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Abstract

We give a survey of the development of motivic cohomology, motivic categories, and
some of their recent descendants.
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1. Introduction

Motivic cohomology arose out of a marriage of Grothendieck’s ideas about motives
with a circle of conjectures about special values of zeta functions and L-functions. It has
since taken on a very active life of its own, spawning a multitude of developments and appli-
cations. My intention in this survey is to present some of the history of motivic cohomology
and the framework that supports it, its current state, and some thoughts about its future direc-
tions. I will say very little about the initial impetus given by the conjectures about zeta
functions and L-functions, as there are many others who are much better qualified to tell
that story. I will also say next to nothing about the many applications motivic cohomology
has seen: I think this would be like writing about the applications of cohomology up to, say,
1950, and would certainly make this already lengthy survey completely unmanageable.

My basic premise is that motivic cohomology is supposed to be universal coho-
mology for algebro-geometric objects. As “universal” depends on the universe one happens
to find oneself in, motivic cohomology is an ever-evolving construct. My plan is to give a
path through some of the various universes that have given rise to motivic cohomologies, to
describe the resulting motivic cohomologies and put them in a larger, usually categorical,
framework. Our path will branch into several directions, reflecting the different aspects of
algebraic and arithmetic geometry that have been touched by this theory. We begin with the
conjectures of Beilinson and Lichtenbaum about motivic complexes that give rise to the uni-
versal Bloch–Ogus cohomology theory on smooth varieties over a field, and the candidate
complexes constructed by Bloch and Suslin. We then take up Voevodsky’s triangulated cate-
gory of motives over a field and the embedding of the motivic complexes and motivic coho-
mology in this framework. The next developments moving further in this direction give us
motivic homotopy categories that tell us about “generalizedmotivic cohomology” for amuch
wider class of schemes, analogous to the development of the stable homotopy category and
generalized cohomology for spaces; this includes a number of candidate theories for motivic
cohomology over a general base-scheme. We conclude with three variations on our theme:

• Milnor–Witt motives and Milnor–Witt motivic cohomology, incorporating infor-
mation about quadratic forms,

• Motives with modulus, relaxing the usual condition of homotopy invariance with
respect to the affine line, and

• p-adic, étale motivic cohomology in mixed characteristic .0; p/, with its connec-
tion to p-adic Hodge theory.

This last example does not yet, as far as I know, have a categorical framework, while one for
a motivic cohomology with modulus is still in development.

There is already an extensive literature on the early development of motives and
motivic cohomology. It was not my intention here to cover this part in detail, but I include
a section on this topic to give a quick overview for the sake of background, and to isolate a
few main ideas so the reader could see how they have influenced later developments.
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I would like to thank all those who helped me prepare this survey, especially Tom
Bachmann, Federico Binda, Dustin Clausen, Thomas Geisser, Wataru Kai, Akhil Mathew,
Hiroyasu Miyazaki, Matthew Morrow, and Shuji Saito. In spite of their efforts, I feel certain
that a number of errors have crept in, which are, of course, all my responsibility. I hope that
the reader will be able to repair them and continue on.

2. Background and history

2.1. The conjectures of Beilinson and Lichtenbaum
Beilinson pointed out in his 1983 paper “Higher regulators and values of L-func-

tions” [13] that the existence of Gillet’s Chern character [53] from algebraic K-theory to an
arbitrary Bloch–Ogus cohomology theory [30] with coefficients in a Q-algebra implies that
one can form the universal Bloch–Ogus cohomology H a

�.�;Q.b// with Q-coefficients by
decomposing algebraic K-theory into its weight spaces for the Adams operations  k . In
terms of the indexing, one has

H a
�
X;Q.b/

�
WD K2b�a.X/

.b/

where K2b�a.X/
.b/ � K2b�a.X/Q is the weight b eigenspace for the Adams operations

K2b�a.X/
.b/
WD

®
x 2 K2b�a.X/Q j  k.x/ D k

b
� x

¯
:

This raised the question of finding the universal integral Bloch–Ogus cohomology
theory. Let Schk denote the category of separated finite-type k-schemes with full subcat-
egory Smk of smooth k-schemes. Beilinson [13] and Lichtenbaum [87] independently con-
jectured that this universal theory H a

�.�;Z.b// should arise as the hypercohomology of a
complex of sheaves X 7! �X .b/ on Smk (for the Zariski or étale topology)

H a
�

�
X;Z.b/

�
WD Ha

�
X;�X .b/

�
;

with the �X .b/ satisfying a number of axioms.We give Beilinson’s list of axioms for motivic
complexes in the Zariski topology (axiom iv(p) was added by Milne [90, §2]):

(i) In the derived category of sheaves on X , �.0/ is the constant sheaf Z on Smk ,
�.1/ D GmŒ�1� and �.n/ D 0 for n < 0.

(ii) The graded object �.�/ WD ŒX 7!
L

n�0 �X .n/� is a commutative graded ring
in the derived category of sheaves on Smk .

(iii) The cohomology sheavesH m.�.n// are zero form>n and form� 0 if n> 0;
H n.�.n// is the sheaf of Milnor K-groups X 7!KM

n;X .

(iv)(a) Letting ˛ W Smk;ét ! Smk;Zar be the change of topology morphism, the
étale sheafification �.n/ét WD ˛��.n/ of �.n/ satisfies �.n/ét=m Š �˝n

m for
m prime to the characteristic, where �m is the étale sheaf ofmth roots of unity.

(iv)(b) Form prime to the characteristic, the natural map�.n/=m!R˛��.n/ét=m

induces an isomorphism �.n/=m ! ��nR˛��.n/ét=m. Integrally,
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Z.n/! R˛��.n/ét induces an isomorphism �.n/! ��nR˛��.n/ét and

RnC1˛��.n/ét D 0:

(iv)(p) For k of characteristic p > 0, letW��
n
log denote the �-truncated logarithmic

de Rham–Witt sheaf. The d log map d log W KM
n =pn ! W��

n
log induces via

(ii) a map �.n/=p� ! W��
n
logŒ�n�, which is an isomorphism.

One then defines motivic cohomology by

Hp
�
X;Z.q/

�
WD Hp

�
XZar; �X .q/

�
:

(v) There should also be a spectral sequence startingwith integralmotivic cohomol-
ogy and converging to algebraicK-theory, analogous to the Atiyah–Hirzebruch
spectral sequence from singular cohomology to topological K-theory. Explic-
itly, this should be

E
p;q
2 WD Hp�q

�
X;Z.�q/

�
) K�p�q.X/:

This spectral sequence should degenerate rationally, and give an isomorphism

Hp
�
X;Q.q/

�
WD Hp

�
X;Z.q/

�
˝Z Q Š K2q�p.X/

.q/:

The vanishing H m.�.n// D 0 for n > 0 and m � 0 is the integral Beilinson–Soulé vanish-
ing conjecture. The mod m-part of axiom (iv)(b) is known as the Beilinson–Lichtenbaum
conjecture; this implies the integral part of (iv)(b) with the exception of the vanishing of
RnC1˛��.n/ét, which is known asHilbert’s theorem 90 for the motivic complexes. In weight
nD 1, with the identity �.1/DGmŒ�1�, this translates into the classical Hilbert theorem 90

H 1
ét.O;Gm/ D 0

for O a local ring, while the mod m part of (iv)(b) follows from the Kummer sequence of
étale sheaves

1! �m ! Gm
�m
��! Gm ! 1:

In light of axiom (iii), the Merkurjev–Suslin theorem [89, Theorem 14.1] settled the degree
� 2 part of (iv)(b) for n D 2 even before the complex �.2/ was defined.

Beilinson [14, §5.10] rephrased and refined these conjectures to a categorical state-
ment, invoking a conjectural category of mixed motivic sheaves, and an embedding of the
hypercohomology of the Beilinson–Lichtenbaum complexes into a categorical framework.

In this framework, motivic cohomology should arise via an abelian tensor cate-
gory of motivic sheaves on SchS , X 7! Shmot.X/, admitting the six functor formalism
of Grothendieck, f �; f�; fŠ; f

Š;Hom;˝, on the derived categories. There should be Tate
objects ZX .n/ 2 Shmot.X/, and objectsM.X/ WD pXŠp

Š
X ZS .0/ in the derived category of

Shmot.S/, pX WX ! S the structure morphism, and motivic cohomology should arise as the
Hom-groups

H a
�

�
X;Z.b/

�
D HomD.Shmot.S//

�
M.X/;ZS .b/Œa�

�
:
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For X smooth over S , this gives the identity

H a
�

�
X;Z.b/

�
D ExtaShmot.X/

�
ZX .0/;ZX .b/

�
:

This is a very strong statement, with implications that have not been verified to this
day. For instance, the vanishing of ExtaA.�;�/ for an abelian category A and for a < 0 gives
a vanishing H m.ZS .n//D 0 form< 0. The stronger vanishing posited by axiom (iii) above
(withQ-coefficients) is the Beilinson–Soulé vanishing conjecture, and even the weak version
is only known for weight n D 1 (for which the strong version holds).

Beilinson’s conjecture on categories of motivic sheaves is still an open problem.
However, other than the integral Beilinson–Soulé vanishing conjecture, the axioms do not
rely on the existence of an abelian category of motivic sheaves, and can be framed in the
setting of a functorial assignment X 7! DM.X/ from S -schemes to tensor-triangulated
categories. Such a functor has been constructed and the axioms (except for the vanishing
conjectures) have been verified. We will discuss this construction in Section 2.4.

2.2. Bloch’s higher Chow groups and Suslin homology
The first good definition of motivic cohomology complexes was given by Spencer

Bloch, in his landmark 1985 paper “Algebraic cycles and higher Chow groups” [24]. As
suggested by the title, the starting point was the classical Chow group CH�.X/ of algebraic
cycles modulo rational equivalence.

For X a finite type k-scheme, recall that the group of dimension d algebraic cycles
onX , Zd .X/, is the free abelian group on the integral closed subschemesZ ofX of dimen-
sion d over k. The group of cycles modulo rational equivalence, CHd .X/, has the following
presentation. Let n 7! �n be the cosimplicial scheme of algebraic n-simplices

�n
WD SpecZŒt0; : : : ; tn�=

nX
iD0

ti � 1 Š An
Z:

The coface and codegeneracy maps are defined just as for the usual real simplices�n
top �Rn.

A face of�n is a closed subscheme defined by the vanishing of some of the ti . Let zd .X; n/

be the subgroup of the .nC d/-dimensional algebraic cycles ZnCd .X ��
n/ generated by

the integral closedW �X ��n such that dimW \X �F DmC d for eachm-dimensional
face F (or the intersection is empty). For cycles w 2 zd .X; n/, the face condition gives a
well-defined pullback .IdX � g/

� W zd .X; n/! zd .X; m/ for each map g W �m ! �n in
the cosimplicial structure, forming the simplicial abelian group n 7! zd .X; n/ and giving
the associated chain complex zd .X;�/, Bloch’s cycle complex. The degree 0 and 1 terms of
zd .X;�/ give our promised presentation of CHd .X/,

H0

�
zd .X;�/

�
D CHd .X/;

and Bloch defines his higher Chow group CHd .X; n/ as

CHd .X; n/ WD Hn

�
zd .X;�/

�
:

If X has pure dimension N over k, we index by codimension

zq.X;�/ WD zN�q.X;�/I CHq.X; n/ WD CHN�q.X; n/:
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With some technical difficulties due to the necessity of invoking moving lemmas to
allow for pullback morphisms, the assignment

X 7! zq.X; 2q � �/

can be modified via isomorphisms in the derived category to a presheaf of cohomological
complexes ZBl .q/ on Smk .

Following a long series of works [25,29,43,52,94,96,112,113,115–117,120,121,123–125,
127] (see also [56, 102] for detailed discussions of the Bloch–Kato conjecture, the essen-
tial point in axiom (iv)(b) and the most difficult of the Beilinson axioms to prove), it has
been shown that the complexesZBl.q/ satisfy all the Beilinson–Lichtenbaum–Milne axioms,
except for the Beilinson–Soulé vanishing conjecture in axiom (iii).

After Bloch introduced his cycle complexes, Suslin [111] constructed an algebraic
version of singular homology. For a k-scheme X , instead of a naive generalization of the
singular chain complex of a topological space by taking the free abelian group on the mor-
phisms �n

k
! X , Suslin’s insight was to enlarge this to the abelian group of finite corre-

spondences.
A subvariety W of a product Y � X of varieties (with Y smooth) defines an irre-

ducible finite correspondence from Y to X if p1 W W ! Y is finite and surjective to some
irreducible component of Y . The association y 7! p2.p

�1
1 .y// can be thought of as a mul-

tivalued map from Y to X .
The group of finite correspondences Cork.Y;X/ is defined as the free abelian group

on the irreducible finite correspondences. Given a morphism f W Y 0! Y , there is a pullback
map f � W Cork.Y; X/ ! Cork.Y 0; X/, compatible with the interpretation as multivalued
functions, and making Cork.�; X/ into a contravariant functor from smooth varieties over
k to abelian groups.

Suslin definesC Sus
n .X/ WDCork.�n

k
;X/; the structure of��

k
as smooth cosimplicial

scheme makes n 7! C Sus
n .X/ a simplicial abelian group. As above, we have the associated

complex C Sus
� .X/, the Suslin complex of X , whose homology is the Suslin homology of X :

H Sus
n .X;Z/ WD �n

�ˇ̌
m 7! C Sus

m .X/
ˇ̌�
D Hn

�
C Sus
� .X/

�
:

In fact, the monoid of the N-linear combinations of irreducible correspondences
W � X � Y is the same as the monoid of morphisms

� W X !
G
n�0

SymnY

where SymnY is the quotient Y n=†n of Y n by the symmetric group permuting the factors,
with the monoid structure induced by the sum map

SymnY � SymmY ! SymmCnY:

Suslin’s complex and his definition of algebraic homology can thus be thought of
as an algebraic incarnation of the theorem of Dold–Thom [34, Satz 6.4], that identifies the
homotopy groups of the infinite symmetric product of a pointed CW complex T with the
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reduced homology of T . The main result of [112] gives an isomorphism of the mod n Suslin
homology, H Sus

� .X;Z=n/, for X of finite type over C, with the mod n singular homology
of X.C/, a first major success of the theory.

Let �n
top denote the usual n-simplex

�n
top WD

²
.t0; : : : ; tn/ 2 RnC1

j

X
i

ti D 1; ti � 0

³
;

with the inclusion �n
top � �

n.C/.

Theorem 2.1 ([112, Theorem 8.3]). LetX be separated finite type scheme overC and let n� 2
be an integer. Then the map

Hom
�
��C;

G
d�0

SymdX

�
! Homtop

�
��top;

G
d�0

SymdX.C/

�
induced by the inclusions �m

top � �
m.C/ gives rise to an isomorphism H Sus

� .X;Z=n/!

H
sing
� .X.C/;Z=n/.

There is also a corresponding statement forX over an arbitrary algebraically closed
field k of characteristic zero in terms of étale cohomology [112, Theorem 7.8]; this extends to
characteristic p > 0 and n prime to p by using alterations.

2.3. Quillen–Lichtenbaum conjectures
Quillen’s computation of the higher algebraic K-theory of finite fields and of

number rings led to a search for a relation of higher algebraic K-theory with special values
of zeta-functions and L-functions. We will not go into this in detail here, but to large part,
this was responsible for the Beilinson–Lichtenbaum conjectures on the existence of motivic
complexes computing the conjectural motivic cohomology. Going back to K-theory, this
suggested that algebraic K-theory with mod-` coefficients should be the same as mod-`
étale K-theory (a purely algebraic version of mod-` topological K-theory, see [35]), at least
in large enough degrees. This ismore precisely stated as theQuillen–Lichtenbaum conjecture

Conjecture 2.2 ([101], [42, Conjecture 3.9]). Let ` be a prime and letX be a regular, noethe-
rian scheme with ` invertible on X . Suppose X has finite `-étale cohomological dimension
cd`.X/. Then the canonical map

Kn.X IZ=`
r /! Két

n .X IZ=`
r /

is an isomorphism for n � cd`.X/ � 1 and is injective for n D cd`.X/ � 2.

Here Két
n .X IZ=`/ is the étale K-theory developed by Dwyer and Friedlander [35,

41,42].
Conjecture 2.2 for a smooth k-scheme is essentially a consequence of the Beilinson–

Lichtenbaum axioms (without Beilinson–Soulé vanishing). The Beilinson–Lichtenbaum
conjecture (iv)(a,b) says that the comparison map �.q/=`r ! R˛��

˝q

`r induces an isomor-
phism on cohomology sheaves up to degree q. Combining the local–global spectral sequence
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for some X 2 Smk with the Atiyah–Hirzebruch spectral sequences from motivic cohomol-
ogy to K-theory (axiom (v)) and from étale cohomology to étale K-theory, and keeping
track of the cohomological bound in the Beilinson–Lichtenbaum conjecture gives the result.

2.4. Voevodsky’s category DM and modern motivic cohomology
One can almost realize Beilinson’s ideas of a categorical framework for motivic

cohomology by working in the setting of triangulated categories, viewed as a replacement
for the derived category of Beilinson’s conjectured abelian category of motivic sheaves.
Once this is accomplished, one could hope that an abelian category of mixed motives could
be constructed out of the triangulated category as the heart of a suitable t -structure.

Constructions of a triangulated category of mixed motives over a perfect base-field
were given by Hanamura [57–59], Voevodsky [127], and myself [83]. All three categories yield
Bloch’s higher Chow groups as the categorical motivic cohomology, however, Voevodsky’s
sheaf-theoretic approach has had the most far-reaching consequences and has been widely
adopted as the correct solution. The construction of a motivic t -structure is still an open
problem.1 There are also constructions of triangulated categories of mixed motives by the
method of compatible realizations, such as byHuber [64], or Nori’s construction of an abelian
category ofmixedmotives, described in [65, Part II]; wewill not pursue these directions here.
We also refer the reader to Jannsen’s survey on mixed motives [68].

Voevodsky’s triangulated category of motives over k, DM.k/, is based on the cate-
gory of finite correspondences on Smk , a refinement of Grothendieck’s composition law for
correspondences on smooth projective varieties. Grothendieck had constructed categories of
motives for smooth projective varieties, with the morphisms fromX to Y given by the group
of cycles modulo rational equivalence CHdimX .X � Y /. The composition law is given by

W 0 ıW D pXZ�

�
p�XY .W / � p

�
YZ.W

0/
�
; (2.1)

withW 2 CHdimX .X � Y / andW 0 2 CHdimY .Y �Z/; one needs to pass to cycle classes to
define p�XY .W / � p

�
YZ.W

0/ and the projection pXZ needs to be proper (that is, Y needs to
be proper over k) to define pXZ�.

Voevodsky’s key insight was to restrict to finite correspondences, so that all the oper-
ations used in the composition law of correspondence classes would be defined on the level
of the cycles themselves, without needing to pass to rational equivalence classes, and with-
out needing the varieties involved to be proper. Voevodsky’s idea of having a well-defined
composition law on a restricted class of correspondences has been modified and applied in
a wide range of different contexts, somewhat similar to the use of various flavors of bordism
theories in topology.

Let X and Y be in Smk . Recall from Section 2.2 the subgroup Cork.X; Y / �
ZdimX .X � Y / generated by the integralW � X � Y that are finite over X and map surjec-
tively to a component of X .

1 Voevodsky showed this is not possible integrally, so the best one can hope for is a t -
structure with Q-coefficients.

2055 Motivic cohomology



Lemma 2.3. Let X;Y;Z be smooth k-varieties and take ˛ 2 Cork.X; Y /, ˇ 2 Cork.Y;Z/.
Then

(i) The cycles p�YZ.ˇ/ and p
�
XY .˛/ intersect properly onX � Y �Z, so the inter-

section product p�YZ.ˇ/ � p
�
XY .˛/ exists as a well-defined cycle onX � Y �Z.

(ii) Letting j˛j � X � Y , and jˇj � Y �Z denote the support of ˛ and ˇ, respec-
tively, each irreducible component of the intersectionX � jˇj \ j˛j �Z is finite
over X �Z, and maps surjectively onto some component of X .

In other words, the formula

ˇ ı ˛ D pXZ�.p
�
YZˇ � p

�
XY ˛/

makes sense for ˛ 2 Cork.X; Y / and ˇ 2 Cork.Y;Z/, and the resulting cycle on X �Z is
in Cork.X; Z/. This defines the composition law in Voevodsky’s category of finite corre-
spondences, Cork , with objects as for Smk , and morphisms HomCork .X; Y / D Cork.X; Y /.
Sending a usual morphism f W X ! Y of smooth varieties to its graph defines a faithful
functor Œ�� W Smk ! Cork .

Once one has the category Cork , the path to DM.k/ is easy to describe. One takes the
category of additive presheaves of abelian groups on Cork , the category of presheaves with
transfer PST.k/. Inside PST.k/ is the category NST.k/ of Nisnevich sheaves with transfer,
that is, a presheaf that is a Nisnevich sheaf when restricted to Smk � Cork . Each X 2 Smk

defines an object Ztr.X/ 2 NST.k/, as the representable (pre)sheaf Y 7! Cork.Y;X/. Inside
the derived category D.NST.k// is the full subcategory of complexes K whose homol-
ogy presheaves hi .K/ are A1-homotopy invariant: hi .K/.X/ Š hi .K/.X � A1/ for all
X 2 Smk . This is the category of effective motives DMeff.k/. The Suslin complex construc-
tion, P 7! C Sus

� .P /, with

C Sus
� .P /.X/ WD P .X ���/

extends to a functor RC Sus
� W D.NST.k//! DMeff.k/, and realizes DMeff.k/ as the local-

ization of D.NST.k// with respect to the complexes Ztr.X � A1/
p�
�! Ztr.X/. Via RC Sus

� ,
DMeff.k/ inherits a tensor structure˝ fromD.NST.k//. The functor Ztr W Smk ! NST.k/
defines the functorM eff WD RC Sus

� ı Ztr,

M eff
W Smk ! DMeff.k/:

The Tate object Z.1/ 2 DMeff.k/ is the image of the complex Ztr.Spec k/
i1�
��!

Ztr.P 1/ (with Ztr.P 1/ in degree 2) via RC Sus
� . One forms the triangulated tensor category

DM.k/ as the category of �˝Z.1/-spectrum objects in DMeff.k/, inverting the endofunc-
tor �˝ Z.1/; forM 2 DM.k/, one has the Tate twistsM.n/ WD M ˝ Z.1/˝n for n 2 Z;
in particular, we have the Tate objects Z.n/. The functor M eff induces the functor
M W Smk ! DM.k/.
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Bloch’s higher Chow groups, Suslin homology, and the motivic complexes ZBl.q/

are represented in DM.k/ via canonical isomorphisms

CHq.X; 2q � p/ D Hp
�
XZar;ZBl.q/

�
Š HomDM.k/

�
M.X/;Z.q/Œp�

�
;

H Sus
n .X;Z/ D Hn

�
C Sus
� .X/

�
Š HomDM.k/

�
ZŒn�;M.X/

�
:

In addition, one has the presheaf of complexes ZV .q/ on Smk

ZV .q/.X/ WD C
Sus
��

�
Ztr.Gm/

˝qŒ�q�
�
.X/;

where Ztr.Gm/ is the quotient presheaf Ztr.A1 n ¹0º/=Ztr.¹1º/. The complexes ZV .q/ and
ZBl.q/ define isomorphic objects in DMeff.k/, in particular, are isomorphic in the derived
category of Nisnevich sheaves on Smk . The details of these constructions and results are
carried out in [127] (with a bit of help from [117]).

2.5. Motivic homotopy theory
AlthoughVoevodsky’s triangulated category ofmotives does givemotivic cohomol-

ogy a categorical foundation, this is really a halfway station on the way to a really suitable
categorical framework. As analogy, embedding the Beilinson–Lichtenbaum/Bloch–Suslin
theory of motivic complexes in DM.k/ is like considering the singular chain or cochain com-
plex of a topological space as an object in the derived category of abelian groups. A much
more fruitful framework for singular (co)homology is to be found in the stable homotopy
category SH.

A parallel representability for motivic cohomology for schemes over a base-scheme
B in a wider category of good cohomology theories is to be found in themotivic stable homo-
topy category over B , SH.B/. This, together with the motivic unstable homotopy category,
H .B/, gives the proper setting for the deeper study of motivic cohomology, besides placing
this theory on a equal footing with all cohomology theories on algebraic varieties that satisfy
a few natural axioms.

Just as the category DM.k/ starts out as a category of presheaves, the category
SH.B/ starts out with the category of presheaves of simplicial sets on SmB . The construction
of the unstable motivic homotopy categoryH .B/ over a general base-schemeB as a suitable
localization of this presheaf category was achieved by Morel–Voevodsky [94] and the stable
version SH.B/ was described by Voevodsky in his ICM address [116]. The important six-
functor formalism of Grothendieck was sketched out by Voevodsky and realized in detail by
Ayoub [5,6]. A general theory of motivic categories with a six-functor formalism, including
SH.�/, was established by Cisinski–Déglise [33], and Hoyois [62] gave a construction on the
level of infinity categories for an equivariant version. A new point of view, the approach of
framed correspondences, also first sketched by Voevodsky [126], is a breakthrough in our
understanding of the infinite loop objects in the motivic setting, and concerning our main
interest, motivic cohomology, has led to a natural construction of motivic cohomology over
a general base-scheme.

In topology, the representation of singular (co)homology via the singular (co)chain
complexes is placed in the setting of stable homotopy theory through the construction of the
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Eilenberg–MacLane spectra, giving a natural isomorphism for each abelian group A,

Hn.X;A/ Š HomSH
�
†1XC; †

nEM.A/
�
;

with the Eilenberg–MacLane spectrum EM.A/ being characterized by its stable homotopy
groups

�s
n

�
EM.A/

�
D

8<:A for n D 0;

0 else.

The assignmentA 7! EM.A/ extends to a fully faithful embedding EM WD.Ab/! SH. This
realizes the ordinary (co)homology as being represented by the derived categoryD.Ab/ via
its Eilenberg–MacLane embedding in SH, which in turn is to be viewed as the category of
all cohomology theories on reasonable topological spaces.

The stable homotopy category SH is the stabilization of the unstable pointed homo-
topy category H� with respect to the suspension operator †X WD S1 ^ X , which becomes
an invertible endofunctor on SH. The resulting functor of H� to its stabilization is the infi-
nite suspension functor †1 and gives us the “effective” subcategory SHeff

� SH, as the
smallest subcategory containing †1.H�/ and closed under homotopy cofibers and small
coproducts. This in turn gives a decreasing filtration on SH by the subcategories †nSHeff,
n 2 Z. This rather abstract looking filtration is simply the filtration by connectivity: E is in
†nSHeff if and only if �s

mE D 0 for m < n. The layers in this filtration are isomorphic to
the category Ab, by the functor E 7! �nE, and in fact, this filtration is the one given by a
natural t -structure on SH with heart Ab; concretely, the 0th truncation �0E is given by the
Eilenberg–MacLane spectrum EM.�0.E//.

A central example is the sphere spectrum S WD †1S0. Since

�s
0S D colimm�m.S

m/ D Z;

we have �0S D EM.Z/, establishing the natural relation between homology and homotopy.
In the motivic world, we have a somewhat parallel picture. The pointed unstable

category H�.B/ has a natural 2-parameter family of “spheres.” Let Sn denote the con-
stant presheaf with value the pointed n-sphere, and let Gm denote the representable presheaf
A1 n ¹0º pointed by 1. Define

Sa;b
WD Sa�b

^G^b
m

for a� b� 0.We considerP 1 as the representable presheaf, pointed by 1; there is a canonical
isomorphism P 1 Š S2;1 in H�.B/.

In order to achieve the analog of Spanier–Whitehead duality in the motivic set-
ting, one needs to use spectra with respect to P 1-suspension rather than with respect to
S1-suspension. The category SH.B/ is constructed as a homotopy category of P 1-spectra
inH�.B/, soP 1-suspension becomes invertible and our family of spheres extends to a family
of invertible suspension endofunctors

†a;b
W SH.B/! SH.B/; a; b 2 Z:
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Each E 2 SH.B/ gives the bigraded cohomology theory on SmB by

Ea;b.X/ WD HomSH.B/.†
1

P1XC; †
a;b
^E/:

Note that the translation in SH.B/ is given by S1-suspension, not P 1-suspension.
The effective subcategory SHeff.B/ is defined as the localizing subcategory (i.e., a

triangulated subcategory closed under small coproducts) generated by the P 1-infinite sus-
pension spectra †1

P1X for X 2 H�.B/. We replace the filtration of SH with respect to
S1-connectivity with the filtration on SH.B/ with respect to P 1-connectivity, via the sub-
categories†n

P1SHeff.B/. This is Voevodsky’s slice filtration, with associated nth truncation
denoted fn, giving for each E 2 SH.B/ the tower

� � � ! fnC1E ! fnE ! � � � ! E:

One has the layers snE of this tower, fitting into a distinguished triangle

fnC1E ! fnE ! snE ! fnC1EŒ1� D †
1;0fnC1E:

An important difference from the topological case is that this is a filtration by triangulated
subcategories; the P 1-suspension is not the shift in the triangulated structure on SH.B/, and
so the slice filtration does not arise from a t -structure.

We concentrate for a while on the case B D Spec k, k a perfect field. There is an
Eilenberg–MacLane functor

EM W DM.k/! SH.k/;

giving the motivic cohomology spectrum EM.Z.0// 2 SH.k/ representing motivic coho-
mology as

Hp
�
X;Z.q/

�
D EM

�
Z.0/

�p;q
.X/:

One has the beautiful internal description of motivic cohomology via Voevodsky’s isomor-
phism [122]

s0Sk Š EM
�
Z.0/

�
I (2.2)

see also [85, Theorem 10.5.1] and the recent paper of Bachmann–Elmanto [9]. In other words,
the 0th slice truncation of the motivic sphere spectrum represents motivic cohomology.
Röndigs–Østvær [103] show that the homotopy category of EM.Z.0//-modules in SH.k/
is equivalent to DM.k/ and represents the Eilenberg–MacLane functor as the forgetful func-
tor, right-adjoint to the free EM.Z.0// functor

EM
�
Z.0/

�
^ � W SH.k/ // EM.Z.0//-Modoo

DM.k/

W EM

This is the triangulated motivic analog of the classical result, that the heart of the t -structure
on SH is Ab.
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2.6. Motivic cohomology and the rational motivic stable homotopy category
In classical homotopy theory, the Eilenberg–MacLane functor EM W D.Ab/! SH

has a nice structural property: after Q-localization, the functor EMQ W D.Ab/Q ! SHQ

is an equivalence. Does the same happen for the motivic Eilenberg–MacLane functor
EM W DM.k/! SH.k/? In general, the answer is no, and the reason goes back to Morel’s
C–R dichotomy for SH.k/.

We discuss the case of a characteristic zero field k as base. Suppose that k admits a
real embedding � W k ! R. The embedding � induces a realization functor

<
�
R W SH.k/! SH;

which sends the P 1-suspension spectrum †1
P1XC of a smooth k-scheme X to the infinite

suspension spectrum of the real manifold of real pointsX.R/. For an embedding � W k!C,
one has the realization functor<�

C W SH.k/! SH, sending†1
P1XC to†1X.C/C. If we take

X D P 1, the real embedding gives you †S and the complex embedding yields †2S, since
P 1.R/D S1, P 1.C/D S2. This has the effect that the switch map � W P 1 ^ P 1! P 1 ^ P 1

induces an automorphism of Sk that maps to �1 under the real embedding and toC1 under
the complex embedding. Thus, if we invert 2 and decompose the motivic sphere spectrum
into˙1 eigenfactors with respect to � , we decompose SH.k/Œ1=2� into corresponding sum-
mands SH.k/˙, with all of SH.k/C going to zero under the real embedding and all of
SH.k/� going to zero under the complex one (after inverting 2 in SH).

Alternatively, the minus part is SH.k/Œ1=2; ��1�, where � is the P 1-stabilization of
the algebraic Hopf map

� W A2
n ¹0º ! P 1; �.x; y/ D Œx W y�:

A motivic spectrum E 2 SH.k/ is orientable if E has a good theory of Thom
classes. For V ! X a vector bundle with 0-section s0 W X ! V , we have the Thom space
Th.V / WD V=.V n s0.X// 2 H�.k/ (defined as the quotient of representable presheaves).
An orientation for E consists of giving a class

th.V / 2 E2r;r
�
Th.V /

�
for each rank r vector bundle V !X overX 2 Smk , satisfying axioms parallel to the notion
of a C-orientation in topology; a choice of Thom classes defines E as an oriented cohomol-
ogy theory. After inverting 2, all the orientable E live in the plus part; this includes motivic
cohomology, as well as algebraic K-theory and algebraic cobordism. These theories E all
have the property that � induces zero on E-cohomology.

Theories that live in the minus part will contrariwise invert � (after inverting 2);
these include things like Witt theory or cohomology of the sheaf of Witt groups. The real
and complex avatars of this are seen by noting that the complex realization of the algebraic
Hopf map is the usual Hopf map, which is the 2-torsion element of stable �1 of the sphere
spectrum, while the real realization is the multiplication map �2 W S1 ! S1.

The analog of the fact that EMQ WD.Q/! SHQ is an equivalence is the following
result of Cisinski–Déglise
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Theorem 2.4 ([33, Theorem 16.2.13]). The unit map Sk ! EM.Z.0// induces an isomor-
phism

SH.k/CQ ! DM.k/Q

with inverse the Eilenberg–MacLane functor followed by the plus-projection

DM.k/Q ! SH.k/Q ! SH.k/CQ:

The rational minus part is also a homotopy category of modules over a suitable
cohomology theory, namely Witt sheaf cohomology. For a field F , we have the Witt ring
W.F / of virtual non-degenerate quadratic forms, modulo the hyperbolic form. This extends
to a sheafW on Smk , and the functorX 7!H

p
Nis.X;W/ is represented in SH.k/ by a suitable

spectrum EM.W/. We have

Theorem 2.5 ([3, Theorem 4.2, Corollary 4.4]). The functor E 7! EM.W/Q ^ E induces a
natural isomorphism of SH.k/�Q with the homotopy category EM.W/Q-modules.

From this point of view, one can see the Z-graded cohomology theory

X 7!
M
n�0

Hn
Nis.X;W/

as the motivic cohomology for the minus part; this theory picks up information about the
real points of schemes. To get the complete theory, one also needs to include twists of W by
line bundles, an analog of orientation local systems in the topological setting. We will say
more about this in Section 4.

2.7. Slice tower and motivic Atiyah–Hirzebruch spectral sequences
The classical Atiyah–Hirzebruch spectral sequence for a spectrum E 2 SH is the

spectral sequence of the Postnikov tower of E, and looks like

E
p;q
2 WD Hp.X; ��qE/) EpCq.X/:

This comes by identifying the qth layer in the Postnikov tower with the shifted Eilenberg–
MacLane spectrum †qEM.�q.E//.

Together with results of Pelaez [99] and Gutierrez–Röndigs–Spitzweck, Voevod-
sky’s isomorphism (2.2) has a structural expression, namely, for any E 2 SH.k/, each slice
sq.E/ has a canonical structure of an EM.Z.0//-module. We write corresponding object of
DM.k/ as �mot

q .E/, satisfying

sq.E/ D †
q

P1EM
�
�mot

q .E/
�
D S2q;q

^ EM
�
�mot

q .E/
�
;

This gives the motivic Atiyah–Hirzebruch spectral sequence

E
p;q
2 .n/ WD Hp�q

�
X;�mot

�q .E/.n � q/
�
) EpCq;n.X/:

These slices have been explicitly identified in a number of important cases. The first
case was algebraic K-theory, KGL 2 SH.k/. Voevodsky [118,119] and Levine [85] show

sq.KGL/ D EM
�
Z.q/Œ2q�

�
D †

q

P1EM
�
Z.0/

�
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so
�mot

q .KGL/ D Z.0/;

corresponding to classical computation for topological K-theory,

�s
qKU D

8<: Z for q even,

0 for q odd.

Using “algebraic Bott periodicity” forKGL:KGLaC2n;bCn.X/DKGLa;b.X/DK2b�a.X/,
this yields theAtiyah-Hirzebruch spectral sequence of the Beilinson-Lichtenbaum axiom (v),

E
p;q
2 WD Hp�q

�
X;Z.�q/

�
) K�p�q.X/:

There is also a corresponding spectral sequence with Z=m-coefficients.
This Atiyah–Hirzebruch spectral sequence for algebraic K-theory was first con-

structed for X the spectrum of a field by Bloch and Lichtenbaum [29], by a completely
different approach and without recourse to motivic homotopy theory or Voevodsky’s slice
tower. Their construction was generalized to general X 2 Smk by Friedlander–Suslin [43],
also without using the categorical machinery. The rough idea is to give a filtration by codi-
mension of support on X � �� (with additional conditions), and then identify the layers
with a suitable complex of cycles. Another approach, by Grayson [54], relies on theK-theory
of exact categories with commuting isomorphisms. For smooth finite-type schemes over a
perfect field, all these approaches yield the same spectral sequence (see [85, Theorem 7.1.1,

Theorem 9.0.3], [44])).

3. Motivic cohomology over a general base

It is natural to ask if this picture of a good motivic cohomology theory for schemes
over a perfect field can be extended to more general base-schemes, not just as an interesting
technical question but for a wide range of applications, especially in arithmetic. Over a per-
fect field, we have a number of different constructions that all lead to the same groups, each
of which have their advantages and disadvantages: Bloch’s higher Chow groups, the coho-
mology of a suitable Suslin complex, the morphisms in DM.k/, the cohomology theory
represented in SH.k/ by EM.Z.0//, or by s0Sk , or by s0KGL.

One would expect motivic cohomology to be an absolute theory, like algebraic K-
theory, that is, its value on a given scheme should not depend on the choice of base-scheme.
In terms of a spectrum HZS 2 SH.S/ that would represent our putative theory, this is the
cartesian condition: there should be canonical isomorphisms HZT Š f �HZS for each
morphism of schemes f W T ! S .

The identity (2.2) raises the possibility of defining motivic cohomology over a gen-
eral base-scheme B by this formula. One problem here is that the slice filtration has only
a limited functoriality: for f W C ! B a map of schemes, one does not in general have a
natural isomorphism f � ı s0 Š s0 ı f

�. For the cartesian property to hold for a motivic
cohomology defined via the slice filtration, one would want the compatibility of the slices
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with pullback; this latter is in fact the case for f W C ! B is a morphism of separated, finite
type schemes over a field k of characteristic zero (or assuming resolution of singularities for
separated, finite type k-schemes), by results of Pelaez [100, Corollary 4.3]. This compatibility
also holds for arbitrary smooth f , but is not known in general.

Another concrete candidate for the motivic Borel–Moore homology is given by the
hypercohomology of a version of Bloch’s cycle complex, suitably extended to the setting of
finite type schemes over a Dedekind domain. This theory is nearly absolute, as it depends
only on a good notion of dimension or codimension, which one would have for say equi-
Krull-dimensional schemes. In general, however, this theory lacks a full functoriality under
pullback and also lacks a multiplicative structure.

There is a P 1-spectrum KGLS 2 SH.S/ that represents the so-called homotopy
invariantK-theory over an arbitrary base and is cartesian, so one could try s0KGL as a rep-
resenting spectrum. Again, the problem is the functoriality of the slice filtration, but perhaps
KGL would be easier to handle than the sphere spectrum in this regard.

3.1. Cisinski–Déglise motivic cohomology
Over an base-scheme S that is noetherian and of finite Krull dimension, Cisinski–

Déglise [33, §11] have followed the program of Voevodsky to define a triangulated category
of motives DMCD.S/, with Tate objects ZS .n/, and with a “motives functor”

M W SmS ! DMCD.S/IX 7!M.X/ 2 DMCD.S/:

This extends Voevodsky’s construction of DM.k/ for a perfect field k. The main point is that
the notion of a finite correspondence for smooth finite type schemes over a field extends to
a corresponding notion over a general base-scheme (see [33, §8]). This gives rise to a theory
of motivic cohomology generalizing Voevodsky’s definition as

Hp;q.X;Z/ WD HomDMCD.S/

�
M.X/;ZS .q/Œp�

�
for X smooth over S . They show that the assignment S 7! DMCD.S/ defines a functor to
the category of triangulated tensor categories, DMCD.�/ W Sch

op
B ! Tr˝, admitting a six-

functor formalism. There are also Tate twistsM 7!M.n/. This gives a definition of motivic
cohomology of an general scheme Y by

Hp;q.Y;Z/ WD HomDMCD.Y /

�
ZY .0/;ZY .q/Œp�

�
;

which for Y 2 SmS agrees with the definition given above.
They construct an adjunction

�� W SH.Y / //
oo DMCD.Y / W ��;

with �� playing the role of the Eilenberg–MacLane functor, giving rise to the spectrum
MZY 2 SH.Y / representing H�;�.Y;Z/ [33, Definition 11.2.17]. They discuss the question
of whether Y 7!MZY is cartesian (see [33, Conjecture 11.2.22, Proposition 11.4.7]), without
reaching a general resolution.
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Cisinski–Déglise have a different approach for representing motivic cohomology
with Q-coefficients, much in the same spirit as Beilinson’s construction of universal coho-
mology using algebraic K-theory. Using the spectrum KGLS 2 SH.S/, which represents
homotopy invariant algebraic K-theory, they use the Adams operations to decompose
KGLSQ into summands, KGLSQ D

L
i KGL

.i/
S , with KGL.i/

S representing the i th graded
piece of K-theory for the  -filtration. This gives them a nice commutative monoid object
(i.e., commutative ring spectrum)HS WD KGL.0/

S 2 SH.S/Q, whose module category they
call the category of Beilinson motives over S . This construction is cartesian, gives a good
theory of motivic cohomology with Q-coefficients over a general base-scheme and agrees
with DMCD.S/Q for S a uni-branch scheme. See [33, §14] for details.

3.2. Spitzweck’s motivic cohomology
In [110], Spitzweck constructs a motivic cohomology theory over an arbitrary base-

scheme. The Bloch cycle complex gives rise to a general version of Bloch’s higher Chow
groups for finite type schemes over a Dedekind domain, which has nice localization prop-
erties (by [25] and [84]), but has poor functoriality and lacks a multiplicative structure. On
the other hand, using the Bloch–Kato conjectures, established by Voevodsky et al., the
`-completed higher Chow groups are recognized as a truncated `-adic étale cohomology,
for ` prime to all residue characteristics. The theorem of Geisser–Levine [52] describes the
p-completed higher Chow groups in characteristic p > 0 in terms of logarithmic de Rham–
Witt sheaves. Finally, there is the good theory withQ-coefficients given by Beilinsonmotivic
cohomology of Cisinski–Déglise, as described above.

Each of these three theories, namely the `-adic étale cohomology, the cohomology
of the logarithmic de Rham–Witt sheaves, and the rational Beilinson motivic cohomol-
ogy, has good functoriality and multiplicative properties. Gluing the `-adic, p-adic, and
rational theories together via their respective comparisons with the Bloch cycle complex,
Spitzweck constructs a theory with good functoriality and multiplicative properties, and
which is described by a presheaf of complexes on smooth schemes over a given Dedekind
domain as base-scheme. The corresponding theory agrees with Voevodsky’s motivic coho-
mology for smooth schemes over a perfect field, and is given additively by the hypercoho-
mology of the Bloch complex for smooth schemes over a Dedekind domain (even in mixed
characteristic).

Taking the base-scheme to be SpecZ, Spitzweck’s construction yields a represent-
ing objectMZZ in SH.Z/ and one can thus define absolute motivic cohomology for smooth
schemes over a given base-scheme S by pulling backMZZ toMZS 2 SH.S/. The result-
ing motivic cohomology agrees with Voevodsky’s for smooth schemes of finite type over a
perfect base-field, and with the hypercohomology of the Bloch cycle complex for smooth
finite type schemes over a Dedekind domain. This gives rise to a triangulated category
of motives DMSp.S/ over a base-scheme S , defined as the homotopy category of MZS -
modules, and the functor S 7!DMSp.S/ inherits a Grothendieck six-functor formalism from
that of S 7! SH.S/.
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3.3. Hoyois’ motivic cohomology
Spitzweck’s construction gives a solution to the problem of constructing a triangu-

lated category of motives over an arbitrary base, admitting a six-functor formalism and thus
yielding a good theory of motivic cohomology. His construction is a bit indirect and it would
be nice to have a direct construction of a representing motivic ring spectrumHZS 2 SH.S/
for each base-scheme S , still satisfying the cartesian condition.

Hoyois has constructed such a theory of motivic cohomology over an arbitrary base-
scheme by using a recent breakthrough in our understanding of the motivic stable homotopy
categories SH.S/. This is a new construction of SH.S/ more in line with Voevodsky con-
struction of DM.k/. The basic idea is sketched in notes of Voevodsky [126], which were real-
ized in a series of works by Ananyevskiy, Garkusha, Panin, Neshitov [2,4,45–48](authorship
in various combinations). Building on these works, Elmanto, Hoyois, Khan, Sosnilo, and
Yakerson [36–38] construct an infinity category of framed correspondences, and use the basic
program of Voevodsky’s construction of DM.k/ to realize SH.S/ as arising from presheaves
of spectra with framed transfers, just as objects of DM.k/ arise from presheaves of com-
plexes of sheaves with transfers for finite correspondences. It is not our purpose here to give
a detailed discussion of this beautiful topic; we content ourselves with sketching some of the
basic principles.

An integral closed subschemeZ �X � Y that defines a finite correspondence from
X to Y can be thought of a special type of a span via the two projections

Z
p1

~~

p2

  

X Y

For X and Y smooth and finite type over a given base-scheme S , a framed correspondence
from X to Y is also a span,

Z
p

~~

q

  

X Y

satisfying certain conditions, together with some additional data (the framing). For simplic-
ity, assume thatX is connected. Themorphismp is required to be a finite, flat, local complete
intersection (lci) morphism, called a finite syntomic morphism (the terminology was intro-
duced by Mazur). The lci condition means that p factors as closed immersion i W Z ! P

followed by a smooth morphism f W P ! X , and the closed subscheme i.Z/ of P is locally
defined by exactly dimXP � dimXZ equations forming a regular sequence. The morphism
p factored in this way has a relative cotangent complex Lp admitting a simple description,
namely

Lp D
�
IZ=I

2
Z

d
�! i��P=X

�
I

the conditions on i and p say that both IZ=I
2
Z and i��P=X are locally free coherent sheaves

onZ of rank dimXP � dimXZ and dimXP , respectively. For p an lci morphism, the perfect
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complex Lp defines a point ¹Lpº in the space K.Z/ defining theK-theory ofZ; in the case
of a finite syntomic morphism, the virtual rank of ¹Lpº is zero.

A framing for a syntomic map p W Z ! X is a choice of a path  W Œ0; 1�!K.Z/

connecting ¹Lpº with the base-point 0 2 K.Z/. For a framing to exist, the class
ŒLp� 2K0.Z/must be zero, but the choice of  is additional data. The morphism q WZ! Y

is arbitrary.
One has the usual notion of a composition of spans:

Z0

p0

~~

q0

  

Y W

ı

Z
p

~~

q

  

X Y

WD

Z �Y Z
0

pıp1

{{

q0ıp2

$$
X W

which preserves the finite syntomic condition. However, one needs a higher categorical struc-
ture to take care of associativity constraints. The composition of paths is even trickier, since
we are dealing here with actual paths, not paths up to homotopy. In the end, this produces
an infinity category Corrfr.SmS / of framed correspondences on smooth S -schemes, rather
than a category; roughly speaking, the composition is only defined “up to homotopy and
coherent higher homotopies.”

Via the infinity category Corrfr.SmS /, we have the infinity category of framed
motivic spaces, Hfr.S/, this being the infinity category of A1-invariant, Nisnevich sheaves
of spaces on Corrfr.SmS /. There is a stable version, SHfr.S/, an infinite suspension functor
†1fr W Hfr.S/! SHfr.S/, and an equivalence of infinity categories � W SHfr.S/! SH.S/,
where SH.S/ is the infinity category version of the triangulated category SH.S/, that is, the
homotopy category of SH.S/ is SH.S/. The equivalence � can be thought of as a version of
the construction of infinite loop spaces from Segal’s�-spaces, with a framed correspondence
X  Z ! Y of degree n over X being viewed as a generalization of the map Œn�C! Œ0�C

in �op.
With this background, we can give a rough idea of Hoyois’ construction of the spec-

trum representing motivic cohomology over S in [63]. He considers spans X
p
 � Z

q
�! Y ,

X; Y 2 SmS , with p W Z ! X a finite morphism such that p�OZ is a locally free OX -
module; note that this condition is satisfied if p is a syntomic morphism, but not con-
versely. These spans form a category Corrflf.SmS / under span composition (“flf” stands for
“finite, locally free”) and forgetting the paths  defines a morphism of (infinity) categories
�ad W Corrfr.SmS /! Corrflf.SmS /.

Given a commutative monoid A, the constant Nisnevich sheaf on SmS with value
A extends to a functor

AS W
�
Corrflf

�op
! Ab;

where the pullback from Y to X by X
p
 � Z

q
�! Y is given by multiplication by rnkOX

OZ if
X and Y are connected; one extends to general smooth X and Y by additivity. This gives us
the presheaf (of abelian monoids) with framed transfersAfr

S WD AS ı �
op
ad , and the machinery

of [36–38] converts this into the motivic spectrum �†
1
fr A

fr
S 2 SH.S/. Hoyois shows [63,
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Lemma 20] that this construction produces a cartesian family, and that taking A D Z recovers
Spitzweck’s family S 7!MZS [63, Theorem 21].

This gives us a conceptually simple construction of a motivic Eilenberg–MacLane
spectrum, and the corresponding motivic category DMH .S/, much in the spirit of Voevod-
sky original construction of DM.k/ and the Röndigs–Østvær theorem identifying DM.k/
with the homotopy category of EM.Z.0//-modules.

4. Milnor–Witt motivic cohomology

The classical Chow group CHn.X/ of codimension n algebraic cycles modulo ratio-
nal equivalence on a smooth variety X is part of the motivic cohomology of X via the
isomorphism CHn.X/DH 2n.X;Z.n//. Barge andMorel [12] have introduced a refinement
of the Chow groups, the Chow–Witt groups, that incorporates information about quadratic
forms. Their construction has been embedded in a larger theory ofMilnor–Witt motives and
Milnor–Witt motivic cohomology, which we describe in this section. The quadratic informa-
tion given by the Chow–Witt groups, Milnor–Witt motivic cohomology and related theories
has proven useful in recent efforts to give quadratic refinements for intersection theory and
enumerative geometry; see [10, 11, 21,61, 76, 77,86] for some examples. We refer the reader to
[8,31,39,92] for details on the theory described in this section.

4.1. Milnor–Witt K -theory and the Chow–Witt groups
A codimension n algebraic cycle Z WD

P
i niZi can be thought of as the set of its

generic points zi together with the Z-valued function ni on zi , from which we can write the
group Zn.X/ of codimension n algebraic cycles as

Zn.X/ D
M

z2X .n/

Z;

where X .n/ is the set of points z 2 X with closure Z WD Nz � X of codimension n.
Let GW.F / denote the Grothendieck–Witt ring of virtual non-degenerate quadratic

forms over F and let W.F / D GW.F /=.H/ where H is the hyperbolic form H.x; y/ D

x2 � y2 (we assume throughout that the characteristic is¤ 2 to avoid technical difficulties);
W.F / is the Witt ring of anisotropic quadratic forms over F (see [107]).

One can consider a finite set of codimension n points zi 2 X
.n/, together with a

collection of classes ¹qi 2 GW.k.zi //º; one recovers a Z-valued function on zi by taking
the rank of qi . This gives the group

QZn.X/ WD
M

z2X .n/

GW
�
k.z/

�
with rank homomorphism rnk W QZn.X/!Zn.X/. In contrast with integer-valued functions,
an element q 2 GW.k.z// does not always extend to all of Nz; there is an obstruction given
by a certain boundary map

@ W GW
�
k.z/

�
!

M
w2Nz\X .nC1/

W
�
k.w/

�
:
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This starts to look more like classical homology, in that one should consider QZn.X/ as a
group of chains rather than a group of cycles.

This is not enough, as one needs a quadratic refinement for the classical relation
given by rational equivalence. The original construction of Barge–Morel defined this rela-
tion, but later developments put their construction in a rather more natural form, which we
now describe.

We recall that the Milnor K-theory ring KM
� .F / WD

L
n�0K

M
n .F / of a field F is

defined as the quotient of the tensor algebra on the abelian group of units F �, modulo the
Steinberg relation

KM
� .F / WD .F

�/˝Z�=
�®
a˝ .1 � a/ j a 2 F n ¹0; 1º

¯�
:

The quadratic refinement of KM
� .F / is the Hopkins–Morel Milnor–Witt K-theory of F .

Definition 4.1 (Hopkins–Morel [92, Definition 6.3.1]). Let F be a field. The Milnor–Witt
K-theory of F , KMW

� .F / WD
L

n2Z K
MW
n .F /, is the Z-graded associative algebra defined

by the following generators and relations.

Generators

(G1) For each u 2 F �, we have the generator Œu� of degree 1;

(G2) There is an additional generator � of degree �1.

Relations

(R0) � � Œu� D Œu� � �;

(R1) Œuv� D Œu�C Œv�C � � Œu� � Œv�;

(R2) Œu� � Œ1 � u� D 0 for u 2 F n ¹0; 1º;

(R3) Let h D .2C � � Œ�1�/. Then � � h D 0.

It follows directly that sending Œu� to ¹uº 2 KM
1 .F / and sending � to zero defines a

surjective graded algebra homomorphism KMW
� .F /! KM

� .F / with kernel .�/. We write
Œu1; : : : ; un� for the product Œu1� � � � Œun�.

Theorem 4.2 (Hopkins–Morel [92, Theorem 6.4.5]). Let I.F /� GW.F / be the kernel of the
rank homomorphism GW.F /! Z, with the nth power ideal I n.F / � GW.F / for n > 0.
Define I n.F /DW.F / for n � 0. Then for each n 2 Z, the surjectionKMW

n .F /!KM
n .F /

extends to an exact sequence

0! I nC1.F /! KMW
n .F /! KM

n .F /! 0:

For n D 0, KM
0 .F / D Z, KMW

0 .F / is isomorphic to GW.F / and the above sequence is
isomorphic to the defining sequence for I.F /. For n < 0, KM

n .F / D 0 and KMW
n .F / Š
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W.F /. Finally, we have, for each n < 0, a commutative diagram

KMW
n .F /

��

��

� // W.F /

KMW
n�1.F /

� // W.F /

and, for n D 0, the commutative diagram

KMW
0 .F /

��

��

� // GW.F /

�

��

KMW
�1 .F /

� // W.F /

where � is the canonical surjection.

The isomorphism GW.F /
�
�! KMW

0 .F / sends hui to 1 C �Œu�, where hui is the
rank one form hui.x/ WD ux2; since a quadratic form over F is diagonalizable (charF ¤ 2),
the isomorphism is completely determined by its value on the forms hui. Given a 1-dimen-
sional F -vector space L, we have the GW.F /-module GW.F I L/ of non-degenerate,
L-valued quadratic forms q W V ! L; each vector space isomorphism � W L ! F gives
an isomorphism of GW.F /-modules GW.F IL/ Š GW.F /. Since KMW

� .F / is a Z-graded
KMW

0 .F / D GW.F /-module, we can form the Z-gradedKMW
� .F /-moduleKMW

� .F IL/ WD

GW.F IL/˝GW.F / K
MW
� .F /.

Given a dvrO with residue field k, quotient field F , and generator t for the maximal
ideal, one has the map

@t W K
MW
n .F /! KMW

n�1.k/

determined by the formulas

@t

�
Œt; u2; : : : ; un�

�
D Œ Nu2; : : : ; Nun�; @t

�
Œu1; u2; : : : ; un�

�
D 0; @t .� � x/ D � � @t .x/

for u1; : : : ; un 2 O�, and x 2 KMW
nC1.F /, where Nui is the image of ui in k�. This is similar

to the well-known boundary map @ W KM
n .F /! KM

n�1.k/, with the difference, that @ does
not depend on the choice of t while @t does. To get a boundary map that is independent of
the choice of parameter t , one needs to include the twisting. This yields the well-defined
boundary map

@ W KMW
n .F IL˝O F /! KMW

n�1

�
kIL˝O .m=m

2/_
�

for L a free rank-one O-module, independent of the choice of generator for the maximal
ideal m, where @ is defined by choosing a generator t and an O-basis � for L, and setting

@.x ˝ �/ WD @t .x/˝ �˝ @=@t:

Definition 4.3. Let X be a smooth finite type k-scheme, and let L be an invertible sheaf
on X . The nth L-twisted Rost–Schmid complex for Milnor–Witt K-theory is the complex
RS�.X;L; n/ with

RSm.X;L; n/ WD
M

x2X .m/

KMW
n�m

�
k.x/ILx ˝OX;x

m̂

.mx=m
2
x/
_

�
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and boundary map @m W RSm.X;L; n/! RSmC1.X;L; n/ the sum of the maps

@w;x W K
MW
n�m

�
k.x/ILx ˝OX;x

m̂

.mx=m
2
x/
_

�
! KMW

n�m�1

�
k.w/ILx ˝OX;x

mC1̂

.mw=m
2
w/
_

�
associated to the normalization of the local ring O Nx;w for w 2 Nx \ X .mC1/. Here we have
cheated a bit in the definition of @w;x . This is correct ifO Nx;w is a dvr, which is the case outside
of finitely many points w 2 Nx \ X .mC1/; in general, one needs to use a push-forward map
in Milnor–Witt K-theory for finite field extensions to define @w;x .

The twisted Milnor–Witt sheaf KMW
n .L/X is the Nisnevich sheaf on X associated

to the presheaf
U 7! H 0

�
RS�.U;L˝OU ; n/

�
:

The codimension n twisted Chow–Witt group of X , fCHn.X IL/, is defined asfCHn.X IL/ WD Hn
�
RS�.X;L; n/

�
For details, see [93, Chap. 5] or [31, Chap. 2].
For Milnor K-theory, one has the Gersten complex G�.X; n/,

G�.X; n/ WD
M

x2X .0/

KMW
n

�
k.x/

� @0

�! � � �
@n�mC1

�����!

M
x2X .m/

KM
n�m

�
k.x/

�
@n�m

���! � � �
@n�1

���!

M
x2X .n/

KM
0

�
k.x/

�
;

with essentially the same definition as the Rost–Schmid complex, without the twisting. This
gives us theMilnorK-theory sheafKM

n;X WD ker@0, and it follows easily from the definitions
that CHn.X/ D Hn.G�.X; n//. The same ideas that lead to the Bloch–Kato formula [78]

CHn.X/ Š Hn.XNis;K
M
n;X /

give the isomorphism fCHn.X IL/ Š Hn
�
XNis;K

MW
n .L/X

�
(see the discussion following [31, Definition 3.1] for details). The maps KMW

n ! KM
n give

the map of complexes RS�.X;L; n/ ! G�.X; n/ and the corresponding map rnkX;n WfCHn.X IL/! CHn.X/.
The twists by an invertible sheaf are not just a device for defining the Rost–Schmid

complexes and the Chow–Witt groups, they play an integral part in the structure of the overall
theory. The Chow groups of smooth varieties admit the functorialities of a Borel–Moore
homology theory: they have functorial pullback maps f � W CHn.Y /! CHn.X/ for each
morphism f WX ! Y in Smk , and for f WX ! Y a proper morphism of relative dimension
d , one has the functorial proper push-forward map f� W CHn.X/! CHn�d .Y /. The Chow–
Witt groups also have a contravariant functoriality; for f WX! Y , andL an invertible sheaf
on Y , one has the functorial pullback

f � W fCHn.Y;L/! fCHn.X; f �L/:
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But for the proper push-forward, one needs to include the orientation sheaf, this being the
usual relative dualizing sheaf !f WD !X=k ˝ f

�!�1
Y=k

, where !X=k WD det�1
X=k

is the sheaf
of top-dimensional forms. The push-forward takes the form

f� W fCHn.X; !f ˝ f
�L/! fCHn�d .Y;L/:

This limits the possible twists fCHn.X;M/ for which a push-forward f� is even defined; this
type of restricted push-forward is typical of so-called SL-oriented theories, such as hermitian
K-theory. See [1] for a detailed discussion of SL-oriented theories and [31, Chap. 3] for the
details concerning the push-forward in fCH�.

4.2. The homotopy t-structure and Morel’s theorem
Building on the Bloch–Kato formula, CHn.X/ Š Hn.XNis;K

M
n;X /, one can con-

struct a good bigraded cohomology theory EM.KM
� /
�� by using all the cohomology groups.

To get the correct bigrading, one should set

EM.KM
� /

a;b.X/ WD H a�b.XNis;K
M
b /;

giving in particular EM.KM
� /

2n;n.X/DCHn.X/. It was recognized early on that this theory
is not the sought-after motivic cohomology, for instance, forX D SpecF , F a field, one gets
exactly the MilnorK-theory of F , and none of the other parts of theK-theory of F . In spite
of this, this theory and the similarly defined theory for Milnor–WittK-theory have a natural
place in the universe of motivic cohomology theories, which we now explain.

The classical stable homotopy category SH is a triangulated category with a natural
t -structure measuring connectedness, mentioned in Section 2.5. For SH, the truncations give
the terms in the Moore–Postnikov tower

� � � ! ��nC1E ! ��nE ! � � � ! E

with ��nE ! E characterized by inducing an isomorphism on �m for m � n and with
�m��nE D 0 for m < n. The heart of SH is the category of spectra E with �mE D 0 for
m ¤ 0, which are just the Eilenberg–MacLane spectra EM.A/, A an abelian group. Thus,
the heart of SH is Ab and the cohomology theory represented by �0E is

EM.�0E/
n.X/ WD Hn.X; �0E/;

singular cohomology with coefficients in the abelian group �0E.
We have a parallel t -structure on SH.k/, introduced by Morel [92, §5.2], called

the homotopy t -structure (and not coming from Voevodsky’s slice tower discussed in Sec-
tion 2.5). This is similar to the t -structure on SH, where one takes into account the fact that
one has bigraded homotopy sheaves �a;bE for E 2 SH.k/, rather than a Z-graded family
of homotopy groups �nE for E 2 SH. The truncation ��nE is characterized by

�a;b.��nE/ D

8<:�a;b.E/ if a � b � n;

0 if a � b < n
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Recalling that the sphere Sa;b is Sa�b ^ Gb
m, the homotopy t -structure on SH.k/ is mea-

suring S1-connectedness, instead of the P 1-connectedness measured by Voevodsky’s slice
tower.

We denote the 0th truncation �0E for E 2 SH.k/ by EM.���;��E/; the notation
comes from Morel’s identification of the heart with his category of homotopy modules; for
details, see [92, §5.2]. The corresponding cohomology theory satisfies, for X 2 Smk ,

EM.���;��E/
a;b.X/ D H a�b

�
XNis; ��b;�b.E/

�
:

Here we have Morel’s fundamental theorem [92, Theorem 6.4.1] computing �0 of the sphere
spectrum 1k 2 SH.k/.

Theorem 4.4 (Morel). Let k be a perfect field. Then there are canonical isomorphisms of
sheaves on Smk

��n;�n.1k/ DKMW
n :

Consequently,
�01k D EM.KMW

� /

and
EM.KMW

� /a;b.X/ D H a�b.XNis;K
MW
b;X /:

Going back in time a bit, we have the theorem of Totaro [115] and Nesterenko–Suslin
[96]

Hn
�
F;Z.n/

�
Š KM

n .F /

for F a field. Combined with the isomorphism

s01k Š HZ

of [9,85,122], we have

Theorem 4.5. Let k be a perfect field. Then

�0s01k D �0HZ D EM.KM
� /

and
EM.KM

� /
a;b.X/ D H a�b.XNis;K

M
b;X /

for X 2 Smk .

Bachmann proves an extension of this result. Recall Voevodsky’s slice tower

� � � ! fnC1E ! fnE ! � � � ! f0E ! � � � ! E

with snE the layer given by the distinguished triangle

fnC1E ! fnE ! snE ! fnC1EŒ1�:

Recall that this is not the truncation tower of a t -structure, as the subcategories defined by
the layers sn WD fn=fnC1 are triangulated categories, not abelian categories.
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Proposition 4.6 ([7, Lemma 12]). Let 1k ! EM.KM
� / be the composition 1k ! �01k D

EM.KMW
� /! EM.KM

� /, the latter map induced by the surjection KMW
� !KM

� . Then the
induced maps

s0.1k/! s0EM.KM
� / f0EM.KM

� / D f0�0HZ

are all isomorphisms, so all of these objects are isomorphic to the motivic cohomology spec-
trumHZ.

The truncation functors for the homotopy t -structure and for the Voevodsky slice
tower do not commute. Since 1k is effective, we have f01k D 1k and so �0f01k D �01k D

EM.KMW
� /. The truncations in the other order give us something new.

4.3. Milnor–Witt motivic cohomology
Definition 4.7 ([7, Notation, p. 1134, just before Lemma 12]). Let k be a perfect field. Define
the Milnor–Witt motivic cohomology spectrum QHZ 2 SH.k/eff by

QHZ WD f0.�01k/ D f0EM.KMW
� /:

The canonical map �01k ! �0s01k D �0HZ induces the map

QHZ D f0.�01k/
„
�! f0�0HZ D HZ:

For X 2 Smk , the Milnor–Witt motivic cohomology in bidegree .a; b/ is defined as
QHZa;b.X/.

Remarkably, one can compute QHZa;b.X/ in terms of the Milnor–Witt sheaves, at
least for some of the indices .a; b/; one also recovers the Chow–Witt groups. For
X D Spec F , the spectrum of a field F , one has a complete computation in terms of the
Milnor–Witt K-groups and the usual motivic cohomologyHZa;b.X/ WD H a.X;Z.b//.

Theorem 4.8 (Bachmann). For X 2 Smk and b � 0, there are natural isomorphisms

QHZa;b.X/ Š H a�b.XNis;K
MW
b;X / D

8<:H a�b.XNis;WX / for b < 0;

H a�b.XNis;GWX / for b D 0:

Here WX is the sheaf of Witt groups and GWX is the sheaf of Grothendieck–Witt rings.
For X 2 Smk and n 2 Z, we have

QHZ2n;n.X/ Š fCHn.X/:

For F a field, we have isomorphisms

QHZa;b.SpecF / Š

8<:KMW
n .F / for a D b D n;

HZa;b.SpecF / for a ¤ b:

This follows from

Theorem 4.9 ([7, Theorem 17]). Let QHZa;b , HZa;b denote the respective homotopy sheaves
��a;�b. QHZ/, ��a;�b.HZ/. Then for a ¤ b, the map

„a;b
W QHZa;b

! HZa;b
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is an isomorphism. Moreover, we have canonical isomorphisms QHZb;b D KMW
b

,
HZb;b DKM

b
, and „a;b W QHZb;b ! HZb;b is canonical surjection KMW

b
!KM

b
.

To prove Theorem 4.8, one applies this to the local–global spectral sequence

E
p;q
2 .n/ WD Hp.XNis; QHZq;n/) QHZpCq;n.X/;

noting that HZq;n D 0 for n < 0. This implies that the Gersten resolution of HZq;n has
length � n and thusHp.XNis;HZq;n/ D 0 for p > n.

In general, one can approximate QHZa;b.X/ using the local–global sequence. Com-
bined with Theorem 4.9 and the exact sheaf sequence

0! InC1
!KMW

n !KM
n ! 0;

this tells us that the Milnor–Witt cohomology of X is built out of the usual motivic coho-
mology combined with information arising from quadratic forms.

4.4. Milnor–Witt motives
Rather than pulling the Milnor–Witt cohomology out of the motivic stable homo-

topy hat, there is another construction that is embedded in a Voevodsky-type triangulated
category built out of a modified category of correspondences. We refer to [8] and [31] for
details.

The Chow–Witt groups on a smooth X have been defined using the Rost–Schmid
complex; one can also define Chow–Witt cycles with a fixed support using amodified version
of the Rost–Schmid complex.

Definition 4.10. Let X be a smooth k-scheme, L an invertible sheaf on X , and T � X a
closed subset. The nth L-twisted Rost–Schmid complex with supports in T , RS�T .X; nIL/,
is the subcomplex of RS�.X;L; n/ with

RSm
T .X;L; n/ WD

M
x2T\X .p/

KMW
n�m

�
k.x/ILx ˝OX;x

m̂

.mx=m
2
x/
_

�
� RSm.X;L; n/:

The usual arguments used to prove Gersten’s conjecture yield the following result.

Lemma 4.11. LetX be a smooth k-scheme,L an invertible sheaf onX , and T �X a closed
subset. The cohomology with supportHp

T .X;K
MW
n .L/X / is computed as

H
p
T

�
X;KMW

n .L/X
�
D Hp

�
RS�T .X;L; n/

�
:

Suppose T has pure codimension n onX . ThenX .m/ \ T D ; form< n,X .n/ \ T

is the finite set of generic points T .0/ of T andX .nC1/ \ T D T .1/ is the set of codimension
one points of T . This gives us the exact sequence

0! Hn
T

�
X;KMW

n .L/X
�
!

M
z2T .0/

GW
�
k.z/; det�1.mz=m

2
z/˝L

�
!

M
z2T .1/

W
�
k.z/; det�1.mz=m

2
z/˝L

�
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which allows us to think ofHn
T .X;K

MW
n .L/X / as the group of “Grothendieck–Witt cycles”

supported on T , whose definition we hinted at in the beginning of this section. We write this
as QZn

T .X;L; n/, with the warning that this is only defined for T a closed subset of a smooth
X of pure codimension n.

Note that the fact that T has pure codimension n implies that there are no relations
in Hn

T .X;K
MW
n .L/X / coming from KMW

1 .k.w// for w a codimension n � 1 point of X .
For similar reasons, the corresponding group for the Chow groups, Hn

T .X;K
M
n;X /, is just

the subgroup Zn
T .X/ of Z

n.X/ freely generated by the irreducible components of T , that
is, the group of codimension n cycles on X with support contained in T .

For T � T 0 � X , two codimension-n closed subsets, we have the evident map
QZn

T .X; L; n/ ! QZn
T 0.X; L; n/. The rank map GW.�/ ! Z gives the homomorphism

QZn
T .X;L; n/! Zn

T .X/.

Definition 4.12. For X , Y in Smk , let A.X; Y / be the set of closed subsets T � X � Y
such that each component of T is finite over X and maps surjectively onto an irreducible
component of X . We make A.X; Y / a poset by the inclusion of closed subsets.

Note that if Y is irreducible of dimension n, then a closed subset T � X � Y is in
A.X; Y / if and only if T is finite over X and has pure codimension n on X � Y .

Definition 4.13 (Calmès–Fasel [31, §4.1]). Let X , Y be in Smk and suppose Y is irreducible
of dimension n. Define

eCorrk.X; Y / D colimT2A.X;Y /
QZn

T .X � Y; p
�
2!Y=k/:

Extend the definition to general Y by additivity.

Using the functorial properties of pullback, intersection product and proper push-
forward for the Chow–Witt groups with support, we have a well-defined composition law

eCorrk.Y;Z/ � eCorrk.X; Y /! eCorrk.X;Z/
via the same formula used to define the composition in Cork ,

Z2 ıZ1 WD pXZ�

�
p�YZ.Z2/ \ p

�
XY .Z1/

�
:

The twisting by the relative dualizing sheaf in the definition of eCorrk.�;�/ is exactly what
is needed for the push-forward map pXZ� to be defined.

This defines the additive category eCorrk with objects Smk and morphisms
eCorrk.X; Y /. The rank map gives an additive functor

rnk W eCorrk ! Cork :

One then follows the program used by Voevodsky to define the abelian category of
Nisnevich sheaves with Milnor–Witt transfers, ShMWtr

Nis .k/, and then eDMeff.k/ �

D.ShMWtr
Nis .k// as the full subcategory of complexes with strictly A1-homotopy invariant

cohomology sheaves. One has the localization functor

QLA1 W D
�
ShMWtr

Nis .k/
�
!eDMeff.k/
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constructed using the Suslin complex, the representable sheaves QZtr.X/ for X 2 Smk , their
corresponding motives QM eff.X/ WD QLA1. QZtr.X// 2 eDMeff.k/ and the Tate motives QZ.n/
arising from the reduced motive of P 1. Finally, one constructs eDM.k/ as a category of QZ.1/-
spectra in eDMeff.k/ and we have the motive QM.X/ defined as the suspension spectrum of
QM eff.X/.

Definition 4.14. For X 2 Smk , categorical Milnor–Witt cohomology is

Hp
�
X; QZ.q/

�
WD HomfDM.k/

�
QM.X/; QZ.q/Œp�

�
:

Theorem 4.15. There is a natural isomorphism

Hp
�
X; QZ.q/

�
Š H QZp;q.X/:

The proof is very much the same as for motivic cohomology. One shows there is an
equivalence of eDM.k/with the homotopy category ofH QZ-modules (this is [8, Theorem 5.2]).
This gives an adjunction

H QZ ^ � W SH.k/ //
oo eDM.k/ WeEM

with H QZ ^ � the free H QZ module functor and the Eilenberg–MacLane functor eEM the
forgetful functor. This gives eEM. QZ.0// D H QZ, QM.X/ D H QZ ^ †1

P1XC, and induces the
isomorphism

Hp
�
X; QZ.q/

�
D HomfDM.k/

�
QM.X/; QZ.q/Œp�

�
Š HomSH.k/.†

1

P1XC; †
p;qH QZ/ D H QZp;q.X/:

5. Chow groups and motivic cohomology with modulus

Up to now, all the version of motivic cohomology we have considered share the A1-
homotopy invariance property, namely, thatH�.X;Z.�//ŠH�.X �A1;Z.�//; essentially
by construction, this property is enjoyed by all theories that are represented in the motivic
stable homotopy category. Although this is a fundamental property controlling a large col-
lection of cohomology theories, this places a serious restriction in at least two naturally
occurring areas.

One is the use of deformation theory. This relies on having useful invariants defined
on non-reduced schemes, but a cohomology theory that satisfies A1-invariance will not
distinguish between a scheme and its reduced closed subscheme. The second occurs in rami-
fication theory. AnA1-homotopy invariant theory will not detect Artin–Schreyer covers, and
would not give invariants that detect wild ramification.

Fortunately, we have an interesting cohomology theory that is not A1-homotopy
invariant, namely, algebraicK-theory, that we can use as a model for a general theory. Alge-
braic K-theory does satisfy the A1-invariance property when restricted to regular schemes,
but in general this fails. Besides allowingK-theory to have a role in deformation theory and
ramification theory, this lack of A1-invariance gives rise to interesting invariants of singu-
larities.
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5.1. Higher Chow groups with modulus
The theory of Chow groups with modulus attempts to refine the classical theory of

the Chow groups to be useful in both of these areas. This is still a theory in the process of
development; just as in the early days of motivic cohomology, many approaches are inspired
by properties of algebraic K-theory.

The tangent space to the functorX 7! O�X is given by the structure sheaf,X 7! OX ,
via the isomorphism

O�
XŒ"�=."2/

Š O�X ˚ " �OX :

Via the isomorphism Pic.X/ Š H 1.X;O�X /, this shows that the tangent space at X to the
functor Pic.�/ isH 1.X;OX /.

In [23], Bloch computes the tangent space to K2 (on local Q-algebras), giving the
isomorphism of sheaves on XZar (for X a Q-scheme)

K2;XŒ"�=."2/ ŠK2;X ˚�X

where �X is the sheaf of absolute Kähler differentials. Bloch then uses his formula from
[22],

H 2.XZar;K2/ Š CH2.X/;

to justify defining CH2.XŒ"�=."2// asH 2.XŒ"�=."2/Zar;K2/, giving

CH2
�
XŒ"�=."2/

�
D CH2.X/˚H 2.X;�X /:

For X a smooth projective surface over C withH 2.X;OX / ¤ 0, the exact sheaf sequence

0! �C=Q ˝C OX ! �X ! �X=C ! 0

along the fact that �C=Q is a C-vector space of uncountable dimension show that
�C=Q ˝C H 2.X; OX / makes a huge contribution to the tangent space H 2.X; �X / of
CH2.�/ onX . This is reflected inMumford’s result [95], that ifH 2.X;OX /ŠH

0.X;�2
X=C/

is nonzero, then CH2.X/ is “infinite-dimensional,” and gives some evidence for Bloch’s con-
jecture [23, Conjecture (0.4)] on 0-cycles on surfaces X withH 0.X;�2

X=C/ D 0.
The algebraic cycles have disappeared in this approach to Chow groups of non-

reduced schemes. Bloch and Esnault [26] gave the first construction of a cycle-theoretic
theory that could say something interesting about higher cycles on the non-reduced scheme
Spec kŒ"�=."2/. In a second paper [27], they modified and extended this construction to give
a theory of additive higher Chow groups with modulusm, for the field k. This was motivated
by Bloch’s earlier use of K-theory on the affine line, relative to ¹0; 1º, to study K3. Letting
1 tend to 0, they were led to consider the relative K-theory space K.kŒ"�; ."2//, this being
the homotopy fiber of the restriction map K.kŒ"�/! K.kŒ"�="2/, whose homotopy groups
are the relative K-theory groups Kn.kŒ"�; ."

2//. Replacing 2 with m � 2 gives the relative
K-theory groups Kn.kŒ"�; ."

m//. This led to the consideration of a complex of cycles on
Spec kŒ"�, with an additional condition imposed on the mth order limiting behavior of the
cycles; an explicit construction of such a cycle complex with modulus, zq.k;�;m/was given
in [27]. The homologyACHq.k;p;m/ WDHp.z

q.k;�;m// defines the additive codimension
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q higher Chow groups with modulus m for Spec k. Bloch–Esnault recover the computation
ACHn.k; n � 1; 2/ Š �n�1

k
from [26], and relate the additive analogue of weight two K3,

ACH2.k; 2; 2/, with the additive dilogarithm of Cathelineau [32].
Rülling [104] studied the projective system

� � � ! ACHn.k; n � 1;mC 1/! ACHn.k; n � 1;m/! � � � :

He showed this is endowed with additional endomorphisms Fn and Vn, and the graded groupL
nACH

n.k; n� 1;�C 1/��2 has the structure of a pro-differential graded algebra. In fact,
we have

Theorem 5.1 (Rülling). Let k be a field of characteristic ¤ 2. The pro-dga
L

n ACH
n.k;

n� 1;�C 1/, with Fn as Frobenius and Vn as Verschiebung, is isomorphic to the de Rham–
Witt complex of Madsen–Hesselholt,M

n

ACHn.k; n � 1;� C 1/ Š
M

n

W��
n�1
k :

With essentially the same definition as given by Bloch–Esnault, the additive cycle
complex and additive Chow groups were extended to arbitrary k-schemes Y by Park [98],
replacing A1 and divisor m � 0 with the scheme Y � A1 and divisor m � Y � 0. Binda and
Saito [20] went one step further, defining complexes zq.X;D;�/ for a pair .X;D/ of a finite
type separated k-scheme X and a Cartier divisorD, using essentially the same definition as
before. The homology is the higher Chow group with modulus

CHq.X;D; p/ WD Hp

�
zq.X;D;�/

�
:

The constructions of Bloch–Esnault, Park, and Binda–Saito all use a cubical model
of Bloch’s cycle complex. Here one replaces the algebraic n-simplex, �n

k
D Spec kŒt0; : : : ;

tn�=
P

i ti � 1, with the algebraic n-cube

�n
WD

�
P 1
n ¹1º; 0;1

�n
:

The notation means that one considers .P 1 n ¹1º/n Š An with its “faces” defined by setting
some of the coordinates equal to 0 or1. The corresponding cycle complex zq.X; �/c has
degree n component zq.X; n/c the codimension q cycles on X ��n that intersect X � F
properly for all faces F of �n; one also needs to quotient out by the degenerate cycles, these
being the ones that come by pullback via projection to a �m withm < n. The differential is
again an alternating sum of restrictions to the maximal faces ti D 0 and ti D1.

This complex also computes the motivic cohomology of X , just as Bloch’s simpli-
cial cycle complex does. In the Binda–Saito construction, the modulus condition arises by
considering the closed box �n

WD .P 1/n. Let F i
n � .P

1/n be the divisor defined by ti D 1
and letFnD

Pn
iD1F

i
n . In .P 1/n �X we have two distinguished Cartier divisors, .P 1/n �D

and Fn � X . A subvariety Z � .P 1 n ¹1º/n � X that is in zq.X; n/c satisfies the modulus
condition if

p�.Fn �X/ � p
�
�
.P 1/n �D

�
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where p W NZN ! .P 1/n �X is the normalization of the closure ofZ in�n
�X . Restricting

to the subgroup ofZq.�n �X/ generated by codimension q subvarietiesZ ��n �X that
intersect faces properly and satisfy the modulus condition yields the cycle complex with
modulus zq.X ID;�/� zq.X;�/c ; the higher Chow groups with modulus is then defined as

CHq.X ID;p/ WD Hp

�
zq.X ID;�/

�
:

The second construction of Bloch–Esnault, and Park’s generalization, are recovered as the
special cases X D A1

k
and D D m � 0 in the Bloch–Esnault version and X D Y � A1,

D D m � Y � 0 in Park’s version.
For X a finite type k-scheme, recall the Bloch motivic complex ZBl.q/

�
X defined as

the Zariski sheafification of the presheaf U 7! zq.X; 2q � �/ (this is already a Nisnevich
sheaf). Bloch’s cycle complexes satisfy an important localization property: the natural maps
to Zariski and Nisnevich hypercohomology

Hp
�
zq.X; 2q � �/

�
! Hp

�
XZar;ZBl.q/

�
X

�
! Hp

�
XNis;ZBl.q/

�
X

�
are isomorphisms. This fails for the cycle complex with modulus, although the comparison
between the Zariski and Nisnevich hypercohomology seems to be still an open question.

Iwasa and Kai consider the Nisnevich sheafification Z.q/�
.X ID/

of the presheaf

U 7! zq.U ID �X U; 2q � �/:

We call Hp.XNis;Z.q/
�
.X ID/

/ the motivic cohomology with modulus for .X; D/. Kai [74]
shows that this sheafified version has contravariant functoriality. Iwasa and Kai [67] construct
Chern class maps from relative K-theory

cp;q W K2q�p.X ID/! Hp
�
XNis;Z.q/

�
X;Nis

�
:

5.2. 0-cycles with modulus and class field theory
There is a classical theory of 0-cycles on a smooth complete curveC with amodulus

condition at a finite set of points S , due to Rosenlicht and Serre [109, III]. The idea is quite
simple, instead of relations coming from divisors (zeros minus poles) of an arbitrary rational
function f , f is required to have a power series expansion at each point p 2 S , with leading
term 1 and the next nonzero term of the form ut

np
p , with u.p/ ¤ 0, tp a local coordinate at

p and the integer np > 0 being the “modulus.” This is applied to the class field theory of a
smooth open curve U � C over a finite field [109, Theorem 4], that identifies the inverse limit
of the groups of degree 0 cycle classes on U , with modulus supported in C n U , with the
kernel of the map �ét

1 .U /
ab ! Gal. Nk=k/.

In their class field theory for higher-dimensional varieties, Kato and Saito [80] intro-
duce a group of 0-cycles on a k-scheme X with modulusD, defined by

CH0.X;D/ WD H
n.X;KM

n;.X;D//

withKM
n;.X;D/

a relative version of theMilnorK-theory sheaf, recalling Kato’s isomorphism
Hn.X;KM

n /Š CHn.X/ forX a smooth k-scheme [78]. Kerz and Saito give a different defi-
nition of a group of relative 0-cyclesC.X;D/ on a normal k-schemeX with effective Cartier
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divisorD such that X nD is smooth. It follows from their comments in [81, Definition 1.6]

that C.X;D/ D CHn.X ID; 0/ for X of dimension n, and it is easy to see that the Kato–
Saito and Kerz–Saito relative 0-cycles agree with the Rosenlicht–Serre groups in the case of
curves.

Kerz and Saito consider a smooth finite-type k-scheme U , choose a normal com-
pactification X and define the topological group C.U / WD limD C.X;D/, as D runs over
effective Cartier divisors on X , supported in X n U , and with each C.X;D/ given the dis-
crete topology. They show thatC.U / is independent of the choice ofX , and their main result
generalizes class field theory for smooth curves over a finite field as described above.

Theorem 5.2 ([81, Theorem 3.3]). Let k be a finite field of characteristic ¤ 2 and let U be a
smooth variety over k, ThenC.U / is isomorphic as topological group to a dense subgroup of
the abelianized étale fundamental group �ét

1 .U /
ab and this isomorphism induces an isomor-

phism of the degree 0 part C.U /0 of C.U / with the kernel �ét
1 .U /

ab
0 of �ét

1 .U /
ab ! �ét

1 .k/.

5.3. Categories of motives with modulus
There has been a great deal of interest in constructing a categorical framework for

motivic cohomology with modulus. A central issue is the lack of A1-homotopy invariance
for this theory, which raises the question of what type of homotopy invariance should replace
this.

One direction has been the construction of a reasonable replacement for the cat-
egory of homotopy invariant Nisnevich sheaves with transfers. A non-homotopy invariant
version has been developed via the theory of reciprocity sheaves, the name coming from the
reciprocity laws in class field theory of curves and its relation to the group of 0-cycles with
modulus of Rosenlicht–Serre. We will say a bit about reciprocity sheaves later on, in the
context of motives for log schemes Section 5.4.

For now, we will look at categories of motives with modulus constructed on the
Voevodskymodel by introducing a new notion of correspondence and a suitable replacement
for A1-homotopy invariance.

Looking at algebraicK-theory, the closest replacement forA1-homotopy invariance
seems to be the P 1-bundle formula

Kn.X � P 1/ Š K.X/ � ŒOX�P1 �˚K.X/ �
�
OX�P1.�1/

�
;

valid for a general scheme X . This has led to attempts to create a category of motives with
modulus based on a notion of “�-invariance.”

Here one has the problem that P 1 does not have the structure of an interval, a struc-
ture enjoyed by A1. One considers A1 together with “endpoints” 0; 1. Following the general
theory of a site with interval, as developed by Morel–Voevodsky [94, Chap. 2], one needs
the multiplication mapm W A1 �A1! A1 to allow one to consider .A1; 0; 1/ as an abstract
interval. In the construction of the cycle complex with modulus, one identifies .A1; 0;1/with
.P 1 n ¹1º; 0;1/, and the corresponding multiplication mapm0 W .P 1 n ¹1º/� .P 1 n ¹1º/!

P 1 n ¹1º only extends as a rational map P 1 � P 1 Ü P 1. However,m0 becomes a morphism
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after blowing up the point .1; 1/, which suggests that one should consider the closure of the
graph of m0 in P 1 � P 1 � P 1 as an allowable correspondence from P 1 � P 1 to P 1.

With this as starting point, Kahn, Miyazaki, Saito, and Yamazaki [69–71] follow
Voevodsky’s program, defining a category of modulus correspondences MCork . Objects are
pairs . NM;M1/with NM a separated finite-type k-scheme andM1 an effective Cartier divi-
sor on NM such that the open complementM ı WD NM nM1 is smooth. The morphism group
MCork.. NM;M1/; . NN;N1// is the subgroup of Cork.M ı; N ı/ generated by subvarieties
Z (finite and surjective over a component ofM ı) such that

(i) The closure NZ of Z in NM � NN is proper over NM (not necessarily finite).

(ii) Let f W NZN ! NM � NN be the normalization of NZ. Then

f �p�1M
1
� f �p�2N

1:

The composition law in Cork preserves conditions (i) and (ii), giving the category MCork
with functor MCork ! Cork sending . NM; M1/ to M ı and with MCork.. NM; M1/;

. NN; N1// ! Cork.M ı; N ı/ the inclusion. The product of pairs makes MCork a sym-
metric monoidal category and the functor to Cork is symmetric monoidal.

Let � be the object .P 1; ¹1º/. As hinted above, the closure of the graph of
m0 W .P 1 n ¹1º/ � .P 1 n ¹1º/! P 1 n ¹1º defines a morphism m W � ��! � in MCork .

They then consider the abelian category of additive presheaves of abelian groups
on MCork , MPSTk WD PreShAb.MCork/. There is also a version MCork of proper modulus
pairs .X;D/, with X a proper k-scheme, as a full subcategory of MCork , with its presheaf
category MPSTk .

They define a category of effective proper motives with modulus, MDMeff.k/, by
localizing the derived category D.MPSTk/. Roughly speaking, they follow the Voevodsky
program, replacing the A1-localization with � localization. To get the proper Nisnevich
localization is a bit technical; we refer the reader to [71, Definition 1.3.9] for details.

There is still quite a bit that is not known. One central problem is how to realize
the various constructions of the higher Chow groups with modulus as morphisms in a suit-
able triangulated category. There is a connection, at least for the modulus version of Suslin
homology and the Suslin complex, which we now describe.

One can show that the cubical version of the Suslin complex

C Sus
� .X/c.Y / WD HomCork .Y ���; X/= degn

is naturally quasi-isomorphic to the simplicial version C Sus
� .X/.Y /, where = degn means

taking the quotient by the image of the pullback maps via the projections Y ��n ! Y �

�n�1. For a modulus pair .X;D/, one can similarly form the naive Suslin complex

C Sus
� .X;D/.Y;E/ WD HomMCork

�
.Y;E/˝��; X

�
= degn :

Taking .Y;E/ D .Spec k;;/, we have the complex

C Sus
� .X;D/ WD C Sus

� .X;D/.Spec k;;/:
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Next, there is a derived Suslin complex RC Sus
� .X; D/c.�/ with a natural map of

presheaves
C Sus
� .X;D/c.�/! RC Sus

� .X;D/c.�/:

By [71, Theorem 2], for .X;D/ a proper modulus pair, RC Sus
� .X;D/c.�/ computes the maps

in MDMeff.k/ as

Hn

�
RC Sus
� .X;D/c.Spec k;;/

�
D HomMDMeff.k/

�
.Spec k;;/;M eff.X;D/

�
:

However, one should not expect that the Suslin complex or its derived version should
yield a version of the higher Chow groups. If one looks back at the setting of DM.k/,
the object that most naturally yields the higher Chow groups for an arbitrary finite type
k-scheme X is the motive with compact supportsM c.X/. This is defined as C Sus

� .Zc
tr.X//,

whereZc
tr.X/ is the presheaf with transfers withZc

tr.X/.Y / the free abelian group on integral
W � Y � X , with W ! Y quasi-finite and dominant over a component of Y 2 Smk . See
[127, Chap. 5, Proposition 4.2.9] for the relation ofM c.X/ with Bloch’s higher Chow groups.

One can define a similar version with modulus as the object M c.X; D/ asso-
ciated to the presheaf Zc

tr.X; D/, with Zc
tr.X; D/.Y; E/ � ZdimY .Y � X/ the subgroup

generated by closed subvarieties W � .Y n E/ � .X n D/ that are quasi-finite and dom-
inant over Y , and with the usual modulus condition, that the normalization � W NW N !

Y �X of the closure of W in Y �X satisfies

��.E �X/ � ��.Y �D/:

There is an analog of Suslin’s comparison theorem in the affine case, due to Kai–
Miyazaki [75]: They define an equi-dimensional cycle complex with modulus

z
equi
d
.X;D;�/ � zd .X;D;�/

which for d D 0 is the Suslin complex with modulus C Sus
� .Zc

tr.X;D//.Spec k;;/

Theorem 5.3 (Kai–Miyazaki). Let .X;D/ be a modulus pair, with X affine. Then there is
a pro-isomorphism ®

H�
�
z
equi
d
.X;mD;�/

�¯
m
Š

®
CHd .X;mD;�/

¯
m
:

Miyazaki [91] has defined objects zequi.X; D; d/ 2 MNSTk , with Zc
tr.X; D/ D

zequi.X;D; 0/. The sheaf zequi.X;D; r/ is defined similarly to Zc
tr.X;D/, with zequi.X;D;

d/.Y; E/ the group of cycles on .Y n E/ � .X n D/ generated by closed, integral
W � .Y n E/ � .X n D/ that are equi-dimensional of dimension d over Y n E, domi-
nate a component of Y nE, and with � W NW N ! Y �X satisfying the modulus condition

��.E �X/ � ��.Y �D/:

Moreover, for an arbitrary modulus pair .X;D/, one has

z
equi
d
.X;D;�/ D C Sus

�

�
zequi.X;D; d/

�
.Spec k;;/;
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and there is the canonical map

C Sus
�

�
zequi.X;D; d/

�
! RC Sus

�

�
zequi.X;D; d/

�
:

Letting CHequi
q .X;D; p/ D Hp.z

equi
q .X;D;�//, we have the natural map

CHequi
q .X;D; p/! CHq.X;D; p/

which is an isomorphism for X affine, and we have the natural maps for .X; D/ a proper
modulus pair

CHequi
q .X;D; p/! Hp

�
RC Sus
�

�
zequi.X;D; q/

�
.Spec k;;/

�
! HomMDMeff.k/

�
M.Spec k;;/Œp�; RC Sus

�

�
zequi.X;D; q/

��
:

For a proper modulus pair, let M c.X; D/ denote the image of Zc
tr.X; D/ in

MDMeff.k/. One can ask if there are analogs of the theorem ofKahn–Miyazaki–Saito–Yama-
zaki.

Question 5.4. For .X;D/ a proper modulus pair, are the maps

Hp

�
RC Sus
�

�
Zc

tr.X;D/
�
.Spec k;;/

�
! HomMDMeff.k/

�
M.Spec k;;/Œp�;M c.X;D/

�
isomorphisms? More generally, are the maps

Hp

�
RC Sus
�

�
zequi.X;D; q/

�
.Spec k;;/

�
! HomMDMeff.k/

�
M.Spec k;;/Œp�; RC Sus

�

�
zequi.X;D; q/

��
isomorphisms?

It is also not clear if the map

CHequi
q .X;D; p/! Hp

�
RC Sus
�

�
zequi.X;D; q/

�
.Spec k;;/

�
should be an isomorphism. Possibly one should also consider the Nisnevich hypercohomol-
ogy H�p.XNis; Z

equi
q .X; D; �//, with Z

equi
q .X; D; �/ defined by sheafifying U 7!

z
equi
q .U; U \D;�/.

For Voevodsky motives, and forX a finite type k-scheme, the motivic Borel-Moore
homology is defined by

HB:M:
p

�
X;Z.q/

�
WD HomDMeff.k/

�
Z.q/Œp�;M.X/c

�
Š Hp�2q

�
zequiq .X;�/

�
Š Hp�2q

�
zq.X;�/

�
D CHq.X; p � 2q/:

This uses the duality M.X/c Š M.X/_.d/Œ2d � for X of dimension d (valid in charac-
teristic zero, or after inverting p in characteristic p > 0), and the extension of Suslin’s
quasi-isomorphism z

equi
q .X; �/ ,! zq.X; �/ to arbitrary X . Moreover, we have M.X/c D

M.X/ for X smooth and proper.
However, a corresponding motivic cohomology of modulus pairs seems to need a

larger category. This is hinted at by the use of the duality (in DM.k/) M.X/c Š
M.X/_.d/Œ2d � in the computations described above. This says in particular that each
motive M.X/ admits a “twisted” dual in DMeff.k/, more precisely, the usual evaluation
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and coevaluation maps associated with a dual exist, but as maps with target or source some
Z.d/Œ2d � rather than the unit. For a general proper modulus pair .X; D/, this does not
seem to be the case; one seems to need modulus pairs with an anti-effective Cartier divisor.
Another way to say the same thing, if one looks for a proper modulus pair .X; D0/ such
that HomMDMeff.k/.M.X;D

0/;Z.q/Œp�/ looks at all like CHq.X;D; 2q � p/ for some given
proper modulus pair .X;D/, the defining inequalities in Corrk suggest thatD0 could be�D.
See the section “Perspectives” in [71, Introduction] for further details in this direction.

5.4. Logarithmic motives and reciprocity sheaves
Grothendieck motives for log schemes have been constructed in [66], where a ver-

sion for mixed motives has also been constructed using systems of realizations. There the
emphasis is on versions of motives for homological or numerical equivalence in the setting
of log schemes. In this section we discuss a recent construction of a triangulated category of
log motives, by Binda–Park–Østvær [19], that follows the Voevodsky program. We refer the
reader to the lectures notes of Ogus [97] for the facts about log schemes.

Recall that a log scheme is a pair .X; ˛ W M ! .OX ;�// consisting of a scheme
X and a homomorphism of sheaves of commutative monoids ˛ WM ! .OX ;�/ such that
˛�1.O�X / ! O�X is an isomorphism; without this last condition, the pair .X; ˛ W M !

.OX ;�// is called a pre-log structure. A pre-log structure ˛ WM ! .OX ;�/ induces a log
structure ˛log WMlog! .OX ;�/ by takingMlog to be the push-out (in the category of sheaves
of monoids) in

˛�1.O�X /
//

��

M

O�X

Given a modulus pair .X;D/, there are a number of (in general distinct) induced log
structures onX . For example, one can take the compactifying log structure, withM WDOX \

j�O
�
U , where U D X nD and j W U ! X is the inclusion. There are other log structures,

which in general depend on a choice of decomposition of D as a sum of effective Cartier
divisors (for example, the Deligne–Faltings log structure, discussed in [97, III, Definition

1.7.1]).
Replacing the category of smooth k-schemes is the category lSmk of fine, saturated,

log smooth and separated log schemes over the log scheme Spec k endowed with the trivial
log structure. We refer the reader to [19] for details; one needs these technical conditions to
construct the category of finite log correspondences. We call a separated, fine, saturated log
scheme an fs log scheme.

We sketch the construction of the category of finite log correspondences, and
describe how Binda–Park–Østvær follow Voevodsky’s program to define the triangulated
category logDMeff.k/ of effective log motives over k.
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For X 2 lSmk , let X denote the underlying k-scheme. We let Xı � X denote
the maximal open subscheme over which the log structure MX ! OX is trivial, that is,
MX jU D O�U , and let @X D X nX

ı.

Definition 5.5. 1. For X; Y 2 lSmk , the group lCork.X; Y / consisting of finite log corre-
spondences fromX to Y is the free abelian group on integral closed subschemesZ �X � Y
such that

(i) Z ! X is finite and is surjective to a component of X .

(ii) LetZN be the log schemewith underlying scheme the normalization � WZN
!

X � Y of Z and log structure .� ı p1/
�
logMX ! OZN . Here MX ! OX is the

given log structure onX and .� ı p1/
�
logMX ! OZ is the log structure induced

by the pre-log structure .� ı p1/
�1MX ! .� ı p1/

�1OX ! OZ . Then the map
of schemes p2 ı � W Z

N
! Y extends to a map of log schemes ZN ! Y .

Remark 5.6. It follows from (i) and (ii) above that, forZ 2 lCork.X;Y /, the restriction ofZ
to a cycle on the open subset Xı � Y ı of X � Y actually lands in Cork.Xı; Y ı/. Moreover,
by [19, Lemma 2.3.1], if the extension in (ii) exists, it is unique, so there is no need to include
this as part of the data. In particular, the restriction map lCork.X; Y /! Cork.Xı; Y ı/ is
injective ([19, Lemma 2.3.2]).

The condition that there exists a map of log schemes .ZN ; .p1 ı �/
�
logMX / !

.Y;MY / extending p2 ı � W Z
N
! Y is analogous to the modulus condition

��.D � Y / � ��.X �E/

for a subvariety W � X nD � Y n E to define a finite correspondence of modulus pairs
from .X;D/ to .Y;E/.

For the composition law, the proof of [19, Lemma 2.3.3] shows that, given elementary
log correspondencesW 2 lCork.X; Y /, andW 0 2 lCork.Y;Z/, each integral component R
ofW �Z \X �W 0 is the underlying scheme of a (unique!) elementary log correspondence
R 2 lCork.X;Z/. It is then easy to show that there is a unique composition law

ı W lCork.Y;Z/ � lCork.X; Y /! lCork.X;Z/

that is compatible with the composition law in Cork via the respective restriction maps.
This defines the additive category of finite log correspondences lCork with the same

objects as for lSmk , giving the category of presheaves with log transfers, lPSTk , defined as
the category of additive presheaves of abelian groups on lCork . For a log schemeX 2 lSmk ,
let Zltr.X/ denote the representable presheaf

Zltr.X/.Y / WD lCork.Y;X/:

The fiber product of log schemes induces a tensor product structure on lPSTk .
The next step is to define the log version of the Nisnevich topology.
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Amorphism of log schemes f W .X;MX !OX /; .Y;MY !OY / is strict if the map
of log structures f �MY !MX is an isomorphism. An elementary log Nisnevich square is
a cartesian square in the category of fs log schemes

V //

f 0

��

Y

f

��

U
g
// X

(5.1)

where f is strict étale, g is an open immersion, and f induces an isomorphism on reduced
schemes Y n V ! X n U .

A log modification is a generalization of the notion of a log blow-up, which in turn
is a morphism of log schemes modeled on the birational morphism of toric varieties given
by a subdivision of the fan defining the target. We refer the reader to [19, Appendix A] for
details. The Grothendieck topology generated by the log modifications and strict Nisnevich
elementary squares is called the dividing Nisnevich topology on fs log schemes. In a sense,
this is a log version of the cdh topology, where all the modifications are taking place in the
boundary.

With this topology in hand, we have the subcategory lNSTk of lPSTk of Nisnevich
sheaves with log transfers, just as for NSTk � PSTk , by requiring that a presheaf with log
transfers be a sheaf for the dividing Nisnevich topology when restricted to lSmk .

Finally, we need a suitable interval object to define a good notion of homotopy
invariance. This is just as for the category MDMeff.k/, where we consider � as the scheme
P 1 with compactifying log structure for .P 1; ¹1º/. The product log scheme �2 also has
the compactifying log structure for the divisor 1 � P 1 C P 1 � 1. However, the closure N�m

of the graph of the multiplication map m W �2
! � is not a morphism Qm in lCork , as the

requirement that the map of N�m to �2 be finite is not satisfied.
Another way to look at this is to note that the projection N�m! �2 is a cover of �2

in the dividing Nisnevich topology, and becomes an isomorphism after dNis-localization.
In a sense, this allows one to consider the sheaf adNis� as a version of a cylinder object and
allows many of the constructions of Morel–Voevodsky for a site with interval to go through,
although there are occasional technical difficulties that arise.

Definition 5.7. The tensor triangulated category of effective logmotives over k, logDMeff.k/,
is the Verdier localization of the derived category D.lPSTk/ with respect to the localizing
subcategory generated by:

(lMV) for an elementary log Nisnevich square

V //

f 0

��

Y

f

��

U
g
// X

we have the complex

Zltr.V /! Zltr.U /˚ Zltr.Y /! Zltr.X/:

2086 M. Levine



(lM) For a log modification f W Y ! X in lSmk , we have the complex

Zltr.Y /! Zltr.X/:

(lCI) For X 2 lSmk , we have the complex

Zltr.X ��/! Zltr.X/:

For each fs smooth log scheme X 2 lSmk , the image of Zltr.X/ in logDMeff.k/ is
the effective log motive lMeff.X/, giving the functor

lMeff
W lSmk ! logDMeff.k/:

The functor lMeff shares many of the formal properties ofM eff W Smk ! DMeff.k/; we refer
the reader to the [19, Introduction] for an overview.

Questions of representing known constructions such as the higher Chow groups
withmodulus in logDMeff.k/, or finding direct connections of logDMeff.k/with the category
MDMeff.k/ are not discussed in [19]. However, for .X;D/ a proper modulus pair, one has the
log scheme l.X;D/, defined using the Deligne–Faltings log structure onX associated to the
ideal sheaf OX .�D/. In general, this is not saturated. Still, there should be presheaves with
log transfers Zltr.X;D/ and Zc

ltr.X;D/ using finite and quasi-finite “log correspondences,”
with value on Y 2 lSmk the free abelian group of integral subschemesW of Y �X that admit
a map of log schemes .W N ; .p1 ı �/

�.MY //! l.X;D/, as in the definition of lCork.�;�/.
One could also expect to have presheaves lz.X;D; r/ similarly defined, and corresponding
to the presheaves with modulus transfers z.X;D; r/ constructed by Miyazaki. These could
be used to give a map

Hp

�
zequir .X;D;�/

�
! HomlogDMeff.k/

�
Z.0/Œp�;M

�
lz.X;D; r/

��
:

We have briefly mentioned reciprocity sheaves in our discussion of motives with
modulus. There is a nice connection of logDMeff.k/ with the theory of reciprocity sheaves,
so we take the opportunity to say a few words about reciprocity sheaves before we describe
the theorem of Shuji Saito, which gives the connection between these two theories.

The notion of a reciprocity sheaf and its relation to motives with modulus goes back
to the theorem of Rosenlicht–Serre. In our discussion of reciprocity sheaves, we work over
a fixed perfect field k.

Theorem 5.8 (Rosenlicht–Serre [109, III]). Let k be a perfect field, let C be a smooth com-
plete curve over k, let G be an smooth commutative algebraic group over k, and let f W
C Ü G be a rational map over k. Let S � C be a finite subset such that f is a morphism
on C n S . Then there is an effective divisor D supported in S such that, for g a rational
function on C with g � 1 modD, one hasX

P2CnS

ordP .g/ � f .P / D 0

in G.
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In [72], reciprocity functors and reciprocity sheaves are defined. We will just give a
sketch. One first defines for F a presheaf with transfers (in the Voevodsky sense), and for
a proper modulus pair .X; D/ with a section a 2 F.X nD/, what it means for a to have
modulus D. As an example, if p W C ! X is a non-constant morphism of a smooth proper
integral curve C over k to X with p.C / not contained inD, and g is a rational function on
C such that g � 1 mod p�.D/, then one is required to have

a
�
p�

�
div.g/

��
D 0 2 F.Spec k/:

Here, for a 0-cycle
P

x nx � x on X nD, a.
P

x nx � x/ D
P

x nx � px�i
�
x .a/ 2 F.Spec k/,

where for a closed point x of X nD, ix W x ! X nD is the inclusion and px W x ! Spec k
is the (finite) structure morphism. In general, one imposes a similar condition in F.S/ for a
“relative curve” on X � S over some smooth base scheme S .

A presheaf with transfers F is a reciprocity sheaf if for each quasi-affine U and
section a 2 F.U /, there is a proper modulus pair .X; D/ with U D X n D such that a
has modulus D. Roughly speaking, one should think that each section of F has “bounded
ramification,” although the “ramification” for F itself may be unbounded.

This definition is not quite accurate, as a slightly different notion of “modulus pair”
from what we have defined here is used in [72]. A more elegant definition of reciprocity
sheaf is given in [73]. This new notion is a bit more restrictive than the old one, but by [73,

Theorem 2], the two notions agree on for F 2 MNSTk .
Using the definition of [73], the reciprocity sheaves define a the full subcategory

RSTk of PSTk , strictly containing the subcategory HIk � PSTk of A1-homotopy invariant
presheaves with transfer. There is also the subcategoryRSTNis;k of NSTk , consisting of those
reciprocity presheaves that are Nisnevich sheaves.

Some examples of non-homotopy invariant sheaves inRSTNis;k include the sheaf of
n-forms over k, X 7! �n

X=k
, the sheaf of absolute n-forms, X 7! �n

X , and for k of positive
characteristic, the truncated de Rham–Witt sheaves, X 7! Wm�

n
X . The representable sheaf

of a commutative algebraic group G over k, X 7! G.X/, is in RSTNis;k , and for some G
(e.g. G D Gn

m) this is also A1-homotopy invariant. This is not the case for unipotent G (e.g.
G D Gn

a ).
Here is the promised theorem of Saito. For a sheaf G 2 lNSTk , we say that G is

strictly �-invariant if for all X 2 lSmk , the map

H�dNis.X;GjXdNis/! H�dNis.X ��; G
jX��dNis

/

induced by the projection X ��! X is an isomorphism. Here dNis refers to the divided
Nisnevich site.

Theorem 5.9 (Saito [105, Theorem 0.2]). There exists a fully faithful exact functor

log W RSTNis;k ! lNSTk

such that log.F / is strictly�-invariant for everyF 2RSTNis;k . Moreover, for eachX 2 Smk ,
there is a natural isomorphism

H i
Nis.X; FjX / Š HomlogDMeff.k/

�
lMeff.X/; log.F /Œi �

�
:
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6. p-adic étale motivic cohomology and p-adic Hodge

theory

We discuss yet another theory of motivic cohomology that is not A1-homotopy
invariant.

Working over a base-field k and for m prime to the characteristic, we have the iso-
morphism of the étale sheafification Z=m.r/ét with the étale sheaf �˝r

m . The étale sheaves
Z=m.r/ét can be considered as objects in a version of Voevodsky’s DM constructed using the
étale topology rather than the Nisnevich topology, and their categorical cohomology agrees
with the usual étale cohomology [127, Chap. 5, §3.3]. In particular, the complexes Z=m.r/ét
have A1-homotopy invariant étale cohomology.

On the other hand, if k has characteristic p > 0, we have the isomorphism [52] of
the Nisnevich sheaves on Smk ,

Z=pn.r/ Š Wn�
r
logŒ�r�; (6.1)

hence of étale sheaves
Z=pn.r/ét Š Wn�

r
logŒ�r�:

Here something strange happens: the étale sheaf Z=pn.r/ét is no longer strictly homotopy
invariant! In fact, the existence of the Artin–Schreyer étale cover A1 ! A1 of degree p
implies that the étale version of DMeff.k/ with coefficients modulo pn is zero if k has
characteristic p > 0 [127, Chap. 5, Proposition 3.3.3]. Thus Z=pn.r/ét leaves the world of
Voevodsky’s motives and motivic cohomology.

ForS D Specƒ, withƒ amixed characteristic .0;p/ dvr, the complexZ=pn.r/ét on
SmS;ét yields an interesting gluing of Z=pn.r/ét D �

˝r
pn over the characteristic zero quotient

field ofƒ and Z=pn.r/ét DWn�
r
logŒ�r� over the characteristic p residue field. The positive

characteristic part again says that we have left homotopy invariance behind.
The complexes Z=pn.r/ét have an interesting connection with a certain complex of

sheaves arising in p-adic Hodge theory. A version of this complex first appears in the paper
[40] of Fontaine–Messing, and plays an important role in the proof of their main result. Its
construction was reinterpreted by Kurihara [82], relying on the work of Bloch–Kato [28] and
Kato [79], and was generalized by Sato [106]. Geisser [49], following work of Schneider [108],
established the connection of the Fontaine–Messing/Kurihara/Sato complex with Z=pn.r/ét

in the case of a smooth degeneration, and this connection was partially extended by Zhong
[128] to the semi-stable case.

In their recent work on integral p-adic Hodge theory, Bhatt–Morrow–Scholze [18]

have introduced a “motivic filtration” on p-adic étaleK-theory, relying on a Postnikov tower
for topological cyclic homology, and the layers in this tower have been identified with the
pro-system ¹Z=pn.r/étºn in a work-in-progress [16] by Bhargav Bhatt and Akhil Mathew.

Our goal in this section is to give some details of the story sketched above.
We first discuss the papers of Bloch–Kato, Fontaine–Messing, Kurihara and Sato

without reference to all the advances in p-adic Hodge theory that followed these works;
we wanted to give the reader just enough background to put the connections with motivic
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cohomology in context. We will then describe the works of Geisser and Zhong, as well
as results of Geisser–Hesselholt that form some of the foundations for the work of Bhatt–
Morrow–Scholze. We conclude with a description of the Bhatt–Morrow–Scholze motivic
tower and its connection with the p-adic cycle complexes.

We refer the reader to [15] for background on crystalline cohomology.

6.1. A quick overview of some p-adic Hodge theory
We begin with a few comments on the paper of Bloch and Kato [28], which we have

already mentioned in our discussion of the Beilinson–Lichtenbaum conjectures. They con-
sider the spectrum S of a complete dvr ƒ with generic point � D SpecK ,! S and closed
point s D Spec k ,! S , and a smooth and proper S -scheme X ! S with generic fiber
V WD X� and special fiber Y WD Xs . NV , NY denote V , Y over the respective algebraic
closures NK and Nk of K and k. Let Nƒ be the integral closure of ƒ in NK, NS WD Spec Nƒ,
and NX D X �S

NS . Let G D Gal. NK=K/ and let C denote the completion of NK.
The closure NY has its crystalline cohomologyH�crys. NY =W. Nk//with action of Frobe-

nius, giving the pi -eigenspace

H�crys
�
NY =W. Nk/

�.i/
� H�crys

�
NY =W. Nk/

�
Q
:

We say NY is ordinary if

dimW. Nk/Q
Hm

crys
�
NY =W. Nk/

�.i/
D dim NkH

m�i . NY ;�i
NY = Nk
/:

We have the inclusions Ni W NY ! NX , Nj W NV ! NX and the spectral sequence

E
s;t
2 D H

s
ét
�
NY ; Ni�Rt Nj�.Z=p

nZ/
�
) H sCt

ét . NV ;Z=pnZ/;

inducing a descending filtration F �H�ét . NV ;Qp/ on H�ét . NV ;Qp/ with F 0H q D H q and
F qC1H q D 0.

We have the de Rham–Witt sheaf W�i on Sm Nk and the sheaf of differential forms
�i
�=K

on SmK .

Theorem 6.1 (Bloch–Kato [28, Theorem 0.7]). Suppose that k is perfect and that Y is ordi-
nary. Then there are natural G-equivariant isomorphisms

(i) grq�iH
q
ét .
NV ;Qp/ Š H

q
crys

�
NY =W. Nk/

�.i/

Q
.�i/;

(ii) grq�iH
q
ét .
NV ;Qp/˝Zp W.

Nk/ Š H q
crys.
NY ;W �i /Q.�i/;

(iii) grq�iH
q
ét .
NV ;Qp/˝Qp C Š H

q.V;�i
V=K/˝K C.�i/:

We will not give any details of the proof here, but do want to mention that what ties
these different theories together is the sheaf of Milnor K-groups KM

q . This maps to étale
cohomology by the Galois symbol

�q;m WK
M
q =m! H

q
ét.�

˝q
m /

for m prime to the characteristic, to the de Rham–Witt sheaf by the d log map on Smk ,

d logW
q;pn WK

M
q =pn

! Wn�
q;
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and to the sheaf of differential forms, by the d log map on SmS ,

d logq;pn WKM
q =pn

! �
q

�=S
=pn:

The main structural results that underpin the proof of the Bloch–Kato theorem are
two comparison isomorphisms on the sheaf level. For the first, let Wn�

q
log � Wn�

q be the
étale subsheaf locally generated by the image d log.KM

q =pn/.

Theorem 6.2 ([28, Corollary 2.8]). Let F be a field of characteristic p > 0. Then the map
d log W KM

q .F /=pn! Wn�
q.F / defines an isomorphism ofKM

q .F /=pn withWn�
q
log.F /.

Note that the composition

Z=pn.q/! ��qZ=pn.q/ ŠKM
q =pnŒ�q�

d log
��! Wn�

q
logŒ�q�

is the map that defines the isomorphism (6.1).
The second result is a special case of the Bloch–Kato conjecture.

Theorem 6.3 (Bloch–Kato [28, Theorem 5.12]). Let F be a henselian discretely valued field
of characteristic 0, with residue field of characteristic p > 0. Then the Galois symbol

KM
q .F /=pn

! H
q
ét .F; �

˝q
pn /

is an isomorphism for all n � 1.2

Bloch and Kato use KM
q to relate i�Rqj��

˝q
pn to �q

�=K
=pn and Wn�

q�1
log via the

respective d log maps. Relying on the isomorphisms of Theorem 6.2 and Theorem 6.3, these
maps from Milnor K-theory tie de Rham cohomology, crystalline cohomology and étale
cohomology together, and eventually lead to a proof of Theorem 6.1.

As part of the proof, they define a surjective map

 W i�Rqj��
˝r
pn ! Wn�

q�1
log (6.2)

on Yét with the following property: Let � W i�j�KM
q;ét ! i�Rqj��

˝r
pn be the Galois symbol

map, let u2; : : : ; uq be units on X near some point y of Y with restrictions Nu1; : : : ; Nuq to Y
and let � be a parameter in ƒ. Then

 ı �
�
¹u1; : : : ; uq�1; �º

�
D d log

�
¹ Nu1; : : : ; Nuq�1º

�
:

We highlight this because it will be used later on in a gluing construction that defines an
object of central interest for this section.

The next paper I want to mention is by Fontaine–Messing [40]. They construct
a comparison isomorphism between de Rham cohomology and étale cohomology for a
smooth, proper schemeX over the ring of integers OK forK a characteristic zero local field
(under some additional assumptions). The de Rham cohomology H q

dR.V=K/ has its Hodge

2 In fact, at the beginning of §3 of [28], Bloch and Kato write, “The cohomological symbol
defined by Tate [114] gives a map : : : , which one conjectures to be an isomorphism quite
generally.”

2091 Motivic cohomology



filtration and via the comparison isomorphism H
q
dR.V=K/ Š H

q
crys.Y=W.k// ˝W.k/ K

H
q
dR.V=K/ acquires a Frobenius operator �; call this object H

q
crys.X/. Fontaine–Messing

construct the p-adic period ring Bcrys �K with a Galois action, a Frobenius and a filtration,
and show there are isomorphisms

Fil0
�
Bcrys ˝K H q

crys.X/
��DId

Š H
q
ét.V NK ;Qp/

and �
Bcrys ˝Qp H

q
ét.V NK ;Qp/

�G
Š H q

crys.X/

both compatible with the “remaining” structures.
To set this up, they consider the syntomic topology on SchWn.k/, where a cover is

a surjective syntomic map (we described syntomic maps in Section 3.3). The crystalline
structure sheaf O

crys
n defines a sheaf for the syntomic topology with a surjection to the usual

structure sheaf On on SchWn.k/. Letting Jn denote the kernel of O
crys
n ! On, one has the r th

divided power J Œr�
n ; this gives us the sheaf QS r

n defined as the kernel of � � pr W J
Œr�
n !O

crys
n .

Modifying this by taking the image S r
n of the reduction map QS r

nCr !
QS r
n gives the inverse

system ¹S r
nºn and the cohomology

H�. NX;S r
Qp
/ WD

�
lim
 
n

H�. NX;S r
n/

�
˝Zp Qp:

The ringBCcrys is defined as follows. The characteristicp ringO NK=p forms an inverse
system via the Frobenius endomorphism; let

O[
D lim
 
Frob

O NK=p;

a perfect characteristic p ring. We have the ring of truncated Witt vectors Wn.O
[/ and a

surjection �n W Wn.O
[/ ! O NK=p

n. Let W DP
n .O NK/ be the divided power envelope of the

kernel of �n, forming the inverse system ¹W DP
n .O NK/ºn�0. Let

BCcrys WD K ˝W.k/ lim
 
n

W DP
n .O NK/:

The Frobenius onWn.O
[/ induces a Frobenius on BCcrys and the filtration J

Œ��
n ofW DP

n .O NK/

induces a filtration Fil�BCcrys on BCcrys.

The derived push-forward of the complex J Œr�
n

��pr

���! O
crys
n is an analog of the

Deligne complex, as expressed in the following theorem.

Theorem 6.4 ([40, Corollary to Theorem 1.6, Lemma 3.1]). Suppose thatX is admissible3 and
ƒ D W.k/. Then for m � r < p there is an exact sequence

0! Hm. NX;S r
Qp
/! Filr

�
BCcrys ˝K Hm

dR.V=K/
� ��pr

���! HdR.V=K/! 0:

In other words,

Hm. NX;S r
Qp
/ D

�
Filr

�
BCcrys ˝K Hm

dR.V=K/
���Dpr

:

3 See [40, §2.1] for the definition of admissible X .
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To involve étale cohomology in the picture, Fontaine–Messing introduce the syn-
tomic–étale site on formal Spf.W.k//-schemes, where a cover is a map ¹Unºn!¹Vnºn such
that Un! Vn is a syntomic cover for all n and is an étale cover on the rigid analytic generic
fibers. This extends to the syntomic–étale site on NX , where an object is U ! NX , quasi-finite
and syntomic, with U NK ! V NK étale. Letting Z be the formal completion of NX , we have the
diagram of sites

Zsyn�ét
i
�! NXsyn�ét

j
 � V NK;ét:

Fontaine–Messing prove a patching result, that a sheaf on NXsyn�ét is given by a triple
.F ;G ; ˛/, with F a sheaf on Zsyn�ét, G a sheaf on V NK;ét, and ˛ W F ! i�Rj�G a morphism.
Using this description, they construct a sheaf on NXsyn�ét by defining a certain morphism (see
[40, §5.1])

˛ W S r
n ! i�Rj��

˝r
pn :

The resulting sheaf QS r
n has

j � QS r
n Š �

˝r
pn ; i� QS r

n Š S
r
n :

It follows from proper base-change (see the proof of [40, Proposition 6.2]) that the
restriction mapH�. NXsyn�ét; QS

r
n/! H�.Zsyn�ét; S

r
n/ is an isomorphism, and we also have�

lim
 
n

H�.Zsyn�ét; S
r
n/

�
˝Zp Qp Š

�
Filr

�
BCcrys ˝K Hm

dR.V=K/
���Dpr

:

Moreover, the restriction map j � gives

j � W H�. NXsyn�ét; QS
r
n/! H�ét .V NK ; �

˝r
pn /;

so passing to the limit, we have the map

ˇ W
�
Filr

�
BCcrys ˝K Hm

dR.V=K/
���Dpr

! Hm
ét

�
V NK ;Qp.r/

�
;

which they show is an isomorphism.
This gives a twisted version of the result announced at the beginning of our discus-

sion. To recover the untwisted version, they define a map

Qp.1/. NK/! BCcrys

by sending a pn-root of unity " in NK to the logarithm of the Teichmüller lift of the mod p
reduction of ", and passing to the limit in n. Let t 2 Qp.1/. NK/ be a nonzero element and
define Bcrys D B

C
crysŒ1=t �, with induced filtration and Galois action. Twisting with respect to

t translates the twisted version to the untwisted one.
The sheaf QS r

n is only defined on NXsyn�ét for X smooth over S and for r < p, and
with base-ring ƒ equal to W.k/, i.e., in the unramified case. Kato [79] studies the derived
push-forward �n.r/ of the syntomic sheaf QS r

n to Smk;ét. Kurihara [82, §1, Theorem] considers
the ramified case and also clarifies the relation of �n.r/with the sheaf of log formsWn�

r�1
log .
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Theorem 6.5 (Kurihara). Suppose that Œk W kp� <1. LetX ! S be smooth and projective
and suppose that r < p � 1. Then there is a distinguished triangle inD.Yét/,

Wn�
r�1
log Œ�r � 1�! �n.r/! i�Rj��

˝r
pn ! Wn�

r�1
log Œ�r�:

Schneider [108] extends the construction of �n.r/ to all r � 0 by using the Bloch–
Kato symbol map  of (6.2) to give a map s W ��rRj��

˝r
pn ! i�Wn�

r�1
log with i�s the

composition
i���rRj��

˝r
pn ! i�Rrj��

˝r
pn Œ�r�


�! Wn�

r�1
log Œ�r�:

Schneider then defines the sheaf �n.r/ as Cone.s/Œ�1�, giving the distinguished triangle

i�Wn�
r�1
log Œ�r � 1�! �n.r/! Rj��

˝r
pn

s
�! i�Wn�

r�1
log Œ�r�; (6.3)

which recovers the one in Kurihara’s theorem for r < p � 1 by applying i�.
Using a similar method, Schneider’s construction was extended to the semi-stable

case by Sato [106], who defines the objectTn.r/ 2D.Xét/withTn.r/Š �n.r/ in the smooth
case.

6.2. Étale motivic cohomology
We return to algebraic cycles. As before, we consider a smooth separated finite type

S -scheme X ! S D Specƒ with generic fiber j W V ! X and special fiber i W Y ! X ,
and with ƒ a mixed characteristic .0; p/ dvr with perfect residue field.

Geisser [49] considers the motivic complex Z.r/X on a smooth S -scheme X ! S

as a sheaf of complexes on XNis. Here we use the reindexed Bloch cycle complex to define
Z.r/�X .U / as

Z.r/�X .U / WD z
r .U; 2r � �/;

and define the motivic complexes Z.r/V and Z.r/Y on V and Y similarly.
Let˛ W .�/ét! .�/Nis be the change of topologymap. Sheafifying for the étale topol-

ogy gives complexes Z.r/ét;X , Z.r/ét;V , and Z.r/ét;Y . Geisser shows that various known
properties of Z.r/X , Z.r/V , and Z.r/Y , such as the purity isomorphism [84, Theorem 1.7]

i ŠZ.r/X Š Z.r � 1/Y Œ�2�;

the theorem of Geisser–Levine [52]

Z=pn.r/Y Š Wn�
r
log;Y Œ�r�;

the Suslin–Voevodsky isomorphism inDb.Vét/ (Beilinson’s axiom (iv)(a))

j �Z=pn.r/ét;X Š Z=pn.n/ét;V Š �
˝r
pn ;

and the Beilinson–Lichtenbaum conjectures (now a theorem)

Z=pn.r/V Š ��rR˛��
˝r
pn ; RrC1˛�Z.r/ét;V D 0

have as consequence
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Theorem 6.6 (Geisser [49, Theorem 1.3]). LetX! Specƒ be smooth and essentially of finite
type, with ƒ a complete discrete valuation ring of mixed characteristic .0; p/. Then there is
a distinguished triangle inDb.Xét/,

i�Wn�
r�1
log Œ�r � 1�! Z=pn.r/ét ! ��rRj��

˝r
pn ! i�Wn�

r�1
log Œ�r�;

and an isomorphism Z=pn.r/ét Š �n.r/ inDb.Xét/ that transforms this triangle to Schnei-
der’s defining triangle (6.3).

Zhong has extended this to the semi-stable case, establishing an isomorphism with
Sato’s construction Tn.r/ after a truncation [128, Proposition 4.5]:

��rZ=pn.r/ét Š Tn.r/:

Assuming a “weak Gersten conjecture” for Z=pn.r/ét, the truncation is removed [128, Theo-

rem 4.8].

6.3. The theorems of Geisser–Hesselholt
The construction of a motivic tower for integral p-adic Hodge theory by Bhatt–

Morrow–Scholze relies on properties of p-completed topological cyclic homology, includ-
ing the results of Geisser–Hesselholt identifying this with the p-completed étale K-theory.
We give a brief résumé of these constructions. Fix as before our mixed characteristic dvr ƒ
with perfect residue field k.

Topological cyclic homology for a fixed prime p is a spectrum refined version of
Connes’ cyclic homology and is defined for a scheme X with a topology � 2 ¹ét;Nis;Zarº;
we use the étale topology throughout. There is an inverse system of spectra ¹TCm.X;p/ºm2N

defining TC.X Ip/ as the homotopy inverse limit

TC.X Ip/ WD holim
m

TCm.X; p/:

Let T C �i denote the étale sheaf associated to the presheaf of the i th pro-homotopy groups
U 7! �iTC:.U Ip/. There is a descent spectral sequence

E
s;t
2 D H

s
cont.X; T C ��t /) TC�s�t .X Ip/

and a cyclotomic trace map
trc W K.X/! TC.X Ip/:

Let k be a perfect field of characteristic p > 0. It follows from a result of Hesselholt
[60, Theorem B] that there is a isomorphism of pro-sheaves on Smkét

T C �r Š W��
r
log: (6.4)

The map trc induces the map of pro-sheaves on Smkét

trc WKi .Z=p
�/! T C �i I

where Ki .Z=p�/ is the pro-étale sheaf associated to the system of presheaves U 7!
¹Ki .U;Z=p�/º� . Relying on the main theorem of [52] and the isomorphism (6.4), Geisser
and Hesselholt show
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Theorem 6.7 (Geisser–Hesselholt [50, Corollary 4.2.5, Theorem 4.2.6]).

1. The trace map trc W Ki .Z=p�/ ! T C �i is an isomorphism of pro-sheaves on
Smkét.

2. For Y 2 Smk , TC.Y Ip/ is weakly equivalent to thep-completed étaleK-theory
spectrum of Y ,

Két.Y / p̂ WD holim
m

Két.Y;Z=pn/ Š TC.Y Ip/;

and this weak equivalence arises from the weak equivalences at the finite level

trc W Két.Y;Z=p�/
�
�! TC.Y Ip;Z=p�/:

Now consider a smooth finite type schemeX! Specƒwith special fiber i W Y !X

and generic fiber j W V ! X , as before.

Theorem 6.8 (Geisser–Hesselholt [51, Theorems A and B]). Suppose ƒ is henselian.

A. Suppose X ! Specƒ is smooth and proper. Then

trc W Két
q .X;Z=p

�/! TCq.X Ip;Z=p
�/

is an isomorphism for all q 2 Z and � � 1.

B. Suppose that X ! Specƒ is smooth and finite type. Then the map of pro-
sheaves on Yét,

i�Kq.Z=p
�/!

®
i�T Cm

q .p;Z=p
�/

¯
m2N

;

is an isomorphism for all q 2 Z and all � � 1.

Remark 6.9. To pass from the isomorphism of Theorem 6.7 to that of Theorem 6.8(B),
Geisser–Hesselholt rely on the theorem of McCarthy [88], stating that the cyclotomic trace
map from relative K-theory to relative TC,

trc W Kq.X=�
n; X=�n�r ;Z=p�/! TCq.X=�

n; X=�n�r ;Z=p�/;

is an isomorphism for affine X . Thus, the K-theory and topological cyclic homology of
non-reduced schemes play a central role in the proof of Theorem 6.8.

6.4. Integral p-adic Hodge theory and the motivic filtration
Bhatt–Morrow–Scholze [17,18] have constructed integral versions of p-adic Hodge

theory. Here we discuss some aspects of the theory of [18] and its relation to p-adic étale
motivic cohomology. This uses (p-completed) topological Hochschild homology
THH.�; Zp/, topological negative cyclic homology TC�.�; Zp/, and topological peri-
odic cyclic homology TP.�;Zp/. For a nice, quick overview of these theories, we refer the
reader to [18, §1.2, §2.3], and to [18, Theorem 1.12] for their relation to TC.�;Zp/.
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Let Cp be the completion of the algebraic closure of Qp , with ring of integers OCp .
As in our review of the work of Fontaine–Messing, we have the Fp-algebra OCp=p, its per-
fection O[

Cp
and the ring of Witt vectors Ainf.OCp / WD W.O

[
Cp
/. Hesselholt has connected

this with negative cyclic homology TC�, constructing an isomorphism

�0TC�.OCp ;Zp/ Š Ainf.OCp /:

This has been generalized by Bhatt–Morrow–Scholze in the setting of perfectoid rings (see
[17, Definition 3.5]). For a perfectoid ring R, we have Scholze’s ring R[, defined as for O[

Cp

by taking the perfection of R=p,

R[
WD lim

 Frob
R=p:

This gives the ring of Witt vectors Ainf.R/ WD W.R[/ with Frobenius � induced by the
Frobenius on R[.

Theorem 6.10 (Bhatt–Morrow–Scholze [18, Theorem 1.6]). LetR be a perfectoid ring. Then
there is a canonical �-equivariant isomorphism �0TC�.R;Zp/ Š Ainf.R/.

Fix a discretely valued extension K of Qp , with ring of integers OK having perfect
residue field k. Let C be the completed algebraic closure of K, with ring of integers OC .
Let Ainf WD Ainf.OC /.

Let X be a smooth formal scheme over OC . In [17], Bhatt–Morrow–Scholze con-
struct a presheaf of complexes of Ainf-algebras on XZar, A�X , whose Zariski hyperco-
homology specializes to crystalline cohomology, p-adic étale cohomology and de Rham
cohomology via base-change with respect to suitable ring homomorphisms out of Ainf,
replacing the ring homomorphism Ainf.OCp /! Bcrys used in the Fontaine–Messing theory.
In [18], they refine and reinterpret this theory using TC�. They define the notion of a quasi-
syntomic ring and the associated quasi-syntomic site [18, Definition 1.7]; this gives the
presheaf �0TC�.�I Zp/ on the quasi-syntomic site qsyn QA over a quasi-syntomic ring QA
and the associated derived global sections functor R�syn. QA;�/.

Theorem 6.11 ([18, Theorem 1.8]). Let QA be an OC -algebra that can be written as the p-adic
completion of a smooth OC -algebra. There is a functorial (in QA) �-equivariant isomorphism
of E1-Ainf-algebras

A� QA Š R�syn
�
QA;�0TC�.�IZp/

�
:

The Postnikov tower ���TC.�IZp/ for the presheaf of spectra TC.�IZp/ on QAqsyn

induces the tower over TC. QAIZp:

� � � ! FilnC1TC. QAIZp/! FilnTC. QAIZp/! � � � ! TC. QAIZp; (6.5)

by setting
FilnTC. QAIZp/ WD R�syn

�
QA; ��2nTC.�IZp/

�
(see [18, §1.4]). Define the sheaves ZBMS

p .n/ by sheafifying the presheaf
QA 7! ZBMS

p .n/. QA/ WD grnFilTC. QAIZp/Œ�2n�;

where grnFilTC. QAIZp/ is the homotopy cofiber of FilnC1TC. QAIZp/! FilnTC. QAIZp/.
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Theorem 6.12 ([18, Theorem 1.15]). (1) Let k be a perfect field of characteristic
p > 0, let A be a smooth k-algebra and let X D Spec A. Then there is an
isomorphism in the derived category of sheaves on the pro-étale site of X ,

ZBMS
p .r/X Š W�

r
X;logŒ�r�:

(2) LetC be an algebraically closed complete extension ofQp , letA be the comple-
tion of a smooth OC -algebra, and let X D SpfA. Then there is an isomorphism
in the derived category of sheaves on the pro-étale site of X,

ZBMS
p .r/X Š ��rR Zp.r/X;ét:

Here Zp.r/X;ét denotes the pro-étale sheaf ¹�˝r
pn ºn on the rigid analytic generic

fiber X of X and R is the nearby cycles functor.

The isomorphism in (1) above, combined with the main result of [52], gives us the
identification of pro-objects

ZBMS
p .r/X Š ¹Z=p

n.r/X;étºn

in the setting of (1).
Consider the case of a smooth OK-scheme X as before. Bhatt–Morrow–Scholze

suggest in [18, Remark 1.16] that ZBMS
p =pn.r/X should be Schneider’s sheaf �n.r/, and by

passage to the limit, there should be a distinguished triangle

i�W�
r�1
log Œ�r � 1�! ZBMS

p .r/! ��rRj�
�
Zp.r/V;ét

�
! i�W�

r�1
log Œ�r�: (6.6)

ForX a smooth OK-scheme with associated formal scheme X and special fiber i W Y ! X,
this would give an isomorphism of i�ZBMS

p =pn.r/X with the étale motivic complex
i�Z=pn.r/ét on Yét considered by Geisser.

This has been proven in a work–in–progress by Bhargav Bhatt and Akhil Mathew
[16]. They construct an isomorphism of a version ofZBMS

p =pn.r/X with Sato’s sheafTn.r/X

in the semi-stable case; using Zhong’s extension of Geisser’s results, this gives an isomor-
phism

i�ZBMS
p =pn.r/X Š i

���rZ=pn.r/ét

in the semi-stable case.
One has the Geisser–Hesselholt isomorphism (Theorem 6.8) of étaleK-theory and

topological cyclic homology given by the cyclotomic trace map. Perhaps one can compare
the localization pro-distinguished triangle

K.Y IZp/! K.X IZp/! K.X n Y IZp/

with the distinguished triangle (6.6). Assuming one does have the pro-isomorphism
Zp.r/ét Š ZBMS

p .r/ as suggested above, it would be interesting to see if the identification of
the sheaves �n.r/ with the étale motivic complexes Z=pn.r/ét and the Atiyah–Hirzebruch
spectral sequence from motivic cohomology toK-theory could yield a comparison with the
spectral sequence corresponding to the motivic tower Fil�TC.XIZp/ described above.
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The sheaf ZBMS
p .r/ is built from TC.�IZp/, which by the Geisser–Hesselholt the-

orem is p-completed étale K-theory. As we mentioned before, the Geisser–Hesselholt iso-
morphism arises at least in part from McCarthy’s theorem identifying the relativeK-theory
and relative TC of the nilpotent thickenings X=.�n/ of the special fiber Y . However, the
motivic cohomology complexes do not detect the difference between X=.�n/ and Y . Sup-
posing again that one does have a pro-isomorphism Zp.r/ét Š ZBMS

p .r/, this says that in
mixed characteristic .0; p/, one can still see the K-theory of the thickened fibers X=.�n/

reflected in the motivic complexes Zp.r/ét.
I am not aware of a categorical framework for the tower FilnTC. QAIZp/ and its layers

ZBMS
p .r/, analogous to the framework for Voevodsky’s slice tower for K-theory given by

SH.k/. As A1-homotopy invariance fails for these theories, one would need a stable homo-
topy theory with a weaker invariance property, perhaps modeled on the one of the categories
of motives with modulus discussed in the previous section, for these theories to find a home,
in which the Bhatt–Morrow–Scholze tower (6.5) would be seen as a parallel to Voevodsky’s
slice tower.
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