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Abstract

We survey recent progress on the Bloch–Kato conjecture, relating special values of L-
functions to cohomology of Galois representations, via the machinery of Euler systems.
This includes new techniques for the construction of Euler systems, via the étale coho-
mology of Shimura varieties, and new methods for proving explicit reciprocity laws,
relating Euler systems to critical values of L-functions. These techniques have recently
been used to prove the Bloch–Kato conjecture for critical values of the degree 4 L-function
of GSp4, and we survey ongoing work aiming to apply this result to the Birch–Swinnerton-
Dyer conjecture for modular abelian surfaces, and to generalise it to a range of other
automorphic L-functions.
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1. What is the Bloch–Kato conjecture?

The Bloch–Kato conjecture, formulated in [11], relates the cohomology of global
Galois representations to the special values of L-functions. We briefly recall a weak form of
the conjecture, which will suffice for this survey. Let L=Qp be a finite extension, let K be
a number field, and let V be a representation of �K D Gal.K=K/ on a finite-dimensional
L-vector space. We suppose V is unramified outside finitely many primes and de Rham at
the primes above p. Then we may attach to V the following two objects:

• Its L-function, which is the formal Euler product

L.V; s/ D

Y
v

Pv

�
V;N.v/�s

��1
;

where v varies over (finite) primes of K, and Pv.V; X/ 2 LŒX� is a local Euler
factor depending on the restriction of V to a decomposition group at v. It is con-
jectured that, for any choice of isomorphism L Š C, this product converges for
<.s/ � 0 and and has meromorphic continuation to all of C.

• Its Selmer groupH 1
f .K;V /, a certain (finite-dimensional) subspace of the Galois

cohomology group H 1.K; V / determined by local conditions at each prime,
defined in [11].

The weak Bloch–Kato conjecture asserts that

ordsD1L
�
V �; s

�
D dimH 1

f .K; V / � dimH 0.K; V /:

The full conjecture as formulated in [11] also determines the leading term of L.V �; s/ at
s D 1 up to a p-adic unit, in terms of the cohomology of an integral lattice T � V .

This conjecture includes as special cases a wide variety of well-known results and
conjectures. For example, when V is the 1-dimensional trivial representation, the weak con-
jecture states that �K.s/ has a simple pole at s D 1; and the strong conjecture (for all p at
once) is equivalent to the analytic class number formula, relating the residue at this pole to
the class group and unit group ofK. If V D Tp.E/˝ Qp , where E is an elliptic curve over
K and Tp.E/ is its Tate module, then L.V �; s/ is the Hasse–Weil L-function L.E=K; s/,
and we recover the Birch and Swinnerton-Dyer conjecture for E over K.

Critical values
TheL-functionL.V �; s/ is expected to satisfy a functional equation relatingL.V;s/

and L.V �; 1� s/, after multiplying by a suitable product of �-functions L1.V
�; s/ (deter-

mined by the Hodge–Tate weights of V at p and the action of complex conjugation). These
�-factors may have poles at s D 1, forcing L.V �; 1/ to vanish.

Following [49], we say V is r-critical, for some r > 0, if L1.V
�; 1 � s/ has a

pole of order r at s D 0, and L1.V; s/ is holomorphic there. In particular, V is 0-critical
if L.V �; 1/ is a critical value in the sense of Deligne [18]. The most interesting cases of the
Bloch–Kato conjecture are when V is 0-critical, and it is these which our main theorems
below will address; but 1-critical Galois representations will also play a crucial auxiliary
role in our strategy.
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Iwasawa theory
The Bloch–Kato conjecture is closely related to the Iwasawa main conjecture, in

which the finite-dimensional Selmer group H 1
f .K; V / is replaced by a finitely-generated

module over an Iwasawa algebra. This connection with Iwasawa theory, together with the
proof of the Iwasawa main conjecture in this context by Mazur and Wiles, plays an impor-
tant role in Huber and Kings’ proof [33] of the Bloch–Kato conjecture for 1-dimensional
representations of �Q.

2. What is an Euler system?

ForK a number field and V a �K-representation as in Section 1, we have the notion
of an Euler system for V , defined as follows. Let S be a finite set of places of K containing
all infinite places, all primes above p and all primes at which V is ramified.

We defineR to be the collection of integral ideals ofK of the formm D a � b, where
a is a square-free product of primes of K not in S , and b divides p1. For each m 2 R, let
cŒm� be the ray class field modulo m. Then an Euler system for .T; S/ is a collection of
classes

c D
®
cŒm� 2 H 1

�
KŒm�; T

�
W m 2 R

¯
;

satisfying the norm-compatibility relation

coresKŒmq�

KŒm�

�
cŒmq�

�
D

8<:Pq.V
�.1/; ��1

q / � cŒm� if q … S;

cŒm� if q j p;

where cores denotes the Galois corestriction (or norm) map, and �q is the image of Frobq

in Gal.KŒm�=K/. By an Euler system for V , we mean an Euler system for some .T; S/.
(These general definitions are due to Kato, Perrin-Riou, and Rubin, building on earlier work
of Kolyvagin; the standard reference is [56].)

The crucial application of Euler systems is the following: if an Euler system exists for
V whose image inH 1.K;V / is non-zero (and V satisfies some auxiliary technical hypothe-
ses), then we obtain a bound for the so-called relaxed Selmer group1

H 1
rel.K; V / WD ker

�
H 1.K; V / !

Y
v−p

H 1
f .Kv; V /

�
:

The relaxed Selmer group differs from the Bloch–Kato Selmer group in that we impose
no local conditions at p. More generally, under additional assumptions on V and c, we
can obtain finer statements taking into account local conditions at p, and hence control the
dimension of the Bloch–Kato Selmer group itself.

Euler systems are hence extremely powerful tools for bounding Selmer groups, as
long as we can understand whether the image of c inH 1.K;V / is non-vanishing. In order to

1 See [49] for this formulation. Theorem 2.2.3 of [56] is an equivalent result, but expressed in
terms of a Selmer group for V �.1/, which is related to that of V by Poitou–Tate duality.
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use an Euler system to prove new cases of the Bloch–Kato conjecture, one needs to establish
a so-called explicit reciprocity law, which is a criterion for the non-vanishing of the Euler
system in terms of the value L.V �; 1/.

Challenges. In order to use Euler system theory to approach the Bloch–Kato conjecture, and
other related problems such as the Iwasawa main conjecture, there are two major challenges
to be overcome:

(1) Can we construct “natural” examples of Euler systems (satisfying appropriate
local conditions), for interesting global Galois representations V ?

(2) Can we prove reciprocity laws relating the images of these Euler systems in
H 1.K; V / to the values of L-functions?

This was carried out by Kato [35] for the Galois representations arising from modular forms;
but Kato’s approach to proving explicit reciprocity laws has turned out to be difficult to
generalise. More recently, in a series of works with various co-authors beginning with [40]

(building on earlier work of Bertolini–Darmon–Rotger [6]), we developed a general strategy
for overcoming these challenges, for Galois representations arising from automorphic forms
for a range of reductive groups. We will describe this strategy in the remainder of this article.

Variants. A related concept is that of an anticyclotomic Euler system, in which K is a CM
field, and we replace the ray-class fields cŒm�with ring class fields associated to ideals of the
real subfieldKC. These arise naturallywhenV is conjugate self-dual, i.e.V c DV �.1/where
c denotes complex conjugation. The most familiar example is Kolyvagin’s Euler system of
Heegner points [39]; for more recent examples, see, e.g. [12, 15, 25]. Many of the techniques
explained here for constructing and studying (full) Euler systems are also applicable to anti-
cyclotomic Euler systems, and we shall discuss examples of both below.

A rather more distant cousin is the concept of a bipartite Euler system, which arises
naturally in the context of level-raising congruences; cf. [31] for a general account, and [43] for
a dramatic recent application to the Bloch–Kato conjecture. These require a rather different
set of techniques, and we shall not discuss them further here.

The 1-critical condition. We conjectured in [49] that, in order to construct Euler systems
for V by geometric means (i.e. as the images of motivic cohomology classes), we need to
impose a condition on V : it needs to be 1-critical.

However, our intended applications involve the Bloch–Kato conjecture for critical
values of L-functions; so we need to construct Euler systems for representations that are 0-
critical, rather than 1-critical. So we shall construct Euler systems for these representations
in two stages: firstly, we shall construct Euler systems for auxiliary 1-critical representations
V , using motivic cohomology; secondly, we shall “p-adically deform” our Euler systems, in
order to pass from these 1-critical V to others which are 0-critical. This will be discussed in
Section 4 below.

1921 Euler systems and the Bloch–Kato conjecture



3. Euler systems for Shimura varieties

Shimura varieties. Let .G;X/ be a Shimura datum, with reflex field E. For a level K �

G.Af/, we write YG.K/ for the Shimura variety ShK.G;X/. Our first goal will be to define
Euler systems, either full or anticyclotomic, for Galois representations appearing in the étale
cohomology of YG.K/. We shall attempt to give a systematic general treatment, but the
reader should bear the following examples in mind:

(1) G D GL2 �GL1 GL2, as in [40];

(2) G D ResF=Q GL2 for F real quadratic, as in [26,41];

(3) G D GSp4, as in [47];

(4) G D GSp4 �GL1 GL2, as in [32];

(5) G D GU.2; 1/, as in [48];

(6) G D U.2n � 1; 1/ for n > 1, as in [25].

Each of these groups is naturally equipped with a Shimura datum .G;X/. In examples
(1)–(4), the reflex field E is Q; in (5) and (6), it is the imaginary quadratic field used to
define the unitary group. (One can also retrospectively interpret Kato’s construction [35] in
these terms, taking G D GL2; and similarly Kolyvagin’s anticyclotomic Euler system [39],
which is in effect the n D 1 case of example (6).)

Étale cohomology. If � is a cuspidal automorphic representation which contributes to
H�

ét .YG.K/ NE ; V�/ for some level K, where V� is the étale local system associated to the
representation of G of highest weight �, then we say � is cohomological in weight �. It is
conjectured that if this holds, then there exists a p-adic representation �� of �E , for each
prime p and embedding Q ,! Qp , whose local Euler factors are determined by the Satake
parameters of � at finite places, and whose Hodge–Tate weights are determined by �.

For all of the above groups, the existence of such a �� is known, and, moreover, if
� is of “general type” (i.e. not a functorial lift from a smaller group), then the �f-eigenspace
in étale cohomology is concentrated in degree d D dim.X/ and isomorphic to �f ˝ �� . So
we can find projection maps Hd .YG.K/ NE ; V�/ � �� , for a suitable choice of K. Via the
Hochschild–Serre spectral sequence

H i
�
E;H

j
ét

�
YG.K/ NE ; V�

��
) H

iCj
ét

�
YG.K/E ; V�

�
;

we can thus obtain classes in the Galois cohomology of �� as the images of classes in the �f-
eigenspace ofHdC1

ét .YG.K/E ; V�/. (For simplicity, we shall sketch the construction below
assuming � D 0, and refer to the original papers for the case of general coefficients.)

Motivic cohomology. In order to construct classes in HdC1
ét .YG.K/E ; V�/, we shall use

two other, related cohomology theories:

• Motivic cohomology (see [3]), which takes values inQ-vector spaces (orZ-lattices
in them), and is closely related to algebraic K-theory and Chow groups;
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• Deligne–Beilinson (or absolute Hodge) cohomology (see [34]), which takes values
in R-vector spaces, and has a relatively straightforward presentation in terms
of pairs .!; �/, where ! is an algebraic differential form, and � a real-analytic
antiderivative of Re.!/.

There is no direct relation between Deligne–Beilinson cohomology and p-adic étale
cohomology – one would not expect to compare vector spaces overR and overQp – but both
of these cohomology theories have natural maps (“realisationmaps”) frommotivic cohomol-
ogy. So we shall use the following strategy, whose roots go back to [3]: we will write down
elements ofmotivic cohomologywhose images inDeligne–Belinson cohomology are related
to values of L-functions; and we will consider the images of the same motivic cohomology
classes in étale cohomology.

Pushforward maps. If .H;Y/ ,! .G;X/ is the inclusion of a sub-Shimura datum (with
the same reflex field E), then we obtain finite morphisms of algebraic varieties over E,

YH .K \H/E ! YG.K/E ;

where E is the reflex field of .H;Y/. More generally, for each g 2 G.Af/ we have a map

�g W YH .gKg
�1

\H/E ! YG.gKg
�1/E

g
�! YG.K/;

where the latter arrow is translation by g. So we have associated pushforward maps in all of
our cohomology theories, namely

�g;? W H
j
mot

�
YH .K \H/E ;Z.t/

�
! H

j C2c
mot

�
YG.K/E ;Z.t C c/

�
for j; r 2 Z, where c D dimX � dimY (and similarly for étale cohomology with Zp coeffi-
cients, or Deligne–Beilinson cohomology with R coefficients, compatibly with the realisa-
tion maps relating the theories).

We shall define motivic cohomology classes for YG.K/ using the maps �g;?.
The compatibility of these classes with realisation functors allows us to compute the images
of such classes in Deligne–Beilinson cohomology: the projection of such a class to the �f-
eigenspace will be computed using integrals over YH .K \H/.C/, involving the pullbacks
of differential forms associated to cusp forms in the dual automorphic representation �_.

Cycle classes and Siegel units. As an input to the above construction, we need a supply of
“interesting” classes in H j

mot.YH .K \ H/;Z.r// for some k; r which are in the image of
motivic cohomology.

One possibility is to start with the identity class 1 2 H 0
mot.YH .K \H/;Z.0//. The

image of this class under �g;? is the cycle class associated to the image of �g , a so-called
“special cycle”. This case is by no means trivial: indeed, these special cycles are the input
used to define anticyclotomic Euler systems, such as Heegner points.

More subtly, one can obtain motivic cohomology classes from units in the coordi-
nate ring of YH , using the relation

H 1
mot

�
Y;Z.1/

�
D O.Y /�
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for any variety Y . If Y is a modular curve (i.e. a Shimura variety for GL2), then we have a
canonical family of units: if Y1.N / is the Shimura variety of level ¹. � �

0 1 / mod N º, then we
have the Siegel unit

zN 2 O
�
Y1.N /

��
;

denoted cg0;1=N in the notation of [35] (where c is an auxiliary integer coprime to the level).
Crucially, we have an explicit formula for the image of this class in Deligne–Beilinson coho-
mology; it is given by �

dlog zN ; log jzN j
�

D
�
E2; E

an
0 .0/

�
(3.1)

where E2 is a weight 2 Eisenstein series, and Ean
0 .s/ is a family of real-analytic Eisenstein

series depending on a parameter s 2 C. (See also [38] for analogues with coefficients, related
to Eisenstein series of higher weights.)

Rankin–Eisenstein classes and Rankin–Selberg integrals. We shall consider the follow-
ing general setting: we consider a Shimura datum .H; Y/ equipped with an embedding
� W .H;Y/ ! .G;X/, and also with a family of maps

 D . 1; : : : ;  t / W .H;Y/ ! .GL2;H/
t ;

where H is the standard GL2 Shimura datum and t > 1. We then have a collection of classes

zH
N D  �

1 .zN / [ � � � [  �
t .zN / 2 H t

mot
�
YH

�
KH;1.N /

�
;Z.t/

�
;

for some level KH;1.N /, which we call Eisenstein classes forH .

Remark 3.1. One might hope for a broader range of “Eisenstein classes” in motivic coho-
mology, associated to Eisenstein series on other groups which are not just copies of GL2’s.
However, this question seems to be very difficult; see [21] for some results in this direction for
symplectic groups. If we could construct motivic classes associated to Eisenstein series for
the Siegel parabolic of GSp2n (rather than the Klingen parabolic as in [21]), or for the anal-
ogous parabolic subgroup in the unitary group U.n; n/, then it would open the way towards
a far wider range of Euler system constructions.

By a motivic Rankin–Eisenstein class for .G;X/ (with trivial coefficients), we shall
mean a class of the form

�g;?

�
cz

H
N

�
2 H 2cCt

mot
�
YG.K/E ;Z.c C t /

�
;

for someN and some g and levelK. If we choose our data .H;Y/ such that 2cC t D 1C d ,
then these classes land in the cohomological degree we want. The twist c C t is then equal
to dC1Ct

2
; hence, using the Hochschild–Serre spectral sequence, we can project the étale

realisations of these classes into the groupsH 1.E; V�/, where

V� D ��

�
d C 1C t

2

�
:
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Choosing the data
To define a Rankin–Eisenstein class, we need to choose the groupH , and the maps

� W H ! G and  W H ! .GL2/
t . To guide us in choosing these, we shall use “Rankin–

Selberg-type” integral formulas for L-functions of automorphic representations. There are
a wide range of such formulas, relating automorphic L-functions to integrals of the formZ

H.Q/ZG.A/nH.A/

��.�/ �
�
Ean.s1/ � � � � �Ean.sn/

�
dh; (3.2)

whereEan.si / are real-analytic GL2 Eisenstein series, and � is a cuspform in the space of � .
We call these period integrals. Typically, one expects such an integral to evaluate to a product
of one or more copies of the L-function of � , evaluated at some linear combination of the
parameters si . For instance, the Rankin–Selberg integral for GL2 �GL2 is of this form, as
is Novodvorsky’s formula for the L-functions of GSp4 and GSp4 �GL2.

Using the explicit formula (3.1) relating Siegel units to Eisenstein series, one can
often show that the Deligne–Beilinson realisations of Rankin–Eisenstein classes also lead
to integrals of the form (3.2), for suitably chosen � and si . When this applies, we can use
it to relate our motivic Rankin–Eisenstein classes to special values of L-functions2 (as was
carried out in Beilinson’s original paper [3] for the L-functions of GL2 and GL2 �GL2; see,
e.g. [36,42] for more recent examples).

This gives one a guide to constructing “interesting” Rankin–Eisenstein classes for
a given .G;X/: one first searches for a Rankin–Selberg integral describing the relevant L-
function, and then attempts to breathemotivic life into this real-analytic formula, interpreting
it as the Deligne–Beilinson realisation of a motivic Rankin–Eisenstein class. One should
hence interpret Rankin–Eisenstein classes as “motivic avatars” of Rankin–Selberg integral
formulae.

In the anti-cyclotomic .t D 0) case, the period integral (3.2) is more mysterious;
but there are still a number of results and conjectures predicting that these period integrals
should be related to values of L-functions. For instance, the Gan–Gross–Prasad conjecture
[22] gives such a relation in the important cases SO.n/ ,! SO.n/� SO.nC 1/ and U.n/ ,!
U.n/ � U.nC 1/. This conjecture has recently been proved in the unitary case [9], although
the orthogonal case is still open. We refer to Sakellaridis–Venkatesh [58] for conjectural
generalisations to other pairs .G;H/.

2 More precisely, we obtain a relation to the first derivative L0.V �
� ; 1/, with V� being 1-

critical. Unfortunately, this computation does not give us any information about the étale
class inH1.E; V� /, since the motivic class might be in the kernel of the étale realisation
map. (This is the fundamental obstruction to proving the Bloch–Kato conjecture for 1-
critical Galois representations.)
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Example 3.2. In our examples (1)–(6) above, we chooseH and t as follows:

G H t

(1) GL2 �GL2 GL2 1
(2) ResF=Q GL2 GL2 1
(3) GSp4 GL2 �GL1 GL2 2
(4) GSp4 �GL2 GL2 �GL1 GL2 1
(5) GU.2; 1/ GL2 �GL1 ResE=Q GL1 1
(6) U.2n � 1; 1/ U.n � 1; 1/ � U.n; 0/ 0

The integral formulae for L-functions underlying examples (1) and (2) are, respectively, the
classical Rankin–Selberg integral and Asai’s integral formula for quadratic Hilbert modu-
lar forms. Cases (3) and (4) are related to Novodvorsky’s integral formula for GSp4 �GL2

L-functions (with an additional Eisenstein series on the GL2 factor in the former case);
and case (5) to an integral studied by Gelbart and Piatetski-Shapiro in [23]. Example (6) is
related to conjectures of Getz–Wambach [24] on Friedberg–Jacquet periods for automorphic
representations of unitary groups.

Rankin–Eisenstein classes and norm relations. In order to build Euler systems (either
full or anticyclotomic) from Rankin–Eisenstein classes, we need the following conditions to
hold:

• (“Open orbit” condition) The groupH has an open orbit on the product

.G=BG/ � .P1/t ;

where BG is a Borel subgroup of G, and H acts on G=BG via �, and on .P1/t

via  .

• (“Small stabiliser” condition) For a point u in the open orbit, let Su be the sub-
group of H which fixes u and acts trivially on the fibre at u of the tautological
.Gm/

t -bundle over .P1/t . Then we require that the image of Su has small image
in the maximal torus quotient ofH .

The role of the “small stabiliser” condition is to allow us to construct classes over
field extensions. Since the connected components of the Shimura variety YG are defined
over abelian extensions of E, and the Galois action on the component group is described
by class field theory, we can modify the Rankin–Eisenstein classes to define elements in
HdC1

ét .YG.K/F ;Zp.
dC1Ct

2
// for a fixed level K and varying abelian extensions F=E. The

class of abelian extensions that arise will depend on the image of Su in the maximal torus
quotient; in the examples (1)–(5) above, since Su D ¹1º and the splitting field of the Galois
action is the full maximal abelian extension of E, so we obtain classes over all ray class
fields of E. On the other hand, in example (6) we obtain only the anticyclotomic extension
(as one would expect, since t D 0 in this case).
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The “open orbit” condition allows us to prove a so-called vertical norm relation,
showing that after applying Hida’s ordinary projector, the Rankin–Eisenstein classes form
norm-compatible families over the tower EŒp1�=E, with uniformly bounded denomina-
tors relative to the étale cohomology with Zp-coefficients. This machinery is worked out in
considerable generality in [44,46]; the arguments also simultaneously show that the Rankin–
Eisenstein classes interpolate in Hida-type p-adic families (in which the weight � of �
varies).

Amuchmore subtle problem is that of horizontal norm relations, comparing classes
over EŒm� and EŒmq� for auxiliary primes q − m, with the Euler factors Pq appearing in
the comparison. The strategy developed in [47] and refined in [48] is to use multiplicity-one
results in smooth representation theory to reduce the norm relation to a purely local cal-
culation with zeta-integrals, which can then be computed explicitly to give the Euler factor.
Thesemultiplicity-one results are themselves closely bound upwith the open-orbit condition;
see [57].

Remark 3.3. The open-orbit condition, together with the assumption that 2c C t D 1C d ,
amount to stating that the diagonal map .�;  / W .H;Y/ ,! .G;X/ � .GL2;H/t is a special
pair of Shimura data in the sense of [59, Definition 3.1]. We can thus interpret the “small
stabiliser” condition, at least for t D 0, as a criterion for when the special cycles studied in
[59] extend to norm-compatible families over field extensions.

4. Deformation to critical values

Critical values. The above methods allow us to define Euler systems for the automorphic
Galois representations V� D ��.

dC1Ct
2

/, where � is cohomological in weight 0; and there
are generalisations to representations which are cohomological for a certain range of non-
zero weights �, determined by branching laws for the restriction of algebraic representations
from QG D G � .GL2/

t to H . Let us write †1 for the set of weights � which are accessible
by these methods, for some specific choice of H and  ; this is a convex polyhedron in the
weight lattice of G, cut out by finitely many linear inequalities. In the examples (1)–(5), one
checks that for any� whose weight lies in†1, the representation V� is 1-critical, consistently
with the conjectures of [49].

However, our goal is to prove the Bloch–Kato conjecture for critical L-values; so
we are interested in those � such that, for � of weight �, the representation V is 0-critical,
so L.�_; 1�t

2
/ is a critical value. The set of such � is a finite disjoint union of polyhedral

regions; and we let †0 be one of these regions, chosen to be adjacent to †1. In order to
approach the Bloch–Kato conjecture, we need to find away of “deforming” our Euler systems
from †1 to †0.

Example 4.1. ForG D GL2 �GL2, the Galois representations associated to cohomological
representations of G have the form .�f ˝ �g/.n/, where f; g are modular forms (of some
weights kC 2; `C 2with k;`> 0) and n is an arbitrary integer. If we set j D kC `C 1� n,
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then the set †1 is given by the inequalities®
0 6 j 6 min.k; `/

¯
;

and there are two candidates for the set †0, namely

¹`C 1 6 j 6 kº and ¹k C 1 6 j 6 `º:

Remark 4.2. A slightly different, but related, numerology applies for anticyclotomic Euler
systems. In these cases, the relevant L-value is always critical, but it lies at the centre of
the functional equation, so it may be forced to vanish for sign reasons. Since the local root
numbers at the infinite places depend on �, we have some ranges of weights where the root
number is C1 (where we expect interesting central L-values) and others where it is �1

(where we expect anticyclotomic Euler systems). These play the roles of the 0-critical and
1-critical regions in the case of full Euler systems.

The Bertolini–Darmon–Prasanna strategy. Although the “0-critical” and “1-critical”
weight ranges are disjoint, we can relate them together p-adically, using a strategy intro-
duced by Bertolini, Darmon and Prasanna in [5].

The weights � of cohomological representations can naturally be seen as points of
a p-adic analytic space W (parametrising characters T .Zp/ ! C�

p , where T is a maximal
torus in G). This space is isomorphic to a finite union of n-dimensional open discs, where n
is the rank of G. Crucially, both †0 and †1 are Zariski-dense in W .

Hida theory shows that there is a finite flat covering E ! W , the ordinary eigenva-
riety of G, whose points above a dominant integral weight � (“classical points”) biject with
automorphic representations � of G which are cohomological of weight � and p-ordinary.

We thus have two separate families of objects, indexed by different sets of classical
points on E:

• at points whose weights lie in †0, we have the critical values of the complex
L-function;

• at points whose weights lie in †1, we have Euler systems arising from motivic
cohomology.

Our first goal will be to “analytically continue” the Euler system classes from †1 into †0.
This is not all that we require, however, since we also need a relation between the

resulting Euler system for each 0-critical V and theL-valueL.V �; 1/. Relations of this kind
are known as explicit reciprocity laws, and they are the crown jewels of Euler system theory.
Following a strategy initiated in [5] and further developed in [37], in order to prove explicit
reciprocity laws, we shall use a second kind of p-adic deformation: besides deforming Euler
system classes from†1 to†0, we shall also deformL-values from†0 into†1. The strategy
consists of the following steps:

(i) We shall construct a function on the eigenvariety – an “analytic p-adic L-
function” – whose values in†0 are criticalL-values (modified by appropriate
periods and Euler factors).
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(ii) Using the Perrin-Riou regulator map of p-adic Hodge theory, we construct a
second analytic function on the eigenvariety – a “motivic p-adic L-function”
– whose value at some cohomological � measures the non-triviality of Euler
system classes for � locally at p.
Note that the motivic p-adic L-function has no a priori reason to be related
to complex L-values; however, its values in †1 are by definition related to
the Euler system classes (which arise from motivic cohomology, hence the
terminology).

(iii) We shall prove a “p-adic regulator formula”, showing that the values of the
analytic p-adic L-function in at points in †1 are related to the localisations
of the Euler system classes at p.

(iv) Using the regulator formula of step (iii), we can deduce that the motivic and
analytic p-adic L-function coincide at points in †1. Since weights lying in
†1 are Zariski-dense in E , this implies the two p-adic L-functions coincide
in †0 as well. Since the values of the analytic p-adic L-function in †0 are
complex L-values, we obtain the sought-for explicit reciprocity law.

At the time of writing, this strategy has only been fully carried out for the examples
(1) and (3) in our list, and partially for (4). However, the remaining cases are being treated
in ongoing work of members of our research groups; and we expect the strategy to extend to
many other Euler systems (both full and anticyclotomic) besides these.

5. Constructing p-adic L-functions

Coherent cohomology
To construct the analytic p-adic L-function, we shall use the integral formula (3.2).

Previously, for weights in †1, we interpreted this integral as a cup-product in Deligne–
Beilinson cohomology. We shall now give a different cohomological interpretation of the
same formula, for weights in the range†0. Following a strategy introduced by Harris [28,29],
we can choose the cusp-form �, and the Eisenstein series, to be harmonic differential forms
(with controlled growth at the boundary) representing Dolbeault cohomology classes valued
in automorphic vector bundles. These can then be interpreted algebraically, via the com-
parison between Dolbeault cohomology and Zariski sheaf cohomology. The upshot is that
L.�_; 1�t

2
/ can be related to a cup-product in the cohomology of coherent sheaves on a

smooth toroidal compactification ShK.H;Y/
tor
† of ShK.H;Y/.

Interpolation
In order to construct a p-adic L-function, we need to show that the cohomology

classes appearing in our formula for theL-function interpolate in Hida-type p-adic families,
and that the cup-product of these families makes sense.
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Until recently, there was a fundamental limitation in the available techniques: we
could only interpolate cohomology classes corresponding to holomorphic automorphic
forms (i.e. degree 0 coherent cohomology), or (via Serre duality) those in the top-degree
cohomology, which correspond to anti-holomorphic forms. This is an obstacle for our
intended applications, since the integral formulas relevant for Euler systems always involve
coherent cohomology in degrees close to the middle of the possible range. (More precisely,
the relevant degree is dCt�1

2
, where t is the number of Eisenstein series present, which is

typically 0; 1; 2.) So unless d is rather small, using holomorphic or anti-holomorphic classes
will not work.

A slightly wider range of “product type” examples arises when .G;X/ is a prod-
uct of two Shimura data .G1;X1/ � .G2;X2/ of approximately equal dimension, with
dim.X1/ � dim.X2/ D t � 1; then we can build a class in the correct degree as the prod-
uct of an anti-holomorphic form on X1 and a holomorphic one on X2, and the resulting
cup-products can often be understood as Petersson-type scalar products in Hida theory. For
instance, the Rankin–Selberg integral formula can be analysed in this way [30]. However, for
G D GSp4 (with t D 2 and d D 3), we need to work with a class in coherentH 2, and these
are not seen by orthodox Hida theory.

Higher Hida theory. A beautiful solution to this problem is provided by the “higher Hida
theory” developed in [55]. Pilloni’s work shows that degree 1 coherent cohomology for the
GSp4 Shimura variety interpolates in a “partial” Hida family, with one weight fixed and the
other varying p-adically.

A key ingredient in this work is to consider a certain stratification of the mod p
fibre of the GSp4 Shimura variety YG (for some level structure unramified at p). This space
parametrises abelian surfaces A with a principal polarisation and some prime-to-p level
structure. There is an open subspace Y ord

G , whose complement has codimension 1, where A
is ordinary; and a slightly larger open set, with complement of codimension 2, where the
p-rank of A (the dimension of the multiplicative part of AŒp�) is > 1. This stratification can
be extended to a toroidal compactification XG of YG ; and Pilloni’s approach to studying
H 1 in p-adic families is based on restricting to the tube of this p-rank > 1 locus in the p-
adic completion XG of XG . (In contrast, orthodox Hida theory for GSp4 involves working
over the ordinary locus; this is very effective for studyingH 0 but disastrous for studyingH 1,
since the ordinary locus is affine in theminimal compactification, so its cuspidal cohomology
vanishes in positive degrees.)

In [45]we carried out a (slightly delicate) comparison of stratifications, showing that
we can find an embedding �g of an H -Shimura variety, for a carefully chosen g, so that the
preimage of the p-rank > 1 locus in XG is the ordinary locus in XH , that is, the image of
XH “avoids” the locus where the p-rank is exactly 1. Using this, we constructed pushforward
maps from the orthodox (H 0) Hida theory forH to Pilloni’sH 1 theory forG, interpolating
the usual coherent-cohomology pushforward maps for varying weights. This is the tool we
need to construct analytic p-adic L-functions for GSp4 and for GSp4 �GL2.
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At present higher Hida theory, in the above sense, is only available for a few specific
groups, although these includemany of the ones relevant for Euler systems: besidesGSp4, the
group GU.2; 1/ is treated in [53], and Hilbert modular groups in [27] (in both cases assuming
G is locally split at p). In the GSp4 and GU.2; 1/ cases the results are also slightly weaker
than one might ideally hope, since we only obtain families in which one component of the
weight is fixed and the others vary (so the resulting p-adic L-functions have one variable
fewer than one would expect). However, we expect that these restrictions will be lifted in
future work.

Remark 5.1. A related theory, higher Coleman theory, has been developed by Boxer and
Pilloni in [13]. This theory also serves to interpolate higher-degree cohomology in fami-
lies, with all components of the weight varying; and the theory applies to any Shimura
variety of abelian type. However, unlike the higher Hida theory of [55], this theory only
applies to cohomology classes satisfying an “overconvergence” condition. This rules out
the 2-parameter GL2 Eisenstein family which plays a prominent role in the constructions
of [45], as this Eisenstein series is not overconvergent. It may be possible to work around
this problem by combining the higher Coleman theory of [13] with the theory of families
of nearly-overconvergent modular forms for GL2 introduced by Andreatta–Iovita [1]; but the
technical obstacles in carrying this out would be formidable.

6. P-adic regulators

We now turn to step (iii) of the BDP strategy: relating values of the analytic p-adic
L-function in the range †1 to the localisations at p of the Euler system classes.

Syntomic cohomology. For all but finitely many primes, the Shimura variety has a smooth
integral model over Zp , and the motivic Rankin–Eisenstein classes can be lifted to the coho-
mology of this integral model. This allows us to study them via another cohomology theory,
Besser’s rigid syntomic cohomology [7]. This is a cohomology theory for smoothZp-schemes
Y, which has two vital properties:

• Via works of Fontaine–Messing and Nizioł, one can define a comparison map
relating syntomic cohomology of Y to étale cohomology of its generic fibre Y ;
and this is compatible with motivic cohomology, in the sense that we have a com-
mutative diagram (see [8]):

H�
mot.Y; n/ H�

mot.Y; n/

H�
syn.Y; n/ H�

ét .Y; n/

rét

FM

where the map rét is the étale realisation map.
The Fontaine–Messing–Niziol map induces the Bloch–Kato exponential map on
Galois cohomology; so, for a class inH�

ét .Y; n/ in the image of motivic cohomol-
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ogy of Y, one can express its Bloch–Kato logarithm via cup-products in syntomic
cohomology (“syntomic regulators”).

• Rigid syntomic cohomology and its variant, fp-cohomology, were defined by
Besser as a generalisation of Coleman’s theory of p-adic integration. It is com-
puted by an explicit complex of sheaves which is a p-adic analogue of the real-
analytic Deligne–Beilinson complex: sections of this complex are pairs .!; �/,
where ! is an algebraic differential form, and � is an overconvergent rigid–
analytic differential form such that d� D .1 � '/!, where ' is a local lift of
the Frobenius of the special fibre.

In a series of works, beginning with the breakthrough [16] by Darmon–Rotger (see
also [6,10,38]), rigid syntomic cohomology has been systematically exploited to compute the
Bloch–Kato logarithms of Rankin–Eisenstein classes whenG is a product of copies of GL2,
in terms of Petersson products of (non-classical) p-adic modular forms. These can then be
interpreted as values of p-adic L-functions in a “1-critical” region †1. All of these p-adic
L-functions are “product type” settings in the sense explained above, involving coherent
cohomology in either top or bottom degree.

Remark 6.1. A key role in these constructions is played by an explicit formula for the image
of the Siegel unit in the syntomic cohomology of the ordinary locus of the modular curve,
which is the p-adic counterpart of equation (3.1): it is represented by the pair�

dlog zN ; .1 � '/ logp zN

�
D

�
E2; E

.p/
0

�
where E.p/

0 is a p-adic Eisenstein series of weight 0.
We can thus understand these syntomic regulator formulae as p-adic counterparts

of the integral formula (3.2), with the integral understood via Coleman’s p-adic integration
theory, and the real-analytic Eisenstein class replaced by a p-adic one.

The GSp4 regulator formula. The approach to computing regulators of étale classes via
syntomic cohomology generalises to Euler systems for other Shimura varieties, such as
GSp4: one can always express the image of the Euler system class under the Bloch–Kato log-
arithm, paired against a suitable de Rham cohomology class (lying in the �_-eigenspace),
as a cup product in syntomic cohomology.

However, syntomic cohomology of the whole Shimura variety is not well-suited to
explicit computations, since there is generally no global lift of the Frobenius of the special
fibre. The first major problem is hence to express the pairing in terms of the syntomic coho-
mology of certain open subschemes of the Shimura variety which do possess an explicit
Frobenius lift. This requires some results on the Hecke eigenspaces appearing in the rigid
cohomology of Newton strata of the special fibre, which are the ` D p counterparts of the
vanishing theorems proved by Caraiani–Scholze [14] for `-adic cohomology for ` ¤ p.

The secondmajor problem is to establish a link between rigid syntomic cohomology
and coherent cohomology, for varieties admitting a Frobenius lifting. We succeeded in prov-
ing such a relation via a new a spectral sequence (the so-called Poznań spectral sequence)
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which is a syntomic analogue of the Hodge–de Rham spectral sequence: itsE1 page is given
by the mapping fibre of 1 � ' on coherent cohomology, and its abutment is rigid syntomic
cohomology. In the case of the ordinary locus of the modular curve, where all coherent coho-
mology in positive degrees vanishes, this reduces to the description of a syntomic class as a
pair of global sections .!; �/ as described above.

Thanks to this new spectral sequence, wewere able to express the syntomic regulator
of our Rankin–Eisenstein class for GSp4 as a pairing in coherent cohomology, which we
could identify as a specialisation of the pairing in higher Hida theory defining the p-adic
L-function. We can hence identify the logarithm of the GSp4 Euler system class with a non-
critical value of a p-adic L-function. This is the first example of a p-adic regulator formula
where the p-adic L-function is not of product type. We expect this strategy to be applicable
to all the other Euler systems mentioned in Section 3 above. Cases (2) and (6) are currently
work in progress by Giada Grossi, and by Andrew Graham and Waqar Shah, respectively;
and case (5) is being explored by some members of our research groups.

7. Deformation to critical values

We can now proceed to the final step of the Bertolini–Darmon–Prasanna strategy:
deforming from †1 to †0.

First, we must show that Euler systems interpolate over the eigenvariety. The étale
cohomology eigenspaces attached to cohomological, p-ordinary automorphic representa-
tions are known to interpolate in families, giving rise to sheaves of Galois representations
over E . With this in hand, the machinery of [44,46] then shows that the Euler system classes
themselves interpolate, giving families of Euler systems taking values in these sheaves.

A generalisation of Coleman and Perrin-Riou’s theory of “big logarithm” maps
(cf. [37]) also allows us to define a motivic p-adic L-function Lmot associated to the bottom
class in our family of Euler systems. Perrin-Riou’s local reciprocity formula implies thatLmot

has an interpolation property both in†0 and in†1. For classical points � whose weights lie
in†1, the value of Lmot interpolates the Bloch–Kato logarithm of the geometrically-defined
Euler system class for V� . Much more subtly, if we evaluate Lmot at points � whose weights
lie in †0, it computes the image under the dual-exponential map of the bottom class in the
Euler system for V� which we have just defined using analytic continuation.

We would like to make the following argument: “the regulator formula shows that
Lmot and the analytic p-adic L-function L agree at points in †1, and these are Zariski-
dense; so L D Lmot everywhere”. This is essentially how we proved an explicit reciprocity
law for GL2 �GL2 in [37]. Unfortunately, there are two subtle technical hitches which occur
in making this argument precise for GSp4.

The first is thatL andLmot take values in different line bundles over the eigenvariety
E (one interpolating coherent cohomology, and the other Dcris of a certain subquotient of
étale cohomology). At each classical point of E , we have a canonical isomorphism between
the fibres of these two line bundles; but it is far from obvious a priori that these “pointwise”
isomorphisms at classical points interpolate into an isomorphism of line bundles. For the
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GL2 ordinary eigenvariety, we do have such an isomorphism, the p-adic Eichler–Shimura
isomorphism of Ohta [54] (extended to non-ordinary families in [2]). However, the case of
higher-dimensional Shimura varieties such as GSp4 is more difficult: one expects several
Eichler–Shimura isomorphisms, each capturing coherent cohomology in a different degree,
and at present only the case ofH 0 is available in the literature [19]. For the problem at hand,
it is the coherentH 1 (and duallyH 2) which is relevant.

The second is that, while†1 is indeed Zariski-dense in the eigenvariety, the function
L is only defined on a lower-dimensional “slice” of the eigenvariety (onwhich theGSp4 form
has weight .r1; r2/, with r1 varying and r2 fixed), and the intersection of each individual slice
with †1 is not Zariski-dense in the slice.

In [50], we circumvented these problems in a somewhat indirect way, by appealing to
a second, independent construction of an analytic p-adic L-function, defined using Shalika
models for GL4 [20]. As written this construction shares with [45] the shortcoming of requir-
ing r2 to be fixed, but the methods of [44] can be applied in order to extend this construction
by varying r2 as well. Using this we were able to

The lack of an Eichler–Shimura isomorphism in families – or, more precisely, of an
isomorphism between the sheaves in which Lmot and the GL4 p-adicL-function take values
– can be dealt with via the so-called “leading term argument”. This proceeds as follows.
There is clearly a meromorphic isomorphism between these sheaves which maps one p-adic
L-function to the other (since both are clearly non-zero).3 If this meromorphic isomorphism
degenerates to zero at some “bad” 0-critical � , then the bottom class in our Euler system
for � lies in the kernel of the Perrin-Riou regulator. However, this would also apply to all
the classes cŒm� in this Euler system, for all values of m. So we obtain an Euler system
satisfying a very strong local condition at p; and a result of Mazur–Rubin [52] shows that
this condition is so strong that it forces the entire Euler system to be zero. Hence we can
replace all of these classes by their derivatives in the weight direction, which amounts to
renormalising the Eichler–Shimura map to reduce its order of vanishing by 1.

Iterating this process, we eventually obtain a non-trivial Euler system for � ; and if
L.�_; 1�t

2
/ ¤ 0, the bottom class of this Euler system is non-zero. We can now deduce the

vanishing ofH 1
f .Q; V�/, where V� D ��.

dC1Ct
2

/, as predicted by the Bloch–Kato conjec-
ture.

Non-regular weights
The above strategy can also be used to study automorphic forms which are not

cohomological (so � does not contribute to étale cohomology), as long as � contributes
to coherent cohomology in the correct degree. For instance, this applies to weight 1 mod-
ular forms, which is crucial in several works such as [17] which use Euler systems to study
the Birch–Swinnerton-Dyer conjecture for Artin twists of elliptic curves. It also applies to

3 This argument can be used to construct an Eichler–Shimura isomorphism in families for
GSp4, which interpolates the classicalH1 comparison isomorphism at almost all classical
points – see [51].
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paramodular Siegel modular forms for GSp4 of parallel weight 2, such as those correspond-
ing to paramodular abelian surfaces.

In this situation, if � is ordinary at p, it follows from the results of [13] that it defines
a point on the eigenvariety E . However, in contrast to the case of cohomological weights, it is
not clear if the eigenvariety is smooth, or étale over weight space, at � ; results of Bellaiche–
Dimitrov show that this can fail even for GL2 [4].

IfA is a paramodular abelian surface overQwhich is ordinary at p, and has analytic
rank 0, then we can use the above approach to prove the finiteness of A.Q/ (as predicted by
the Birch–Swinnerton-Dyer conjecture), and of the p-part of the Tate–Shafarevich group,
under the assumption that the GSp4 eigenvariety be smooth at the point corresponding to A.
This is work in progress.
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