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Abstract

We explain how the geometric Langlands program inspires some recent new prospectives
of classical arithmetic Langlands program and leads to the solutions of some problems in
arithmetic geometry.
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The classical Langlands program, originated by Langlands in 1960s [41], system-
atically studies reciprocity laws in the framework of representation theory. Very roughly
speaking, it predicts the following deep relations between number theory and representation
theory:

Galois representations oo
Reciprocity law

//

��

automorphic representations

��

Arithmetic data oo
Satake isomorphism

// Spectral data

A special case of this correspondence, known as the Shimura–Tanniyama–Weil conjecture,
implies Fermat’s last theorem (see [62]).

The geometric Langlands program [42], initiated by Drinfeld and Laumon, arose as
a generalization of Drinfeld’s approach [20] to the global Langlands correspondence for GL2

over function fields. In the geometric theory, the fundamental object to study shifts from the
space of automorphic forms of a reductive groupG to the category of sheaves on the moduli
space of G-bundles on an algebraic curve.

For a long time, developments of the geometric Langlands were inspired by prob-
lems and techniques from the classical Langlands, with another important source of inspira-
tion from quantum physics. The basic philosophy is known as categorification/geometriza-
tion. In recent years, however, the geometric theory has found fruitful applications to the clas-
sical Langlands program and some related arithmetic problems. Traditionally, one applies
Grothendieck’s sheaf-to-function dictionary to “decategorify” sheaves studied in geometric
theory to obtain functions studied in arithmetic theory. This was used in Drinfeld’s approach
to the Langlands correspondence for GL2, as mentioned above. Another celebrated example
is Ngô’s proof of the fundamental lemma [55]. In recent years, there appears another pas-
sage from the geometric theory to the arithmetic theory, again via a trace construction, but
is of different nature and is closely related to ideas from physics. V. Lafforgue’s work on the
global Langlands correspondence over function fields [39] essentially (but implicitly) used
this idea.

In this survey article, we review (a small fraction of) the developments of the geo-
metric Langlands program, and discuss some recent new prospectives of the classical Lang-
lands inspired by the geometric theory, which in turn lead solutions of some concrete arith-
metic problems. The following diagram can be regarded as a road map:
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Number theory, arithmetic geometry, harmonic analysis
OO

��

Arithmetic Langlands

Categorification/Geometrization

x�

Geometric Langlands

Decategorification/Trace

7?

Representation theory, geometry, quantum physics

��

OO

Notations. We use the following notations throughout this article. For a field F , let � QF =F

be the Galois group of a Galois extension QF=F . Write �F D �F =F , where F is a separable
closure of F . Often in the article F will be either a local or a global field. In this case, let
WF denote the Weil group of F . Let cycl denote the cyclotomic character.

For a group A of multiplicative type over a field F , let X�.A/ D Hom.AF ;Gm/

denote the group of its characters, andX�.A/DHom.Gm;AF / the group of its cocharacters.
For a prime `, let ƒ be F`, Z`, Q` or a finite (flat) extension of such rings. It will

serve as the coefficient ring of our sheaf theory.

1. From classical to geometric Langlands correspondence

In this section, we review some developments of the geometric Langlands theory
inspired from the classical theory, with another important source of inspiration from quantum
physics. The basic idea is categorification/geometrization, which is a process of replacing
set-theoretic statements with categorical analogues

Numbers Ü Vector spaces Ü Categories Ü 2-Categories Ü � � � : (1.1)

We illustrate this process by some important examples.

1.1. The geometric Satake
The starting point of the Langlands program is (Langlands’ interpretation of) the

Satake isomorphism, in which the Langlands dual group appears mysteriously. Similarly,
the starting point of the geometric Langlands theory is the geometric Satake equivalence,
which is a tensor equivalence between the category of perverse sheaves on the (spherical)
local Hecke stack of a connected reductive group and the category of finite-dimensional alge-
braic representations of its dual group. This is a vast generalization of the classical Satake
isomorphism (via the sheaf-to-function dictionary), and arguably gives a conceptual expla-
nation why the Langlands dual group (in fact, the C -group) should appear in the Langlands
correspondence.
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We follow [83, Sect. 1.1] for notations and conventions regarding dual groups. LetG
denote a connected reductive group over a field F . Let . OG; OB; OT ; Oe/ be a pinned Langlands
dual group of G over Z. There is a finite Galois extension QF=F , and a natural injective map
� W � QF =F � Aut. OG; OB; OT ; Oe/, induced by the action of �F on the
root datum of G. Let LG D OG Ì � QF =F denote the usual L-group of G, and
cG D OG Ì .Gm � � QF =F / the group defined in [83], which is isomorphic to the C -group
of G introduced by Buzzard–Gee. We write d W cG ! Gm � � QF =F for the projection with
the kernel OG.

Now let F be a nonarchimedean local field with O being its ring of integers and
k D Fq its residue field. That is, F is a finite extension of Qp or is isomorphic to Fq..$//.
Let � be the geometric q-Frobenius of k. Assume that G can be extended to a connected
reductive group over O (such G is called unramified), and we fix such an extension to have
G.O/�G.F /, usually called a hyperspecial subgroup ofG.F /. With a basis of open neigh-
borhoods of the unit given by finite-index subgroups of G.O/, the group G.F / is a locally
compact topological group. The classical spherical Hecke algebra is the space of compactly
supported G.O/-biinvariant C-valued functions on G.F /, equipped with the convolution
product

.f � g/.x/ D

Z
G.F /

f .y/g
�
y�1x

�
dy; (1.2)

where dy is the Haar measure on G.F / such that G.O/ has volume 1. Note that if both f
and g are Z-valued, so is f � g. Therefore, the subset H cl

G.O/
of Z-valued functions forms

a Z-algebra.1

On the dual side, under the unramifiedness assumption,� QF =F is a finite cyclic group
generated by � . Note that OG acts on cGjdD.q;�/, the fiber of d at .q; �/ 2 Gm � � QF =F , by
conjugation. Then the classical Satake isomorphism establishes a canonical isomorphism of
ZŒq�1�-algebras

Satcl W Z
�
q�1

��
cGjdD.q;�/

� OG
Š H cl

G.O/ ˝ Z
�
q�1

�
: (1.3)

Remark 1.1.1. In fact, as explained in [83], there is a Satake isomorphism over Z (without
inverting q), in which the C -group cG is replaced by certain affine monoid containing it as
the group of invertible elements. On the other hand, if we extend the base ring from ZŒq�1�

to ZŒq˙ 1
2 �, one can rewrite (1.3) as an isomorphism

Z
�
q˙ 1

2
�
Œ OG��

OG
Š H cl

G.O/ ˝ Z
�
q˙ 1

2
�
; (1.4)

where OG acts on OG� � LG by the usual conjugation (e.g., see [83] for the discussion). This is
the more traditional formulation of the Satake isomorphism, which is slightly noncanonical,
but suffices for many applications.

In the geometric theory, where instead of thinkingG.F / as a topological group and
considering the space ofG.O/-biinvariant compactly supported functions on it, one regards

1 Here .�/cl stands for the classical Hecke algebra, as opposed to the derived Hecke algebra
mentioned in (2.2).
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G.F / as a certain algebro-geometric object and studies the category of G.O/-biequivariant
sheaves on it. In the rest of the section, we allow F to be slightly more general. Namely,
we assume that F is a local field complete with respect to a discrete valuation, with ring of
integersO and a perfect residue field k of characteristic p > 0.2 Let$ 2O be a uniformizer.

We work in the realm of perfect algebraic geometry. Recall that a k-algebra R is
called perfect if the Frobenius endomorphism R ! R, r 7! rp , is a bijection. Let Aff pf

k

denote the category of perfect k-algebras. By a perfect presheaf (or, more generally, a perfect
prestack), we mean a functor from Aff pf

k
to the category Sets of sets (or, more generally, a

functor from Aff pf
k
to the1-category Spc of spaces). Many constructions in usual algebraic

geometry work in this setting. For example, one can endow Aff pf
k
with Zariski, étale, or fpqc

topology as usual and talk about corresponding sheaves and stacks. One can then define
perfect schemes, perfect algebraic spaces, perfect algebraic stacks, etc., as sheaves (stacks)
with certain properties. It turns out that the category of perfect schemes/algebraic spaces
defined this way is equivalent to the category of perfect schemes/algebraic spaces in the usual
sense. Some foundations of perfect algebraic geometry can be found in [78, Appendix A], [13]
and [64, Sect. A.1].

For a perfect k-algebra R, let WO.R/ denote the ring of Witt vectors in R with
coefficient in O. If char F D char k, then WO.R/ ' RŒŒ$��. If char F ¤ char k, see
[78, Sect. 0.5]. If R D k, we denote WO.k/ by O MF and WO.k/Œ1=$� by MF . We write
DR D SpecWO.R/ and D�

R D SpecWO.R/Œ1=$� which are thought as a family of (punc-
tured) discs parameterized by SpecR.

We denote byLCG (resp.LG) the jet group (resp. loop group) ofG. As presheaves
on Aff pf

k
,

LCG.R/ D G
�
WO.R/

�
; LG.R/ D G

�
WO.R/Œ1=$�

�
:

Note that LCG.k/ D G.O/ and LG.k/ D G.F /. Let

HkG WD L
CGnLG=LCG

be the étale stack quotient of LG by the left and right LCG-action, sometimes called the
(spherical) local Hecke stack of G. As a perfect prestack, it sends R to triples .E1;E2; ˇ/,
where E1, E2 are two G-torsors onDR, and ˇ W E1jD�

R
' E2jD�

R
is an isomorphism.

For ` ¤ p, the modern developments of higher category theory allow one to
define the 1-category of étale F`-sheaves on any prestack (e.g., see [35]). In particular,
for ƒ D F`; Z`;Q` (or finite extension of these rings), it is possible to define the 1-
category Shv.HkG ; ƒ/ of ƒ-sheaves on HkG , which is the categorical analogue of the
space of G.O/-biinvariant functions on G.F /. But without knowing some geometric prop-
erties of HkG , very little can be said about Shv.HkG ;ƒ/. The crucial geometric input is the
following theorem.

2 If char F D char k (the equal characteristic case), this assumption on k is not necessary.
We impose it here to have a uniform treatment of both equal and mixed characteristic (i.e.,
charF ¤ chark) cases. For the same reason, we work with perfect algebraic geometry below
even in equal characteristic.
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Theorem 1.1.2. Let GrG WD LG=LCG be the étale quotient of LG by the (right) LCG-
action, which admits the left LCG-action. Then GrG can be written as an inductive limit
of LCG-stable subfunctors lim

�!
Xi , with each Xi being a perfect projective variety and

Xi ! XiC1 being a closed embedding.

The space GrG is usually called the affine Grassmannian of G. See [4, 23] for the
equal characteristic case and [13, 78] for the mixed characteristic case, and see [77, 80] for
examples of closed subvarieties in GrG . The theorem allows one to define the category of
constructible and perverse sheaves on HkG , and to formulate the geometric Satake, as we
discuss now.

First, the (left) quotient byLCG-action induces a mapGrG!HkG . Roughly speak-
ing, a sheaf on HkG is perverse (resp. constructible) if its pullback to GrG comes from a
perverse (resp. constructible) sheaf on some Xi . Then inside Shv.HkG ;ƒ/ we have the cat-
egoriesPerv.HkG ;ƒ/� Shvc.HkG ;ƒ/ of perverse and constructible sheaves onHkG . They
can be regarded as categorical analogues of the space of G.O/-biinvariant compactly sup-
ported functions on G.F /. In addition, Perv.HkG ; ƒ/ is an abelian category, semisimple if
ƒ is a field of characteristic zero, called the Satake category ofG. For simplicity, we assume
that ƒ is a field in the sequel.3

There is also a categorical analogue of the convolution product (1.2). Namely, there
is the convolution diagram

HkG � HkG

pr
 � LCGnLG �LCG LG=LCG

m
�! HkG ;

and the convolution of two sheaves A;B 2 Shv.HkG ; ƒ/ is defined as

A ?B WD mŠpr�.A � B/: (1.5)

This convolution product makes Shv.HkG ; ƒ/ into a monoidal 1-category containing
Perv.HkG ; ƒ/ � Shvc.HkG ; ƒ/ as monoidal subcategories.

Remark 1.1.3. The above construction of the Satake category as a monoidal category is
essentially equivalent to the more traditional approach, in which the Satake category is
defined as the category of LCG-equivariant perverse sheaves on GrG (e.g., see [80] for an
exposition).

Let Coh.B OGƒ/
~ denote the abelian monoidal category of coherent sheaves on the

classifying stack B OGƒ over ƒ4, which is equivalent to the category of algebraic representa-
tions of OG on finite dimensional ƒ-vector spaces. This following theorem is usually known
as the geometric Satake equivalence.

Theorem 1.1.4. There is a canonical equivalence of monoidal abelian categories

SatG W Coh.B OGƒ/
~
Š Perv.HkG ˝ k;ƒ/:

3 The formulation for ƒ D Z` is slightly more complicated, as the right-hand side of (1.5)
may not be perverse when A and B are perverse.

4 In the dual group side, we always work in the realm of usual algebraic geometry, so B OG is
an Artin stack in the usual sense.
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Geometric Satake is really one of the cornerstones of the geometric Langlands pro-
gram, and has found numerous applications to representation theory, mathematical physics,
and (arithmetic) algebraic geometry. When F D k..$//, this theorem grew out of works of
Lusztig, Ginzburg, Beilinson–Drinfeld and Mirković–Vilonen (cf. [5,51,53]). In mixed char-
acteristic, it was proved in [69,78], with the equal characteristic case as an input, and in [25]

by mimicking the strategy in equal characteristic. We conclude this subsection with a few
remarks.

Remark 1.1.5. (1) As mentioned before, the geometric Satake can be regarded as the con-
ceptual definition of the Langlands dual group OG of G, namely as the Tannakian group of
the Tannakian category Perv.HkG ˝ k; ƒ/. In addition, as explained in [72, 76], the group
OG is canonically equipped with a pinning . OB; OT ; Oe/. In the rest of the article, by the pinned
Langlands dual group . OG; OB; OT ; Oe/ of G, we mean the quadruple defined by the geometric
Satake.

(2) For arithmetic applications, one needs to understand the �k-action on
Perv.HkG ˝ k; ƒ/ in terms of the dual group side. It turns out that such an action is
induced by an action of �k on OG, preserving . OB; OT / but not Oe. See [76, 80], or [77] from
the motivic point of view. This leads to the appearance of the group cG. See [76,80,83] for
detailed discussions.

(3) There is also the derived Satake equivalence [11], describing Shvc.HkG ˝ k;ƒ/

in terms of the dual group, at least when ƒ is a field of characteristic zero. We mention that
the category in the dual side is not the derived category of coherent sheaves on B OGƒ.

(4) In fact, for many applications, it is important to have a family version of the geo-
metric Satake. For a (nonempty) finite set S , there is a local Hecke stack HkG;DS overDS ,
the self-product of the discD D SpecO over S , which, roughly speaking, classifies quadru-
ples .¹xsºs2S ; E; E

0; ˇ/, where ¹xsºs2S is an S -tuple of points of D, E and E 0 are two
G-torsors onD, and ˇ is an isomorphism between E and E 0 onD �

S
s¹xsº. In equal char-

acteristic, one can regard D as the formal disc at a k-point of an algebraic curve X over k
and HkG;DS is the restriction alongDS ! XS of the stack

HkG;XS D
�
LCG

�
XS n.LG/XS =

�
LCG

�
XS ;

where .LG/XS and .LCG/XS are family versions of LG and LCG over XS (e.g., see [80,

Sect. 3.1] for precise definitions). In mixed characteristic, the stack HkG;DS (and in factDS

itself) does not live in the world of (perfect) algebraic geometry, but rather in the world of per-
fectoid analytic geometry as developed by Scholze (see [25,59]). In both cases, one can con-
sider certain categoryPervULA.HkG;DS ˝ k;ƒ/ of (ULA) perverse sheaves onHkG;DS ˝ k.
In addition, for a map S ! S 0 of finite sets, restriction along HkG;DS 0 ! HkG;DS gives a
functor PervULA.HkG;DS ˝ k; ƒ/ ! PervULA.HkG;DS 0 ˝ k; ƒ/.5 We refer to the above
mentioned references for details.

5 Such restriction functor defines the so-called fusion product, a key concept in the geo-
metric Satake equivalence. The terminology “fusion” originally comes from conformal
field theory.
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On the other hand, let OGS be the S -power self-product of OG over ƒ. Then for
S ! S 0, the restriction along B OGS 0

! B OGS gives a functorCoh.B OGS
ƒ/

~!Coh.B OGS 0

ƒ /
~.

Now a family version of the geometric Satake gives a system of functors

SatS W Coh
�
B OGS

ƒ

�~
! PervULA.HkG;DS ˝ k;ƒ/; (1.6)

compatible with restriction functors on both sides induced by maps between finite sets (see
[28,80]).

(5) For applications, it is important to have the geometric Satake in different sheaf-
theoretic contents over different versions of local Hecke stacks. Besides the above mentioned
ones, we also mention aD-module version [5], and an arithmeticD-module version [66].

1.2. Tamely ramified local geometric Langlands correspondence
We first recall the classical theory. Assume that F is a finite extension of Qp or is

isomorphic to Fq..$//, and for simplicity assume that G extends to a connected reductive
group over O. (In fact, results in the subsection hold in appropriate forms for quasi-split
groups that are split over a tamely ramified extension of F .) In addition, we fix a pinning
.B; T; e/ of G over O.

The classical local Langlands program aims to classify (smooth) irreducible rep-
resentations of G.F / (over C) in terms of Galois representations. From this point of view,
the Satake isomorphism (1.3) gives a classification of irreducible unramified representa-
tions of G.F /, i.e., those that have nonzero vectors fixed by G.O/, as such representations
are in one-to-one correspondence with simple modules ofH cl

G.O/
˝C, which via the Satake

isomorphism (1.3) are parameterized by semisimple OG-conjugacy classes in cG. (For an irre-
ducible unramified representation � , the corresponding OG-conjugacy class in cG is usually
called the Satake parameter of � .)

The next important class of irreducible representations are those that have nonzero
vectors fixed by an Iwahori subgroup G.F /. For example, under the reduction mod$ map
G.O/! G.k/, the preimage I of B.k/ � G.k/ is an Iwahori subgroup of G.F /. As in the
unramified case, the Z-valued I -biinvariant functions form a Z-algebra H cl

I with multipli-
cation given by convolution (1.2) (with the Haar measure dg chosen so that the volume of I
is one), and the set of irreducible representations of G.F / that have nonzero I -fixed vectors
are in bijection with the set of simple .H cl

I ˝C/-modules. Just as the Satake isomorphism,
Kazhdan–Lusztig gave a description of H cl

I ˝ C in terms of geometric objects associated
to OG.

Let OU � OB denote the unipotent radical of OB . The natural morphism OU= OB! OG= OG

is usually called the Springer resolution. Let

S
unip
OG
D . OU= OB/ � OG= OG

. OU= OB/;

which we call the (unipotent) Steinberg stack of OG6. Over C, there is a Gm;C-action on OUC

and therefore on Sunip
OG;C

, by identifying OUC with its Lie algebra via the exponential map. Then

6 As OU= OB ! OG= OG is not flat, the fiber product needs to considered in derived sense so Sunip
OG

should be understood as a derived algebraic stack.
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one can form the quotient stack Sunip
OG;C
=Gm;C . In the sequel, for an Artin stack X (of finite

presentation) over C, we let K.X/ denote the K-group of the (1-)category of coherent
sheaves on X .

Kazhdan–Lusztig [36] constructed (under the assumption that G is split with con-
nected center) a canonical isomorphism (after choosing a square root ofpq of q)

K
�
S
unip
OG;C
=Gm;C

�
˝K.BGm;C/ C Š H cl

I ˝C; (1.7)

where the mapK.BGm;C/! C sends the class corresponding to the tautological represen-
tation of Gm;C topq. In addition, the isomorphism induces the Bernstein isomorphism

K.B OGC/˝C Š Z
�
H cl

I ˝C
�
; (1.8)

where Z.H cl
I ˝ C/ is the center of H cl

I ˝ C, and the map K.B OGC/! K.S
unip
OG;C
=Gm;C/ is

induced by the natural projection Sunip
OG
=Gm ! B OG.

Remark 1.2.1. It would be interesting to give a description of the Z-algebra H cl
I in terms

of the geometry involving OG, which would generalize the integral Satake isomorphism from
[83].

It turns out that the Kazhdan–Lusztig isomorphism (1.7) also admits a categorifi-
cation, usually known as the Bezrukavnikov equivalence, which gives two realizations of
the affine Hecke category. Again, when switching to the geometric theory, we allow F to
be a little bit more general as in Section 1.1. We also assume that G extends to a con-
nected reductive group over O and fix a pinning of G over O. Let LCG ! Gk be the
natural “reduction mod $” map, and let Iw � LCG be the preimage of Bk � Gk . This
is the geometric analogue of I . Then as in the unramified case discussed in Section 1.1, one
can define the Iwahori local Hecke stack HkIw D IwnLG=Iw and the monoidal categories
Shvc.HkIw ˝ k;ƒ/ � Shv.HkIw ˝ k;ƒ/. The category Shvc.HkIw ˝ Nk;ƒ/ can be thought
as a categorical analogue ofH cl

I , usually called the affine Hecke category.
Recall that we let MF DWO.k/Œ1=$�. The inertia IF WD � MF ofF has a tame quotient

I t
F isomorphic to

Q
`¤p Z`.1/.

Theorem 1.2.2. For every choice of a topological generator � of the tame inertia I t
F , there

is a canonical equivalence of monoidal1-categories

BezunipG W Coh
�
S
unip
OG;Q`

�
Š Shvc.HkIw ˝ k;Q`/:

In fact, Bezrukavnikov proved such equivalence when F D k..$// in [9]. Yun and
the author deduced the mixed characteristic case from the equal characteristic case. It would
be interesting to know whether the new techniques introduced in [25, 59] can lead a direct
proof of this equivalence in mixed characteristic. (See [1] for some progress in this direction.)

Remark 1.2.3. Again, for arithmetic applications, one needs to describe the action of �k on
Shvc.HkIw ˝ Nk;ƒ/ in terms of the dual group side. See [9,35] for a discussion.

We explain an important ingredient in the proof of Theorem 1.2.2 (when
F D k..$//). There is a smooth affine group scheme G (called the Iwahori group scheme)
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over O such that G ˝ F D G and LCG D Iw. Then there is a local Hecke stack HkG ;D

over D, analogous to HkG;DS as discussed at the end of Section 1.1 (here S D ¹1º). In
addition, HkG ;DjD� Š HkG;DjD� and HkG ;Dj0 D HkIw, where 0 2 D is the closed point.
Then taking nearby cycles gives

Z W Coh.B OGƒ/
~

Sat¹1º

���! Perv.HkG ;DjD�
Nk
; ƒ/

‰
�! Perv.HkIw ˝ Nk;ƒ/: (1.9)

This is known as Gaitsgory’s central functor [27,75], which can be regarded as a categorifica-
tion of (1.8). We remark this construction is motivated by the Kottwitz conjecture originated
from the study of mod p geometry of Shimura varieties. See Section 3.1 for some discus-
sions.

Theorem 1.2.2 admits a generalization to the tame level. We consider the following
diagram:

OG= OG  OB= OB
q OB
�! OT = OT ;

where the left morphism is the usual Grothendieck–Springer resolution. Let � be a ƒ-point
of OT = OT , where ƒ is a finite extension of Q`. Let . OB= OB/� D q�1

OB
.�/, and let

S
�

OG;ƒ
WD . OB= OB/� � OG= OG

. OB= OB/�:

Note that if � D 1, this reduces to Sunip
OG;ƒ

. On the other hand, a (torsion) ƒ-point � 2 OT = OT
defines a one-dimensional character sheaf L� on Iw˝ k. Then one can define the monoidal
category of bi-.Iw; L�/-equivariant constructible sheaves on LG Nk , denoted as
Shvcons.�.HkIw/�;ƒ/. If �D 1, so L� is the trivial character sheaf on Iw, this reduces to the
affine Hecke category Shvc.HkIw ˝ k; ƒ/. The following generalization of Theorem 1.2.2
is conjectured in [9] and will be proved in a forthcoming joint work with Dhillon–Li–Yun
[18].

Theorem 1.2.4. Assume that charF D char k. There is a canonical monoidal equivalence

Bez�

OG
W Coh. OS�

OG;ƒ
/ Š Shvc

�
�.HkIw/�; ƒ

�
:

Remark 1.2.5. It is important to establish a version of equivalences in Theorems 1.2.2
and 1.2.4 for Z`-sheaves.

Remark 1.2.6. The local geometric Langlands correspondence beyond the tame ramifica-
tion has not been fully understood, although certain wild ramifications have appeared in
concrete problems (e.g., [31,79]). It is widely believed that the general local geometric Lang-
lands should be formulated as 2-categorical statement, predicting the 2-category of module
categories under the action of (appropriately defined) category of sheaves on LG is equiva-
lent to the 2-category of categories over the stack of local geometric Langlands parameters.
The precise formulation is beyond the scope of this survey, but, roughly speaking, it implies
(and is more or less equivalent to saying) that the Hecke category for appropriately chosen
“level” of LG is (Morita) equivalent to the category of coherent sheaves on some stack of
the form X �Y X , where Y is closely related to the moduli of local geometric Langlands
parameters.
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1.3. Global geometric Langlands correspondence
As mentioned at the beginning of the article, the (global) geometric Langlands pro-

gram originated from Drinfeld’s proof of Langlands conjecture for GL2 over function fields.
Early developments of this subject mostly focused on the construction of Hecke eigensheaves
associated to Galois representations of a global function field F (or, equivalently, local sys-
tems on a smooth algebraic curve X ), e.g., see [20,26,42].

The scope of the whole program then shifted after the work [5], in which Beilinson–
Drinfeld formulated a rough categorical form of the global geometric Langlands corre-
spondence. The formulation then was made precise by Arinkin–Gaitsgory in [2], which we
now recall. Let X be a smooth projective curve over F D C. On the automorphic side, let
Dc.BunG/ be the1-category of coherent D-modules on the moduli stack BunG of principal
G-bundles onX . On the Galois side, let Coh.Loc OG

/ be the1-category of coherent sheaves
on the moduli stack Loc OG

of de Rham OG-local systems (also known as principal OG-bundles
with flat connection) on X .

Conjecture 1.3.1. There is a canonical equivalence of1-categories

LG W Coh.Loc OG
/ Š Dc.BunG/;

satisfying a list of natural compatibility conditions.

We briefly mention the most important compatibility condition, and refer to [2] for
the rest. Note that both sides admit actions by a family of commuting operators labeled by
x 2 X and V 2 Coh.B OGC/

~. Namely, for every point x 2 X , there is the evaluation map
Loc OG

! B OGC so every V 2 Coh.B OGC/
~ gives a vector bundle QVx on Loc OG

by pullback,
which then acts on Coh.Loc OG

/ by tensoring. On the other hand, there is the Hecke operator
HV;x that acts on Dc.BunG/ by convolving the sheaf Sat¹1º.V /jx from the (D-module ver-
sion of) the geometric Satake (1.6). Then the equivalence LG should intertwine the actions
of these operators.

Although the conjecture remains widely open, it is known that the category of per-
fect complexes Perf.Loc OG

/ on Loc OG
acts onDc.BunG/, usually called the spectral action, in

a way such that the action of QVx 2 Perf.Loc OG
/ on Dc.BunG/ is given by the Hecke operator

HV;x .
Nowadays, Conjecture 1.3.1 sometimes is referred as the de Rham version of the

global geometric Langlands conjecture, as there are some other versions of such conjectural
equivalences, which we briefly mention.

First, in spirit of the nonabelian Hodge theory, there should exist a classical limit of
Conjecture 1.3.1, sometimes known as the Dolbeault version of the global geometric Lang-
lands.While the precise formulation is unknown (to the author), generically, it amounts to the
duality of Hitchin fibrations for G and OG (in the sense of mirror symmetry), and was estab-
lished “generically” in [15,19]. By twisting/deforming such duality in positive characteristic,
one can prove a characteristic p analogue of Conjecture 1.3.1 (of course, only “generically,”
see [10,14,15]). Interestingly, this “generic” characteristic p equivalence can be used to give
a new proof of the main result of [5] (at least for G D GLn, see [12]).
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The work [5] (and therefore the de Rham version of the global geometric Langlands)
was strongly influenced by conformal field theory. On the other hand, motivated by topolog-
ical field theory, Ben-Zvi and Nadler [7] proposed a Betti version of Conjecture 1.3.1, where
on the automorphic side the category ofD-modules on BunG is replaced with the category
of sheaves of C-vector spaces on (the analytification of) BunG and on the Galois side Loc OG

is replaced by the moduli of Betti OG-local systems (also known as OG-valued representations
of fundamental group of X ).

The Riemann–Hilbert correspondence allows passing between the de Rham OG-local
systems and Betti OG-local systems, but in a transcendental way. So Conjecture 1.3.1 and
its Betti analogue are not directly related. Recently, Arinkin et al. [3] proposed yet another
version of Conjecture 1.3.1, which directly relates both de Rham and Betti versions, and at
the same time includes a version in terms of `-adic sheaves. So it is more closely related to the
classical Langlands correspondence over function fields, as will be discussed in Section 2.2.

2. From geometric to classical Langlands program

In the previous section, we discussed how the ideas of categorification and geome-
trization led to the developments of the geometric Langlands program. On the other hand, the
ideas of quantum physics allow one to reverse arrows in (1.1) by evaluating a (topological)
quantum field theory at manifolds of different dimensions. Such ideas are certainly not new
in geometry and topology. But, surprisingly, they also lead to a new understanding of the
classical Langlands program. Indeed, it has been widely known that there is an analogy
between global fields and 3-manifolds, and under such analogy Frobenius corresponds to
the fundamental group of a circle. Then “compactification of field theories on a circle” leads
to the categorical trace method (e.g., see [3,6, 77]), which plays a more and more important
role in the geometric representation theory.

2.1. Categorical arithmetic local Langlands
In this subsection, letF be either a finite extension ofQp or isomorphic to Fq..$//.

The classical local Langlands correspondence seeks a classification of smooth irreducible
representations of G.F / in terms of Galois data. The precise formulation, beyond the
G D GLn case (which is a theorem by [30, 43]), is complicated. However, the yoga that
the local geometric Langlands is 2-categorical (see Remark 1.2.6) suggests that the even the
classical local Langlands correspondence should and probably needs to be categorified.

The first ingredient needed to formulate the categorical arithmetic local Langlands
is the following result, due independently to [17, 25, 82]. We take the formulation from [82]

and refer for the notion of (strongly) continuous homomorphisms to the same reference.

Theorem 2.1.1. The prestack sending a Z`-algebra A to the space of (strongly) continuous
homomorphisms � W WF !

cG.A/ such that d ı � D .cycl�1; pr/ is represented by a (clas-
sical) scheme Loc�

cG , which is a disjoint union of affine schemes that are flat, of finite type,
and of locally complete intersection over Z`.
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The conjugation action of OG on cG induces an action of OG on Loc�
cG , and we call the

quotient stack LoccG D Loc�
cG=
OG the stack of local Langlands parameters, which, roughly

speaking, classifies the groupoid of the above �’s up to OG-conjugacy.
In the categorical version of the local Langlands correspondence, on the Galois side

it is natural to consider the (1-)categoryCoh.LoccG/ of coherent sheaves on LoccG . On the
representation side, one might naively consider the (1-)category Rep.G.F /;ƒ/ of smooth
representations of G.F /. But in fact, this category needs to be enlarged. This can be seen
from different point of view. Indeed, it is a general wisdom shared by many people that in the
classical local Langlands correspondence, it is better to study representations of G together
with a collection of groups that are (refined version of) its inner forms. There are various
proposals of such collections. Arithmetic geometry (i.e., the study of p-adic and mod p
geometry of Shimura varieties and moduli of Shtukas) and geometric representation theory
(i.e., the categorical trace construction) suggest studying a category glued from the categories
of representations of a collection of groups ¹Jb.F /ºb2B.G/ arising from the Kottwitz set

B.G/ D G. MF /= �; where g � g0 if g0
D h�1g�.h/ for some h 2 G. MF /:

Here for b 2 B.G/ (lifted to an element in G. MF /), the group Jb is an F -group defined
by assigning and F -algebra the group Jb.R/ D ¹h 2 G. MF ˝F R/ j h�1b�.h/ D bº. In
particular, if b D 1 then Jb DG. In general, there is a well-defined embedding .Jb/F !GF

up to conjugacy, making Jb a refinement of an inner form of a Levi subgroup ofG (say,G is
quasisplit).

There are two ways to make this idea precise. One is due to Fargues–Scholze [25],
who regard B.G/ as the set of points of the v-stack BunG of G-bundles on the Fargues–
Fontaine curve and consider the category Dlis.BunG ; ƒ/ of appropriately defined étale
sheaves on BunG , which indeed glues all Rep.Jb.F /; ƒ/’s together. We mention that this
approach relies on Scholze’s work on `-adic formalism of diamond and condensed mathe-
matics.

In another approach [35,64,77,82], closely related to the idea of categorical trace, the
set B.G/ is regarded as the set of points of the (étale) quotient stack

B.G/ WD LG=Ad�LG;

where Ad� denotes the Frobenius twisted conjugation given by

Ad� W LG � LG ! LG; .h; g/ 7! hg�.h/�1:

Then we have the category ofƒ-sheaves Shv.B.G/˝ Nk;ƒ/ as mentioned before. Although
B.G/ is a wild object in the traditional algebraic geometry, there are still a few things one
can say about its geometry, and the category Shv.B.G/ ˝ Nk; ƒ/ is quite reasonable. In
addition, it is possible to define the category Shvc.B.G/˝ Nk;ƒ/ of constructible sheaves
on B.G/˝ Nk, as we now briefly explain and refer to [35] for careful discussions.

For every algebraically closed field � over k, the groupoid of �-points of B.G/ is
the groupoid of F -isocrystals withG-structure over� and the set of its isomorphism classes
can be identified with the Kottwitz set B.G/. However, B.G/ is not merely a disjoint union
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of its points. Rather, it admits a stratification, known as the Newton stratification, labeled
by B.G/. Namely, the set B.G/ has a natural partial order and, roughly speaking, for each
b 2 B.G/ those �-points corresponding to b0 � b form a closed substack i�b W B.G/�b �

B.G/ ˝ Nk and those �-points corresponding to b form an open substack jb W B.G/b �

B.G/�b . In particular, basic elements in B.G/ (i.e., minimal elements with respect to the
partial order �) give closed strata. We also mention that if b is basic, Jb is a refinement of
an inner form of G, usually called an extended pure inner form of G.

In the rest of this subsection, we simply denote B.G/ ˝ Nk by B.G/. We write
ib D i�bjb WB.G/b ,!B.G/ for the locally closed embedding. For b, letRepf:g:.Jb.F /;ƒ/

be the full subcategory of Rep.Jb.F /; ƒ/ generated (under finite colimits and retracts) by
compactly induced representations

ıK;ƒ WD c-indJb.F /

K .ƒ/

from the trivial representation of open compact subgroups K � Jb.F /. The following the-
orem from [35] summarizes some properties of Shvc.B.G/;ƒ/.

Theorem 2.1.2. (1) An object in Shv.B.G/; ƒ/ is constructible if and only if its
Š-restriction to each B.G/b is constructible and is zero for almost all b’s. If ƒ
is a field of characteristic zero, Shvc.B.G/; ƒ/ consist of compact objects in
Shv.B.G/;ƒ/.

(2) For every b 2 B.G/, there is a canonical equivalence Shvc.B.G/b; ƒ/ Š

Repf:g:.Jb.F /; ƒ/. There are fully faithful embeddings ib;�; ib;Š W

Shvc.B.G/b; ƒ/! Shvc.B.G/;ƒ/ (which coincide when b is basic), induc-
ing a semiorthogonal decomposition of Shvc.B.G/; ƒ/ in terms of
¹Shvc.B.G/b; ƒ/ºb .

(3) There is a self-duality functor DcohW Shvc.B.G/; ƒ/ ' Shvc.B.G/; ƒ/
_ ob-

tained by gluing cohomological dualities (in the sense of Bernstein–Zelevinsky)
on various Repf:g:.Jb.F /;ƒ/’s.

(4) There is a natural perverse t -structure obtained by gluing (shifted) t -structures
on various Repf:g:.Jb.F /;ƒ/’s, preserved by Dcoh if ƒ is a field.

The following categorical form of the arithmetic local Langlands conjecture [82,

Sect. 4.6] is inspired by the global geometric Langlands conjecture as discussed in Sec-
tion 1.3.

Conjecture 2.1.3. Assume thatG is quasisplit overF equipped with a pinning .B;T; e/ and
fix a nontrivial additive character  W F ! Z`Œ�p1 ��. There is a canonical equivalence of
categories

LG W Coh.LoccG ˝ƒ/ Š Shvc

�
B.G/;ƒ

�
:

Remark 2.1.4. (1) There is a closely related version of the conjecture, with Shvc.B.G/;ƒ/

replaced by Shv.B.G/;ƒ/ and with Coh.LoccG ˝ƒ/ replaced by its ind-completion (with
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certain support condition imposed) (see [82, Sect. 4.6]). Fargues–Scholze [25]make a conjec-
ture parallel to this version, with the category Shv.B.G/;ƒ/ replaced byDlis.BunG ; ƒ/ as
mentioned above.

(2) It is also explained in [82] a motivic hope to have a version of such equivalence
over Q.

One consequence of the conjecture is that for every b there should exist a fully
faithful embedding

AJb
W Repf:g:

�
Jb.F /;ƒ

�
! Coh.LoccG ˝ƒ/;

obtained as the restriction of a quasiinverse of LG to ib;Š.Repf:g:.Jb.F /;ƒ//. The existence
of such functor is closely related to the idea of local Langlands in families and has also been
considered (in the case Jb D G is split and ƒ is a field of characteristic zero) in [6,32].

In particular, for every open compact subgroup K � Jb.F / there should exist a
coherent sheaf

AK;ƒ WD AJb
.ıK;ƒ/ (2.1)

on LoccG ˝ƒ such that

.REndCoh.Locc G˝ƒ/AK;ƒ/
op
Š .REndRep.G.F /;ƒ/ıK;ƒ/

op
DW HK;ƒ: (2.2)

The algebraHK;ƒ is sometimes called the derived Hecke algebra as it might not concentrate
on cohomological degree zero (when ƒ D Z` or F`). See [82, Sects. 4.3–4.5] for conjectural
descriptions of AK;ƒ in various cases.

As in the global geometric Langlands conjecture, the equivalence from Conjec-
ture 2.1.3 should satisfy a set of compatibility conditions. For example, it should be compat-
ible with parabolic inductions on both sides, and should be compatible with the duality Dcoh

on Shvc.B.G/;ƒ/ and the (modified) Grothendieck–Serre duality ofCoh.LoccG ˝ƒ/. We
refer to [35,82] for more details.

On the other hand, Conjecture 2.1.3 predicts an action of the category
Perf.LoccG ˝ƒ/ of perfect complexes on LoccG ˝ ƒ on Shvc.B.G/; ƒ/, analogous to
the spectral action as mentioned in Section 1.3. One of the main results of [25] is the con-
struction of such action in their setting. Currently the existence of such a spectral action
on Shvc.B.G/;ƒ/ is not known. But there are convincing evidences that Conjecture 2.1.3
should still be true.

We assume that G extends to a reductive group over O as before. Then there are
closed substacks

LocurcG � LocunipcG � LoccG ;

usually called the stack of unramified parameters (resp. unipotent parameters), classifying
those � such that �.IF / is trivial (resp. �.IF / is unipotent). For ƒ D Q`, Loc

unip
cG ˝Q` is a

connected component of LoccG ˝Q`.
On the other hand, there is the unipotent subcategory Shvunipc .B.G/; Q`/ �

Shvc.B.G/;Q`/, which roughly speaking is the glue of categories Repunip
f:g: .Jb.F /;Q`/
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of unipotent representations of Jb.F / (introduced in [52]) for all b 2 B.G/. We have the
following theorem from [35], deduced from Theorem 1.2.2 by taking the Frobenius-twisted
categorical trace.

Theorem 2.1.5. For a reductive group G over O with a fixed pinning .B; T; e/, there is a
canonical equivalence

Lunip
G W Coh

�
LocunipcG ˝Q`

�
Š Shvunipc

�
B.G/;Q`

�
:

For arithmetic applications, it is important to match specific objects under the equiv-
alence. We give a few examples and refer to [35] for many more of such matchings (see also
[82, Sects. 4.3–4.5]).

Example 2.1.6. The equivalence Lunip
G gives the the conjectural coherent sheaf in (2.1) for

all parahoric subgroups K � G.F / (in the sense of Bruhat–Tits) such that (2.2) holds. For
example, we have AG.O/;Q`

Š OLocurc G
˝Q`, which gives

.REndCoh.Locc G/OLocurc G
/op˝Q`Š .REnd ıG.O/;Q`

/opDHG.O/;Q`
ŠH cl

G.O/˝Q`: (2.3)

As LocurcG Š .cGjdD.q;�//= OG, taking the 0th cohomology recovers the Satake isomor-
phism (1.3). In addition, it implies that the left-hand side has no higher cohomology, which
is not obvious. We mention that it is conjectured in [82, Sect. 4.3] that AG.O/;Z`

Š OLocurc G

so the first isomorphism in (2.3) should hold over Z`, known as the (conjectural) derived
Satake isomorphism. (ButHG.O/;Z`

¤ H cl
G.O/
˝ Z` in general.)

There is also a pure Galois side description of AI;Q`
, known as the unipotent coher-

ent Springer sheaf as defined in [6,82] (see also [32]).

Example 2.1.7. By construction, there is a natural morphism of stacks LoccG ! B OG

over Z`. For a representation of OG on a finite projective ƒ-module, regarded as a vector
bundle on B OGƒ, let QV be its pullback to LoccG ˝ƒ, and let QV ‹ 2 Perf.Loc‹

cG ˝ƒ/ be its
restriction of Loc‹

cG ˝ƒ for ‹ D ur or unip. Note that for ƒ D Q`, QV ur Š QV ˝AG.O/;Q`
.

We have
Lunip

G

�
QV ur�
Š NtŠ r ŠSat.V / DW �V ;

where r and Nt are maps in the following correspondence:

HkG D L
CGnLG=LCG

r
 � LG=Ad�L

CG
Nt
�! LG=Ad�LG D B.G/:

In particular, for two representations V and W of OG, there is a morphism

RHomLocurc G
˝Q`

�
QV ur; QW ur�

! RHomShvc.B.G/;Q`
/.�V ; �W / (2.4)

compatible with compositions. Such map was first constructed in [64, 77] and (the version
for underived Hom spaces) was then extended to Z`-coefficient in [70]. It has significant
arithmetic applications, as will be explained in Section 3.

Remark 2.1.8. It is likely that Theorem 2.1.5 can be extended to the tame level by taking
the Frobenius-twisted categorical trace of the equivalence from Theorem 1.2.4. On the other
hand, as mentioned in Remark 1.2.5, it is important to extend these equivalences to Z`-
coefficient.
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2.2. Global arithmetic Langlands for function fields
Next we turn to global aspects of the arithmetic Langlands correspondence. As

mentioned at the beginning, its classical formulation, very roughly speaking, predicts a nat-
ural correspondence between the set of (irreducible) Galois representations and the set of
(cuspidal) automorphic representations. As in the local case, beyond the GLn case (which
is a theorem by [38]), such a formulation is not easy to be made precise. On the other
hand, the global geometric Langlands conjecture from Section 1.3 and philosophy of decat-
egorification/trace suggest that the global arithmetic Langlands can and probably should be
formulated as an isomorphism between two vector spaces, arising from the Galois and the
automorphic side, respectively. In this subsection, we formulate such a conjecture in the
global function field case.

LetF D Fq.X/ be the function field of a geometrically connected smooth projective
curveX over Fq . We write �D SpecF for the generic point ofX and � for a geometric point
over �. Let jX j denote the set of closed points ofX . For v 2 jX j, let Ov denote the complete
local ring of X at v and Fv its fractional field. Let OF D

Q
v2jX j Ov be the integral adèles,

and AF D
Q0

v2jX j Fv the ring of adèles. For a finite nonempty set of places Q, let WF;Q

denote the Weil group of F , unramified outsideQ.
Let G be a connected reductive group over F . Similarly to the local situation, the

first step to formulate our global conjecture is the following theorem from [82].

Theorem 2.2.1. Assume that ` − 2p. The prestack sending a Z`-algebra A to the space of
(strongly) continuous homomorphisms � WWF;Q!

cG.A/ such that d ı � D .cycl�1;pr/ is
represented by a derived scheme Loc�

cG;Q, which is a disjoint union of derived affine schemes
that are flat and of finite type over Z`. If Q ¤ ;, Loc�

cG;Q is quasismooth.

We then define the stack of global Langlands parameters as LoccG;Q D Loc�
cG;Q=

OG.
Similar to the local case (see Example 2.1.7), for a representation of OGƒ on a finite projective
ƒ-module, regarded as a vector bundle on B OGƒ, let QV be its pullback to LoccG;Q ˝ƒ. If V
is the restriction of a representation of .cG/S along the diagonal embedding OG ! .cG/S ,
then there is a natural (strongly) continuous W S

F;Q-action on QV (see [82, Sect. 2.4]). For a
place v of F , let LoccG;v denote the stack of local Langlands parameters for GFv . Let

res W LoccG;Q !

Y
v2Q

LoccG;v

denote the map by restricting global parameters to local parameters (induced by the map
WFv ! WF;Q). Later on, we will consider the Š-pullback of coherent sheaves onQ

v2Q LoccG;v along this map.

Remark 2.2.2. (1) In fact, when Q D ;, the definition of LoccG;Q needs to be slightly
modified.

(2) Unlike the local situation, LoccG;Q has nontrivial derived structure in general
(see [82, Remark 3.4.5]). Let clLoccG;Q denote the underlying classical stack.

(3) A different definition of LoccG;Q ˝Q` is given by [3].
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Next we move to the automorphic side. For simplicity, we assume that G is split
over Fq in this subsection. Fix a level, i.e., an open compact subgroup K � G.OF /. Let
Q be the set of places consisting of those v such that Kv ¤ G.Ov/. For a finite set S , let
ShtK.G/.X�Q/S denote the ind-Deligne–Mumford stack over .X �Q/S of the moduli of
G-shtukas on X with S -legs in X � Q and K-level structure. (For example, see [39] for
basic constructions and properties of this moduli space.) Its base change along the diagonal
map �! .X �Q/

�
�! .X �Q/S is denoted by ShtK.G/�.�/. For every representation V

of .cG/S on a finite projective ƒ-module, the geometric Satake (1.6) (with D replaced by
X �Q and with ƒ D Z` allowed) provides a perverse sheaf SatS .V / on ShtK.G/.X�Q/S .
Let Cc.ShtK.G/�.�/, SatS .V // denote the (cochain complex of the) total compactly sup-
ported cohomology of ShtK.G/�.�/ with coefficient in SatS .V /. It admits a (strongly) con-
tinuous action ofW S

F;Q (see [34] for the construction of such action at the derived level, based
on [67,68]), as well as an action of the corresponding global (derived) Hecke algebra (with
coefficients in ƒ)

HK;ƒ D
�
REnd

�
c-indG.AF /

K .ƒ/
��op

: (2.5)

For example, if V D 1 is the trivial representation, then (under our assumption that G is
split)

Cc

�
ShtK.G/�.�/;Sat¹1º.1/

�
D Cc

�
G.F /nG.A/=K;ƒ

�
:

HereG.F /nG.A/=K is regarded as a discrete DM stack over �, andCc.G.F /nG.A/=K;ƒ/

denotes its compactly supported cohomology. WhenƒDQ`, this is the space of compactly
supported functions on G.F /nG.A/=K.

We will fix a pinning .B; T; e/ of G and a nondegenerate character  W F nA!
Z`Œ�p�

�, which gives the conjectural equivalenceLv as in Conjecture 2.1.3 for every v 2 Q.
In particular, corresponding to Kv � G.Fv/ there is a conjectural coherent sheaf AKv

(see (2.1)) on LoccG;v .

Conjecture 2.2.3. There is a natural .W S
F;Q �HK;ƒ/-equivariant isomorphism

R�
�
LoccG;Q˝ƒ; QV ˝ resŠ.�v2QAKv /

�
Š Cc

�
ShtK.G/�.�/;SatS .V /

�
:

We refer to [82, Sect. 4.7] for more general form of the conjecture (where “general-
ized level structures” are allowed) and examples of such conjecture in various special cases.
This conjecture could be regarded a precise form of the global Langlands correspondence for
function fields. Namely, it gives a precise recipe to match Galois representations and auto-
morphic representations. (For example, V. Lafforgue’s excursion operators are encoded in
such isomorphism, see below.) Moreover, such an isomorphism fits in the Arthur–Kottwitz
multiplicity formula and at the same time extends such a formula to the integral level and
therefore relates to automorphic lifting theories.

The most appealing evidence of this conjecture is the following theorem [40,82], as
suggested (at the heuristic level) by Drinfeld as an interpretation of Lafforgue’s construction.
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Theorem 2.2.4. For each i , there is a quasicoherent sheaf Ai
K on clLoccG;Q˝Q`, equipped

with an action of HK;Q`
, such that for every finite dimensional Q`-representation V of

.cG/S , there is a natural .W S
F;Q �HK;Q`

/-equivariant isomorphism

�
�

clLoccG;Q ˝Q`; QV ˝Ai
K

�
Š H i

c

�
ShtK.G/�.�/;SatS .V /

�
:

We mention that this theorem actually was proved for any G in [40,82]. In addition,
when K is everywhere hyperspecial, (2.2.4) holds at the derived level by [3].

The isomorphism (2.2.4) induces an action of �.clLoccG;Q ˝Q`;O/ on the right-
hand side. This is exactly the action by V. Lafforgue’s excursion operators, which induces the
decomposition of the right-hand side (in particular, Cc.G.F /nG.AF /=K;Q`/) in terms of
semisimple Langlands parameters. As explained [40], over an elliptic Langlands parameter,
such an isomorphism is closely related to the Arthur–Kottwitz multiplicity formula. In the
case of G D GLn, it gives the following corollary, generalizing [38].

Corollary 2.2.5. Let � be a cuspidal automorphic representation of GLn, with the asso-
ciated irreducible Galois representation �� W WF;Q ! GLn.ƒ/ for some finite extension
ƒ=Q` and with m� the corresponding maximal ideal of �.clLoccG;Q ˝ƒ;O/. Then there
is an .W S

F;Q �HK/-equivariant isomorphism

H�
c

�
ShtK.G/�.�/;SatS .V /

�
=m� Š V�� ˝ �

K :

In particular, the left-hand side only concentrates in cohomological degree zero.

2.3. Geometric realization of Jacquet–Langlands transfer
The global Langlands correspondence for number fields is far more complicated.

In fact, there are analytic part of the theory which currently seems not to fit the categorifi-
cation/decategorification framework. Even if we just restrict to the algebraic/arithmetic part
of the theory, there are complications coming from the place at ` and at 1. In particular,
the categorical forms of the local Langlands correspondence at ` and 1 are not yet fully
understood.

Nevertheless, in a forthcoming joint work with Emerton and Emerton–Gee [21,

22], we will formulate conjectural Galois theoretical descriptions for the cohomology of
Shimura varieties and even cohomology for general locally symmetric space, parallel to
Conjecture 2.2.3. In this subsection, we just review a conjecture from [82] on the geometric
realization of Jacquet–Langlands transfer via cohomology of Shimura varieties and discuss
results from [35,64] towards this conjecture.

We fix a few notations and assumptions. We fix a prime p in this subsection.
Let Af D

Q0

q Qq denote the ring of finite adèles of Q, and Ap

f
D

Q0

q¤p Qp . We write
� D SpecQ, where Q is the algebraic closure of Q in C. For a Shimura datum .G;X/, let
� be the (minuscule) dominant weight of OG (with respect to . OB; OT /) determined by .G;X/
in the usual way and let V� denote the minuscule representation of OG of highest weight �.
Let E � Q � C be the reflex field of .G; X/ and write d� D dimX . For a level (i.e., an
open compact subgroup) K D KpK

p � G.Qp/G.A
p

f
/, let ShK.G/ be the corresponding
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Shimura variety of levelK (defined over the reflex fieldE), and let ShK.G/� denote its base
change along E ! Q. Let v be a place of E above p. By a specialization sp W �! v, we
mean a morphism from � to the strict henselianization of OE at v.

To avoid many complications fromGalois cohomology (e.g., the difference between
extended pure inner forms and inner forms) and also some complications from geometry
(e.g., the relation between Shimura varieties and moduli of Shtukas), we assume thatG is of
adjoint type in the rest of this subsection, and refer to [64] for general G. See also [82] with
less restrictions on G.

Definition 2.3.1. LetG be a connected reductive group overQ. A prime-to-p (resp. finitely)
trivialized inner form of G is a G-torsor ˇ over Q equipped with a trivialization ˇ over Ap

f

(resp. over Af ). Then G0 WD Aut.�/ is an inner form of G (so the dual group of G and
G0 are canonically identified), equipped with an isomorphism � W G.Ap

f
/ Š G0.Ap

f
/ (resp.

� W G.Af / Š G
0.Af /).

Now let .G; X/ and .G0; X 0/ be two Shimura data, with G0 a prime-to-p trivial-
ized inner form of G. Via � , one can transport Kp � G.Ap

f
/ to an open compact subgroup

K 0p � G0.Ap

f
/. We identify the prime-to-p (derived) Hecke algebraHKp ;ƒ (defined in the

same way as in (2.5)) withHK0p ;ƒ and simply write them asHKp ;ƒ. Let K 0
p � G

0.Qp/ be
an open compact subgroup and write K 0 D K 0

pK
0p for the corresponding level.

We fix a quasisplit inner form G�
Qp

of GQp and G0
Qp

equipped with a pinning
.B�

Qp
;T �

Qp
; e�/, and realizeGQp as Jb andG0

Qp
as Jb0 for b;b 2B.G�

Qp
/. Under our assump-

tion that G and G0 are adjoint, such b, b0 exist and are unique. Then we have the conjectural
coherent sheaf AKp ;ƒ and AK0

p ;ƒ as in (2.1) on the stack LoccG;p ˝ƒ of local Langlands
parameters for G�

Qp
over ƒ.

Conjecture 2.3.2. For every choice of specialization map sp W �! v, there is a natural map

RHomCoh.Locc G;p˝ƒ/.fV� ˝AKp ;ƒ; fV�0 ˝AK0
p ;ƒ/

! RHomHKp;ƒ

�
Cc

�
ShK.G/�; ƒŒd��

�
; Cc

�
ShK0

�
G0

�
�
; ƒŒd�0 �

��
; (2.6)

compatible with compositions. In particular, there is an (E1-)algebra homomorphism

S W REndCoh.Locc G;p˝ƒ/.fV� ˝AKp ;ƒ/! REndHKp;ƒ

�
Cc

�
ShK.G/�; ƒ

��
; (2.7)

compatible with (2.6). In addition, the induced action

HKp ;ƒ

(2.2)
Š REnd.AKp ;ƒ/! REnd.fV� ˝AKp ;ƒ/

S
�! REndHKp;ƒ

�
Cc

�
ShK.G/�; ƒ

��
(2.8)

coincides with the natural Hecke action of HKp ;ƒ on Cc.ShK.G/�; ƒ/ (and therefore is
independent of the specialization map sp).

This conjecture would be a consequence of a Galois theoretic description of
Cc.ShK.G/�; ƒ/ similar to Conjecture 2.2.3, but its formulation does not require the exis-
tence of the stack of global Langlands parameters for Q. In any case, a step towards a
Galois-theoretical description of Cc.ShK.G/�; ƒ/ might require Conjecture 2.3.2 as an
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input. We also remark that as in the function field case, there is a more general version of
such conjecture in [82, Sect. 4.7], allowing “generalized level structures,” so that the coho-
mology of Igusa varieties could appear.

The following theorem verifies the conjecture in special cases.

Theorem 2.3.3. Suppose that the Shimura data .G; X/ and .G0; X 0/ are of abelian type,
withG0 a finitely trivialized inner form ofG. Suppose thatGQp is unramified (and therefore
so is G0

Qp
).

(1) The map (2.6) (and therefore (2.7)) exists whenƒDQ` andKp � G.Qp/ and
K 0

p � G
0.Qp/ are parahoric subgroups (in the sense of Bruhat–Tits).

(2) If Kp is hyperspecial, then the map (2.6) (and therefore (2.7)) exists when
ƒ D Z`, at least for underived Hom spaces. In addition, the action of H cl

Kp

on H�
c .ShK.G/�; ƒ/ via (2.8) coincides with the natural action of H cl

Kp
.

Part (1) is proved in [35,64]. The proof contains two ingredients. One is the construc-
tion of physical correspondences betweenmodp fibers of ShK.G/ and ShK0.G0/ by [64] (this
is where we currently need to assume that G and G0 are unramified at p). The other ingre-
dient is Theorem 2.1.5 (and therefore requires ƒ D Q`). When Kp is hypersepcial, one
can work with Z`-coefficient, as (the underived version of) (2.4) exists for Z`-coefficient
thanks to [70]. In fact, in this case one can allow nontrivial local systems on the Shimura
varieties (see [70]). The last statement is known as the S D T for Shimura varieties. The case
when d� D dimShK.G/D 0 is contained in [64]. The general case is proved in [63,74] using
foundational works from [25,59].

3. Applications to arithmetic geometry

Besides the previously mentioned directly applications of (ideas from) geometric
Langlands to the classical Langlands program, we discuss some further arithmetic applica-
tions, mostly related to Shimura varieties and based on the author’s works. We shall mention
that there are many other remarkable applications of (ideas of) geometric Langlands to arith-
metic problems, such as [28,31,44,66,71], to name a few.

3.1. Local models of Shimura varieties
The theory of integral models of Shimura varieties (with parahoric level) started

(implicitly in the work of Kronecker) with understanding of the mod p reduction of elliptic
modular curves with �0.p/-level. We discuss a small fraction of this theory concerning étale
local structures of these integral models via the theory of local models. The recent devel-
opments of the theory of local models are greatly influenced by the geometric Langlands
program.

We use notations from Section 2.3 for Shimura varieties (but we do not assume that
G is of adjoint type in this subsection). Let .G; X/ be a Shimura datum and K a chosen
level withKp D G .Zp/ for some parahoric group scheme G (in the sense of Bruhat–Tits) of
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GQp over Zp . Then for a place v of E over p, a local model diagram is a correspondence of
quasiprojective schemes over OEv ,

SK  
QSK

Q'
�!M loc

G ; (3.1)

where SK is an integral model of ShK.G/ over OEv , QSK is a GOEv
-torsor over SK ,M loc

G

is the so-called local model, which is a flat projective scheme over OEv equipped with a
GOEv

-action, and Q' is a GOEv
-equivariant smooth morphism of relative dimension dimG.

Therefore, M loc
G

models étale local structure of SK . On the other hand, the existence of
GOEv

-action onM loc
G

makes it easier than SK to study.
The original construction of local models is based on realization of a parahoric

group scheme as (the neutral connected component of) the stabilizer group of a self-dual
lattice chain in a vector space (over a division algebra over F ) with a bilinear form, e.g., see
[57] for a survey and references. This approach is somehow ad hoc and is limited the so-called
(P)EL (local) Shimura data. A new approach, based on the construction of an Zp-analogue
of the stack HkG ;D from Section 1.2, was systematically introduced in [58] (under the tame-
ness assumption of G which was later lifted in [46, 50]). In [58] the construction of such
a Zp-analogue (or rather the corresponding Beilinson–Drinfeld-type affine Grassmannian
GrG ;Zp

over Zp) is based on the construction of certain “two dimensional parahoric” group
scheme QG over ZpŒ$� whose restriction along ZpŒ$�

$ 7!p
����! Zp recovers G . (See [81] for a

survey.) A more direct construction of a different p-adic version of such affine Grassman-
nian GrG ;SpdZp

was given in [59] in the analytic perfectoid world. In either case, the local
model is defined as the flat closure of the Schubert variety in the generic fiber corresponding
to �. In addition, the recent work [1] shows that the two constructions agree. The following
theorem from [1] is the most up-to-date result on the existence of local models and about
their properties.

Theorem 3.1.1. LetG be a connected reductive group over a p-adic field F . Except the odd
unitary case when p D 2 and triality case when p D 3, for every parahoric group scheme G

of G over O, and a conjugacy class of minuscule cocharacters � of G defined over a finite
extensionE=F of F , there is a normal flat projective schemeM loc

G ;�
over OE , equipped with

a GOE
-action such thatM loc

G ;�
˝E isGE -equivariantly isomorphic to the partial flag variety

F `� ofGE corresponding to �, and thatM loc
G
˝ kE is .G ˝ kE /-equivariantly isomorphic

to the (canonical deperfection of the) union over the �-admissible set of Schubert varieties
inLG=LCG ˝ kE . In addition,M loc

G
is normal, Cohen–Macaulay and each of its geometric

irreducible components in its special fiber is normal and Cohen–Macaulay.

We end this subsection with a few remarks.

Remark 3.1.2. (1) Once the local model diagram (3.1) is established, this theo-
rem also gives the corresponding properties of the integral models of Shimura
varieties.
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(2) A key ingredient in the study of special fibers of local models is the coherence
conjecture by Pappas–Rapoport [56], proved in [75] (and the proof uses the idea
of fusion).

(3) One important motivation/application of the theory of local models is the
Haines–Kottwitz conjecture [29], which predicts certain central element in the
parahoric Hecke algebra H cl

Kp
should be used as the test function in the trace

formula computing the Hasse–Weil zeta function of ShK.G/. As mentioned
in Section 1.2, this conjecture motivated Gaitsgory’s central sheaf construc-
tion (1.9). With the local Hecke stack HkG ;Zp

over Zp constructed (either the
version from [58] or from [59]), one can mimic the construction (1.9) in mixed
characteristic to solve the Kottwitz conjecture. Again, see [1] for the up-to-date
result.

3.2. The congruence relation
We use notations and (for simplicity) keep assumptions from Section 2.3 regarding

Shimura varieties. Let .G;X/ be a Shimura datum abelian type, and letK be a level such that
Kp is hyperspecial. Let v j p be the place ofE. Then ShK.G/ has a canonical integral model
SK defined over OE;.v/ [37]. Let S K be its mod p fiber, which is a smooth variety defined
over the residue field kv of v. Let �v denote the geometric Frobenius in �kv

. Theorem 2.3.3
gives an action of EndLocurc G;p

.fV�/ onH�
c .S K;kv

;Z`/, which as we shall see has significant
consequences.

The congruence relation conjecture (also known as the Blasius–Rogawski conjec-
ture), generalizing the classical Eichler–Shimura congruence relation Frobp D Tp C Vp for
modular curves, predicts that in the Chow group ofS K �S K , the Frobenius endomorphism
of S K satisfies a polynomial whose coefficients are mod p reduction of certain Hecke cor-
respondences. Theorem 2.3.3, together with [65, Sect. 6.3], implies this conjecture at the level
of cohomology.

For every representation V of c.GQp /, its character �V (regarded as a OG-invariant
function on cGjdD.p;�p/) gives an element hV 2 H

cl
G.Zp/

via the Satake isomorphism (1.3).

Theorem 3.2.1. The following identity,
nX

iD0

.�1/jh�
^j V

�dimV �j
v D 0; (3.2)

holds in End.H�
c .S K;kv

;Z`//, where V D Ind
c.GQp /

c.GEv /
V� is the tensor induction of V�.

Indeed, by [65, Sect. 6.3], such an equality holds with h�
^i V

replaced by S.�^i V /,
where S is from Theorem 2.3.3 (1). Then part (2) of that theorem allows one to replace
S.�^i V / by h�

^i V
. This approach to (3.2) is the Shimura variety analogue of V. Lafforgue’s

approach to the Eichler–Shimura relation for ShtK.G/ [39]. Traditionally, there is another
approach to the congruence relation conjecture for Shimura varieties by directly studying
reduction mod p of Hecke operators, starting from [24] for the Siegel modular variety case.
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See [45] for the latest progress and related references. This approach would give (3.2) at the
level of algebraic correspondences.

Now suppose .G; X/ D .ResF C=Q.G0/F C ;
Q

'WF C!R X0/, where .G0; X0/ is a
Shimura datum and FC is a totally real field. As before, let p be a prime such that Kp is
hyperspecial. In particular, p is unramified in FC. In addition, for simplicity we assume that
G0;Qp is split (so for a place v ofE above p,Ev DQp). We let F denote an algebraic closure
of Fp . Let ¹wiºi be the set of primes of FC above p, and let ki denote the residue field of
wi . For each i , we also fix an embedding �i W ki ! F . Then there is a natural mapY

i

.Zfi Ì Sfi
/! EndLocurc G;p

.fV�/;

where Sfi
is the permutation group on fi letters. Together with Theorem 2.3.3, one obtains

the following result [64].

Theorem 3.2.2. There is an action of
Q

i .Z
fi Ì Sfi

/ on H�
c .S K;F ;Z`/ such that action

of �p factors as �p D
Q

i �p;i , where �p;i D ..1; 0; : : : ; 0/; .12 � � � fi // 2 Zfi Ì Sfi
. Each

�
fi

p;i satisfies a polynomial equation similar to (3.2).

This theorem gives some shadow of the plectic cohomology conjecture of Nekovář–
Scholl [54].

3.3. Generic Tate cycles on mod p fibers of Shimura varieties
In [64], we applied Theorem 2.3.3 to verify “generic” cases of Tate conjecture for

the mod p fibers of many Shimura varieties. We use notations and (for simplicity) keep
assumptions from Section 3.2. Let .S K;kv

/pf denote the perfection of S K;kv
(i.e., regard it

as a perfect presheaf over Aff pf
kv
), then by attaching to every point of S K; Nk an F -isocrystal

with G-structure (see [37,64]), one can define the so-called Newton map

Nt W .S K;kv
/pf ! B.GQp /kv

:

Then the Newton stratification of B.GQp /kv
(see Section 2.1) induces a stratification of

S K;kv
by locally closed subvarieties. It is known that the image of Nt contains a unique

basic element b and the corresponding subvarieties in S K;kv
is closed, called the basic

Newton stratum, and denoted by S b .
Let m be the order of the action of the geometric Frobenius �p on X�. OT /. Let

ƒTate
p D

´
� 2 X�. OT / j

m�1X
iD0

� i
p.�/ D 0

µ
� X�. OT /:

For a representation V of OGQ`
and � 2 X�. OT /, let V.�/ denote the �-weight subspace of V

(with respect to OT ), and let
V Tate

D

M
�2ƒTate

p

V.�/:

We are in particular interested in the condition V Tate
� ¤ 0. As explained in the intro-

duction of [64], under the conjectural Galois theoretic description of the cohomology of the
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Shimura varieties (analogous to Conjecture 2.2.3), for a Hecke module �f whose Satake
parameter at p is general enough, certain multiple a.�f / of the dimension of this vector
space should be equal to the dimension of the space of Tate classes in the �f -component of
the middle dimensional compactly-supported cohomology of S K;kv

. In addition, this space
is usually large. For example, in the case G is an odd (projective) unitary group of signature
.i; n � i/ over a quadratic imaginary field, the dimension of this space at an inert prime is� nC1

2
i

�
.
For a (not necessarily irreducible) algebraic varietyZ of dimension d over an alge-

braically closed field, letHBM
2d
.Z/.�d/ denote the .�d/-Tate twist of the top degree Borel–

Moore homology, which is the vector space spanned by the irreducible components of Z.
Now letX be a smooth variety of dimension d C r defined over a finite field k of q elements,
and letZ�Xk be a (not necessarily irreducible) projective subvariety of dimension d . There
is the cycle class map

cl W HBM
2d .Z/.�d/!

[
j �1

H 2d
c

�
Xk ;Q`.d/

��
j
q
DW T d

` .X/:

Theorem 3.3.1. We write d� D dimX D 2d and r D dimV Tate
� .

(1) The basic Newton stratum S b of S K;kv
is pure of dimension d . In particular,

d is always an integer. In addition, there is anHK;Q`
-equivariant isomorphism

HBM
2d .S b/.�d/ Š C

�
G0.Q/nG0.Af /=K;Q`

�˚r
;

where G0 is the finitely trivialized inner form of G with G0
R is compact.

(2) Let �f be an irreducible module of HK;Q`
, and let

HBM
2d .S b/Œ�f � D HomHK;Q`

�
�f ;H

BM
2d .S b/.�d/Q`

�
˝ �f

be the �f -isotypical component. Then the cycle class map

cl W HBM
2d .S b/.�d/! T d

` .S K/

restricted to HBM
2d
.S b/Œ�f � is injective if the Satake parameter of �f;p (the

component of �f at p) is V�-general.

(3) Assume that ShK.G/ is (essentially) a quaternionic Shimura variety or a Kot-
twitz arithmetic variety. Then the �f -isotypical component of the cycle class
map is surjective to T d

`
.SK/Œ�f � if the Satake parameter of �f;p is strongly

V�-general. In particular, the Tate conjecture holds for these �f .

Remark 3.3.2. (1) For a representation V of OG, the definitions of “V -general” and
“strongly V -general” Satake parameters can be found in [64, Definition 1.4.2].
Regular semisimple elements in cGjdD.p;�p/ are always V -general, but not the
converse. See [64, Remark 1.4.3].

(2) Some special cases of the theorem were originally proved in [33,60].
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The proof of this theorem relies on several different ingredients. Via the Rapoport–
Zink uniformization of the basic locus of a Shimura variety, part (2) can be reduced a question
about irreducible components of certain affine Deligne–Lusztig varieties, which was studied
in [64, §3]. The most difficult is part (2), which we proved by calculating the intersection
numbers among all d -dimensional cycles inS b . These numbers can be encoded in an r � r-
matrix with entries inH cl

Kp
. In general, it seems hopeless to calculate this matrix directly and

explicitly. However, this matrix can be understood as the composition of certain morphisms
in Coh.LocurcG;p/. Namely, first we realize G

0.Q/nG0.A/=K as a Shimura set with �0 D 0

its Shimura cocharacter. Then using Theorem 2.3.3 (and the Satake isomorphism (2.3)), this
matrix can be calculated as

HomCoh.Locurc G;p
/.O;fV�/˝HomCoh.Locurc G;p

/.fV�;O/!HomCoh.Locurc G;p
/.O;O/ŠH

cl
Kp
˝Q`:

Then one needs to determine when this pairing is nondegenerate, which itself is an interest-
ing question in representation theory, whose solution relies on the study of the Chevellay’s
restriction map for vector-valued functions. The determinant of this matrix was calculated
in [65]. Finally, part (3) was proved by comparing two trace formulas, the Lefschetz trace
formula for G and the Arthur–Selberg trace formula for G0.

Example 3.3.3. LetG D U.1; 2r/ be the unitary group7 of .2r C 1/-variables associated to
an imaginary quadratic extension E=Q, whose signature is .1; 2r/ at infinity. It is equipped
with a standard Shimura datum, giving a Shimura variety (after fixing a levelK �G.Af /). In
particular, if r D 1, this is (essentially) the Picardmodular surface. Letp be a prime inert inE
such thatKp is hyperspecial. In this caseS b is a union of certain Deligne–Lusztig varieties,
parametrized byG0.Q/nG0.Af /=K, whereG0 D U.0; 2r C 1/ that is isomorphic toG at all
finite places. The intersection patterns of these cycles inside S b were (essentially) given in
[61] but the intersection numbers between these cycles are much harder to compute. In fact,
we do not know how to compute them directly for general r , except applying Theorem 2.3.3
to this case. (The case r D 1 can be handled directly.)

We have OG D GL2rC1 on which �p acts as A 7! J.AT /�1J , where J is the anti-
diagonal matrix with all entries along the antidiagonal being 1. The representation V� is
the standard representation of GL2rC1. One checks that dim V Tate

� D 1 (which is con-
sistent with the above mentioned parameterization of irreducible components of S b by
G0.Q/nG0.Af /=K). We identify the weight lattice of OG as Z2rC1 as usual. Then
HomCoh.Locurc G;p

/.O;fV�/ is a free rank onemodule over HomCoh.Locurc G;p
/.O;O/DH

cl
Kp
˝Q`.

Then a generator ain induces anHK;Q`
-equivariant homomorphism

S.ain/ W C
�
G0.Q/nG0.Af /=K

�
! H 2r

c

�
S K;kv

;Q`.r/
�
;

7 This is not an adjoint group so the example is not consistent with our assumption. But it is
more convenient for the discussion here. The computations are essentially the same.
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realizing the cycle class map of S b (up to a multiple). The module HomCoh.Locurc G;p
/.fV�;O/

is also free of rank one overHKp ;Q`
. For a chosen generator aout, the composition

S.aout/ ı S.ain/ D S.aout ı ain/

calculates the intersection matrix of those cycles from the irreducible components of S b .
The element h WD aout ı ain 2HKp ;Q`

was explicitly computed in [65, Example 6.4.2]

(up to obvious modification and also via the Satake isomorphism (1.4)). Namely,

h D pr.rC1/

rX
iD0

.�1/i .2i C 1/p.i�r/.rCiC1/

r�iX
j D0

"
2r C 1 � 2j

r � i � j

#
tD�p

Tp;j : (3.3)

Here, Tp;j D 1Kp�j .p/Kp
, with �i D .1

i ; 02r�2iC1; .�1/i /, and
�

n
m

�
t
is the t -analogue of

the binomial coefficient given by

Œ0�t D 1; Œn�t D
tn � 1

t � 1
; Œn�t Š D Œn�t Œn � 1�t � � � Œ1�t ;

"
n

m

#
t

D
Œn�t Š

Œn �m�t ŠŒm�t Š
:

In other words, the intersection matrix of cycles inS b in this case is calculated by the Hecke
operator (3.3).

On interesting consequence is this computation is the following consequence on the
intersection theory of the finite Deligne–Lusztig varieties, for which we do not know a direct
proof. LetW be a .2r C 1/-dimensional nondegenerate hermitian space over Fp2 . Consider
the following r-dimensional Deligne–Lusztig variety

DLr WD
®
H � W of dimension r j H �

�
H .p/

�?¯
;

where H .p/ the pullback of H along the Frobenius. Let H denote the corresponding uni-
versal subbundle of rank r . Let E D H .p/ ˝ ..H .p//?=H /. Then we haveZ

DLr

cr .E/ D

rX
iD0

.�1/i .2i C 1/pi2Ci

"
2r C 1

r � i

#
tD�p

: (3.4)

3.4. The Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives
Let M be a rational pure Chow motive of weight �1 over a number field F . The

Beilinson–Bloch–Kato conjecture, which is a far reaching generalization of the Birch and
Swinnerton-Dyer conjecture, predicts deep relations between certain algebraic, analytic, and
cohomological invariants attached toM :

• the rational Chow group CH.M/0 of homologically trivial cycles ofM ;

• the L-function L.s;M/ ofM ;

• the Bloch–Kato Selmer group H 1
f
.F;H`.M// of the `-adic realization H`.M/

ofM .

The Beilinson–Bloch conjecture predicts an equality

dimQ CH.M/0 D ordsD0L.s;M/
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between the dimension of CH.M/0 and the vanishing order of the L-function at the central
point, while the Bloch–Kato conjecture predicts

ordsD0L.s;M/ D dimQ`
H 1

f

�
F;H`.M/

�
:

In addition, the so-called `-adic Abel–Jacobi map

AJ` W CH.M/0 ˝Q` ! H 1
f

�
F;H`.M/

�
should be an isomorphism.

This conjecture seems to be completely out of reach at the moment. For example, for
a general motive it is still widely open whether the L-function has a meromorphic continua-
tion to the whole complex plane so that the vanishing order ofL.s;M/ at s D 0makes sense.
(This would follow from the Galois-to-automorphic direction of the Langlands correspon-
dence for number fields.) Despite this, there have been many works testing this conjecture in
various special cases, mostly for motivesM of small rank. In the work [49], we verify certain
cases of the above conjecture for Rankin–Selberg motives, which consist of a sequence of
motives of arbitrarily large rank.

We assume that F=FC is a (nontrivial) CM extension with FC totally real in the
sequel.

Theorem 3.4.1. Let A1, A2 be two elliptic curves over FC. Assume that

(1) EndFAi D Z and HomF .A1; A2/ D 0;

(2) Symn�1A1 and SymnA2 are modular;

(3) FC ¤ Q if n � 3.

Under these assumption, if L.n;Symn�1A1 � SymnA2/ ¤ 0, then for almost `,

dimQ`
H 1

f

�
F;Symn�1 V`.A1/˝ Symn V`.A2/.1 � n/

�
D 0:

Here V`.Ai / denotes the rational Tate module of Ai as usual.

This theorem is in fact a consequence of a more general result concerning Bloch–
Kato Selmer groups of Galois representations associated to certain Rankin–Selberg auto-
morphic representations, which we now discuss.

Recall that for an irreducible regular algebraic conjugate self-dual cuspidal
(RACSDC) automorphic representation… of GLn.AF /, one can attach a compatible system
of Galois representations �…;� W �F ! GLn.E�/, where E � C is a large enough number
field and � is a prime of E (see [16]). Such E is called a strong coefficient field of…, which
in the situation considered below can be taken as the number field generated by Hecke
eigenvalues of….

Theorem 3.4.2. Suppose that FC ¤Q if n� 3. Let…n (resp.…nC1) be an RACSDC auto-
morphic representation ofGLn.AF / (resp.GLnC1.AF /) with trivial infinitesimal character.
LetE � C be a strong coefficient field for both…n and…nC1. Let � be an admissible prime
of E with respect to … WD …0 �…1. Let �…;� WD �…n;� ˝E�

�…nC1;�.
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(1) If the Rankin–Selberg L-value L.1
2
;…/ ¤ 08, then H 1

f
.F; �…;�.n// D 0.

(2) If certain element �� 2 H
1

f
.F; �…;�.n// (to be explained below) is non-zero,

then H 1
f
.F; �…;�.n// is generated by �� as an E�-vector space.

The notion of admissible primes appearing in the theorem consists of a long list of
assumptions, some of which are rather technical. Essentially, it guarantees that the Galois
representation �…;� has a well defined OE;�-lattice (still denoted by �…;� in the sequel)
and the reduction mod � representation is suitably large and contains certain particular ele-
ments. (This is also related to the notion of V -general from Theorem 3.3.1.) Fortunately, in
some favorable situations, one can show that all but finitely many primes are admissible. For
example, this is the case considered in Theorem 3.4.1. For another case in pure automorphic
setting, see [49, Thm. 1.1.7].

The proof of the theorem uses several different ingredients. The initial step for
case (1) is to translate the analytic conditionL.1

2
;…/¤ 0 into a more algebraic condition via

the global Gan–Gross–Prasad (GGP) conjecture. Namely, the GGP conjecture predicts that
in this case, there exist a pair of hermitian spaces .Vn; VnC1/ over F that are totally positive
definite at1, where VnC1 D Vn ˚ Fv with .v; v/ D 1, and a tempered cuspidal automor-
phic representation � D �n ��nC1 of the product of unitary groupsG DU.Vn/�U.VnC1/,
such that the period integral

Œ�H � W C
�
c

�
Sh.G/;E

�
Œ��! E

does not vanish, where H WD U.Vn/ embeds into G diagonally, which induces an embed-
ding �H W Sh.H/ ,! Sh.G/ of corresponding Shimura varieties (in fact, Shimura sets)
with appropriately chosen level structures (here and later we omit level structures from the
notations). We denote by Œ�H � the homology class of Sh.G/ given by Sh.H/ and write
C �

c .Sh.G/; E/Œ�� for the �-isotypical component of the cohomology (i.e., functions) of
Sh.G/. This conjecture was first proved in [73] under some local restrictions which are too
restrictive for arithmetic applications. Those restrictions are all lifted in our recent work
through some new techniques in the study of trace formulae [8].

The strategy then is to construct, for every m � 1, (infinitely many) cohomology
classes ¹‚p

mºp � H
1.F; .�…;�=�

m/�.1//, where p are appropriately chosen primes and
.�/�.1/ denotes the usual Pontryagin duality twisted by the cyclotomic character, such that
the local Tate pairing at p between ‚p

m and Selmer classes of the Galois representation
�…;�=�

m is related to the above period integral. Then one can use Kolyvagin type argument
(amplified in [47,49]), with ¹‚p

mº served as annihilators of the Selmer groups, to conclude.
The construction of ‚p

m uses the diagonal embedding of Shimura varieties

�H 0 W Sh.H 0/ ,! Sh.G0/

where H 0 ,! G0 are prime-to-p trivialized (extended pure) inner forms of H � G (see
Definition 2.3.1). These Shimura varieties have parahoric level structures at p, and using

8 Here we use the automorphic normalization of the L-function.
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the theory of local models (Section 3.1) one can show that their integral models are poly-
semistable at p and compute the sheaf of nearby cycles on their mod p fibers. Using many
ingredients, including the understanding of (integral) cohomology of Sh.G0/ over F , the
computations fromExample 3.3.3 (in particular, (3.3) and (3.4)), and the Taylor–Wiles patch-
ing method [48], one shows that .�…;�=�

m/�.1/ does appear in the cohomology of Sh.G0/

(the so-called arithmetic level raising for…), and that the diagonal cycle�H 0 , when localized
at .�…;�=�

m/�.1/, does give the desired class ‚p
m. We shall mention that this is consis-

tent with conjectures in Sections 2.1 and 2.3, as coherent sheaves on LoccG;p ˝ OE=�
m

corresponding to c-indG.Qp/

Kp
.OE=�

m/ and c-indG0.Qp/

K0
p

.OE=�
m/ are expected to be related

exactly in this way.
We could also explain the class �� appearing in case (2). Namely, in this case we

start with an embedding of Shimura varieties�H W Sh.H/ ,! Sh.G/, where G is a product
of unitary groups such that… descends to a tempered cuspidal automorphic representation �
appearing in the middle dimensional cohomology of ShG . Then the �-isotypical component
of the cycle�H is homologous to zero, and we let�� DAJ�.�H Œ��/. The strategy to prove
case (2) then is to reduce it to case (1) via some similar arguments as before.
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