in a single T .zj / is finite. Thus C.F / is finite.

The constants c1; c2, and c3 in Vojta’s inequality can be made effective in terms of
A and C . Yet, the proof as a whole is ineffective. Indeed, the height bound for Q depends
on the hypothetical point Pj . However, there is no guarantee that Pj exists and if it does not,
there is no known way to know for sure.

UsingMumford’s Gap Principle, one can show that the number of large pointsC.F /

that come to lie in a single T .zj / is bounded from above by c0 � crk Jac.C /.F /, after possibly
increasing the constants. Now we need to introduce dependency on c2. But the base c will
remain geometric in nature, it depends on the genus of g. But it does not depend on c3 or
other arithmetic properties of C that encode the heights of coefficients defining the said
curve. Finally, as observed by Bombieri, 7 is admissible for c for any genus. Indeed, he
showed that 4 is admissible for c1.

Recall that Vojta’s inequality with the same values of c1; c2; c3 applies to points in
C.F 0/ for all finite extensions F 0=F . The upshot is that the number of large points of C.F 0/

is bounded by
c0

� crk Jac.C /.F 0/

where c; c0 depend on C , but not on F 0.
The dichotomy between large and moderate points was already visible in Vojta’s

work. But its origin is older and already appears in modified form in work of Thue, Siegel,
Mahler, and Roth on diophantine approximation.

Rémond’s explicit Théorème 2.1 [54] gives a recipe how to bound the total number
of rational points using a bound for the number of moderate points.

With our eyes set onMazur’s question, we aim to obtain good bounds for the number
of moderate points. In the coming two sections we explain our general approach to the proof
of Theorem 1.12.

4. Comparing Weil and Néron–Tate heights

The interplay between the Weil and Néron–Tate heights on a family of abelian vari-
eties leads to powerful results including Silverman’s Specialization Theorem [57] and more
recent work by Masser and Zannier towards the relative Manin–Mumford Conjecture [44].
This interaction also plays a central role in the proof of Theorem 1.12 that resolved Mazur’s
question.
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Having worked with a fixed abelian variety in Sections 2.2 and 3, we now shift gears
and work in a family of abelian varieties.

Example 4.1. Let Y.2/ D P 1 n ¹0; 1; 1º. For � 2 Y.2/.C/, we have an elliptic curve
E� � P 2 determined by

y2z D x.x � z/.x � �z/

where the origin is Œ0 W 1 W 0�. The total space E is a surface presented with a closed immersion
E ,! P 2 � Y.2/. It is called the Legendre family of elliptic curves and is an abelian scheme
over Y.2/. So we can add two complex points of E if they are in the same fiber above Y.2/.
More precisely, there is an addition morphism E �S E ! E over S , as well as an inversion
morphism E ! E over S . Finally, the zero section of E is given by � 7! .Œ0 W 1 W 0�; �/.

Consider a geometrically irreducible smooth quasiprojective variety S defined
over a number field F � Q. Let � W A ! S be an abelian scheme over S . So each fiber
As D ��1.s/, where s 2 S.Q/, is an abelian variety. We have an addition morphism on the
fibered square A �S A ! A and an inversion morphism A ! A; both are relative over S .
Addition induces a multiplication-by-n morphism Œn� W A ! A over S for all n 2 Z.

For simplicity, we assume that A is presented with an immersion A ,! P n � S

over S , much as in Example 4.1 above. Let L be the restriction of the hyperplane bundle
O.1/ on P n � S D P n

S toA. We also assume thatL is even, that is Œ�1��L Š L. This allows
us to define a fiberwise Néron–Tate height on A.Q/ which we abbreviate by OhA.

Let s 2 S.Q/. ThenAs is an abelian variety inP n.We have two functions, OhAjAs.Q/

and hjAs.Q/; the latter is the restriction of the Weil height on P n. By Theorem 2.7(ii), their
difference is bounded in absolute value in function of s.

In the example of the Legendre family, the point Œ� W 0 W 1� 2 E� is of order 2 for
all �. So its Néron–Tate height vanishes, but its Weil height equals h.Œ� W 1�/ and is thus
unbounded as � varies.

We would like to understand the difference between Néron–Tate and Weil heights
on A as the base point s 2 S.Q/ varies. As suggested by the Legendre case, the key is the
Weil height on the base S . To keep things concrete, we will assume that S comes with an
immersion S ,! P m. We identify S with a Zariski locally closed subset of P m. So S need
not be projective, but its Zariski closure S in P m is. We write hS for hjS.Q/ W S.Q/ ! Œ0;1/

where h is the Weil height on P m.Q/. In the language of Section 2.1, hS represents the Weil
height attached to .S; O.1/jS /.

The difference between Weil and Néron–Tate heights on the total space A.Q/ was
clarified in work of Zimmer [73] in the elliptic setting andManin–Zarhin [69] and Silverman–
Tate [57] in the more general setting. In our case the latter result amounts to

OhAjAs.Q/ D hjAs.Q/ C O
�
max

®
1; hS .s/

¯�
(4.1)

for all s 2 S.Q/.
We introduce a final player, a geometrically-irreducible subvariety V of A defined

over F .
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Theorem 4.2 (Silverman [57]). Suppose S and V � A are curves such that V dominates S .
Then

lim
P 2V.Q/

h.�.P //!1

OhA.P /

h.�.P //
(4.2)

exists. Suppose, in addition, that the geometric generic fiber of A ! S has trivial trace
over Q. Then the limit vanishes if and only if V is an irreducible component of kerŒN � for
some N � 1. Otherwise the limit is positive.

Silverman computed the limit in terms of the Néron–Tate height of V restricted to
the generic fiber A ! S .

The “if direction” is straightforward: in this case all P in question are of finite
order and their Néron–Tate height vanishes; see Theorem 2.7(iv). The “only if” direction
is deeper and has many applications: Silverman’s Specialization Theorem, Theorem C in
[57], as well as applications to unlikely intersections by Masser and Zannier, see [44] and [68]

for an overview and more results.
What happens if V has dimension > 1 and S remains a curve? In this case the limit

(4.2) does not make sense. Indeed, for fixed s 2 S.Q/, the set of P 2 V.Q/ that map to s

has positive dimension and thus unbounded Néron–Tate height.
Motivated by Theorem 4.2, the author showed the next theorem. It may serve as a

higher-dimensional substitute for Silverman’s Theorem 4.2. For an irreducible subvariety of
V of A that dominates S , we write V� for the geometric generic fiber of �jV W V ! S . This
is a possibly reducible subvariety of the geometric generic fiber A� of A ! S .

Theorem 4.3 ([35]). Suppose S D Y.2/ and let A D E Œg� be the g-fold fibered power of the
Legendre family of elliptic curves. Suppose V � E Œg� dominates Y.2/ and

V� is not a finite union of irreducible components of algebraic subgroups of A�: (4.3)

Then there exist c.V / > 0 and a Zariski open and dense subset U � V with

hY.2/

�
�.P /

�
� c.V /max

®
1; OhA.P /

¯
for all P 2 U.Q/: (4.4)

Say (4.3) holds. If P 2 U.Q/ has finite order as a point in its respective fiber, we
find hY.2/.�.p// � c.V / and the total Weil height of P is bounded from above by (4.1).
This simple observation led to the resolution of several “special points” problems [35] in the
spirit of the André–Oort Conjecture. For example, torsion pointsP 2 V.Q/ that lie in a fiber
with complex multiplication are not Zariski dense in V . The proof of Theorem 4.3 makes
use of Siu’s Criterion, see Remark 2.5(iii), and an investigation of monodromy in E Œg�.

The Zariski open U cannot in general be taken to equal V . But there is a natural
description of this set in geometric terms through unlikely intersections.

The hypothesis (4.3) is necessary and essentially rules out that V itself is a family
of abelian subvarieties.

Gao and the author [33] then generalized Theorem 4.3 to an abelian scheme when
the base is again a smooth curve S defined over Q. Here more care is needed in connection
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with the hypothesis (4.3). Indeed, if A D A � S is a constant abelian scheme, where A is
an abelian variety, then (4.4) cannot hold generically for V D Y � S . Roughly speaking, the
condition in [33] that replaces (4.3) also needs to take into account a possible constant part
of A� . If A� has no constant part, i.e., if its Q.�/=Q-trace is 0, then (4.3) suffices for S a
curve. The case of a higher-dimensional base requires even more care, as we will see.

There were two applications of the height bound in [33].
First, and in the same paper, we proved new cases of the geometric Bogomolov Con-

jecture for an abelian variety defined over the function field of the curve S . This approach
relied on Silverman’s Theorem 4.2. It was used earlier in [35] to give a new proof of the
Geometric Bogomolov Conjecture in a power of an elliptic curve. The number field case of
the Bogomolov Conjecture was proved by Ullmo [61] and Zhang [71] in the 1990s. Progress
in the function field case was later made by Cinkir, Faber, Moriwaki, Gubler, and Yamaki.
For the state of the Geometric Bogomolov Conjecture as of 2017, we refer to a survey of
Yamaki [64]. Gubler’s strategy works in arbitrary characteristic and was expanded on by
Yamaki. In joint work [10] with Cantat, Gao, and Xie, the author later established the Geo-
metric Bogomolov Conjecture in characteristic 0 by bypassing the height inequality (4.4).
Very recently, Xie and Yuan [63] announced a proof of the Geometric Bogomolov Conjecture
in arbitrary characteristic. Their approach builds on the work of Gubler and Yamaki.

Second, and in later joint work with Dimitrov and Gao [23], we established unifor-
mity for the number of rational points in the spirit ofMazur’s question for curves parametrized
by the 1-dimensional base S .

As we shall see, the proof of Theorem 1.12 requires a height comparison result
like (4.4) for abelian schemes over a base S of any dimension. But now the correct condi-
tion to impose on V is more sophisticated and cannot be easily read off of the geometric
generic fiber as in (4.3). The condition relies on the Betti map, which we introduce in the
next section.

4.1. Degenerate subvarieties and the Betti map
In this section, S is a smooth irreducible quasiprojective variety over C. Let

� W A ! S again be an abelian scheme over S of relative dimension g � 1.
For each s 2 S.C/, the fiber As.C/ is a complex torus of dimension g. Forgetting

the complex structure, each g-dimensional complex torus is diffeomorphic to .R=Z/2g as a
real Lie group. By Ehresmann’s Theorem, this diffeomorphism extends locally in the analytic
topology on the base. That is, there is a contractible open neighborhood U of s in S.C/ and
a diffeomorphism AU D ��1.U / ! .R=Z/2g � U over U . Fiberwise this diffeomorphism
can be arranged to be a group isomorphism above each point of U . Thus we can locally
trivialize the abelian scheme at the cost of sacrificing the complex-analytic structure.

The trivialization is not entirely unique as we can let a matrix in GL2g.Z/ act in the
natural way on the real torus .R=Z/2g . But since U is connected, this is the only ambiguity.
It is harmless for what follows.
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The Betti map ˇU attached to U is the composition of the trivialization followed by
the projection

AU .R=Z/2g � U .R=Z/2g :

ˇU

This map has appeared implicitly in diophantine geometry in work of Masser and
Zannier [44]. We also refer to more recent work of André, Corvaja, and Zannier [3] for a
systematic study of the Betti map.

We list some of the most important properties:

(i) For all s 2 U , the restriction ˇU jAs.C/ W As.C/ ! .R=Z/2g is a diffeo-
morphism of real Lie groups. In particular, P 2 AU has finite order in its
respective fiber if and only if ˇU .P / 2 .Q=Z/2g .

(ii) For all P 2 U the fiber ˇ�1
U .ˇU .P // is a complex-analytic subset of AU .

Definition 4.4. An irreducible closed subvariety V � A that dominates S is called degen-
erate if for all U and ˇU as above and all smooth points P of VU D �j�1

V .U / the differential
of dP .ˇU jVU

/ satisfies
rk dP .ˇU jVU

/ < 2 dimV: (4.5)

It has become customary to call V degenerate if it is not nondegenerate.
For all smooth points P of VU , the left-hand side of (4.5) is at most the right-hand

side, which equals the real dimension of VU . It is also at most 2g, the real dimension of a fiber
of A ! S . Moreover, if the maximal rank of dˇU on VU is attained at P then the maximal
rank is attained also in a neighborhood of P in VU . Being nondegenerate is a local property.

Let us consider some examples.

Example 4.5. (i) If S is a point, then A is an abelian variety and an arbitrary
subvariety V � A is nondegenerate because ˇS is a diffeomorphism.

(ii) Suppose dimV > g. Then rk dP .ˇU jVU
/ � 2g < 2 dimV for all smooth P

and so V is degenerate. In particular, A is a degenerate subvariety of A if
dimS � 1.

(iii) Suppose A D A � S is a constant abelian scheme with A an abelian variety.
If Y � A is a closed irreducible subvariety and if dimS � 1, then Y � S is
degenerate. Indeed, the rank is at most 2 dimY < 2 dimY � S .

(iv) Suppose V is an irreducible component of kerŒN � for some integer N � 1.
Any point in V.C/ has order dividing N (and, in fact, equal to N ). So the
image of ˇU jVU

is finite and hence V is degenerate if dimS � 1.

(v) Suppose V is the image of a section S ! A. If the geometric generic fiber
of A ! S has trivial trace, then .ˇU /jVU

is constant if and only if V is an
irreducible component of kerŒN � for some N � 1. This is Manin’s Theorem
of the Kernel, we refer to Bertrand’s article [7] for the history of this theorem.
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(vi) Suppose A D E Œg� and V are as in Theorem 4.3. One step in the proof of this
theorem consisted in verifying that V , subject to hypothesis (4.3), is nonde-
generate. Crucial input came from the monodromy action of the fundamental
group of the base Y.2/ D P 1 n ¹0; 1; 1º on the first homology of a fiber As

with s in general position. In this case the monodromy action is unipotent at
the cusps 0 and 1 of Y.2/. This enabled the author to use a result of Kronecker
from diophantine approximation. Already Masser and Zannier [44] used the
monodromy action in their earlier work for V a curve.

(vii) If S is a curve, then the monodromy action of the fundamental group of S.C/

on the homology of fibers of A ! S is locally quasiunipotent. But if S is
projective, then there are no cusps. So exploiting monodromy in this setting
required a different approach. In [33] Gao and the author used o-minimal
geometry and the Pila–Wilkie Counting Theorem [51]. A related case was
solved by Cantat, Gao, and Xie in collaboration with the author [10]; we used
dynamical methods.

(viii) Finally, we consider the case of an abelian scheme A over a base S of
arbitrary dimension. This setting was studied recently in work of André–
Corvaja–Zannier [3]. Moreover, the work of Gao on the Ax–Schanuel Theo-
rem [30] for the universal family of abelian varieties led him to formulate a
geometric condition [29] that guarantees nondegeneracy. It proves crucial in
the application to Mazur’s question and we will return to this point. Gao’s
result also relied on o-minimal geometry and the Pila–Wilkie Theorem.

4.2. Comparing the Weil and Néron–Tate heights on a subvariety
We now come to the generalization of Theorem 4.3 to nondegenerate subvarieties.

We retain the notation introduced in Section 4.1. So S is a smooth irreducible quasiprojective
variety defined over Q equipped with an immersion in P m. We have a height hS on S.Q/.
Moreover,� W A ! S is an abelian scheme overS presentedwith an immersionA ! P n � S

over S . Finally, L is as in Section 4 and OhA is the fiberwise Néron–Tate height on A.Q/.
We assume that A carries symplectic level-` structure for some fixed ` � 3 and

that L induces a principal polarization. For the proof of Theorem 1.12, it suffices to have
the following height bound under these conditions. We also refer to [24, Theorem B.1] for a
version that relaxes some of the conditions.

Theorem 4.6 ([24, Theorem 1.6]). Let V be a nondegenerate irreducible subvariety of A that
dominates S . There exist c.V / > 0, c0.V / � 0, and a Zariski open and dense subset U � V

with
hS

�
�.P /

�
� c.V / OhA.P / C c0.V / for all P 2 U.Q/:

We refer to Yuan and Zhang’s Theorem 6.2.2 [67] for a height inequality in the
dynamical setting.
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Here are just a few words on the proof of Theorem 4.6. Siu’s Criterion, see Re-
mark 2.5, is used to compare the Weil height of �.P / with a Weil height of P . The nonde-
generacy hypothesis is used to extract a volume estimate. The upshot is a lower bound for the
top self-intersection number in Siu’s Criterion. The predecessor of Theorem 4.6 in the earlier
works [33, 35] was proved by counting torsion points using the Geometry of Number; vol-
umes played an important role here as well. Passing from the Weil to the Néron–Tate height
introduces an additional dependency on the height of �.P /, see (4.1). However, this contri-
bution can be eliminated by using Masser’s “ruthless strategy of killing Zimmer constants”
[68, Appendix C]. This task is done by repeated iteration of the duplicationmorphism Œ2�which
has the effect of truncating Tate’s Limit Process after finitely many steps. Our ambient group
scheme A is quasiprojective but in general not projective. So a suitable compactification is
required that admits some compatibility with the duplication morphism.

The positive constant c.V / in Theorem 4.6 ultimately comes from the application
of Siu’s Criterion. As such it can expressed in geometric terms.

5. Application to moderate points on curves

In this section we sketch the main lines of the proof of Theorem 1.12. It will be
enough to bound the number of moderate points, see Section 3.

5.1. The Faltings–Zhang morphism
Smooth curves of genus g � 2 defined over Q are classified by the Q-points of a

quasiprojective variety, the coarse moduli space. For us it is convenient to work with sym-
plectic level-` structure on the Jacobian for some fixed integer ` � 3. With this extra data,
we obtain a fine moduli space Mg , together with a universal family Cg ! Mg . Fibers of
this family are smooth curves of genus g with the said level structure on the Jacobian. Then
Mg carries the structure of a smooth quasiprojective variety of dimension 3g � 3 defined
over a cyclotomic field. For convenience, we replace Mg by an irreducible component by
choosing a complex root of unity of order ` and consider it as defined over Q.

The Torelli morphism � W Mg ! Ag takes a smooth curve to its Jacobian with the
level structure; here Ag denotes the fine moduli space of g-dimensional abelian varieties
with a principal polarization and symplectic level-` structure.

Let M � 0 be an integer and consider M C 1 points P0; : : : ; PM 2 Cg.C/ in the
same fiber C of Cg ! Mg . The differences ŒP1� � ŒP0�; : : : ; ŒPM � � ŒP0� are divisors of
degree 0 on C . We obtain M complex points in the Jacobian of C and so M complex points
of Ag . We obtain a commutative diagram

C
ŒMC1�
g A

ŒM �
g �Ag Mg

Mg

D
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of morphisms of schemes; here the exponent ŒM � denotes taking theM th fibered power over
the base. The morphism D is called the Faltings–Zhang morphism; see [26, Lemma 4.1] and
[71, Lemma 3.1] for important applications to diophantine geometry of variants of this mor-
phism. The morphism D is proper.

A modified version of this construction is also useful. Say S ! Mg is a quasifinite
morphism with S an irreducible quasiprojective variety defined over Q. We obtain a proper
morphism D W C

ŒMC1�
g �Mg S ! A

ŒM�
g �Ag S , again called Faltings–Zhang morphism.

Gao, using his Ax–Schanuel Theorem for the universal family Ag [30] and a char-
acterization [28] of bialgebraic subvarieties of Ag , obtained

Theorem 5.1 (Gao [29]). Let S ! Mg be as above, i.e., a quasifinite morphism from an
irreducible quasiprojective variety S defined over Q and g � 2. If M � dimMg C 1 D

3g � 2, then D.C
ŒM C1�
g �Mg S/ is a nondegenerate subvariety of A

ŒM�
g �Ag S .

Mok, Pila, and Tsimerman [47] earlier proved an Ax–Schanuel Theorem for Shimura
varieties. Gao’s result [30] is a “mixed” version in the abelian setting. We refer to the
survey [4] on recent developments in functional transcendence.

The hypothesis g � 2 is crucial. The definition of the Faltings–Zhang morphism
makes sense for g D 1. But it will be surjective and the image is degenerate expect in the
(for our purposes uninteresting) case dimS D 0.

We consider here for simplicity only the case S D Mg .
Using basic dimension theory, we see dimD.C

ŒM C1�
g / � M C 1 C dimMg . The

image lies in the fibered power A
ŒM�
g where the relative dimension is Mg. A necessary con-

dition for D.C
ŒMC1�
g / to be nondegenerate is dimD.C

ŒM C1�
g / � Mg, see Example 4.5(ii).

This inequality follows from

M C 3g � 2 D M C 1 C dimMg � Mg: (5.1)

If M � 3, the numerical condition (5.1) is not satisfied for any g � 2. For this reason, we
cannot hope to work with the image of Cg �Mg Cg in Ag by taking differences. Moreover,
there seems to be no reasonable way to work with a single copy of Cg , where the relations
between dimensions would be even worse. The numerical condition (5.1) is satisfied for all
M � 4 and all g � 2. Gao’s Theorem implies that M � 3g � 2 is sufficient to guarantee
nondegeneracy.

We can thus apply Theorem 4.6 to the image D.C
ŒMC1�
g / of the Faltings–Zhang

morphism in A
ŒM�
g �Ag Mg . Let M D 3g � 2, then

hMg .s/ � c.g/
�

OhAg
.P1 � P0/ C � � � C OhAg

.PM � P0/
�

C c0.g/ (5.2)

for all .P0; : : : ; PM / 2 U.Q/ above s 2 Mg.Q/ where U is a Zariski open and dense subset
of D.C

ŒMC1�
g /. The constants c.g/ > 0 and c0.g/ � 0 depend on the various choices made

regarding projective immersions of Mg and Ag . Ultimately, they depend only on g once
these choices have been made.
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The Zariski open U cannot be replaced by D.C
ŒMC1�
g /. Indeed, the right-hand

side of (5.2) vanishes on the diagonal P0 D P1 D � � � D PM whereas the left-hand side
is unbounded as s varies.

Let us shift back to using k � k to denote the square root of the Néron–Tate height,
see Section 2.2. Let us assume that

hMg .s/ � 2c0.g/: (5.3)

As 2M D 6g � 4 we find

hMg .s/ � c.g/.6g � 4/ max
1�j �M

kPj � P0k
2 for all .P0; : : : ; PM / 2 U.Q/: (5.4)

Morally, (5.4) states that among a .3g � 1/-tuple of points on a curve of genus g in
general position, there must be a pair that repels one another with respect to the norm k � k.
The squared distance of such a pair is larger than a positive multiple, depending only on g,
of the modular height hMg .s/; this is the key to bounding the number of moderate points
from Section 3.

As stated at the end of Section 4.2, the value c.g/ can be expressed in terms of
geometry properties of the image of C

ŒMC1�
g under the Faltings–Zhang morphism.

Question 5.2. What is an admissible value for c.g/?

5.2. Bounding the number of moderate points—a sketch
Recall that, by the discussion at the end of Section 3, we need to bound the number

of moderate points.
We retain the notation of Sections 3 and 5. The curve C from Section 3 can be

equipped with suitable level structure over a field F 0=F with ŒF 0 W F � bounded in terms
of g. The rank of Jac.C /.F 0/ may be dangerously larger than the rank of Jac.C /.F /. But
recall that we are interested in bounding #C.F / from above, so only the group Jac.C /.F /

will be relevant. Moreover, c1; c2, and c3 from a suitable version of Vojta’s inequality are
unaffected by extending F . The effect is that we may identify C with a fiber of Cg above
some point s 2 Mg.F 0/. For simplicity, we assume F D F 0 for this proof sketch.

We require some additional information on c3.C /. It turns out that we can take
c3 D c4.g/max¹1;hMg .s/ºwhere c4.g/ > 0 depends on g. This follows Rémond’s work [55]

on the Vojta inequality. A similar dependency is apparent in de Diego’s result, Theorem 1.6.
Suppose now that (5.3) holds, so hMg .s/ is sufficiently large in terms of g. We fix

an auxiliary base point P 0 2 C.F /. We must bound from above the number of points in

B.R/ D
®
P 2 C.F / W



P � P 0


2

� R2
¯

with R D
�
c4.g/hMg .s/

�1=2

where k � k denotes the square root of the Néron–Tate height on the fiber of Ag ! Ag

associated to the Jacobian of C .
Recall M D 3g � 2 and suppose P0; : : : ; PM 2 C.F /. If the tuple .P0; : : : ; PM /

is in general position, i.e., .P1 � P0; : : : ; PM � P0/ lies in U.Q/ from (5.4), then there is i

with

Pi 62 B.P0; r/ D
®
P 2 C.F / W kP � P0k

2
� r2

¯
with r D

�
c5.g/hMg .s/

�1=2
:
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If we had a guarantee that such .M C 1/-tuples of pairwise distinct points are
always in general position, then #B.P0; r/ < M D 3g � 2. By sphere packing, we can cover
the image of B.R/ in Jac.C /.F / ˝ R by at most .1 C 2R=r/rk Jac.C /.F / closed balls in
Jac.C /.F / of radius r . One can even arrange for the ball centers to arise as points of C.F /.
The modular height hMg .s/ cancels out in the quotient

R

r
D

�
c4.g/

c5.g/

�1=2

:

This would complete the proof of Theorem 1.12 except that there is no reason to
believe that .P1 � P0; : : : ;PM � P0/ 2 U.Q/ (even if the Pj are pairwise distinct). Treating
points with image in the complement ofU requires induction on the dimension. Here we rely
on the freedom to replace Mg by a subvariety in that Gao’s Theorem 5.1.

Let us briefly explain the resulting induction step. Observe that the dimension of
this exceptional set is at most dimD.C

ŒM C1�
g / � 1 � M C dimMg . There are two cases for

.P0; : : : ; PM / with image in the exceptional set .D.C
ŒMC1�
g / n U /.Q/ on which we do not

have the height inequality. For the case study, recall that s 2 Mg.Q/ denotes the point below
all the Pj and �.s/ 2 Ag.Q/ is its image under the Torelli morphism � .

First, assume that the fiber of D.C
ŒMC1�
g / n U ! Ag above �.s/ has dimension

at most M . This fiber contains .P1 � P0; : : : ; PM � P0/. This case is solved using a zero
estimate motivated by the following simple lemma.

Lemma 5.3. Suppose C is an irreducible curve defined over C and W a proper Zariski
closed subset of C M . If † � C.C/ with †M � W.C/, then † is finite.

This statement can be quantified if C is presented as a curve in some projective
space. Using Bézout’s Theorem, one can show that #† is bounded from above in terms of
the degrees of C and W . In our application, both degrees will be uniformly bounded as all
varieties arise in algebraic families. This ultimately leads to the desired uniformity estimates.

The second case is if the fiber of D.C
ŒMC1�
g / n U ! Ag above �.s/ has dimension

at least M C 1. For dimension reasons, s lies in a proper subvariety S of Mg . Here we apply
induction on the dimension and replace Mg by its subvariety S .

This completes the proof sketch.
Kühne [39] combined ideas from equidistribution with the approach laid out in [24]

to get a suitable uniform estimate for #B.P0; r/ without the restriction (5.3) on hMg .s/.
Yuan’s Theorem 1.1 [66] does so as well, but he follows a different approach. He obtains a
more general estimate that works also in the function field setting and allows for a larger R.

6. Hyperelliptic curves

A hyperelliptic curve is a smooth curve of genus at least 2 that admits a degree 2

morphism to the projective line. Hyperelliptic curves have particularly simple planar models.
Indeed, if the base field is a number field F , then a hyperelliptic curve of genus g can be
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represented by a hyperelliptic equation

Y 2
D f .X/ with f 2 F ŒX� monic and square-free of degree 2g C 1 or 2g C 2.

In this section we determine consequences of Theorem 1.12 for hyperelliptic curves.
Our aim is to leave the world of curves and Jacobians and to present a bound for the number
of rational solutions of Y 2 D f .X/ that can be expressed in terms of f . We refer to Section 6
of [23] for a similar example in a 1-parameter family of hyperelliptic curves.

To keep technicalities to a minimum, we assume that our base field is F D Q and
that f 2 ZŒX� is monic of degree d D 2g C 1 and factors into linear factors in QŒX�. The
curve represented by the hyperelliptic equation has a marked Weierstrass point “at infinity.”
These assumptions can be loosened with some extra effort. For example, if f does not factor
in QŒX�, then the class number of the splitting field will play a part.

Say, f D Xd C fd�1Xd�1 C � � � C f0. By the assumption above,
f D .X � ˛1/ � � � .X � ˛d / with ˛1; : : : ; ˛d 2 Q which are necessarily integers. The dis-
criminant of f is

�f D

Y
1�i<j �d

. j̨ � ˛i /
2

2 Z n ¹0º:

The Mordell Conjecture applied to the hyperelliptic curve represented by
Y 2 D f .X/ states

#
®
.x; y/ 2 Q2

W y2
D f .x/

¯
< 1:

We have the following estimate for the cardinality. Below !.n/ denotes the number
of distinct prime divisors of n 2 Z n ¹0º.

Theorem 6.1. Let g � 2. There exist c.g/ > 1 and c0.g/ > 0 with the following property.
Suppose f 2 ZŒX� is monic of degree 2g C 1, square-free, and factors into linear factors in
QŒX�. Then

#
®
.x; y/ 2 Q2

W y2
D f .x/

¯
� c0.g/c.g/!.�f /: (6.1)

Proof. The hyperelliptic equation represents a curve C defined over Q of genus g.
If p is a prime number with p − �f , then the ˛i are pairwise distinct modulo p. If

p is also odd, then the equation Y 2 D f .X/ reduced modulo p defines a hyperelliptic curve
over Fp . So C has good reduction at all primes that do not divide 2�f . Thus the Jacobian
Jac.C / has good reduction at the same primes.

We may embed C into its Jacobian Jac.C / by sending the markedWeierstrass point
to 0. Each root ˛i of f corresponds to a rational point in C.Q/ and it is sent to a point of
order 2 in Jac.C /. Moreover, these points generate the 2-torsion in Jac.C /tors. In particular,
all points of order 2 in Jac.C /tors are rational.

Next we bound the rank of Jac.C /.Q/ from above. Indeed, we could use the work
of Ooe–Top [49] or [37, Theorem C.1.9]. The latter applied to Jac.C /; k D Q, m D 2, and S

the prime divisors of 2�f yields rk Jac.C /.Q/ � 2g#S � 2g!.2�f / � 2g C 2g!.�f /.
Here we use that Q has a trivial class group; in a more general setup, the class group of the
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splitting field of f will enter at this point. The estimate (6.1) follows from Theorem 1.12 in
the case F D Q with adjusted constants.

It is tempting to average (6.1) over the f bounded in a suitable way, e.g., by bounding
themaximal modulus of the roots by a parameterX . As pointed out to the author by Christian
Elsholtz and Martin Widmer, this average will be unbounded as X ! 1.
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