
Counting problems:
class groups, primes,
and number fields
Lillian B. Pierce

Abstract

Each number field has an associated finite abelian group, the class group, that records cer-
tain properties of arithmetic within the ring of integers of the field. The class group is well
studied, yet also still mysterious. A central conjecture of Brumer and Silverman states that
for each prime `, every number field has the property that its class group has very few ele-
ments of order `, where “very few” is measured relative to the absolute discriminant of
the field. This paper surveys recent progress toward this conjecture, and outlines its close
connections to counting prime numbers, counting number fields of fixed discriminant, and
counting number fields of bounded discriminant.
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1. Historical prelude

In a 1640 letter to Mersenne, Fermat stated that an odd prime p satisfies
p D x2 C y2 if and only if p � 1 .mod 4/. Roughly 90 years later, Euler learned of
Fermat’s statement through correspondence with Goldbach, and by 1749, he worked out
a proof. This fits into a bigger question, which Euler studied as well: for each n � 1, which
primes can be written as p D x2 C ny2? Even more generally: which binary quadratic
forms ax2 C bxy C cy2 represent a given integer m? This question also motivated work of
Lagrange and Legendre, and then appeared in Gauss’s celebrated 1801 work Disquisitiones
Arithmeticae; see [26].

Gauss partitioned binary quadratic forms of discriminant D D b2 � 4ac into equiv-
alence classes under SL2.Z/ changes of variable. (Here we will speak only of fundamental
discriminants D; for notes on the original setting, see [84].) Gauss showed that for each D

there are finitely many such classes (the cardinality is the class number, denoted h.D/), and
verified that the classes obey a group law (composition). Based on extensive computation,
Gauss noticed that as D ! �1, small class numbers stopped appearing, writing: “Nullum
dubium esse videtur, quin series adscriptae revera abruptae sint…Demonstrationes autem
rigorosae harum observationum perdifficiles esse videntur.” (“It seems beyond doubt that the
sequences written down do indeed break off… However, rigorous proofs of these observa-
tions appear to be most difficult” [43, p. 13].) As D ! C1, a quite different behavior seemed
to appear, leading to a conjecture that h.D/ D 1 for infinitely many D > 0.

It is hard to exaggerate the interest these two conjectures have generated. In the
1830s, Dirichlet proved a class number formula, relating the class number h.D/ of a (funda-
mental) discriminant D to the value L.1; �/ of an L-function associated to a real primitive
character � modulo D. Consequently, throughout the 1900s, Gauss’s questions were studied
via the theory of the complex-variable functions L.s; �/. A remarkable series of works by
Hecke, Deuring, Mordell, and Heilbronn confirmed that for D < 0 the class number h.D/

attains any value only finitely many times. How many times? Famously, the work of Heeg-
ner, Baker, and Stark proved that there are 9 (fundamental) discriminants D < 0 with class
number 1. In full generality, Goldfeld showed an effective lower bound for h.D/ when D < 0

would follow from a specific case of the Birch–Swinnerton-Dyer conjecture, which was then
verified by Gross and Zagier; see [42]. Now, for each 1 � N � 100, one may find the number
of discriminants D < 0 with h.D/ D N in [93]. As for the other conjecture, that infinitely
many (fundamental) discriminants D > 0 have class number 1, this remains open, and very
mysterious. These historical antecedents hint at the intertwined currents of “counting” and
the analytic study of L-functions, which will also be present in the work we will survey.

We briefly mention another historical motivation for the study of class numbers,
namely the failure of unique factorization. For example, in the ring ZŒ

p
�5�, 21 D 3 � 7 but

it also factors into irreducible, nonassociated factors as .1 C 2
p

�5/.1 � 2
p

�5/. Here is a
problem where the failure of unique factorization has an impact. Suppose one is searching
for solutions x; y; z 2 N to the equation xp C yp D zp for a prime p � 3. If a nontrivial
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solution .x; y; z/ exists, then for �p a pth root of unity, we could write

y � y � � � y D .z � x/.z � �px/ � � � .z � �p�1
p x/:

If ZŒ�p� possesses unique factorization, two such factorizations cannot exist, so .x; y; z/

cannot exist—verifying Fermat’s Last Theorem for this exponent p. But to the disappoint-
ment of many, unique factorization fails in ZŒ�p� for infinitely many p. As Neukirch writes,
“Realizing the failure of unique factorization in general has led to one of the grand events in
the history of number theory, the discovery of ideal theory by Eduard Kummer” [69, Ch. I §3].

1.1. The class group
Let K=Q be a number field of degree n, with associated ring of integers OK . Every

proper integral ideal a � OK factors into a product of prime ideals p1 � � � pk in a unique way
(salvaging the notion of unique factorization). Moreover, the fractional ideals of K form an
abelian group JK , the free abelian group on the set of nonzero prime ideals of OK . In the
case that every ideal in JK belongs to the subgroup PK of principal ideals, OK is a principal
ideal domain, and unique factorization holds in OK . But more typically, some “expansion”
occurs when passing to ideals; the class group of K is defined to measure this.

The class group of K is the quotient group

ClK D JK=PK :

The elements in ClK are ideal classes, and the cardinality jClK j is the class number. The
quotient JK=PK is trivial (so that every ideal is a principal ideal, and jClK j D 1) precisely
when unique factorization holds in OK . (Thus the above strategy for Fermat’s Last Theorem
works for p if jClQ.�p/j D 1. In fact, Kummer showed that as long as the class number of
Q.�p/ is indivisible by p, the argument can be salvaged; see [31]. Such a prime is called a
regular prime. Here is an open question: are there infinitely many regular prime numbers?)

By a result of Minkowski in the geometry of numbers, every ideal class in ClK
contains an integral ideal b with norm N.b/ D .OK W b/ satisfying

N.b/ � .2=�/s
p

DK ; (1.1)

where DK D jDisc.K=Q/j and s counts the pairs of complex embeddings of K. As there
are finitely many integral ideals of any given norm, Landau deduced (see [68, Thm. 4.4]):

jClK j �n D
1=2
K logn�1 DK : (1.2)

In particular, the class group of a number field K is always a finite abelian group. (Through-
out, A �� B indicates that there exists a constant C� such that jAj � C�B .)

When K D Q.
p

D/ is a quadratic field, this relates in a precise way to Gauss’s
construction of the class number for binary quadratic forms of discriminant D (see [8]).
In modern terms, Gauss asked whether for each h 2 N, there are finitely many imaginary
quadratic fields K with jClK j D h? (Yes.) Are there infinitely many real quadratic fields K

with jClK j D 1? (We do not know.) In fact, here is an open question: are there infinitely many
number fields, of arbitrary degrees, with class number 1? Here is another open question: are
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there infinitely many number fields, of arbitrary degrees, with bounded class number? These
difficult questions must consider the regulator RK of the field K, due to the (ineffective)
inequalities by Siegel (for quadratic fields) and Brauer (in general) [68, Ch. 8]:

D
1=2�"
K �n;" jClK jRK �n;" D

1=2C"
K ; for all " > 0.

2. The `-torsion conjecture

In addition to studying the size of the class group, it is also natural to study its
structure. We will focus on the `-torsion subgroup, defined for each integer ` � 2 by

ClK Œ`� D
®
Œa� 2 ClK W Œa�` D Id

¯
:

For example, the class number is divisible by a prime ` precisely when jClK Œ`�j > 1. Related
problems include studying the exponent of the class group, or counting how many number
fields of a certain degree have class number divisible, or indivisible, by a given prime `. Such
problems are addressed for imaginary quadratic fields in [4,44,45,82].

In this survey, we will focus on upper bounds for the `-torsion subgroup. The
Minkowski bound (1.2) provides an upper bound for any field of degree n, and all `:

1 �
ˇ̌
ClK Œ`�

ˇ̌
� jClK j �n;" D

1=2C"
K ; for all " > 0. (2.1)

Our subject is a conjecture on the size of the `-torsion subgroup, which suggests that (2.1)
is far from the truth. We will focus primarily on cases when ` is prime, since jClK Œm�j is
multiplicative as a function of m, and for a prime `, jClK Œ`t �j � jClK Œ`�jt (see [73]).

Conjecture 2.1 (`-torsion conjecture). Fix a degree n � 2 and a prime `. Every number
field K=Q of degree n satisfies jClK Œ`�j �n;`;" D"

K for all " > 0.

This conjecture is due to Brumer and Silverman, in the more precise form: is it
always true that log` jClK Œ`�j �n;` log DK= log log DK [17, Question Cl.`; d/]? Brumer and
Silverman were motivated by counting elliptic curves of fixed conductor. Subsequently, this
conjecture has appeared in many further contexts, including bounding the ranks of elliptic
curves [34, §1.2]; bounding Selmer groups and ranks of hyperelliptic curves [10]; counting
number fields [29, p. 166]; studying equidistribution of CM points on Shimura varieties [98,

Conjecture 3.5]; and counting nonuniform lattices in semisimple Lie groups [6, Thm. 7.5].
Conjecture 2.1 is known to be true for the degree n D 2 and the prime ` D 2, when

it follows from the genus theory of Gauss (see [68, Ch. 8.3]). This is the only case in which it
is known. Nevertheless, starting in the early 2000s, significant progress has been made. The
purpose of this survey is to give some insight into the wide variety of methods developed in
recent work toward the conjecture. As an initial measure of progress, we define:

Property Cn;`.�/. Fix a degree n � 2 and a prime `. Property Cn;`.�/ holds if for all
number fields K=Q of degree n, jClK Œ`�j �n;`;�;" D�C"

K for all " > 0.

Gauss proved that C2;2.0/ holds. Until recently, no other case with � < 1=2 was
known.

1943 Counting problems: class groups, primes, and number fields



The first progress was for imaginary quadratic fields. Suppose K D Q.
p

�d/ for a
square-free integer d > 1, and suppose that Œa� is a nontrivial element in ClK Œ`� for a prime
` � 3; thus Œa�` is the principal ideal class. Then by the Minkowski bound (1.1), there exists
an integral ideal b in Œa� such that N.b/ � d 1=2. Moreover, b` is principal, say, generated
by .y C z

p
�d/=2 for some integers y; z, and so .N.b//` D N.b`/ D .y2 C dz2/=4. Con-

sequently, jClK Œ`�j can be dominated (up to a factor d ") by the number of integral solutions
to

4x`
D y2

C dz2; with x � d 1=2; y � d `=4; z � d `=4�1=2: (2.2)

When ` D 3, this can be interpreted in several ways: counting solutions to a congruence
y2 D 4x3 .mod d/; counting perfect square values of the polynomial f .x; z/ D 4x3 � dz2;
or counting integral points on a family of Mordell elliptic curves y2 D 4x3 � D, with
D D dz2. Pierce used the first two perspectives, and Helfgott and Venkatesh used the third
perspective, to prove for the first time that property C2;3.�/ holds for some � < 1=2 [48,70,

71]. (The Scholz reflection principle shows that log3 jClQ.
p

�d/
Œ3�j and log3 jClQ.

p
3d/

Œ3�j

differ by at most 1, so results for 3-torsion apply comparably to both real and imaginary
quadratic fields [76].) When ` � 5, the region in which x; y; z lie in (2.2) becomes inconve-
niently large relative to the trivial bound (2.1). Here is an open question: for a prime ` � 5,
are there at most � d � integral solutions to (2.2), for some � < 1=2?

Recently, Bhargava, Taniguchi, Thorne, Tsimerman, and Zhao made a breakthrough
on property Cn;2.�/ for all n � 3. Fix a prime ` and a number field K of degree n. Given
any nontrivial ideal class Œa� 2 ClK Œ`�, they show it contains an integral ideal b with b` a
principal ideal generated by an element ˇ lying in a well-proportioned “box.” By an inge-
nious geometry of numbers argument, they show the number of such generators ˇ in the box
is � D

`=2�1=2
K . If ` � 3, this far exceeds the trivial bound (2.1), but if ` D 2, it slightly

improves it. The striking refinement comes by recalling that any ˇ of interest must also have
jNK=Q.ˇ/j D N.b`/ D .N.b//` be a perfect `th power of an integer, say, y`. For ` D 2, they
apply a celebrated result of Bombieri and Pila to count integral solutions .x;y/ to the degree
n equation NK=Q.ˇ C x/ D y2 [15]. This strategy proves that property Cn;2.1=2 � 1=2n/

holds for all degrees n � 3. Further refinements for degrees 3; 4 show C3;2.0:2785 : : :/ and
C4;2.0:2785 : : :/ hold; see [10].

Only two further nontrivial cases of property Cn;`.�/ are known, and for these we
introduce the Ellenberg–Venkatesh criterion.

2.1. The Ellenberg–Venkatesh criterion
An important criterion for bounding `-torsion in the class group of a number field

K relies on counting small primes that are noninert in K. The germ of the idea, which has
been credited independently to Soundararajan and Michel, goes as follows. Suppose, for
example, that K D Q.

p
�d/ is an imaginary quadratic field with d square-free, and ` is

an odd prime. Let H denote ClK Œ`�. Then jH j D jClK j=ŒClK W H�, and to show that jH j

is small, it suffices to show that the index ŒClK W H� is large. Now suppose that p1 ¤ p2

are rational primes not dividing 2d that both split in K, say, p1 D p1p�
1 and p2 D p2p�

2 ,
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where � is the nontrivial automorphism of K. We claim that as long as p1;p2 are sufficiently
small, p1 and p2 must represent different cosets of H . Indeed, supposing to the contrary that
p1H D p2H , one deduces that p1p�

2 2 H so that .p1p�
2 /` is a principal ideal, say, generated

by .y C z
p

�d/=2, for some y; z 2 Z. Taking norms shows

4.p1p2/`
D y2

C dz2: (2.3)

If p1; p2 < .1=4/d 1=.2`/, this forces z D 0, which yields a contradiction, since 4.p1p2/`

cannot be a perfect square. This proves the claim. In particular, if there are M such distinct
primes p1; : : : ;pM < .1=4/d 1=2` with pj − 2d and pj split in K, then jClK Œ`�j � jClK jM �1.

Ellenberg and Venkatesh significantly generalized this strategy to prove an influen-
tial criterion, which we state in the case of extensions of Q [34]. (Throughout this survey,
we will focus for simplicity on extensions of Q, but many of the theorems and questions we
mention have analogues in the literature over any fixed number field.)

Ellenberg–Venkatesh criterion. Suppose K=Q is a number field of degree n � 2, fix an
integer ` � 2, and fix � < 1

2`.n�1/
. Suppose that there are M prime ideals p1; : : : ; pM � OK

such that each pj has norm N.pj / < D
�
K , pj is unramified in K and pj is not an extension

of a prime ideal from any proper subfield of K. Thenˇ̌
ClK Œ`�

ˇ̌
�n;`;" D

1
2 C"

K M �1; for all " > 0. (2.4)

(A prime ideal p � OK lying above a prime p 2 Q is unramified in K=Q if
p2 − pOK ; a prime ideal p � OK is an extension of a prime ideal in a proper subfield
K0 � K if there exists a prime ideal p0 � OK0 such that p D p0OK .) For example, if
p < D

�
K is a rational prime that splits completely in K, so that pOK D p1 � � � pn for distinct

prime ideals pj , then each pj satisfies the hypotheses of the criterion. In particular, if M

rational (unramified) primes p1; : : : ; pM < D
�
K split completely in K, then (2.4) holds.

Alternatively, it suffices to exhibit prime ideals pj � OK of degree 1, since such a prime
ideal cannot be an extension of a prime ideal from a proper subfield.

Here is one of Ellenberg and Venkatesh’s striking applications, which shows that
C2;3.1=3/ holds—the current record for n D 2, ` D 3. Fix a large square-free integer d > 1.
Any prime p − 6d that is inert in Q.

p
�3/ must split either in Q.

p
d/ or in Q.

p
�3d/.

Thus for any � < 1=6, at least one field K 2 ¹Q.
p

d/; Q.
p

�3d/º has a positive proportion
of the primes .1=2/d � � p � d � split in K. By the Ellenberg–Venkatesh criterion (2.4), this
field K then has the property that jClK Œ3�j � D

1=3C"
K for all " > 0. By the Scholz reflection

principle, this bound also applies to the other field in the pair, and C2;3.1=3/ holds.
The Scholz reflection principle has also been generalized by Ellenberg and Venka-

tesh to bound `-torsion (for odd primes `) in class groups of even-degree extensions of certain
number fields. In particular, by pairing their criterion with a reflection principle, they show
that C3;3.1=3/ holds and C4;3.�/ holds for some � < 1=2 [34, Cor. 3.7]. This concludes the
list of degrees n and primes ` for which property Cn;`.�/ is known for some � < 1=2.

Here are open problems: reduce the value � < 1=2 for which Cn;`.�/ holds, when
n � 3 and ` D 2, or when n D 2; 3 or 4 and ` D 3. For n D 2; 3 or 4 and a prime ` � 5,
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prove for the first time that Cn;`.�/ holds for some � < 1=2. For n � 5 and a prime ` � 3,
prove for the first time that Cn;`.�/ holds for some � < 1=2.

The Ellenberg–Venkatesh criterion underlies most of the significant recent progress
on bounding `-torsion in class groups. What is the best result it can imply? Assuming the
Generalized Riemann Hypothesis, given any number field K=Q of degree n with DK suffi-
ciently large, a positive proportion of primes p < D

�
K split completely in K, implyingˇ̌

ClK Œ`�
ˇ̌

�n;`;" D
1
2 � 1

2`.n�1/
C"

K ; for all " > 0. (2.5)

As this is a useful benchmark, we will call this the GRH-bound, and for convenience set
�GRH D

1
2

�
1

2`.n�1/
once n; ` have been fixed. Thus if GRH is true, for each n; `, property

Cn;`.�GRH/ holds. There has been intense interest in proving this without assuming GRH,
and this will be our next topic.

3. Families of fields

So far we have considered, for each degree n, the “family” of number fields K=Q of
degree n. Let us formalize this, letting Fn.X/ be the set of all degree n extensions K of Q,
with DK D jDisc.K=Q/j � X ; let Fn D Fn.1/. It is helpful at this point to consider more
specific families of fields of a fixed degree. For example, we could define F �

2 .X/ to be the
set of imaginary quadratic fields K with DK � X , and similarly F C

2 .X/ for real quadratic
fields. In general, given a transitive subgroup G � Sn, define the family

Fn.GI X/ D
®
K=Q W deg K=Q D n; Gal. QK=Q/ ' G; DK � X

¯
; (3.1)

where all K are in a fixed algebraic closure Q, QK is the Galois closure of K=Q, the Galois
group is considered as a permutation group on the n embeddings of K in Q, and the isomor-
phism with G is one of permutation groups. When F is such a family, we define:

Property CF ;`.�/ holds if for all fields K 2 F , jClK Œ`�j �n;`;�;" D�C"
K for all " > 0.

Since Property CF ;`.�/ remains out of reach for almost all families, we also consider:

Property C�
F ;`

.�/ holds if for almost all fields K 2 F , jClK Œ`�j �n;`;�;" D�C"
K for all

" > 0. We say that a result holds for “almost all” fields in a family F if the subset E.X/ of
possible exceptions is density zero in F .X/, in the sense that

jE.X/j

jF .X/j
! 0 as X ! 1.

Here too, the first progress came for imaginary quadratic fields. Soundararajan
observed that among imaginary quadratic fields with discriminant in a dyadic range
Œ�X; �2X�, at most one can fail to satisfy jClK Œ`�j � D

1=2�1=2`C"
K [82]. This verified

C�
F�

2 ;`
.�GRH/ for all primes `. For ` D 3 and quadratic fields, Wong observed that

C�

F˙
2 ;3

.1=4/ holds [96]. For any odd prime `, Heath-Brown and Pierce went below the
GRH-bound, proving C�

F�
2 ;`

.1=2 � 3=.2` C 2// [46]. They used the large sieve to show that
aside from at most O.X"/ exceptions, all discriminants �d 2 Œ�X;�2X� have jClQ.

p
�d/

Œ`�j
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controlled by counting the number of distinct primes p1; p2 of a certain size such that (2.3)
has a nontrivial integral solution .y; z/. Then they showed there can be few such solutions,
while averaging nontrivially over d . These methods relied heavily on the explicit nature of
methods for imaginary quadratic fields. Fields of higher degree need a different approach.

3.1. Dual problems: counting primes, counting fields
To apply the Ellenberg–Venkatesh criterion, we face a question such as: “Given a

field, how many small primes split completely in it?” This question is very difficult in general
(and is related to the Generalized Riemann Hypothesis). There is a dual question: “Given a
prime, in how many fields does it split completely?” Ellenberg, Pierce, and Wood devised a
method to apply the Ellenberg–Venkatesh criterion by tackling the dual question instead [33].
The idea goes like this: suppose that each prime splits completely in a positive proportion of
fields in a family F . Then the mean number of primes p � x that split completely in each
field should be comparable to �.x/, and unless the primes conspire, almost all fields in F

should have close to the mean number of primes split completely in them. To prove that the
primes cannot conspire, Ellenberg, Pierce, and Wood developed a sieve method, modeled on
the Chebyshev inequality from probability.

As input the sieve requires precise counts for the cardinality

NF .X I p/ D
ˇ̌®

K 2 F .X/ W p splits completely in K
¯ˇ̌

:

It also requires analogous counts NF .X I p; q/ for when two primes p ¤ q split completely
in K. Suppose one can prove that for some � > 0 and � < 1, for all distinct primes p; q,

NF .X I p; q/ D ı.pq/
ˇ̌
F .X/

ˇ̌
C O

�
.pq/�

ˇ̌
F .X/

ˇ̌� �
; (3.2)

for a multiplicative density function ı.pq/ taking values in .0; 1/. Then Ellenberg, Pierce,
and Wood prove that there exists �0 > 0 (depending on �; � ) such that the mean number of
primes p � X�0 that split completely in fields in F .X/ is comparable to �.X�0/. Moreover,
there can be at most O.jF .X/j1��0/ exceptional fields K in F .X/ such that fewer than half
the mean number of primes split completely in K. Consequently, for any family F for which
the crucial count (3.2) can be proved, combining this sieve with the Ellenberg–Venkatesh
criterion proves that C�

F ;`
.�/ holds for every integer ` � 2, where � D max¹

1
2

� �0;�GRHº.
For which families of fields can (3.2) be proved? Counting number fields is itself a

difficult question. For each integer D � 1, there are a finite number of extensions K=Q of
degree n and discriminant exactly D, by Hermite’s finiteness theorem [78, §4.1]. Let Nn.X/

denote the number of degree n extensions K=Q with DK � X (counted up to isomorphism).
A folk conjecture, sometimes associated to Linnik, states that

Nn.X/ � cnX as X ! 1. (3.3)

When nD2, this is essentially equivalent to counting square-free integers (see [33, Appendix]).
For degree n D 3, this is a deep result of Davenport and Heilbronn [28]. For degree n D 4,
it is known by celebrated results of Cohen, Diaz y Diaz, and Olivier (counting quartic fields
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K with Gal. QK=Q/ ' D4), and Bhargava (counting non-D4 quartic fields) [7,20]. For degree
n D 5, it is known by landmark work of Bhargava [9].

The sieve method of Ellenberg, Pierce, and Wood requires an even more refined
count (3.2), with prescribed local conditions and a power-saving error term with explicit
dependence on p; q. Power saving error terms for Nn.X/ were found for n D 3 by Belabas,
Bhargava, and Pomerance [5], Bhargava, Shankar, and Tsimerman [11], Taniguchi and Thorne
[85]; for n D 4 (non-D4) by Belabas, Bhargava, and Pomerance [5]; and for n D 5 by Shankar
and Tsimerman [79]. These results can be refined to prove (3.2). Ellenberg, Pierce, and Wood
used this strategy to prove that when F is the family of fields of degree n D 2;3; 4 (non-D4),
or 5, C�

F ;`
.�GRH/ holds for all sufficiently large primes `. (For the few remaining small `,

C�
F ;`

.�/ holds with a slightly larger � < 1=2.) Counting quartic D4-fields with local con-
ditions, ordered by discriminant, remains an interesting open problem.

The probabilistic method of Ellenberg–Pierce–Wood uses the property that the den-
sity function ı.pq/ in (3.2) is multiplicative (i.e., local conditions at p and q are asymptot-
ically independent). Frei and Widmer have adapted this approach to prove C�

F ;`
.�GRH/ for

all sufficiently large `, for F a family of totally ramified cyclic extensions of k [40]. (That is,
F comprises cyclic extensions K=k of degree n in which every prime ideal of Ok not divid-
ing n is either unramified or totally ramified in K). This family is chosen since the density
function ı.pq/ is multiplicative. It would be interesting to investigate whether a probabilistic
method can rely less strictly upon multiplicativity of the density function.

There is a great obstacle to expanding the above approach to the family of all fields
of degree n when n � 6. Then, even the asymptotic (3.3) is not known. For each n � 6,

Nn.X/ � anXc0.log n/2

(3.4)

is the best-known bound, with c0 D 1:564, by Lemke Oliver and Thorne [61]; this improves
on Couveignes [25], Ellenberg and Venkatesh [36], and Schmidt [75]. For lower bounds, in
general the record is Nn.X/ � X1=2C1=n, for all n � 7 [12]. For any n divisible by p D 2; 3

or 5, Klüners (personal communication) has observed that Nn.X/ � X , since there exists a
field F=Q of degree n=p such that degree p Sp-extensions of F exhibit linear asymptotics.

Tackling the problem of counting primes with certain splitting conditions in a spe-
cific field via the dual problem of counting fields with certain local conditions at specific
primes seems out of reach for higher degree fields. How about tackling the problem of count-
ing primes directly?

4. Counting primes with L-functions

The prime number theorem states that the number �.x/ of primes p � x satis-
fies �.x/ � Li.x/ as x ! 1. To count small primes, or primes in short intervals, requires
understanding the error term, as well as the main term. For each 1=2 � � < 1, the statement

�.x/ D Li.x/ C O.x�C"/ for all " > 0 (4.1)

is essentially equivalent to the statement that the Riemann zeta function �.s/ is zero-free for
<.s/ > � [27, Ch. 18]. The Riemann Hypothesis conjectures this is true for � D 1=2; it is
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not known for any � < 1. The best known Vinogradov–Korobov zero-free region is:

� � 1 �
C

.log t /2=3.log log t /1=3
; t � 3; (4.2)

with an absolute constant C > 0 computed by Ford [37].
To count primes with a specified splitting type in a Galois extension L=Q of degree

nL � 2, consider the counting function

�C .x; L=Q/ D

ˇ̌̌̌²
p � x W p unramified in L;

�
L=Q

p

�
D C

³ˇ̌̌̌
; (4.3)

in which Œ L=Q
p

� is the Artin symbol and C is any fixed conjugacy class in G D Gal.L=Q/.
For example, when L D Q.e2�i=q/, this can be used to count primes in a fixed residue class
modulo q. Or, for example, for any Galois extension L=Q, when C D ¹Idº, this counts primes
that split completely in L. By the celebrated Chebotarev density theorem [88],

�C .x; L=Q/ �
jC j

jGj
Li.x/; as x ! 1. (4.4)

But just as for �.x/, to count small primes accurately requires more quantitative information.
A central goal is to prove an asymptotic for �C .x;L=Q/ that is valid for x very small relative
to DL D jDiscL=Qj, and with an effective error term. This requires exhibiting a zero-free
region for the Dedekind zeta function �L.s/. This is more complicated than (4.2), due to the
possibility of an exceptional Landau–Siegel zero: within the region

� � 1 � .4 log DL/�1; jt j � .4 log DL/�1; (4.5)

�L.� C i t/ can contain at most one (real, simple) zero, denoted ˇ0 if it exists. (As observed
by Heilbronn and generalized by Stark, if ˇ0 exists then it must “come from” a quadratic
field, in the sense that L contains a quadratic subfield F with �F .ˇ0/ D 0 [47,83].)

Lagarias and Odlyzko used the zero-free region (4.5) to prove there exist absolute,
computable constants C1; C2 such that for all x � exp.10nL.log DL/2/,ˇ̌̌̌

�C .x; L=Q/ �
jC j

jGj
Li.x/

ˇ̌̌̌
�

jC j

jGj
Li.xˇ0/ C C1x exp

�
�C2n

�1=2
L .log x/1=2

�
; (4.6)

in which the ˇ0 term is present only if ˇ0 exists (see [60], and Serre [77]). This was the
first effective Chebotarev density theorem. It can be difficult to apply to questions of interest
because of the mysterious ˇ0 term, and because x must be a large power of DL (certainly
at least x � D

10nL

L ). In contrast, to apply the Ellenberg–Venkatesh criterion to a field K of
degree n, we aim to exhibit primes p < D

�
K that split completely in the Galois closure QK

(and hence in K), with � � 1=.2`.n � 1// ! 0 as n;` ! 1. (These primes are even smaller
relative to D QK , since D

jGj=n
K �G D QK �G D

jGj=2
K , where G D Gal. QK=Q/ [72].)

If GRH holds for �L.s/, then �L.s/ is zero-free for <.s/ > 1=2, and Lagarias and
Odlyzko improve (4.6) in three ways: (i) it is valid for x � 2; (ii) the ˇ0 term is not present;
(iii) the remaining error term is O.x1=2 log.DLxnL//. Properties (i) and (ii) show that for
every � > 0, for every degree n extension K=Q with DK sufficiently large, at least � �.D

�
K/

primes p � D
�
K split completely in the Galois closure QK (and hence in K). When input into
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the Ellenberg–Venkatesh criterion, this is the source of the GRH-bound (2.5) for all integers
` � 2.

Here is a central goal: improve the Chebotarev density theorem (4.6) without assum-
ing GRH, so that (i0) for any � > 0 it is valid for x as small as x � D

�
L (for all DL sufficiently

large) and (ii) the ˇ0 term is not present. (For many applications, the final error term in (4.6)
suffices as is.) If this held for L D QK the Galois closure of a field K, the Ellenberg–Venkatesh
criterion would imply the GRH-bound (2.5) for `-torsion in ClK for all integers ` � 2, with-
out assuming GRH. Recently, Pierce, Turnage-Butterbaugh, and Wood showed that the key
improvements (i0) and (ii) hold if for some 0 < ı � 1=4, �L.s/=�.s/ is zero-free for s D � C i t

in the box
1 � ı � � � 1; jt j � log D

2=ı
L : (4.7)

Proving this for any particular L-function �L.s/=�.s/ of interest is out of reach. Instead, it can
be productive to study a family of L-functions. In particular, if F D Fn.GI X/ is a family
of degree n fields with fixed Galois group of the Galois closure, property C�

F ;`
.�GRH/ will

follow (for all integers ` � 2) if it is true for almost all fields K 2 Fn.GIX/, that � QK.s/=�.s/

is zero-free in the box (4.7). This was the strategy Pierce, Turnage-Butterbaugh, and Wood
developed in [72], which we will now briefly sketch.

4.1. Families of L-functions
There is a long history of estimating the density of zeroes within a certain region,

for a family of L-functions. If we can show there are fewer possible zeroes in the region than
there are L-functions in the family, then some of the L-functions must be zero-free in that
region. We single out a result of Kowalski and Michel, who used the large sieve to prove
a zero density result for families of cuspidal automorphic L-functions [56]. In particular,
for suitable families, their result implies that almost all L-functions in the family must be
zero-free in a box analogous to (4.7).

There are two fundamental barriers to applying this to our problem of interest: the
representation underlying � QK.s/=�.s/ is not always cuspidal, and it is not always known to
be automorphic. Suppose G has irreducible complex representations �0; �1; : : : ; �r , with �0

the trivial representation. Then for K 2 Fn.GI X/, � QK is a product of Artin L-functions,

� QK.s/=�.s/ D

rY
j D1

L.s; �j ; QK=Q/dim �j : (4.8)

The Artin (holomorphy) conjecture posits that for each nontrivial irreducible representation
�j , L.s; �j ; QK=Q/ is entire. The (strong) Artin conjecture posits that for each nontrivial irre-
ducible representation �j , there is an associated cuspidal automorphic representation � QK;j

of GL.mj /=Q, and L.s; � QK;j / D L.s; �j ; QK=Q/. This is known for certain types of repre-
sentations of certain groups, but otherwise is a deep open problem (see recent work in [19]).
For the moment, we will proceed by assuming the strong conjecture. Then the factorization
(4.8) naturally slices the family � QK.s/=�.s/, as K varies over Fn.GI X/, into r families
L1.X/; L2.X/; : : : ; Lr .X/, where each Lj .X/ is the set of cuspidal automorphic repre-
sentations � QK;j associated to the representation �j . Kowalski and Michel’s result applies
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to each family Lj .X/ individually. This proves that every representation � 2 Lj .X/ has
associated L-function L.s; �/ being zero-free in the box (4.7)—except for a possible subset
of “bad” representations � , of density zero in Lj .X/, for which L.s; �/ could have a zero
in the box. (Of course, no such zero exists if GRH is true, but we are not assuming GRH.)

Now a crucial difficulty arises: if there were a “bad” representation � 2 Lj .X/,
in how many products (4.8) could it appear, as K varies over Fn.GI X/? Each field K

for which the “bad” factor L.s; �/ appears could have a zero of � QK.s/=�.s/ in (4.7). Thus
the crucial question is: for a fixed nontrivial irreducible representation � of G, how many
fields K1; K2 2 Fn.GI X/ have L.s; �; QK1=Q/ D L.s; �; QK2=Q/? This can be stated a
different way. Given a subgroup H of G, let QKH denote the subfield of QK fixed by H . It
turns out that the question can be transformed into: how many fields K1; K2 2 Fn.GI X/

have QK
Ker.�/
1 D QK

Ker.�/
2 ? Let us call this a collision. If a positive proportion of fields in

Fn.GI X/ can collide for �j , then via the factorization (4.8), the possible existence of even
one “bad” element in Lj .X/ could allow a positive proportion of the functions � QK.s/=�.s/

to have a zero in (4.7). In particular, then this approach would fail to prove C�
F ;`

.�GRH/

for the family F D Fn.GI X/. To rule this out, we aim to show that for each nontrivial
irreducible representation �j of G, collisions are rare.

We define the “collision problem” for the family Fn.GI X/: how big is

max
�

max
K12Fn.GIX/

ˇ̌®
K2 2 Fn.GI X/ W QK1

Ker.�/
D QK2

Ker.�/¯ˇ̌
‹ (4.9)

Here the maximum is over the nontrivial irreducible representations � of G with Ker.�/

a proper normal subgroup of G. Suppose for a particular family Fn.GI X/, the collisions
(4.9) number at most � X˛ . Then the strategy sketched here ultimately shows that aside
from at most � X˛C" exceptional fields (for any " > 0), every field in K 2 Fn.GI X/ has
the property that an improved Chebotarev density theorem with properties (i0) and (ii) holds
for its Galois closure QK. If we can prove simultaneously that jFn.GI X/j � Xˇ for some
ˇ > ˛, then the improved Chebotarev density theorem holds for almost all fields in the family.
Consequently, we would obtain property C�

F ;`
.�GRH/, for all integers ` � 2.

Thus the goal of bounding `-torsion in class groups of fields in the family Fn.GIX/

has been transformed into a question of counting how often certain fields share a subfield. For
which families can the collision problem (4.9) be controlled? For some groups, the number
of collisions can be � jFn.GI X/j (for example, G D Z=4Z/. On the other hand, if G is a
simple group, or if all nontrivial irreducible representations of G are faithful, the number of
collisions is � 1 (but a lower bound jFn.GI X/j � Xˇ for some ˇ > 0 may not be known,
yet). In general, controlling the collision problem is difficult.

One idea is to restrict attention to an advantageously chosen subfamily of fields, call
it F �

n .GI X/ � Fn.GI X/. To bound (4.9) within a subfamily it suffices to count

max
H

max
F

deg.F=Q/DŒGWH�

ˇ̌®
K 2 F �

n .GI X/ W QKH
D F

¯ˇ̌
: (4.10)

Here H ranges over the proper normal subgroups of G that appear as the kernel of some non-
trivial irreducible representation. For some groups G, if F �

n .GI X/ is defined appropriately,
this can be further transformed into counting number fields with fixed discriminant.
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Let us see how this goes in the example G D Sn with n D 3 or n � 5, so that
An is the only nontrivial proper normal subgroup (the kernel of the sign representation).
Consider the subfamily F �

n .SnI X/ of fields with square-free discriminant. (These are a
positive proportion of all degree n Sn-fields for n � 5 and conjecturally so for n � 6.) Then
for H D An and F a fixed quadratic field, it can be shown that any field K counted in (4.10)
must have the property that DK D DF (up to some easily controlled behavior of wildly
ramified primes). Under this very strong identity of discriminants, (4.10) is dominated by

max
D�1

ˇ̌®
K 2 F �

n .SnI X/ W DK D D
¯ˇ̌

: (4.11)

This strategy transforms the collision problem into counting fields of fixed discriminant.
For certain other groups G, (4.10) can also be dominated by a quantity analogous

to (4.11) if the subfamily F �
n .GI X/ is defined by specifying that each prime that is tamely

ramified in K has its inertia group generated by an element in a carefully chosen conjugacy
class I of G. For such a group G, the final step in this strategy for proving improved Cheb-
otarev density theorems for almost all fields in the family F �

n .GI X/ is to bound (4.11). If
jF �

n .GI X/j � Xˇ is known, it suffices to prove (4.11) is � X˛ for some ˛ < ˇ. In gen-
eral, counting number fields with fixed discriminant is very difficult—we will return to this
problem later. But for some families F �

n .GI X/, (4.11) can be controlled sufficiently well,
relative to a known lower bound for jF �

n .GI X/j.
This is the strategy developed by Pierce, Turnage-Butterbaugh, and Wood in [72].

The result is an improved Chebotarev density theorem, with properties (i0) and (ii), that
holds unconditionally for almost all fields in the following families: (a) Fp.CpI X/ cyclic
extensions of any prime degree; (b) F �

n .CnI X/ totally ramified cyclic extensions of any
degree n � 2; (c) F �

p .DpI X/ prime degree dihedral extensions, I being the class of order
2 elements; (d) F �

n .SnI X/ fields of square-free discriminant, n D 3; 4; and (e) F �
4 .A4I X/,

I being either class of order 3 elements. Conditional on the strong Artin conjecture, they
proved the improved Chebotarev density theorem also holds for almost all fields in the follow-
ing families: (f) F �

5 .S5I X/ quintic fields of square-free discriminant; and (g) Fn.AnI X/,
for all n � 5. (There are other families, such as F �

n .SnI X/ for n � 6, to which the strategy
applies, but the current upper bound known for (4.11) is larger than the known lower bound
for jF �

n .SnI X/j.) As a consequence, Pierce, Turnage-Butterbaugh, and Wood proved for
each family (a)–(e) that C�

F ;n.�GRH/ holds unconditionally for all integers ` � 2, and it
holds for each family (f)–(g) under the strong Artin conjecture. This was the first time such
a result was proved for families of fields of arbitrarily large degree.

4.2. Further developments
Since the work outlined above, many interesting new developments have followed,

relating to zero density results for families of L-functions, Chebotarev density theorems for
families of fields, and `-torsion in class groups of fields in specific families.

First, there has been renewed interest in zero density results for families of
L-functions, concerning potential zeroes in regions close to the line <.s/ D 1, and extending
the perspective of Kowalski and Michel [56]; see, for example, [18,49,87].
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Second, several new strategies have focused on the problem of proving effective
Chebotarev density theorems for almost all fields in a family. The work in [72] raised sev-
eral desiderata. Some groups G have the property that no ramification restriction exists that
allows the “collision problem” in the form (4.10) to be transformed into a “discriminant
multiplicity problem” in the form (4.11). For example, this occurs for any noncyclic abelian
group, or D4. These cases remain open; instead, An recently proved a Chebotarev density
theorem for almost all fields in a family of quartic D4-fields associated to a fixed biquadratic
field [2]. Another significant desideratum was to remove the dependence on the strong Artin
conjecture. Thorner and Zaman recently achieved this, by proving a zero density estimate
directly for Dedekind zeta functions, without passing through the factorization (4.8) [86].
But that work is still explicitly conditional on the ability to control a collision problem sim-
ilar to (4.9), for which the best known strategy is still the approach of [72].

Most recently, the collision problem has been bypassed for certain groups G by inter-
esting new work of Lemke Oliver, Thorner, and Zaman [62]. Their key idea when studying
fields in a family Fn.GIX/ is to prove a zero-free region not for � QK=� but for � QK=� QKN where
N is a nontrivial normal subgroup of G. This allows them to replace a collision problem like
(4.9) by an “intersection multiplicity problem,” bounding

max
K12Fn.GIX/

ˇ̌®
K2 2 Fn.GI X/ W QK1 \ QK2 ¤ QKN

1 \ QKN
2

¯ˇ̌
: (4.12)

The number of exceptional fields, for which a desired Chebotarev-type theorem cannot be
verified, is then dominated by (4.12) (up to X"). This is advantageous if G has a unique
minimal nontrivial normal subgroup N , so that (4.12) is � 1. But as a trade-off, one no
longer obtains an effective Chebotarev density theorem for each conjugacy class C in G.

Let �K.x/ count prime ideals p � OK with NK=Qp � x. Let F represent either of
the two following families: degree p fields K=Q for p prime, or degree n Sn-fields K=Q,
for any n � 2. Lemke Oliver, Thorner, and Zaman prove that except for at most � X"

exceptional fields, every K 2 F .X/ has j�K.x/ � �.x/j � C1x exp.�C2

p
log x/ for every

x � .log DK/C3.n;"/. In either family F , they obtain results on `-torsion by applying the
Ellenberg–Venkatesh criterion using prime ideals of degree 1. If ��

K.x/ counts only prime
ideals of degree 1, then ��

K.x/ D �K.x/ C On.
p

x/, so the above result exhibits many small
prime ideals of degree 1. Thus for either family, C�

F ;n.�GRH/ holds unconditionally for all `

(and the exceptional set is very small). (They also exhibit infinitely many degree n Sn-fields
K with ClK as large as possible, but jClK Œ`�j bounded by (2.5) for all `; and infinitely many
totally real degree n Sn-fields K with ClK containing an element of exact order ` and jClK Œ`�j

bounded by (2.5).) What happens when G does not have a unique minimal nontrivial normal
subgroup? Here is an open question: in general, when N is a nontrivial normal subgroup of
G (not necessarily unique or minimal), what is the true order of growth of (4.12) as X ! 1?
Questions about this “intersection multiplicity” are gathered in [62].

Third, increased attention has turned to bounding `-torsion in class groups for all
fields in special families specified by the Galois group: that is, proving property CF ;`.�/

for some � < 1=2. First, Klüners and Wang have proved CF ;p.0/ for the family Fpr .GI X/

for any p-group G; this generalizes the application of genus theory to prove C2;2.0/ [54].
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Second, let G D .Z=pZ/r be an elementary abelian group of rank r � 2, with p prime.
Wang has shown that for every `, within the family of Galois G-fields K=Q, property
CF ;`.1=2 � ı.`; p// holds for some ı.`; p/ > 0 [91]. Since the savings ı.`; p/ is inde-
pendent of the rank, for r sufficiently large this is better than CF ;`.�GRH/. The method of
proof plays off the interaction of three facts arising from the precise structure of G: first,
jClK Œ`�j factors as a product of jClF Œ`�j where F varies over the � pr�1 many degree p

subfields of K, so it suffices to bound one of these factors nontrivially. Second, any rational
prime splits completely in � pr�2 of these subfields, so at least one subfield has a posi-
tive proportion of primes splitting completely in it. Third, the sizes of the discriminants of
the subfields can be played against each other, so that known prime-counting results (which
may a priori seem to count primes that are “too large”) suffice for the application of the
Ellenberg–Venkatesh criterion. This is an interesting counterpoint to the methods described
earlier. In another direction, Wang has developed the notion of a forcing extension; certain
nilpotent groups can be built from elementary p-groups via forcing extensions. If G0 is con-
structed from G by a forcing extension, then CF 0;`.�0/ can be deduced from CF ;`.�/,
for some �; �0 < 1=2, where F is the family of G-extensions and F 0 is the family of
G0-extensions [89].

All of the results mentioned in this section (except where genus theory suffices)
directly apply or build on the Ellenberg–Venkatesh criterion. Can this criterion be strength-
ened? Ellenberg has suggested some possible improvements in [32]. In particular, let
�.K/ WD inf¹HK.˛/ W K D Q.˛/º denote the minimum (relative) multiplicative Weil height
of a generating element of K. Roughly speaking, Ellenberg notes the criterion (2.4) can actu-
ally allow prime ideals with norms as large as �.K/1=`. The restriction to norms < D

1
2`.n�1/

K

in (2.4) was made since the lower bound �.K/ � D
1

2.n�1/

K holds for all fields [80]. Widmer,
also with Frei, has shown that �.K/ can be enlarged for almost all fields in certain families,
leading to improved upper bounds for `-torsion in those fields [41,95]. That is, they improve
the very notion of the “GRH-bound” (2.5), and show that the parameter we have called �GRH

can actually be taken smaller for some fields. Their work raises interesting open questions:
what upper and lower bounds hold for �.K/, for all (or almost all) fields in a family? Ruppert
[74] has conjectured uniform upper bounds �.K/ � D

1=2
K (now proved for almost all fields in

some families by [72]). If this is true, the Ellenberg–Venkatesh criterion would hit a barrier,
for most fields, with a result like jClK Œ`�j � D

1=2�1=2`C"
K for any degree n, still far from

the `-torsion Conjecture. It would be very interesting to find a new, different criterion.

5. Why do we expect the `-torsion conjecture to be true?

Recall that the `-torsion Conjecture 2.1 is still known only in the case stemming
from Gauss’s work, namely for n D 2, ` D 2. It is a good idea to affirm why we believe the
`-torsion Conjecture should be true. We will consider this from three perspectives.
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5.1. From the perspective of the Cohen–Lenstra–Martinet heuristics
So far, when we have mentioned a result for almost all fields in a family, we have

not focused on the size of a potential exceptional set, other than showing it is smaller than
the size of the full family. But to understand the `-torsion Conjecture, we must quantify a
potential exceptional set, and show that for all sufficiently large discriminants, it is empty.

Let us abstract this, for a family F0.X/ of fields K with DK in a dyadic range
.X=2;X�, from which more general results can easily be deduced by summing over � logX

dyadic ranges. Suppose f W F0.X/ ! N is a function with f .K/ � Da
K for all K. Suppose

that for some � < a we can improve this to f .K/ � D�
K for all K outside of some exceptional

set E�
0 .X/ � F0.X/. ThenX

K2F0.X/

f .K/ D

X
K2F0.X/nE�

0 .X/

f .K/ C

X
K2E�

0 .X/

f .K/ �
ˇ̌
F0.X/

ˇ̌
X�

C
ˇ̌
E�

0 .X/
ˇ̌
Xa:

(5.1)

As long as jE�
0 .X/j � jF0.X/jX�.a��/, this shows that f .K/ � X� on average. On the

other hand, suppose we know
P

K2F0.X/ f .K/ � Xb . Then a potential set of exceptions
E�

0 .X/ D ¹K 2 F0.X/ W f .K/ > D�
K º can be controlled by

X�
ˇ̌
E�

0 .X/
ˇ̌

�

X
K2E�

0 .X/

f .K/ �

X
K2F0.X/

f .K/ � Xb : (5.2)

Thus jE�
0 .X/j � Xb��, and exceptional fields are density zero in F0.X/, provided

Xb�� D o.jF0.X/j/. That is, a nontrivial upper bound on `-torsion for “almost all” fields
in a family F is essentially equivalent to the same upper bound “on average.”

To verify the `-torsion Conjecture, we wish to show a “pointwise” bound: for every
" > 0, there exists D" such that when DK � D", there are no exceptions to the bound
jClK Œ`�j � D"

K . The key is to consider not averages but arbitrarily high kth moments. In
the general setting above, suppose that we know

P
K2F0.X/ f .K/k � Xb , for a real number

k � 1. Then for any fixed � > 0, adapting the argument (5.2) shows that jE�
0 .X/j � Xb�k�.

If the kth moment is uniformly bounded by Xb for a sequence of k ! 1, then for each � > 0,
we can take k sufficiently large to conclude that the set of exceptions is empty.

This perspective has been applied by Pierce, Turnage-Butterbaugh, and Wood in [73]

to prove that the `-torsion Conjecture holds for all fields in a family F .X/ if there is a real
number ˛ � 1 such that for a sequence of arbitrarily large k,X

K2F .X/

ˇ̌
ClK Œ`�

ˇ̌k
�n;`;k;˛

ˇ̌
F .X/

ˇ̌˛
; for all X � 1. (5.3)

The Cohen–Lenstra–Martinet heuristics predict that (5.3) holds, in the form of an even
stronger asymptotic with ˛ D 1, for all integers k � 1, for families of Galois G-extensions,
at least for all primes ` − jGj. The appropriate moment formulation can be found in [21]

for degree 2 fields and in [92] for higher degrees, building on [22]. This confirms that the
`-torsion Conjecture follows from another well-known set of conjectures.

The Cohen–Lenstra–Martinet heuristics are a subject of intense interest and much
recent activity. Here are some spectacular successes most closely related to our topic. Dav-
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enport and Heilbronn [28] have provedX
deg.K/D2
0<DK�X

ˇ̌
ClK Œ3�

ˇ̌
�

�
2

3�.2/
C

1

�.2/

�
X I (5.4)

second-order terms have been found in [5,11,85]. Bhargava [7] has provedX
deg.K/D3
0<DK�X

ˇ̌
ClK Œ2�

ˇ̌
�

�
5

48�.3/
C

3

8�.3/

�
X; (5.5)

in which each isomorphism class of fields is counted once. Very recently, [63] obtained ana-
logues of (5.4) for averages over F2m.GI X/ for any permutation group G � S2m that is a
transitive permutation 2-group containing a transposition. See also the work of Smith on the
distribution of 2k-class groups in imaginary quadratic fields [81]; Koymans and Pagano on
`k-class groups of degree ` cyclic fields [59]; Klys on moments of p-torsion in cyclic degree
p fields (conditional on GRH for p � 5) [55]; Milovic and Koymans on 16-rank in quadratic
fields [57,58]; Bhargava and Varma [13,14] elaborating on (5.4) and (5.5).

The perspective of moments (5.3) provides a strong motivation to prove the kth
moment bounds for `-torsion. Fouvry and Klüners have proved an asymptotic for the kth
moments related to 4-torsion when K is quadratic, for all integers k � 1 [38]. Heath-Brown
and Pierce have proved nontrivial bounds for the kth moments of `-torsion for imaginary
quadratic fields, for all odd primes ` [46]. For example, they establish second moment boundsX

KDQ.
p

˙D/
D�X

ˇ̌
ClK Œ3�

ˇ̌2
� X23=18;

X
KDQ.

p
�D/

D�X

ˇ̌
ClK Œ`�

ˇ̌2
� X2� 3

`C1 ; ` � 5 prime, (5.6)

as well as results for the kth moments for all k � 1. In general, proving tighter control on
the size of an exceptional family E�

0 .X/ can be used to deduce a better moment bound for
jClK Œ`�j, similar to (5.1). This has recently been exploited by Frei and Widmer, in combina-
tion with refinements of the Ellenberg–Venkatesh criterion, to improve moment bounds on
`-torsion for the families of fields studied in [72] (if ` is sufficiently large); see [41].

Let us mention a connection to elliptic curves; this was after all the setting in which
Brumer and Silverman initially posed the `-torsion Conjecture. Let E.q/ denote the number
of isomorphism classes of elliptic curves over Q with conductor q. Brumer and Silverman
have conjectured that E.q/ �" q" for every q � 1, " > 0 [17]. Conditionally, this follows
from GRH combined with a weak form of the Birch–Swinnerton-Dyer conjecture. They also
showed this follows from the 3-torsion Conjecture for quadratic fields, by proving

E.q/ �" q" max
1�D�1728q

ˇ̌
ClQ.

p
˙D/Œ3�

ˇ̌
; for all " > 0. (5.7)

Duke and Kowalski have combined this with the celebrated asymptotic (5.4) to boundP
1�q�Q E.q/ � Q1C" for every " > 0 [30]. (See also [39] for ordering by discriminant.)

Pierce, Turnage-Butterbaugh, and Wood have recently proved that for all k � 1, the kth
moment of 3-torsion in quadratic fields dominates the kth moment of E.q/, for a numer-
ical constant  � 1:9745 : : : coming from [48], which sharpened the relation (5.7). Thus
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new moment bounds for E.q/ can be obtained from (5.6), for example. Here is an open
problem: prove that

P
1�q�Q E.q/ D o.Q/. This would show for the first time that integers

that are the conductor of an elliptic curve have density zero in Z. In fact, it is conjectured by
Watkins that this average is asymptotic to cQ5=6 for a certain constant c [94] (building on an
analogous conjecture by Brumer–McGuinness for ordering by discriminant [16]).

To conclude, in this section we saw that the truth of the `-torsion Conjecture is
implied by the truth of the well-known Cohen–Lenstra–Martinet heuristics on the distribu-
tion of class groups.

5.2. From the perspective of counting number fields of fixed discriminant
Let K=Q be a degree n extension. The Hilbert class field HK is the maximal abelian

unramified extension of K, and ClK is isomorphic to Gal.HK=K/. A second way to motivate
the `-torsion Conjecture is to count intermediate fields between K and HK .

Here is an argument recorded by Pierce, Turnage-Butterbaugh, and Wood in [73].
Fix a prime ` and write ClK additively, so that ClK Œ`� ' ClK =` ClK . Now define the
fixed field L D H

` ClK
K lying between K and HK , so Gal.L=K/ ' ClK Œ`�. Each surjection

ClK Œ`� ! Z=`Z generates an intermediate field M , with K � M � L and deg.M=Q/ D n`.
If jClK Œ`�j D `r , say, this produces � `r�1 such fields M . The crucial point is that since HK

is an unramified extension, all these fields satisfy a rigid discriminant identity DM D D`
K .

Consequently, if we can count how many number fields of degree n` can share the same
fixed discriminant, then we can bound `-torsion in ClK . (We have seen this problem before.)
We formalize the problem of counting number fields of fixed discriminant as follows:

Property Dn.�/. Fix a degree n � 2. Property Dn.�/ holds if for every " > 0 and for every
fixed integer D > 1, at most �n;" D�C" fields K=Q of degree n have DK D D.

The strategy sketched above ultimately proves that property Dn`.�/ implies
Cn;`.`�/. This leads inevitably to the question: is property Dn`.0/ true? Here is a con-
jecture:

Conjecture 5.1 (Discriminant multiplicity conjecture). For each n � 2, for every " > 0, and
for every integer D > 1, at most �n;" D" fields K=Q of degree n have DK D D.

This conjecture has been recorded by Duke [29]. It implies the `-torsion Conjecture,
a link noted in [29, 35] and quantified in [73]. Recall the conjecture (3.3) for counting all
fields of degree n and discriminant DK � X . The Discriminant Multiplicity Conjecture for
degree n would immediately imply Nn.X/ � X1C", which indicates its level of difficulty.
Of course, in general, property Dn.�/ implies Nn.X/ � X1C�C" for all " > 0. (In terms of
lower bounds, Ellenberg and Venkatesh have noted there can be � Dc= log log D extensions
K=Q with a fixed Galois group and fixed discriminant D [35].)

The Discriminant Multiplicity Conjecture posits that Dn.0/ holds for each n � 2.
This is true for n D 2, but it is not known for any other degree. For degrees n D 3; 4; 5,
the best-known results currently are D3.1=3/ by [34]; D4.1=2/ as found in [52, 72, 73, 97];
D5.199=200/ as found in [33], building on [9, 79]. Currently for n � 6, the only result for
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Dn.�/ is a trivial consequence of counting fields of bounded discriminant, as in (3.4), so
in particular � D c0.log n/2 > 1 in those cases. It would be very interesting to improve the
exponent known for Dn.�/, for any fixed degree n � 3.

As is the case for many of the problems surveyed in this paper, it can also be prof-
itable to study the problem within a family F of degree n extensions:

Property DF ;n.�/. Fix a degree n � 2. Property DF ;n.�/ holds if for every " > 0 and for
every fixed integer D > 1, at most �n;" D�C" fields K=Q in the family F have DK D D.

This is the type of property Pierce, Turnage-Butterbaugh, and Wood used to control
the collision problem, in the form (4.11) [72]. Property DF ;n.0/ has recently been proved by
Klüners and Wang, for the family F D Fn.GIX/ of degree n G-extensions for any nilpotent
group G. This was built from the truth of property CF ;p.0/ for F being the family of Galois
H -extensions for H a p-group, in [54]. There are many other cases where it is an interesting
open problem to improve the known bound for Property DF ;n.�/.

To conclude, in this section we saw that the `-torsion Conjecture follows from the
Discriminant Multiplicity Conjecture. Now, recall that we saw in the context of bounding
`-torsion that uniform bounds for arbitrarily high moments can imply strong “pointwise”
results for every field. Can the method of moments be used to approach the Discriminant
Multiplicity Conjecture too? We turn to this idea next.

5.3. From the perspective of counting number fields of bounded discriminant
We come to a third motivation to believe the `-torsion Conjecture. Recall the defi-

nition (3.1) of a family Fn.GI X/ of degree n fields K=Q with Gal. QK=Q/ isomorphic (as
a permutation group) to a nontrivial transitive subgroup G � Sn. Each element g 2 G has
an index defined by ind.g/ D n � og , where og is the number of orbits of g when it acts on
a set of n elements. Define a.G/ according to a.G/�1 D min¹ind.g/ W 1 ¤ g 2 Gº; we see
that 1

n�1
� a.G/ � 1. Malle has made a well-known conjecture [65]:

Conjecture 5.2 (Malle). For each n � 2, for each transitive subgroup G � Sn,ˇ̌
Fn.GI X/

ˇ̌
�G;" Xa.G/C"; for all " > 0. (5.8)

Also, jFn.GI X/j �G Xa.G/.

The full statement of this conjecture is an open problem. Its difficulty is indicated
by the fact that it implies a positive solution to the inverse Galois problem for number fields.
(A refinement in [66] specified a power of log X in place of X"; counterexamples to this
refinement have been found in [50], but the upper bound in (5.8) is expected to be true.)

Malle’s Conjecture has been proved for abelian groups, with a strategy by Cohn
[24], and asymptotic counts by Mäki [64], Wright [97]. For n D 3; 4; 5, it is known for Sn by
the asymptotic (3.3), and for D4 by Baily [3] (refined to an asymptotic in [20]). It is known
for C2 o H under mild conditions on H (in particular, for at least one group of order n

for every even n) by [53], and for Sn � A with A an abelian group by [67, 90]. For prime
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degree p Dp-fields, upper and lower bounds are closely related to p-torsion in class groups
of quadratic fields, and have been studied in [23,41,51].

For many groups, it is a difficult open problem to prove upper or lower bounds
approaching Malle’s prediction. In many results surveyed here, proving a lower bound for
jFn.GI X/j has been an important step, to verify a result applies to “almost all” fields in a
family. For many groups G, it is not even known that jFn.GI X/j � Xˇ for some ˇ > 0 as
X ! 1. Here is a tool to prove such a result: suppose f .X;T1; : : : ;Ts/ 2 QŒX;T1; : : : ;Xs� is
a regular polynomial of total degree d in the Ti and of degree m in X with transitive Galois
group G � Sn over Q.T1; : : : ; Ts/. Then jFn.GI X/j �f;" Xˇ�" for every " > 0, with
ˇ D

1�jGj�1

d.2m�2/
; this is proved in [72]. For G D An, a polynomial f exhibited by Hilbert can

be input to this criterion, implying that jFn.AnI X/j � XˇnC" for some ˇn > 0, providing
the first lower bound that grows like a power of X . Here is an open problem: for many
groups G, no such polynomial f has yet been exhibited.

Now we focus on the conjectured upper bound (5.8) for counting fields with bounded
discriminant. For any family F D Fn.GI X/ of fields, the strong “pointwise” property
DF ;n.0/ implies Malle’s “average” upper bound (5.8) for the group G; see [54]. What is
more surprising is that there is a converse to this. This relates to our question: can the
method of moments be used to deduce the Discriminant Multiplicity Conjecture? Formally,
it can. Given a family F of fields, for each integer D � 1 let m.D/ denote the number of
fields K 2 F with DK D D. If arbitrarily high kth moment bounds are known for the func-
tion m.D/, the Discriminant Multiplicity Conjecture follows; see [73]. But the first moment
of m.D/ is the subject of the Malle Conjecture (5.8), so the method of moments certainly
seems a difficult avenue to pursue. Yet interestingly, Ellenberg and Venkatesh have shown
that in this context the kth moments can be repackaged as averages.

Informally, the idea is to replace bounding the kth moment of the function m.D/

for G-Galois fields in a family F by counting fields in a family F .k/ of Gk-Galois fields.
Ellenberg and Venkatesh order the fields in F .k/ not by discriminant DK , but (roughly
speaking) by the square-free kernel D#

K of the discriminant. They generalize the Malle Con-
jecture to posit that in this ordering, � X1C" fields in F .k/ have D#

K � X , uniformly for
all integers k � 1. Assuming this conjecture, suppose there are m.D/ many G-Galois fields
K1; : : : ;Km.D/ with DKi

D D. Taking composita of k of these generates at least �k m.D/k

many Gk-Galois fields in the family F .k/, with D#
K � D. If we suppose m.D/ � D˛ for

some ˛ > 0 and a sequence of D ! 1, under the generalized Malle Conjecture it must be
that ˛k � 1 for all k � 1. Hence ˛ must be arbitrarily small, as desired.

In full generality, Ellenberg and Venkatesh propose a generalized Malle Conjecture
in terms of an f -discriminant, for any rational class function f , and an appropriate gen-
eralization aG.f / of the exponent in (5.8). They verify that for a particular choice of f ,
this implies the Discriminant Multiplicity Conjecture. More recently, Klüners and Wang
have shown directly that Malle’s Conjecture (5.8) for all groups G implies the Discriminant
Multiplicity Conjecture (also over any number field) [54].

Let us sum up: the upper bound (5.8) in Malle’s Conjecture for all groups G implies
the Discriminant Multiplicity Conjecture. The Discriminant Multiplicity Conjecture implies
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the `-torsion Conjecture. Also, the Discriminant Multiplicity Conjecture for Fn.GIX/ (that
is, property DF ;n.0/) implies Malle’s Conjecture for Fn.GIX/. Moreover, there is one more
converse: Alberts has shown that if the `-torsion Conjecture is true for all solvable extensions
and all primes ` (even just in an average sense), then Malle’s upper bound (5.8) holds for
all solvable groups [1]. Thus Malle’s Conjecture, the Discriminant Multiplicity Conjecture,
and the `-torsion Conjecture are truly equivalent, when restricted to solvable groups. These
relationships provide clear motivation for why so many methods described in this survey
have involved counting number fields.

In conclusion, we have seen from three different perspectives that the `-torsion
Conjecture should be true. But as Gauss wrote, “Demonstrationes autem rigorosae harum
observationum perdifficiles esse videntur.”
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