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1. INTRODUCTION

Motivic cohomology arose out of a marriage of Grothendieck’s ideas about motives
with a circle of conjectures about special values of zeta functions and L-functions. It has
since taken on a very active life of its own, spawning a multitude of developments and appli-
cations. My intention in this survey is to present some of the history of motivic cohomology
and the framework that supports it, its current state, and some thoughts about its future direc-
tions. I will say very little about the initial impetus given by the conjectures about zeta
functions and L-functions, as there are many others who are much better qualified to tell
that story. I will also say next to nothing about the many applications motivic cohomology
has seen: I think this would be like writing about the applications of cohomology up to, say,
1950, and would certainly make this already lengthy survey completely unmanageable.

My basic premise is that motivic cohomology is supposed to be universal coho-
mology for algebro-geometric objects. As “universal” depends on the universe one happens
to find oneself in, motivic cohomology is an ever-evolving construct. My plan is to give a
path through some of the various universes that have given rise to motivic cohomologies, to
describe the resulting motivic cohomologies and put them in a larger, usually categorical,
framework. Our path will branch into several directions, reflecting the different aspects of
algebraic and arithmetic geometry that have been touched by this theory. We begin with the
conjectures of Beilinson and Lichtenbaum about motivic complexes that give rise to the uni-
versal Bloch—-Ogus cohomology theory on smooth varieties over a field, and the candidate
complexes constructed by Bloch and Suslin. We then take up Voevodsky’s triangulated cate-
gory of motives over a field and the embedding of the motivic complexes and motivic coho-
mology in this framework. The next developments moving further in this direction give us
motivic homotopy categories that tell us about “generalized motivic cohomology” for a much
wider class of schemes, analogous to the development of the stable homotopy category and
generalized cohomology for spaces; this includes a number of candidate theories for motivic
cohomology over a general base-scheme. We conclude with three variations on our theme:

* Milnor-Witt motives and Milnor—Witt motivic cohomology, incorporating infor-
mation about quadratic forms,

* Motives with modulus, relaxing the usual condition of homotopy invariance with
respect to the affine line, and

 p-adic, étale motivic cohomology in mixed characteristic (0, p), with its connec-
tion to p-adic Hodge theory.

This last example does not yet, as far as I know, have a categorical framework, while one for
a motivic cohomology with modulus is still in development.

There is already an extensive literature on the early development of motives and
motivic cohomology. It was not my intention here to cover this part in detail, but I include
a section on this topic to give a quick overview for the sake of background, and to isolate a
few main ideas so the reader could see how they have influenced later developments.
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I would like to thank all those who helped me prepare this survey, especially Tom
Bachmann, Federico Binda, Dustin Clausen, Thomas Geisser, Wataru Kai, Akhil Mathew,
Hiroyasu Miyazaki, Matthew Morrow, and Shuji Saito. In spite of their efforts, I feel certain
that a number of errors have crept in, which are, of course, all my responsibility. I hope that
the reader will be able to repair them and continue on.

2. BACKGROUND AND HISTORY

2.1. The conjectures of Beilinson and Lichtenbaum

Beilinson pointed out in his 1983 paper “Higher regulators and values of L-func-
tions” [13] that the existence of Gillet’s Chern character [53] from algebraic K-theory to an
arbitrary Bloch—Ogus cohomology theory [3e] with coefficients in a (Q-algebra implies that
one can form the universal Bloch-Ogus cohomology H(—, Q(b)) with Q-coeflicients by
decomposing algebraic K-theory into its weight spaces for the Adams operations V. In
terms of the indexing, one has

H(X.Q()) = Kzp-a(X)®
where Kop—q(X)®) C Kpp_a(X )q is the weight b eigenspace for the Adams operations
Kop—a(X)® = {x € Kzp—a(X)q | Y (x) = k” - x}.

This raised the question of finding the universal integral Bloch—-Ogus cohomology
theory. Let Schy denote the category of separated finite-type k-schemes with full subcat-
egory Smy of smooth k-schemes. Beilinson [13] and Lichtenbaum [87] independently con-
jectured that this universal theory H 7 (—, Z(b)) should arise as the hypercohomology of a
complex of sheaves X + I'x (b) on Smy (for the Zariski or étale topology)

HE(X.Z(b)) := H*(X,Tx (D).

with the Ty (b) satisfying a number of axioms. We give Beilinson’s list of axioms for motivic
complexes in the Zariski topology (axiom iv(p) was added by Milne [9e, §2]):

(i) In the derived category of sheaves on X, I"(0) is the constant sheaf Z on Smy,
') =Gul-1land '(n) = 0forn < 0.

(i) The graded object I'(*) := [X + €D, 5o ['x ()] is a commutative graded ring
in the derived category of sheaves on Smyg.

(iii) The cohomology sheaves #™ (I"(n)) are zero for m > n and form <0ifn > 0;
H" (I (n)) is the sheaf of Milnor K-groups X J{%X.

(iv)(a) Letting o : Smy ¢ — Smy 7, be the change of topology morphism, the
étale sheafification T'(n)g := a*I'(n) of T'(n) satisfies I'(n)g/m = u®" for
m prime to the characteristic, where i, is the étale sheaf of mth roots of unity.

(iv)(b) For m prime to the characteristic, the natural map I'(n)/m — R (n)g/m
induces an isomorphism ['(n)/m — t<pRo.I'(n)s/m. Integrally,
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Z(n) — RoayI'(n)e induces an isomorphism I'(n) — t<, Rots I' (1) and
R" 1o, T(n)e = 0.

(iv)(p) For k of characteristic p > 0, let W, Qﬁ)g denote the v-truncated logarithmic
de Rham-Witt sheaf. The dlog map dlog : XM /p" — W, §2log induces via
(i) amap I'(n)/p® — W, Q0

log[—71], which is an isomorphism.

One then defines motivic cohomology by
H?(X.Z(q)) := H” (Xzar. Tx (¢))-

(v) There should also be a spectral sequence starting with integral motivic cohomol-
ogy and converging to algebraic K-theory, analogous to the Atiyah—Hirzebruch
spectral sequence from singular cohomology to topological K-theory. Explic-
itly, this should be

ED?:= HP7I(X, Z(—q)) = K_p—q(X).
This spectral sequence should degenerate rationally, and give an isomorphism
H”(X,Q(q)) := HP (X, Z(q)) ®2 Q = Kag—p(X)@.

The vanishing #™(I"(n)) = 0 for n > 0 and m < 0 is the integral Beilinson—Soulé vanish-
ing conjecture. The mod m-part of axiom (iv)(b) is known as the Beilinson—Lichtenbaum
conjecture; this implies the integral part of (iv)(b) with the exception of the vanishing of
R" 1, T'(n)&, which is known as Hilbert’s theorem 90 for the motivic complexes. In weight
n = 1, with the identity I'(1) = G, [—1], this translates into the classical Hilbert theorem 90

HL(O,Gp) =0

for O a local ring, while the mod m part of (iv)(b) follows from the Kummer sequence of
étale sheaves

1—>,um—>(GmX—m>Gm—>l.

In light of axiom (iii), the Merkurjev—Suslin theorem [89, THEOREM 14.1] settled the degree
> 2 part of (iv)(b) for n = 2 even before the complex I'(2) was defined.

Beilinson [14, §5.18] rephrased and refined these conjectures to a categorical state-
ment, invoking a conjectural category of mixed motivic sheaves, and an embedding of the
hypercohomology of the Beilinson-Lichtenbaum complexes into a categorical framework.

In this framework, motivic cohomology should arise via an abelian tensor cate-
gory of motivic sheaves on Schg, X +— Sh™'(X), admitting the six functor formalism
of Grothendieck, f*, fx, fi. f', Hom, ®, on the derived categories. There should be Tate
objects Zx (n) € Sh™(X), and objects M(X) := pX;pgfls(O) in the derived category of
Sh™'(S), px : X — S the structure morphism, and motivic cohomology should arise as the
Hom-groups

Hj (X, Z(b)) = Hompgpmot(sy) (M(X), Zs (b)[a]).
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For X smooth over S, this gives the identity
Hp (X, Z(b)) = Extghmm(x) (ZX (0), Zx (b)).

This is a very strong statement, with implications that have not been verified to this
day. For instance, the vanishing of Ext% (—, —) for an abelian category + and for a < 0 gives
a vanishing #™(Zs(n)) = 0 for m < 0. The stronger vanishing posited by axiom (iii) above
(with Q-coeflicients) is the Beilinson—Soulé vanishing conjecture, and even the weak version
is only known for weight n = 1 (for which the strong version holds).

Beilinson’s conjecture on categories of motivic sheaves is still an open problem.
However, other than the integral Beilinson—Soulé vanishing conjecture, the axioms do not
rely on the existence of an abelian category of motivic sheaves, and can be framed in the
setting of a functorial assignment X — DM(X) from S-schemes to tensor-triangulated
categories. Such a functor has been constructed and the axioms (except for the vanishing
conjectures) have been verified. We will discuss this construction in Section 2.4.

2.2. Bloch’s higher Chow groups and Suslin homology

The first good definition of motivic cohomology complexes was given by Spencer
Bloch, in his landmark 1985 paper “Algebraic cycles and higher Chow groups” [24]. As
suggested by the title, the starting point was the classical Chow group CH. (X)) of algebraic
cycles modulo rational equivalence.

For X a finite type k-scheme, recall that the group of dimension d algebraic cycles
on X, Z;(X), is the free abelian group on the integral closed subschemes Z of X of dimen-
sion d over k. The group of cycles modulo rational equivalence, CH; (X)), has the following
presentation. Let n +— A™ be the cosimplicial scheme of algebraic n-simplices

n
A" :=SpecZto.....ta]/ Y _ti — 1 = A},
i=0

The coface and codegeneracy maps are defined just as for the usual real simplices Afop C R™.
A face of A" is a closed subscheme defined by the vanishing of some of the ;. Let z4 (X, n)
be the subgroup of the (n 4+ d)-dimensional algebraic cycles Z,, 44 (X x A™) generated by
the integral closed W C X x A" such thatdimW N X x F = m + d for each m-dimensional
face F (or the intersection is empty). For cycles w € z4(X, n), the face condition gives a
well-defined pullback (Idy x g)* : zz(X,n) — z4(X,m) for each map g : A™ — A" in
the cosimplicial structure, forming the simplicial abelian group n — z4 (X, n) and giving
the associated chain complex z; (X, *), Bloch’s cycle complex. The degree 0 and 1 terms of

z4 (X, *) give our promised presentation of CHy (X),
Ho(za(X. %)) = CHy(X).
and Bloch defines his higher Chow group CHy (X, n) as
CH4(X,n) := Hy(za(X, %)).
If X has pure dimension N over k, we index by codimension

z9(X, %) 1= zn—¢(X,%); CHY(X.,n):= CHy—_q(X.n).
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With some technical difficulties due to the necessity of invoking moving lemmas to
allow for pullback morphisms, the assignment

X = z9(X,2q — *)

can be modified via isomorphisms in the derived category to a presheaf of cohomological
complexes Zp;(q) on Smy.

Following a long series of works [25,29,43,52,94,96,112,113,115-117,120,121,123-125,
127] (see also [s6,102] for detailed discussions of the Bloch—-Kato conjecture, the essen-
tial point in axiom (iv)(b) and the most difficult of the Beilinson axioms to prove), it has
been shown that the complexes Zg;(q) satisfy all the Beilinson—Lichtenbaum—Milne axioms,
except for the Beilinson—Soulé vanishing conjecture in axiom (iii).

After Bloch introduced his cycle complexes, Suslin [111] constructed an algebraic
version of singular homology. For a k-scheme X, instead of a naive generalization of the
singular chain complex of a topological space by taking the free abelian group on the mor-
phisms A7 — X, Suslin’s insight was to enlarge this to the abelian group of finite corre-
spondences.

A subvariety W of a product ¥ x X of varieties (with Y smooth) defines an irre-
ducible finite correspondence from Y to X if p; : W — Y is finite and surjective to some
irreducible component of Y. The association y — p5( pl_1 (»)) can be thought of as a mul-
tivalued map from Y to X.

The group of finite correspondences Corg (Y, X) is defined as the free abelian group
on the irreducible finite correspondences. Given a morphism f : Y’ — Y, there is a pullback
map f* : Corg(Y, X) — Corg(Y’, X), compatible with the interpretation as multivalued
functions, and making Cory (—, X) into a contravariant functor from smooth varieties over
k to abelian groups.

Suslin defines C3"(X) := Cory (A%, X); the structure of A} as smooth cosimplicial
scheme makes n > C3"(X) a simplicial abelian group. As above, we have the associated
complex C2%(X), the Suslin complex of X, whose homology is the Suslin homology of X :

Hy" (X, Z) = 7 (m = G (X)) = Ha (€ (X)),

In fact, the monoid of the N-linear combinations of irreducible correspondences
W C X x Y is the same as the monoid of morphisms
¢:X —> | |sym"y
n>0
where Sym”"Y is the quotient Y/ X, of Y” by the symmetric group permuting the factors,

with the monoid structure induced by the sum map

Sym"Y x Sym™Y — Sym™t"Y.

Suslin’s complex and his definition of algebraic homology can thus be thought of
as an algebraic incarnation of the theorem of Dold—Thom [34, sATZ 6.4], that identifies the
homotopy groups of the infinite symmetric product of a pointed CW complex 7" with the
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reduced homology of T'. The main result of [112] gives an isomorphism of the mod n Suslin
homology, H>"(X, Z/n), for X of finite type over C, with the mod n singular homology
of X(C), a first major success of the theory.

Let Af,, denote the usual n-simplex

Ay = {(IOw-"tn) e R Zfi =1, > 0},
;

with the inclusion A{gp

C A"(C).

Theorem 2.1 ([112, THEOREM 8.3]). Let X be separated finite type scheme over C and letn > 2
be an integer. Then the map

Hom(A%, |_| Syde) — Homygp (A:)p, |_| Syde(C))
d>0 d>0
induced by the inclusions A, C A™(C) gives rise to an isomorphism H3(X,Z/n) —
H™(X(C), Z/n).

There is also a corresponding statement for X over an arbitrary algebraically closed
field k of characteristic zero in terms of étale cohomology [112, THEOREM 7.8]; this extends to
characteristic p > 0 and n prime to p by using alterations.

2.3. Quillen-Lichtenbaum conjectures

Quillen’s computation of the higher algebraic K-theory of finite fields and of
number rings led to a search for a relation of higher algebraic K-theory with special values
of zeta-functions and L-functions. We will not go into this in detail here, but to large part,
this was responsible for the Beilinson-Lichtenbaum conjectures on the existence of motivic
complexes computing the conjectural motivic cohomology. Going back to K-theory, this
suggested that algebraic K-theory with mod-£ coefficients should be the same as mod-£
étale K-theory (a purely algebraic version of mod-£ topological K-theory, see [35]), at least
in large enough degrees. This is more precisely stated as the Quillen—Lichtenbaum conjecture

Conjecture 2.2 ([101], [42, CONJECTURE 3.91). Let { be a prime and let X be a regular, noethe-
rian scheme with £ invertible on X . Suppose X has finite £-étale cohomological dimension
cd¢(X). Then the canonical map

Ku(X;Z/0) — K(X;Z/E7)
is an isomorphism for n > c¢dg(X) — 1 and is injective for n = cdg(X) — 2.

Here K$'(X; Z/{) is the étale K-theory developed by Dwyer and Friedlander [35,
41,42].

Conjecture 2.2 for a smooth k-scheme is essentially a consequence of the Beilinson—
Lichtenbaum axioms (without Beilinson—Soulé vanishing). The Beilinson-Lichtenbaum
conjecture (iv)(a,b) says that the comparison map I'(¢)/€" — R M?;q induces an isomor-
phism on cohomology sheaves up to degree ¢g. Combining the local—global spectral sequence
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for some X € Smy with the Atiyah—Hirzebruch spectral sequences from motivic cohomol-
ogy to K-theory (axiom (v)) and from étale cohomology to étale K-theory, and keeping
track of the cohomological bound in the Beilinson—Lichtenbaum conjecture gives the result.

2.4. Voevodsky’s category DM and modern motivic cohomology

One can almost realize Beilinson’s ideas of a categorical framework for motivic
cohomology by working in the setting of triangulated categories, viewed as a replacement
for the derived category of Beilinson’s conjectured abelian category of motivic sheaves.
Once this is accomplished, one could hope that an abelian category of mixed motives could
be constructed out of the triangulated category as the heart of a suitable 7-structure.

Constructions of a triangulated category of mixed motives over a perfect base-field
were given by Hanamura [57-59], Voevodsky [127], and myself [83]. All three categories yield
Bloch’s higher Chow groups as the categorical motivic cohomology, however, Voevodsky’s
sheaf-theoretic approach has had the most far-reaching consequences and has been widely
adopted as the correct solution. The construction of a motivic ¢-structure is still an open
problem.' There are also constructions of triangulated categories of mixed motives by the
method of compatible realizations, such as by Huber [64], or Nori’s construction of an abelian
category of mixed motives, described in [65, PART 11]; we will not pursue these directions here.
We also refer the reader to Jannsen’s survey on mixed motives [68].

Voevodsky’s triangulated category of motives over k, DM(k), is based on the cate-
gory of finite correspondences on Smy, a refinement of Grothendieck’s composition law for
correspondences on smooth projective varieties. Grothendieck had constructed categories of
motives for smooth projective varieties, with the morphisms from X to Y given by the group
of cycles modulo rational equivalence CHgimx (X X Y'). The composition law is given by

W oW = pXZ*(p;;Y(W) . p};Z(W’)), 2.1

with W € CHgimx (X x Y) and W’ € CHginy (Y X Z); one needs to pass to cycle classes to
define p%y (W) - py,(W') and the projection pxz needs to be proper (that is, ¥ needs to
be proper over k) to define pxz«.

Voevodsky’s key insight was to restrict to finite correspondences, so that all the oper-
ations used in the composition law of correspondence classes would be defined on the level
of the cycles themselves, without needing to pass to rational equivalence classes, and with-
out needing the varieties involved to be proper. Voevodsky’s idea of having a well-defined
composition law on a restricted class of correspondences has been modified and applied in
a wide range of different contexts, somewhat similar to the use of various flavors of bordism
theories in topology.

Let X and Y be in Smg. Recall from Section 2.2 the subgroup Corg(X,Y) C
Zgimx (X x Y) generated by the integral W C X x Y that are finite over X and map surjec-
tively to a component of X .

1 Voevodsky showed this is not possible integrally, so the best one can hope for is a ¢-
structure with Q-coefficients.
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Lemma 2.3. Let X, Y, Z be smooth k-varieties and take a € Cori(X,Y), B € Cori (Y, Z).
Then

(i) The cycles py,(B) and pyy (a) intersect properly on X x Y x Z, so the inter-
section product py,(B) - pyy (@) exists as a well-defined cycle on X x Y x Z.

(ii) Letting || C X x Y, and |B| C Y x Z denote the support of o and B, respec-
tively, each irreducible component of the intersection X x |B| N |«| x Z is finite
over X x Z, and maps surjectively onto some component of X.

In other words, the formula

Boa = pxz«(pyzPB - Pxy®)

makes sense for @ € Corg (X, Y) and § € Corg (Y, Z), and the resulting cycle on X x Z is
in Corg (X, Z). This defines the composition law in Voevodsky’s category of finite corre-
spondences, Cory, with objects as for Smy, and morphisms Homcor, (X, Y) = Corg (X, Y).
Sending a usual morphism f : X — Y of smooth varieties to its graph defines a faithful
functor [—] : Smy — Corg.

Once one has the category Cory, the path to DM (k) is easy to describe. One takes the
category of additive presheaves of abelian groups on Cory, the category of presheaves with
transfer PST(k). Inside PST(k) is the category NST (k) of Nisnevich sheaves with transfer,
that is, a presheaf that is a Nisnevich sheaf when restricted to Smy C Corg. Each X € Smy
defines an object Z(X) € NST(k), as the representable (pre)sheaf Y + Cory (Y, X). Inside
the derived category D(NST(k)) is the full subcategory of complexes K whose homol-
ogy presheaves h; (K) are Al-homotopy invariant: h; (K)(X) = h; (K)(X x Al) for all
X € Smy. This is the category of effective motives DM®(k). The Suslin complex construc-
tion, P > CS5%(P), with

CSS(P)(X) := P(X x A¥)

extends to a functor RCS™ : D(NST(k)) — DM*(k), and realizes DM®(k) as the local-
ization of D(NST(k)) with respect to the complexes Z, (X x Al) L Zw(X). Via RCS™,
DM®(k) inherits a tensor structure ® from D(NST(k)). The functor Z; : Smy — NST(k)
defines the functor M := RC5% o 7,

M Smyp — DM (k).

The Tate object Z.(1) € DM®(k) is the image of the complex Z(Spec k) Lo,
Z(P1) (with Z(P1) in degree 2) via RC3". One forms the triangulated tensor category
DM(k) as the category of — ® Z(1)-spectrum objects in DM (k), inverting the endofunc-
tor — ® Z(1); for M € DM(k), one has the Tate twists M (n) := M ® Z(1)®" forn € Z;
in particular, we have the Tate objects Z(n). The functor M°®" induces the functor
M : Smy — DM(k).
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Bloch’s higher Chow groups, Suslin homology, and the motivic complexes Zg(q)
are represented in DM(k) via canonical isomorphisms

CHY(X,2q — p) = H?(Xzar, Zgi(q)) = Hompmky (M (X). Z(q)[p]).
H™(X,Z) = Hp(C3™(X)) = Hompy)(Z[n], M(X)).

In addition, one has the presheaf of complexes Zy (¢) on Smy
Zy (@)(X) = C3(Zu(Gm)®[—q])(X),

where Z(G,,) is the quotient presheaf Z,(A! \ {0})/Z({1}). The complexes Zy (q) and
Zgi(q) define isomorphic objects in DM®(k), in particular, are isomorphic in the derived
category of Nisnevich sheaves on Smy. The details of these constructions and results are
carried out in [127] (with a bit of help from [117]).

2.5. Motivic homotopy theory

Although Voevodsky’s triangulated category of motives does give motivic cohomol-
ogy a categorical foundation, this is really a halfway station on the way to a really suitable
categorical framework. As analogy, embedding the Beilinson—Lichtenbaum/Bloch—Suslin
theory of motivic complexes in DM (k) is like considering the singular chain or cochain com-
plex of a topological space as an object in the derived category of abelian groups. A much
more fruitful framework for singular (co)homology is to be found in the stable homotopy
category SH.

A parallel representability for motivic cohomology for schemes over a base-scheme
B in a wider category of good cohomology theories is to be found in the motivic stable homo-
topy category over B, SH(B). This, together with the motivic unstable homotopy category,
H (B), gives the proper setting for the deeper study of motivic cohomology, besides placing
this theory on a equal footing with all cohomology theories on algebraic varieties that satisfy
a few natural axioms.

Just as the category DM(k) starts out as a category of presheaves, the category
SH(B) starts out with the category of presheaves of simplicial sets on Smp. The construction
of the unstable motivic homotopy category J (B) over a general base-scheme B as a suitable
localization of this presheaf category was achieved by Morel-Voevodsky [94] and the stable
version SH(B) was described by Voevodsky in his ICM address [116]. The important six-
functor formalism of Grothendieck was sketched out by Voevodsky and realized in detail by
Ayoub [5,6]. A general theory of motivic categories with a six-functor formalism, including
SH(—), was established by Cisinski—-Déglise [33], and Hoyois [62] gave a construction on the
level of infinity categories for an equivariant version. A new point of view, the approach of
framed correspondences, also first sketched by Voevodsky [126], is a breakthrough in our
understanding of the infinite loop objects in the motivic setting, and concerning our main
interest, motivic cohomology, has led to a natural construction of motivic cohomology over
a general base-scheme.

In topology, the representation of singular (co)homology via the singular (co)chain
complexes is placed in the setting of stable homotopy theory through the construction of the
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Eilenberg—MacLane spectra, giving a natural isomorphism for each abelian group A4,
H"(X,A) = HomSH(E‘”XJr, Z‘”EM(A)),

with the Eilenberg—-MacLane spectrum EM(A) being characterized by its stable homotopy
groups
Jrj(EM(A)) _ A forn =0,

0 else.
The assignment A — EM(A) extends to a fully faithful embedding EM : D(Ab) — SH. This
realizes the ordinary (co)homology as being represented by the derived category D(Ab) via
its Eilenberg—MacLane embedding in SH, which in turn is to be viewed as the category of
all cohomology theories on reasonable topological spaces.

The stable homotopy category SH is the stabilization of the unstable pointed homo-
topy category J. with respect to the suspension operator X := S A X, which becomes
an invertible endofunctor on SH. The resulting functor of H, to its stabilization is the infi-
nite suspension functor £ and gives us the “effective” subcategory SH™ c SH, as the
smallest subcategory containing ¥°°(#,) and closed under homotopy cofibers and small
coproducts. This in turn gives a decreasing filtration on SH by the subcategories X" SH°',
n € 7. This rather abstract looking filtration is simply the filtration by connectivity: E is in
"SH" if and only if 75, E = 0 for m < n. The layers in this filtration are isomorphic to
the category Ab, by the functor £ +— m, E, and in fact, this filtration is the one given by a
natural #-structure on SH with heart Ab; concretely, the Oth truncation 79 E is given by the
Eilenberg—MacLane spectrum EM(77¢(E)).

A central example is the sphere spectrum S := £*°S°. Since

73S = colimy, 7, (S™) = Z,

we have 79S = EM(Z), establishing the natural relation between homology and homotopy.

In the motivic world, we have a somewhat parallel picture. The pointed unstable
category He(B) has a natural 2-parameter family of “spheres.” Let S” denote the con-
stant presheaf with value the pointed n-sphere, and let G,,, denote the representable presheaf
A1\ {0} pointed by 1. Define

ab ._ ga-b Ab
S@b = §a7b A G

fora > b > 0. We consider P! as the representable presheaf, pointed by 1; there is a canonical
isomorphism P! =~ $21 in #,(B).

In order to achieve the analog of Spanier—Whitehead duality in the motivic set-
ting, one needs to use spectra with respect to IP!-suspension rather than with respect to
S1-suspension. The category SH(B) is constructed as a homotopy category of IP!-spectra
in #4(B), so P! -suspension becomes invertible and our family of spheres extends to a family
of invertible suspension endofunctors

¥%b . SH(B) — SH(B), a.,beZ.
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Each E € SH(B) gives the bigraded cohomology theory on Smp by
E“?(X) := Homgy(p)(Z35 X4, B4 A E).

Note that the translation in SH(B) is given by S!-suspension, not P !-suspension.

The effective subcategory SH™(B) is defined as the localizing subcategory (i.e., a
triangulated subcategory closed under small coproducts) generated by the IP!-infinite sus-
pension spectra X33 X for X € Jo(B). We replace the filtration of SH with respect to
S1-connectivity with the filtration on SH(B) with respect to IP!-connectivity, via the sub-
categories X, SH°(B). This is Voevodsky’s slice filtration, with associated nth truncation
denoted f,, giving for each E € SH(B) the tower

o> fum1E—> fE —>---—> E.
One has the layers s, E of this tower, fitting into a distinguished triangle
fot1E = fuE > spE — fu1E[1] = Y0 fu 1 E.

An important difference from the topological case is that this is a filtration by triangulated
subcategories; the IP ! -suspension is not the shift in the triangulated structure on SH(B), and
so the slice filtration does not arise from a z-structure.
We concentrate for a while on the case B = Spec k, k a perfect field. There is an
Eilenberg—MacLane functor
EM : DM(k) — SH(k),

giving the motivic cohomology spectrum EM(Z(0)) € SH(k) representing motivic coho-
mology as
H”(X,Z(q)) = EM(Z(0))” (X).

One has the beautiful internal description of motivic cohomology via Voevodsky’s isomor-
phism [122]
soSk = EM(Z(0)); 2.2)

see also [85, THEOREM 10.5.1] and the recent paper of Bachmann—Elmanto [9]. In other words,
the Oth slice truncation of the motivic sphere spectrum represents motivic cohomology.
Rondigs—@stver [103] show that the homotopy category of EM(Z(0))-modules in SH(k)
is equivalent to DM(k) and represents the Eilenberg—MacLane functor as the forgetful func-
tor, right-adjoint to the free EM(Z(0)) functor

EM(Z(0)) A — : SH(k) —— EM(Z(0))-Mod : EM
DM(k)

This is the triangulated motivic analog of the classical result, that the heart of the z-structure
on SH is Ab.
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2.6. Motivic cohomology and the rational motivic stable homotopy category

In classical homotopy theory, the Eilenberg—MacLane functor EM : D(Ab) — SH
has a nice structural property: after Q-localization, the functor EMqg : D(Ab)g — SHg
is an equivalence. Does the same happen for the motivic Eilenberg—MacLane functor
EM : DM(k) — SH(k)? In general, the answer is no, and the reason goes back to Morel’s
C-R dichotomy for SH(k).

We discuss the case of a characteristic zero field k as base. Suppose that k admits a
real embedding o : k — R. The embedding ¢ induces a realization functor

NG : SH(k) — SH,

which sends the P!-suspension spectrum X3 X+ of a smooth k-scheme X to the infinite
suspension spectrum of the real manifold of real points X (R). For an embedding o : k — C,
one has the realization functor R : SH(k) — SH, sending 237 X4 to % X(C).. If we take
X = P!, the real embedding gives you S and the complex embedding yields £2S, since
PI(R) = S, P1(C) = S2. This has the effect that the switchmap 7 : P! AP! — P! AP!
induces an automorphism of Sg that maps to —1 under the real embedding and to +1 under
the complex embedding. Thus, if we invert 2 and decompose the motivic sphere spectrum
into 1 eigenfactors with respect to 7, we decompose SH(k)[1/2] into corresponding sum-
mands SH(k)4, with all of SH(k)y going to zero under the real embedding and all of
SH(k)— going to zero under the complex one (after inverting 2 in SH).

Alternatively, the minus part is SH(k)[1/2, n™!], where 7 is the P! -stabilization of
the algebraic Hopf map

n:AP\{0} > P!, n(x.y) =[x:yl

A motivic spectrum E € SH(k) is orientable if E has a good theory of Thom
classes. For V' — X a vector bundle with 0-section so : X — V, we have the Thom space
Th(V) := V/(V \ s0(X)) € He(k) (defined as the quotient of representable presheaves).
An orientation for E consists of giving a class

th(V) € E*™"(Th(V))

for each rank r vector bundle V' — X over X € Smy, satisfying axioms parallel to the notion
of a C-orientation in topology; a choice of Thom classes defines E as an oriented cohomol-
ogy theory. After inverting 2, all the orientable E live in the plus part; this includes motivic
cohomology, as well as algebraic K-theory and algebraic cobordism. These theories E all
have the property that 1 induces zero on E-cohomology.

Theories that live in the minus part will contrariwise invert n (after inverting 2);
these include things like Witt theory or cohomology of the sheaf of Witt groups. The real
and complex avatars of this are seen by noting that the complex realization of the algebraic
Hopf map is the usual Hopf map, which is the 2-torsion element of stable 7 of the sphere
spectrum, while the real realization is the multiplication map x2 : S — S

The analog of the fact that EMg : D(Q) — SHg is an equivalence is the following
result of Cisinski—Déglise

2060 M. LEVINE



Theorem 2.4 ([33, THEOREM 16.2.13]). The unit map Sy — EM(Z(0)) induces an isomor-
phism
SH(k)+q — DM(k)g

with inverse the Eilenberg—MacLane functor followed by the plus-projection
DM(k)q — SH(k)qg — SH(k)+q.

The rational minus part is also a homotopy category of modules over a suitable
cohomology theory, namely Witt sheaf cohomology. For a field F, we have the Witt ring
W(F) of virtual non-degenerate quadratic forms, modulo the hyperbolic form. This extends
to a sheaf ‘W on Smy, and the functor X + H{Z, (X, W) is represented in SH(k) by a suitable
spectrum EM('W). We have

Theorem 2.5 ([3, THEOREM 4.2, COROLLARY 4.4]). The functor E — EM(W)qg A E induces a
natural isomorphism of SH(k)_q with the homotopy category EM('W)q-modules.

From this point of view, one can see the Z-graded cohomology theory
X — P HE(X. W)
n>0
as the motivic cohomology for the minus part; this theory picks up information about the
real points of schemes. To get the complete theory, one also needs to include twists of ‘W by

line bundles, an analog of orientation local systems in the topological setting. We will say
more about this in Section 4.

2.7. Slice tower and motivic Atiyah-Hirzebruch spectral sequences
The classical Atiyah—Hirzebruch spectral sequence for a spectrum E € SH is the
spectral sequence of the Postnikov tower of E, and looks like

EY? .= HP(X,n_4,E) = EPT9(X).

This comes by identifying the gth layer in the Postnikov tower with the shifted Eilenberg—
MacLane spectrum Z9EM(7r,(E)).

Together with results of Pelaez [99] and Gutierrez—Rondigs—Spitzweck, Voevod-
sky’s isomorphism (2.2) has a structural expression, namely, for any E € SH(k), each slice
5q(E) has a canonical structure of an EM(Z(0))-module. We write corresponding object of
DM(k) as 7;'(E), satisfying

sq(E) = 1, EM(n)°(E)) = S?%9 AEM(nf°Y(E)),
This gives the motivic Atiyah—Hirzebruch spectral sequence

EY(n) := HP™1(X, 7™ (E)(n — q)) = EPT9"(X).

These slices have been explicitly identified in a number of important cases. The first
case was algebraic K-theory, KGL € SH(k). Voevodsky [118,119] and Levine [85] show

s¢(KGL) = EM(Z(¢)[2q]) = =%,EM(Z(0))
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SO
7(KGL) = Z(0),

corresponding to classical computation for topological K-theory,

7. for q even,

m, KU =
0 for g odd.

Using “algebraic Bott periodicity” for KGL: KGLAT2"0+ (X) = KGL*? (X) = Kop_a(X),
this yields the Atiyah-Hirzebruch spectral sequence of the Beilinson-Lichtenbaum axiom (v),

EP? = HP™1(X,Z(~q)) = K—p—q(X).

There is also a corresponding spectral sequence with Z /m-coefficients.

This Atiyah-Hirzebruch spectral sequence for algebraic K-theory was first con-
structed for X the spectrum of a field by Bloch and Lichtenbaum [29], by a completely
different approach and without recourse to motivic homotopy theory or Voevodsky’s slice
tower. Their construction was generalized to general X € Smy by Friedlander—Suslin [43],
also without using the categorical machinery. The rough idea is to give a filtration by codi-
mension of support on X x A* (with additional conditions), and then identify the layers
with a suitable complex of cycles. Another approach, by Grayson [54], relies on the K -theory
of exact categories with commuting isomorphisms. For smooth finite-type schemes over a
perfect field, all these approaches yield the same spectral sequence (see [85, THEOREM 7.1.1,
THEOREM 9.0.3], [44])).

3. MOTIVIC COHOMOLOGY OVER A GENERAL BASE

It is natural to ask if this picture of a good motivic cohomology theory for schemes
over a perfect field can be extended to more general base-schemes, not just as an interesting
technical question but for a wide range of applications, especially in arithmetic. Over a per-
fect field, we have a number of different constructions that all lead to the same groups, each
of which have their advantages and disadvantages: Bloch’s higher Chow groups, the coho-
mology of a suitable Suslin complex, the morphisms in DM(k), the cohomology theory
represented in SH(k) by EM(Z(0)), or by s9Sk, or by soKGL.

One would expect motivic cohomology to be an absolute theory, like algebraic K-
theory, that is, its value on a given scheme should not depend on the choice of base-scheme.
In terms of a spectrum HZgs € SH(S) that would represent our putative theory, this is the
cartesian condition: there should be canonical isomorphisms HZr =~ f*HZg for each
morphism of schemes f : T — S.

The identity (2.2) raises the possibility of defining motivic cohomology over a gen-
eral base-scheme B by this formula. One problem here is that the slice filtration has only
a limited functoriality: for f : C — B a map of schemes, one does not in general have a
natural isomorphism f* o sg = 59 o f*. For the cartesian property to hold for a motivic
cohomology defined via the slice filtration, one would want the compatibility of the slices
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with pullback; this latter is in fact the case for f : C — B is a morphism of separated, finite
type schemes over a field k of characteristic zero (or assuming resolution of singularities for
separated, finite type k-schemes), by results of Pelaez [1ee, coROLLARY 4.3]. This compatibility
also holds for arbitrary smooth f, but is not known in general.

Another concrete candidate for the motivic Borel-Moore homology is given by the
hypercohomology of a version of Bloch’s cycle complex, suitably extended to the setting of
finite type schemes over a Dedekind domain. This theory is nearly absolute, as it depends
only on a good notion of dimension or codimension, which one would have for say equi-
Krull-dimensional schemes. In general, however, this theory lacks a full functoriality under
pullback and also lacks a multiplicative structure.

There is a P!-spectrum KGLg € SH(S) that represents the so-called homotopy
invariant K-theory over an arbitrary base and is cartesian, so one could try soKGL as a rep-
resenting spectrum. Again, the problem is the functoriality of the slice filtration, but perhaps
KGL would be easier to handle than the sphere spectrum in this regard.

3.1. Cisinski-Déglise motivic cohomology

Over an base-scheme S that is noetherian and of finite Krull dimension, Cisinski—
Déglise [33, s11] have followed the program of Voevodsky to define a triangulated category
of motives DMcp(S), with Tate objects Zg(n), and with a “motives functor”

M :Smg — DMCD(S);X — M(X) € DMCD(S).

This extends Voevodsky’s construction of DM(k) for a perfect field k. The main point is that
the notion of a finite correspondence for smooth finite type schemes over a field extends to
a corresponding notion over a general base-scheme (see [33, §8]). This gives rise to a theory
of motivic cohomology generalizing Voevodsky’s definition as

HP(X,Z) := Hompuey(s) (M(X), Zs(9)[p])

for X smooth over S. They show that the assignment S — DMcp(S) defines a functor to
the category of triangulated tensor categories, DMcp(—) : SchOBp — Tr®, admitting a six-
functor formalism. There are also Tate twists M + M (n). This gives a definition of motivic
cohomology of an general scheme Y by

Hp,q(Y7 Z) = HomDMCD(Y) (ZY(O)v ZY(Q) [p])’

which for Y € Smg agrees with the definition given above.
They construct an adjunction

¢* :SH(Y) —— DMcp(Y) : s,

with ¢, playing the role of the Eilenberg—MacLane functor, giving rise to the spectrum
MZy € SH(Y) representing H *-*(Y, Z) [33, DEFINITION 11.2.17]. They discuss the question
of whether Y — MZy is cartesian (see [33, CONJECTURE 11.2.22, PROPOSITION 11.4.7]), without
reaching a general resolution.
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Cisinski—Déglise have a different approach for representing motivic cohomology
with Q-coefficients, much in the same spirit as Beilinson’s construction of universal coho-
mology using algebraic K-theory. Using the spectrum KGLg € SH(S), which represents
homotopy invariant algebraic K-theory, they use the Adams operations to decompose
KGLsq into summands, KGLsq = ; KGLY, with KGLg) representing the ith graded
piece of K-theory for the y-filtration. This gives them a nice commutative monoid object
(i.e., commutative ring spectrum) H E = KGLgO) € SH(S)q, whose module category they
call the category of Beilinson motives over S. This construction is cartesian, gives a good
theory of motivic cohomology with Q-coefficients over a general base-scheme and agrees
with DMcp(S)g for S a uni-branch scheme. See [33, §14] for details.

3.2. Spitzweck’s motivic cohomology

In [11e], Spitzweck constructs a motivic cohomology theory over an arbitrary base-
scheme. The Bloch cycle complex gives rise to a general version of Bloch’s higher Chow
groups for finite type schemes over a Dedekind domain, which has nice localization prop-
erties (by [25] and [84]), but has poor functoriality and lacks a multiplicative structure. On
the other hand, using the Bloch—Kato conjectures, established by Voevodsky et al., the
£-completed higher Chow groups are recognized as a truncated £-adic étale cohomology,
for £ prime to all residue characteristics. The theorem of Geisser—Levine [52] describes the
p-completed higher Chow groups in characteristic p > 0 in terms of logarithmic de Rham—
Witt sheaves. Finally, there is the good theory with Q-coefficients given by Beilinson motivic
cohomology of Cisinski—-Déglise, as described above.

Each of these three theories, namely the £-adic étale cohomology, the cohomology
of the logarithmic de Rham—Witt sheaves, and the rational Beilinson motivic cohomol-
ogy, has good functoriality and multiplicative properties. Gluing the £¢-adic, p-adic, and
rational theories together via their respective comparisons with the Bloch cycle complex,
Spitzweck constructs a theory with good functoriality and multiplicative properties, and
which is described by a presheaf of complexes on smooth schemes over a given Dedekind
domain as base-scheme. The corresponding theory agrees with Voevodsky’s motivic coho-
mology for smooth schemes over a perfect field, and is given additively by the hypercoho-
mology of the Bloch complex for smooth schemes over a Dedekind domain (even in mixed
characteristic).

Taking the base-scheme to be Spec Z, Spitzweck’s construction yields a represent-
ing object M Zz in SH(Z) and one can thus define absolute motivic cohomology for smooth
schemes over a given base-scheme S by pulling back M Zz to MZg € SH(S). The result-
ing motivic cohomology agrees with Voevodsky’s for smooth schemes of finite type over a
perfect base-field, and with the hypercohomology of the Bloch cycle complex for smooth
finite type schemes over a Dedekind domain. This gives rise to a triangulated category
of motives DMg,(S') over a base-scheme S, defined as the homotopy category of M Zg-
modules, and the functor S = DMs,,(.S) inherits a Grothendieck six-functor formalism from
that of S > SH(S).
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3.3. Hoyois’ motivic cohomology

Spitzweck’s construction gives a solution to the problem of constructing a triangu-
lated category of motives over an arbitrary base, admitting a six-functor formalism and thus
yielding a good theory of motivic cohomology. His construction is a bit indirect and it would
be nice to have a direct construction of a representing motivic ring spectrum HZg € SH(S)
for each base-scheme S, still satisfying the cartesian condition.

Hoyois has constructed such a theory of motivic cohomology over an arbitrary base-
scheme by using a recent breakthrough in our understanding of the motivic stable homotopy
categories SH(S). This is a new construction of SH(S) more in line with Voevodsky con-
struction of DM (k). The basic idea is sketched in notes of Voevodsky [126], which were real-
ized in a series of works by Ananyevskiy, Garkusha, Panin, Neshitov [2,4,45-48](authorship
in various combinations). Building on these works, Elmanto, Hoyois, Khan, Sosnilo, and
Yakerson [36-38] construct an infinity category of framed correspondences, and use the basic
program of Voevodsky’s construction of DM(k) to realize SH(SS) as arising from presheaves
of spectra with framed transfers, just as objects of DM(k) arise from presheaves of com-
plexes of sheaves with transfers for finite correspondences. It is not our purpose here to give
a detailed discussion of this beautiful topic; we content ourselves with sketching some of the
basic principles.

An integral closed subscheme Z C X x Y that defines a finite correspondence from
X to Y can be thought of a special type of a span via the two projections

Z
AN
X Y

For X and Y smooth and finite type over a given base-scheme S, a framed correspondence

X/ZXY

satisfying certain conditions, together with some additional data (the framing). For simplic-

from X to Y is also a span,

ity, assume that X is connected. The morphism p is required to be a finite, flat, local complete
intersection (Ici) morphism, called a finite syntomic morphism (the terminology was intro-
duced by Mazur). The Ici condition means that p factors as closed immersioni : Z — P
followed by a smooth morphism f : P — X, and the closed subscheme i (Z) of P is locally
defined by exactly dimy P — dimy Z equations forming a regular sequence. The morphism
p factored in this way has a relative cotangent complex I, admitting a simple description,
namely

L, =[dz/d% LA i*Qpx];

the conditions on i and p say that both Jz /4 % and i *Qp, x are locally free coherent sheaves
on Z of rank dimy P — dimy Z and dimy P, respectively. For p an Ici morphism, the perfect
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complex IL,, defines a point {IL, } in the space K (Z) defining the K-theory of Z; in the case
of a finite syntomic morphism, the virtual rank of {IL,} is zero.

A framing for a syntomic map p : Z — X is achoice of a path y : [0,1] — K (Z)
connecting {LL,} with the base-point 0 € K(Z). For a framing to exist, the class
[L,] € Ko(Z) must be zero, but the choice of y is additional data. The morphismq : Z — Y
is arbitrary.

One has the usual notion of a composition of spans:

7 z Zxy 7/
7 X 0 / X - 7 w
Y WX Y X w

which preserves the finite syntomic condition. However, one needs a higher categorical struc-
ture to take care of associativity constraints. The composition of paths is even trickier, since
we are dealing here with actual paths, not paths up to homotopy. In the end, this produces
an infinity category Corr™(Smg) of framed correspondences on smooth S-schemes, rather
than a category; roughly speaking, the composition is only defined “up to homotopy and
coherent higher homotopies.”

Via the infinity category Corr™(Smg), we have the infinity category of framed
motivic spaces, HT(S), this being the infinity category of A !-invariant, Nisnevich sheaves
of spaces on Corr'"(Smg). There is a stable version, SH™(S), an infinite suspension functor
DI H(S) — SH(S), and an equivalence of infinity categories yx : SH™(S) — SH(S),
where SH(.S) is the infinity category version of the triangulated category SH(.S), that is, the
homotopy category of SH(.S) is SH(S). The equivalence y. can be thought of as a version of
the construction of infinite loop spaces from Segal’s I"-spaces, with a framed correspondence
X < Z — Y of degree n over X being viewed as a generalization of the map [n]+ — [0]+
in ['°P.

With this background, we can give a rough idea of Hoyois’ construction of the spec-
trum representing motivic cohomology over S in [63]. He considers spans X 2z4 Y,
X,Y € Smg, with p : Z — X a finite morphism such that p,.Oz is a locally free Ox-
module; note that this condition is satisfied if p is a syntomic morphism, but not con-
versely. These spans form a category Corr'(Smy) under span composition (“fif”” stands for
“finite, locally free”’) and forgetting the paths y defines a morphism of (infinity) categories
Taa : Corr™(Smg) — Corr™(Smy).

Given a commutative monoid A, the constant Nisnevich sheaf on Smg with value
A extends to a functor

As : (Corr™)™ — Ab,

where the pullback from Y to X by X 2z5%vis given by multiplication by rnke, Oz if
X and Y are connected; one extends to general smooth X and Y by additivity. This gives us
the presheaf (of abelian monoids) with framed transfers AT := Ag o 7.}, and the machinery
of [36-38] converts this into the motivic spectrum i Et‘?ng € SH(S). Hoyois shows [63,
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LEMMA 20] that this construction produces a cartesian family, and that taking A = Z recovers
Spitzweck’s family S +— M Zgs [63, THEOREM 21].

This gives us a conceptually simple construction of a motivic Eilenberg—MacLane
spectrum, and the corresponding motivic category DMy (S), much in the spirit of Voevod-
sky original construction of DM(k) and the Rondigs—@stver theorem identifying DM (k)
with the homotopy category of EM(Z(0))-modules.

4. MILNOR-WITT MOTIVIC COHOMOLOGY

The classical Chow group CH” (X) of codimension n algebraic cycles modulo ratio-
nal equivalence on a smooth variety X is part of the motivic cohomology of X via the
isomorphism CH” (X) = H?"(X, Z(n)). Barge and Morel [12] have introduced a refinement
of the Chow groups, the Chow-Witt groups, that incorporates information about quadratic
forms. Their construction has been embedded in a larger theory of Milnor—Witt motives and
Milnor—Witt motivic cohomology, which we describe in this section. The quadratic informa-
tion given by the Chow—Witt groups, Milnor—Witt motivic cohomology and related theories
has proven useful in recent efforts to give quadratic refinements for intersection theory and
enumerative geometry; see [1e,11,21,61,76,77,86] for some examples. We refer the reader to
[8,31,39,92] for details on the theory described in this section.

4.1. Milnor—Witt K -theory and the Chow-Witt groups

A codimension n algebraic cycle Z := ), n; Z; can be thought of as the set of its
generic points z; together with the Z-valued function n; on z;, from which we can write the
group Z"(X) of codimension n algebraic cycles as

z"X) = P
zeX®
where X ™ is the set of points z € X with closure Z := Z C X of codimension 7.

Let GW(F) denote the Grothendieck—Witt ring of virtual non-degenerate quadratic
forms over F and let W(F) = GW(F)/(H) where H is the hyperbolic form H(x, y) =
x2 — y? (we assume throughout that the characteristic is # 2 to avoid technical difficulties);
W(F) is the Witt ring of anisotropic quadratic forms over F' (see [107]).

One can consider a finite set of codimension 7 points z; € X ™, together with a
collection of classes {¢; € GW(k(z;))}; one recovers a Z-valued function on z; by taking
the rank of ¢;. This gives the group

Z"(X):= P GW(k(2))
zeX ™
with rank homomorphism rnk : Z”(X) — Z"(X). In contrast with integer-valued functions,

an element ¢ € GW(k(z)) does not always extend to all of Z; there is an obstruction given
by a certain boundary map

1:GW(k(2) —> P W(kw)).

wezNX @+
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This starts to look more like classical homology, in that one should consider zn (X)asa
group of chains rather than a group of cycles.

This is not enough, as one needs a quadratic refinement for the classical relation
given by rational equivalence. The original construction of Barge—Morel defined this rela-
tion, but later developments put their construction in a rather more natural form, which we
now describe.

We recall that the Milnor K -theory ring KM (F) := @, KM (F) of afield F is
defined as the quotient of the tensor algebra on the abelian group_of units £, modulo the
Steinberg relation

KM(F):=(F)®2*/({a® (1—a) |a € F\{0,1}}).
The quadratic refinement of K (F) is the Hopkins—Morel Milnor-Witt K -theory of F .

Definition 4.1 (Hopkins—Morel [92, DEFINITION 6.3.1]). Let F be a field. The Milnor-Witt
K-theory of F, KMV(F) := @,z KMV (F), is the Z-graded associative algebra defined
by the following generators and relations.

Generators

(G1) Foreach u € F*, we have the generator [u] of degree 1;

(G2) There is an additional generator n of degree —1.
Relations

(RO) 7 [u] = [u] - n;

R [uv] = [u] + [v] +n-[u] - v];

(R2) [u]-[1 —u] =0foru € F\{0,1};

(R3) Leth =2+ n-[—1]). Thenn-h = 0.

It follows directly that sending [u] to {u} € K f” (F) and sending 7 to zero defines a
surjective graded algebra homomorphism KM% (F) — KM (F) with kernel (17). We write
[u1,...,uy] for the product [uq]--- [u,].

Theorem 4.2 (Hopkins—Morel [92, THEOREM 6.4.5]). Let I(F) C GW(F') be the kernel of the
rank homomorphism GW (F) — Z, with the nth power ideal 1" (F) C GW(F) for n > 0.
Define I"(F) = W(F) for n <0. Then for eachn € Z, the surjection KM (F) — KM (F)
extends to an exact sequence

0— I"TY(F) - KMY(F) - KM(F) — 0.

Forn =0, K(l)” (F) = Z, KY"™(F) is isomorphic to GW(F) and the above sequence is
isomorphic to the defining sequence for I1(F). Forn <0, KM(F) = 0 and KMV (F) =
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W(F). Finally, we have, for each n < 0, a commutative diagram

KYW(F) —— W(F)

]
KM (F) —=— W(F)

and, for n = 0, the commutative diagram

KMV (F) —— GW(F)

-
KMV(F) —— W(F)

where 7 is the canonical surjection.

The isomorphism GW(F) — K)MWV(F) sends (u) to 1 + plu], where (u) is the
rank one form (u)(x) := ux?; since a quadratic form over F is diagonalizable (charF # 2),
the isomorphism is completely determined by its value on the forms (u). Given a 1-dimen-
sional F-vector space L, we have the GW(F)-module GW(F; L) of non-degenerate,
L-valued quadratic forms g : V' — L; each vector space isomorphism ¢ : L — F gives
an isomorphism of GW(F)-modules GW(F; L) = GW(F). Since KM¥(F) is a Z-graded
KY™(F) = GW(F)-module, we can form the Z-graded KMY (F)-module KMV (F; L) :=
GW(F; L) Qaw(ry K} (F).

Given a dvr @ with residue field k, quotient field F', and generator ¢ for the maximal
ideal, one has the map

3 s KYV(F) — KM (k)
determined by the formulas
A ([t uns .. unl) = 2, .. tin), 0 ([ur vz, ua]) =0, :(n-x) =n-03:(x)
for uy,...,uy, € O*,and x € K,’:/Iﬂ (F), where u; is the image of u; in k. This is similar
to the well-known boundary map 8 : KM (F) — KM | (k), with the difference, that d does
not depend on the choice of ¢ while d; does. To get a boundary map that is independent of
the choice of parameter ¢, one needs to include the twisting. This yields the well-defined
boundary map
3: KYW(F;L®9 F) — K)™ (ki L ®0 (u/m?)Y)
for L a free rank-one (9-module, independent of the choice of generator for the maximal
ideal mt, where 0 is defined by choosing a generator ¢ and an (-basis A for L, and setting
Ix®A):=0/(x) ® A ® d/0r.

Definition 4.3. Let X be a smooth finite type k-scheme, and let £ be an invertible sheaf
on X. The nth £-twisted Rost—Schmid complex for Milnor—Witt K-theory is the complex
RS*(X, £, n) with

RSm(X,:C,n) = @ K,I:A_\Yn (k(x),éﬁx ®0X,x /\(mx/m)zc)v)

xeXxm)
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and boundary map 9" : RS™(X, £,n) — RS™T1(X, £, n) the sum of the maps

m
O x 1 KMV (k(x); Lx ®oy /\(mx/mi)v)

m+1
— KMV (k(w); Lx R0y, /\ (mw/me)v)

associated to the normalization of the local ring Ox 4, forw e x N X (m+1) Here we have
cheated a bit in the definition of d,, . This is correct if O ,, is a dvr, which is the case outside
of finitely many points w € ¥ N X ™+ in general, one needs to use a push-forward map
in Milnor—Witt K-theory for finite field extensions to define 0y, .
The twisted Milnor-Witt sheaf XMW (&£)x is the Nisnevich sheaf on X associated
to the presheaf
U H°(RS*(U. £ ® Oy.n)).

The codimension n twisted Chow—Witt group of X, CH" (X; L), is defined as
CH"(X; %) := H"(RS*(X, £,n))

For details, see [93, CHAP. 5] or [31, CHAP. 2].
For Milnor K-theory, one has the Gersten complex G*(X, n),

« aO 8n7m+1
G*(X.n):= @ KV (k) = —— P KX, (k)
xeX(© xeXm)
gn—m anfl M
_—— e ——> Ky (k(x)),

xeX®
with essentially the same definition as the Rost—Schmid complex, without the twisting. This
gives us the Milnor K -theory sheaf KX fX := ker 0, and it follows easily from the definitions
that CH" (X) = H"(G™*(X,n)). The same ideas that lead to the Bloch-Kato formula [78]

CH"(X) = H" (Xnis, K'x)
give the isomorphism
CH"(X; ) = H"(Xnis, KMV (£)x)

(see the discussion following [31, DEFINITION 3.1] for details). The maps KMV — KM give
the map of complexes RS*(X, &£, n) — G*(X, n) and the corresponding map rnky,, :
CH"(X; %) — CH"(X).

The twists by an invertible sheaf are not just a device for defining the Rost—Schmid
complexes and the Chow—Witt groups, they play an integral part in the structure of the overall
theory. The Chow groups of smooth varieties admit the functorialities of a Borel-Moore
homology theory: they have functorial pullback maps f* : CH"(Y) — CH"(X) for each
morphism f : X — Y in Smg, and for f : X — Y a proper morphism of relative dimension
d, one has the functorial proper push-forward map f, : CH"(X) — CH" % (Y). The Chow—
Witt groups also have a contravariant functoriality; for f : X — Y, and &£ an invertible sheaf
on Y, one has the functorial pullback

f*CH"(Y, &) — CH*(X, [*%).
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But for the proper push-forward, one needs to include the orientation sheaf, this being the
usual relative dualizing sheaf oy := wy/x ® f*a);/lk, where wy /. 1= det Q)l(/k is the sheaf
of top-dimensional forms. The push-forward takes the form

fe : CH'(X, 0y ® f*&£) — CH" (Y, £).

This limits the possible twists cH” (X, M) for which a push-forward f, is even defined; this
type of restricted push-forward is typical of so-called SL-oriented theories, such as hermitian
K-theory. See [1] for a detailed discussion of SL-oriented theories and [31, cHAP. 3] for the
details concerning the push-forward in CH*.

4.2. The homotopy ¢-structure and Morel’s theorem

Building on the Bloch-Kato formula, CH" (X) =~ H"(Xxis, JC%X), one can con-
struct a good bigraded cohomology theory EM(KM )** by using all the cohomology groups.
To get the correct bigrading, one should set

EM(KXM)@b(X) := HY P (Xnis, K1),

giving in particular EM(K M )2"" (X) = CH" (X). It was recognized early on that this theory
is not the sought-after motivic cohomology, for instance, for X = Spec F', F a field, one gets
exactly the Milnor K -theory of F, and none of the other parts of the K-theory of F'. In spite
of this, this theory and the similarly defined theory for Milnor—Witt K -theory have a natural
place in the universe of motivic cohomology theories, which we now explain.

The classical stable homotopy category SH is a triangulated category with a natural
t-structure measuring connectedness, mentioned in Section 2.5. For SH, the truncations give
the terms in the Moore—Postnikov tower

= Top 1 E > oy E— - > E

with 7>, E — E characterized by inducing an isomorphism on m,, for m > n and with
TmT>n E = 0 for m < n. The heart of SH is the category of spectra E with n,, E = 0 for
m # 0, which are just the Eilenberg—MacLane spectra EM(A), A an abelian group. Thus,
the heart of SH is Ab and the cohomology theory represented by 7o E is

EM(moE)"(X) := H"(X, moE).

singular cohomology with coefficients in the abelian group mo E.

We have a parallel ¢-structure on SH(k), introduced by Morel [92, §5.2], called
the homotopy t-structure (and not coming from Voevodsky’s slice tower discussed in Sec-
tion 2.5). This is similar to the 7-structure on SH, where one takes into account the fact that
one has bigraded homotopy sheaves n, , E for E € SH(k), rather than a Z-graded family
of homotopy groups , E for E € SH. The truncation 7>, E is characterized by

wap(E) ifa—>b>n,

ﬂa,b(fan) =
0 ifa—b<n
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Recalling that the sphere S%? is S47% A Gf’n, the homotopy z-structure on SH(k) is mea-
suring S!-connectedness, instead of the P !-connectedness measured by Voevodsky’s slice
tower.

We denote the Oth truncation o £ for £ € SH(k) by EM(7_«,—«E); the notation
comes from Morel’s identification of the heart with his category of homotopy modules; for
details, see [92, §5.2]. The corresponding cohomology theory satisfies, for X € Smy,

EM(7_s— E)*?(X) = H* ™ (Xnis, 7—p -5 (E)).

Here we have Morel’s fundamental theorem [92, THEOREM 6.4.1] computing 7o of the sphere
spectrum 1 € SH(k).

Theorem 4.4 (Morel). Let k be a perfect field. Then there are canonical isomorphisms of
sheaves on Smy,
Tn,—n(lg) = nyw

Consequently,
0l = EM(X}™Y)

and
EM(™)™ (X) = H™ (X, K,

Going back in time a bit, we have the theorem of Totaro [115] and Nesterenko—Suslin
[96]
H"(F,Z(n)) = KM (F)

for F a field. Combined with the isomorphism
soly = HZ
of [9,85,122], we have
Theorem 4.5. Let k be a perfect field. Then
oS0l = toHZ = EM(J{iM)

and
EM(XM)“P(X) = H* ™ (Xnis. Ky

for X € Smy.
Bachmann proves an extension of this result. Recall Voevodsky’s slice tower
o> o E—> fE—> > fE —>---— FE
with s, E the layer given by the distinguished triangle
JnirE = fuE = spE — fup1E[1].
Recall that this is not the truncation tower of a ¢-structure, as the subcategories defined by

the layers s, := f/fn+1 are triangulated categories, not abelian categories.
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Proposition 4.6 ([7, LEMMA 12]). Let 1; — EM(KM) be the composition 1} — 1ol =
EM(KMY) — EM(KM), the latter map induced by the surjection XMV — KM . Then the
induced maps

so(1x) = SOEM(KM) <« foEM(XY) = foroHZ

are all isomorphisms, so all of these objects are isomorphic to the motivic cohomology spec-
trum HZ.

The truncation functors for the homotopy z-structure and for the Voevodsky slice
tower do not commute. Since 1y is effective, we have foly = 1 and so 7o folx = tolx =
EM(KMW). The truncations in the other order give us something new.

4.3. Milnor-Witt motivic cohomology
Definition 4.7 ([7, NOTATION, P. 1134, JUST BEFORE LEMMA 12]). Let k be a perfect field. Define
the Milnor-Witt motivic cohomology spectrum HZ € SH(k) by

HZ := fo(tolp) = foEM(KY™).
The canonical map 19l — toSo1x = to H Z induces the map
HZ = fo(toly) = foroHZ = HZ.
For X € Smy, the Milnor-Witt motivic cohomology in bidegree (a, b) is defined as

HZ%P(X).

Remarkably, one can compute H Z%?(X) in terms of the Milnor—Witt sheaves, at
least for some of the indices (a, b); one also recovers the Chow-Witt groups. For
X = Spec F, the spectrum of a field F, one has a complete computation in terms of the
Milnor—Witt K -groups and the usual motivic cohomology HZ%?(X) := H*(X,Z(b)).

Theorem 4.8 (Bachmann). For X € Smy and b < 0, there are natural isomorphisms

~ H* b (Xnis, W b <0,
A2 (X) = HO (X JYY = {11 e W) Jor
’ H* b (Xnis, €Wx) forb =0.

Here Wy is the sheaf of Witt groups and § Wy is the sheaf of Grothendieck—Witt rings.
For X € Smy and n € Z, we have
HZ?""(X) ~ CH"(X).
For F a field, we have isomorphisms
. KMY(F ora=>b =n,
H7Z%(Spec F) = { " (F) J
HZ%P(Spec F) fora # b.

This follows from

Theorem 4.9 ([7, THEOREM 17]). Let E7 795 3798 denote the respective homotopy sheaves
T—a—b (HZ), T—_q,—b(HZ). Then for a # b, the map

geb . ggab . gezab
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is an isomorphism. Moreover, we have canonical isomorphisms H7bb = JCE/IW,
H7bb = J{é”, and B%Y . Je 700 — J 75 is canonical surjection JC;,VIW — J{éu.

To prove Theorem 4.8, one applies this to the local-global spectral sequence
E2(n) := HP (Xnis, HZ9") = HZPTOM(X),

noting that #Z4" = 0 for n < 0. This implies that the Gersten resolution of #Z2" has
length < n and thus H? (X5, H Z9") = 0 for p > n.

In general, one can approximate H Z%? (X using the local-global sequence. Com-
bined with Theorem 4.9 and the exact sheaf sequence

0— " XMV 5 xM _ 0,

this tells us that the Milnor—Witt cohomology of X is built out of the usual motivic coho-
mology combined with information arising from quadratic forms.

4.4. Milnor-Witt motives

Rather than pulling the Milnor-Witt cohomology out of the motivic stable homo-
topy hat, there is another construction that is embedded in a Voevodsky-type triangulated
category built out of a modified category of correspondences. We refer to [8] and [31] for
details.

The Chow—Witt groups on a smooth X have been defined using the Rost—Schmid
complex; one can also define Chow—Witt cycles with a fixed support using a modified version
of the Rost—Schmid complex.

Definition 4.10. Let X be a smooth k-scheme, &£ an invertible sheaf on X, and T C X a
closed subset. The nth £-twisted Rost—Schmid complex with supports in T, RS} (X, n; £),
is the subcomplex of RS*(X, £, n) with

m

RST(X, £,n) := QB KMV (k(x);éﬁx ®0y /\(mx/m,%)V) C RS™(X, £.n).
xeTNnX®)

The usual arguments used to prove Gersten’s conjecture yield the following result.

Lemma4.11. Let X be a smooth k-scheme, £ an invertible sheafon X, and T C X a closed
subset. The cohomology with support H713 (X, KMV (£)x) is computed as

HE(X, X)W (£)x) = H? (RST(X. £, n)).

Suppose T has pure codimensionn on X. Then X™ NT =@ form <n, XM NT
is the finite set of generic points 7(® of 7 and X **D N T = T is the set of codimension
one points of 7'. This gives us the exact sequence

0— Hp(X. K™V (£)x) > @ GW(k(z).det ' (m;/m2) ® £)
zeT©

> P Wk().det ™ (m;/m?) ® L)
zeT(M
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which allows us to think of Hy (X, KMW(£)x) as the group of “Grothendieck-Witt cycles”
supported on 7', whose definition we hinted at in the beginning of this section. We write this
as Z 7(X, £, n), with the warning that this is only defined for 7" a closed subset of a smooth
X of pure codimension 7.

Note that the fact that T has pure codimension n implies that there are no relations
in HE. (X, KMW(£)x) coming from K} (k(w)) for w a codimension n — 1 point of X.
For similar reasons, the corresponding group for the Chow groups, H7 (X, JC%X), is just
the subgroup Z7.(X) of Z"(X) freely generated by the irreducible components of T, that
is, the group of codimension n cycles on X with support contained in 7.

For T Cc T’ C X, two codimension-n closed subsets, we have the evident map
zn (X, £, n) — Z" (X, £, n). The rank map GW(—) — Z gives the homomorphism
Z';(X £,n) = Z5(X).

Definition 4.12. For X, Y in Smg, let A(X, Y) be the set of closed subsets T C X x Y
such that each component of T is finite over X and maps surjectively onto an irreducible
component of X. We make 4 (X, Y') a poset by the inclusion of closed subsets.

Note that if Y is irreducible of dimension 7, then a closed subset 7 C X x Y isin
A(X,Y) if and only if T is finite over X and has pure codimension n on X x Y.

Definition 4.13 (Calmes—Fasel [31, §4.1]). Let X, Y be in Smy and suppose Y is irreducible
of dimension n. Define

Corrg (X, Y) = colimrecx.y)Z%(X x Y, pioy/i).
Extend the definition to general Y by additivity.

Using the functorial properties of pullback, intersection product and proper push-
forward for the Chow—Witt groups with support, we have a well-defined composition law

Corrg (Y, Z) x Corrg (X, Y) — Corri (X, Z)
via the same formula used to define the composition in Cory,

Zy0Zy = pxz+(py2(Z2) N pxy(Z1)).

The twisting by the relative dualizing sheaf in the definition of éa;rk (—, —) is exactly what
is needed for the push-forward map pxzs to be defined.

This defines the additive category égfrk with objects Smy and morphisms
Corry (X, Y). The rank map gives an additive functor

rnk : Corry — Corg.

One then follows the program used by Voevodsky to define the abelian category of
Nisnevich sheaves with Milnor-Witt transfers, ShM\"(k), and then DM¢f(k) c
D(Shl\l\l/[l\zvlr (k)) as the full subcategory of complexes with strictly A'-homotopy invariant
cohomology sheaves. One has the localization functor

Lar 2 D(ShMY(k)) — DM (k)
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constructed using the Suslin complex, the representable sheaves 7"(X ) for X € Smyg, their
corresponding motives M°T(X) := L1 (Z"(X)) € DM®(k) and the Tate motives Z (1)
arising from the reduced motive of P!. Finally, one constructs W(k} as a category of Z(1)-
spectra in ﬁdeff(k) and we have the motive M (X) defined as the suspension spectrum of
Met(X).

Definition 4.14. For X € Smy, categorical Milnor—Witt cohomology is
H?(X,Z(q)) := Homgg;, (M (X). Z(q)[p]).-
Theorem 4.15. There is a natural isomorphism
H?(X,Z(q)) = HZ?(X).

The proof is very much the same as for motivic cohomology. One shows there is an
equivalence of ]i\?[(k) with the homotopy category of H Z-modules (this is [8, THEOREM 5.2]).
This gives an adjunction

HZ A—:SH(k) Z— DM(k): EM

with HZ A — the free HZ module functor and the Eilenberg—MacLane functor EM the
forgetful functor. This gives ET\Z(Z (0) = HZ,M(X)=HZ A 51 X+, and induces the
isomorphism

HP(X, Z(q)) = Hom]’)‘l\,’[(k) (M (X), Z(q)[p])
=~ Homsuk) (S X+, P9 HZ) = HZP4(X).

5. CHOW GROUPS AND MOTIVIC COHOMOLOGY WITH MODULUS

Up to now, all the version of motivic cohomology we have considered share the A !-
homotopy invariance property, namely, that H* (X, Z(*)) &= H*(X x A!, Z(%)); essentially
by construction, this property is enjoyed by all theories that are represented in the motivic
stable homotopy category. Although this is a fundamental property controlling a large col-
lection of cohomology theories, this places a serious restriction in at least two naturally
occurring areas.

One is the use of deformation theory. This relies on having useful invariants defined
on non-reduced schemes, but a cohomology theory that satisfies A!-invariance will not
distinguish between a scheme and its reduced closed subscheme. The second occurs in rami-
fication theory. An A !-homotopy invariant theory will not detect Artin-Schreyer covers, and
would not give invariants that detect wild ramification.

Fortunately, we have an interesting cohomology theory that is not A!-homotopy
invariant, namely, algebraic K -theory, that we can use as a model for a general theory. Alge-
braic K-theory does satisfy the A !-invariance property when restricted to regular schemes,
but in general this fails. Besides allowing K-theory to have a role in deformation theory and
ramification theory, this lack of A!-invariance gives rise to interesting invariants of singu-
larities.
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5.1. Higher Chow groups with modulus

The theory of Chow groups with modulus attempts to refine the classical theory of
the Chow groups to be useful in both of these areas. This is still a theory in the process of
development; just as in the early days of motivic cohomology, many approaches are inspired
by properties of algebraic K-theory.

The tangent space to the functor X +— Oy is given by the structure sheaf, X — Oy,
via the isomorphism

OF /e = OF ® e~ Ox.

Via the isomorphism Pic(X) = H'(X, O%), this shows that the tangent space at X to the
functor Pic(—) is H'(X, Ox).

In [23], Bloch computes the tangent space to K, (on local QQ-algebras), giving the
isomorphism of sheaves on X7z, (for X a Q-scheme)

Ko x1e1/(e2) = Ko, x @ Qx

where Qyx is the sheaf of absolute Kihler differentials. Bloch then uses his formula from

[22],
H?*(Xzq, X») = CH2(X),

to justify defining CH?(X [¢]/(¢2)) as H2(X[¢]/(¢?)zar, K>), giving
CH?(X[e]/(¢*)) = CH*(X) ® H*(X,Qx).
For X a smooth projective surface over C with H?(X, Ox) # 0, the exact sheaf sequence
0— Qcjo ®c Ox — Qx — Qx/c —> 0

along the fact that Qc/q is a C-vector space of uncountable dimension show that
Qc/o ®c H?(X, Ox) makes a huge contribution to the tangent space H?(X, Qx) of
CH?(—) on X . This is reflected in Mumford’s result [95], that if H?(X,0x) =~ H°(X, Q?HC)
is nonzero, then CH? (X)) is “infinite-dimensional,” and gives some evidence for Bloch’s con-
jecture [23, CONJECTURE (@.4)] on 0-cycles on surfaces X with HO(X, Q)z(/c) =0.

The algebraic cycles have disappeared in this approach to Chow groups of non-
reduced schemes. Bloch and Esnault [26] gave the first construction of a cycle-theoretic
theory that could say something interesting about higher cycles on the non-reduced scheme
Spec k[e]/(¢?). In a second paper [27], they modified and extended this construction to give
atheory of additive higher Chow groups with modulus m, for the field k. This was motivated
by Bloch’s earlier use of K-theory on the affine line, relative to {0, 1}, to study K3. Letting
1 tend to 0, they were led to consider the relative K-theory space K(k[e], (¢2)), this being
the homotopy fiber of the restriction map K (k[e]) — K(k[g]/&?), whose homotopy groups
are the relative K-theory groups K (k[¢]. (¢2)). Replacing 2 with m > 2 gives the relative
K-theory groups K, (k[e], (¢™)). This led to the consideration of a complex of cycles on
Spec k|[e], with an additional condition imposed on the mth order limiting behavior of the
cycles; an explicit construction of such a cycle complex with modulus, z9 (k, *, m) was given
in [27]. The homology ACHY (k, p,m) := H,(z9(k, *,m)) defines the additive codimension
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q higher Chow groups with modulus m for Spec k. Bloch—Esnault recover the computation
ACH" (k,n —1,2) =~ QZ_I from [26], and relate the additive analogue of weight two K3,
ACH? (k,2,2), with the additive dilogarithm of Cathelineau [32].

Riilling [1e4] studied the projective system

o> ACH"(k,n —1,m + 1) - ACH"(k,n — 1,m) — --- .

He showed this is endowed with additional endomorphisms F}, and V};, and the graded group
P, ACH" (k,n — 1, * + 1)4«>» has the structure of a pro-differential graded algebra. In fact,
we have

Theorem 5.1 (Riilling). Let k be a field of characteristic # 2. The pro-dga @, ACH" (k,
n—1,% + 1), with F,, as Frobenius and V,, as Verschiebung, is isomorphic to the de Rham—
Witt complex of Madsen—Hesselholt,

P ACH" (k.n — 1% + 1) = P W}
n n

With essentially the same definition as given by Bloch—Esnault, the additive cycle
complex and additive Chow groups were extended to arbitrary k-schemes Y by Park [98],
replacing A! and divisor m - 0 with the scheme ¥ x A! and divisor m - ¥ x 0. Binda and
Saito [2e] went one step further, defining complexes z?(X, D, x) for a pair (X, D) of a finite
type separated k-scheme X and a Cartier divisor D, using essentially the same definition as
before. The homology is the higher Chow group with modulus

CHY(X, D, p) := Hp(z9(X, D, *)).

The constructions of Bloch—Esnault, Park, and Binda—Saito all use a cubical model
of Bloch’s cycle complex. Here one replaces the algebraic n-simplex, A} = Speckl[to, ...,
ta]/ Y_; ti — 1, with the algebraic n-cube

0" := (P \ {1},0,00)".

The notation means that one considers (P! \ {1})"” = A" with its “faces” defined by setting
some of the coordinates equal to 0 or co. The corresponding cycle complex z7(X, %), has
degree n component z9(X, n),. the codimension g cycles on X x (0" that intersect X x F
properly for all faces F of [1”; one also needs to quotient out by the degenerate cycles, these
being the ones that come by pullback via projection to a [’* with m < n. The differential is
again an alternating sum of restrictions to the maximal faces t;, = 0 and t; = oo.

This complex also computes the motivic cohomology of X, just as Bloch’s simpli-
cial cycle complex does. In the Binda—Saito construction, the modulus condition arises by
considering the closed box O .= (P1)". Let F,f C (P!)" be the divisor defined by #; = 1
andlet F, =Y /', F,i. In (P1)" x X we have two distinguished Cartier divisors, (P1)" x D
and F,, x X. A subvariety Z C (P! \ {1})" x X that is in z9(X, n), satisfies the modulus
condition if

p*(Fy x X) = p*((P')" x D)
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where p : ZV¥ — (P1)" x X is the normalization of the closure of Z in O x X. Restricting
to the subgroup of Z4([J" x X) generated by codimension ¢ subvarieties Z C (0" x X that
intersect faces properly and satisfy the modulus condition yields the cycle complex with
modulus z9(X; D, x) C z9(X, *).; the higher Chow groups with modulus is then defined as

CHY(X: D, p) := Hy(z9(X; D, %)).

The second construction of Bloch—Esnault, and Park’s generalization, are recovered as the
special cases X = A; and D = m - 0 in the Bloch-Esnault version and X =Y x A,
D =m-Y x0in Park’s version.

For X a finite type k-scheme, recall the Bloch motivic complex Zg(q) defined as
the Zariski sheafification of the presheaf U + z7(X, 2q — *) (this is already a Nisnevich
sheaf). Bloch’s cycle complexes satisfy an important localization property: the natural maps
to Zariski and Nisnevich hypercohomology

HP(z9(X,2q — %)) > HP (Xzar, Zpi(q)y) = H? (Xnis. Zr1(9)%)

are isomorphisms. This fails for the cycle complex with modulus, although the comparison
between the Zariski and Nisnevich hypercohomology seems to be still an open question.
Iwasa and Kai consider the Nisnevich sheafification Z(q)Z‘X, py of the presheaf

U z9(U; D xx U,2q — *).

We call H? (Xnis, Z(q)(*X, D)) the motivic cohomology with modulus for (X, D). Kai [74]
shows that this sheafified version has contravariant functoriality. Iwasa and Kai [67] construct
Chern class maps from relative K-theory

Cpq : Kog—p(X:; D) = HP (Xns. Z(q);(,Nis)'

5.2. 0-cycles with modulus and class field theory

There is a classical theory of 0-cycles on a smooth complete curve C with a modulus
condition at a finite set of points S, due to Rosenlicht and Serre [109, 111]. The idea is quite
simple, instead of relations coming from divisors (zeros minus poles) of an arbitrary rational
function f, f is required to have a power series expansion at each point p € S, with leading
term 1 and the next nonzero term of the form ut;l” , with u(p) # 0, ¢, alocal coordinate at
p and the integer n, > 0 being the “modulus.” This is applied to the class field theory of a
smooth open curve U C C over a finite field [1e9, THEOREM 4], that identifies the inverse limit
of the groups of degree 0 cycle classes on U, with modulus supported in C \ U, with the
kernel of the map 7&(U)?? — Gal(k/k).

In their class field theory for higher-dimensional varieties, Kato and Saito [8e] intro-
duce a group of 0-cycles on a k-scheme X with modulus D, defined by

CHo(X, D) := H"(X, Kﬁx,n))

with K rjlu( x.p) 2 relative version of the Milnor K-theory sheaf, recalling Kato’s isomorphism
H"(X, KXM) =~ CH"(X) for X asmooth k-scheme [78]. Kerz and Saito give a different defi-
nition of a group of relative 0-cycles C (X, D) on anormal k-scheme X with effective Cartier
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divisor D such that X \ D is smooth. It follows from their comments in [81, DEFINITION 1.6]
that C(X, D) = CH"(X; D, 0) for X of dimension 7, and it is easy to see that the Kato—
Saito and Kerz—Saito relative 0-cycles agree with the Rosenlicht—Serre groups in the case of
curves.

Kerz and Saito consider a smooth finite-type k-scheme U, choose a normal com-
pactification X and define the topological group C(U) := limp C(X, D), as D runs over
effective Cartier divisors on X, supported in X \ U, and with each C(X, D) given the dis-
crete topology. They show that C (U) is independent of the choice of X, and their main result
generalizes class field theory for smooth curves over a finite field as described above.

Theorem 5.2 ([81, THEOREM 3.3]). Let k be a finite field of characteristic # 2 and let U be a
smooth variety over k, Then C(U) is isomorphic as topological group to a dense subgroup of
the abelianized étale fundamental group nf’(U Vb and this isomorphism induces an isomor-
phism of the degree 0 part C(U)° of C(U) with the kernel ¢'(U)& of n8'(U)® — ¢! (k).

5.3. Categories of motives with modulus

There has been a great deal of interest in constructing a categorical framework for
motivic cohomology with modulus. A central issue is the lack of A!-homotopy invariance
for this theory, which raises the question of what type of homotopy invariance should replace
this.

One direction has been the construction of a reasonable replacement for the cat-
egory of homotopy invariant Nisnevich sheaves with transfers. A non-homotopy invariant
version has been developed via the theory of reciprocity sheaves, the name coming from the
reciprocity laws in class field theory of curves and its relation to the group of O-cycles with
modulus of Rosenlicht—Serre. We will say a bit about reciprocity sheaves later on, in the
context of motives for log schemes Section 5.4.

For now, we will look at categories of motives with modulus constructed on the
Voevodsky model by introducing a new notion of correspondence and a suitable replacement
for Al-homotopy invariance.

Looking at algebraic K -theory, the closest replacement for A ! -homotopy invariance
seems to be the P!-bundle formula

K (X x Pl) ~ K(X) - [Oxxp] ® K(X) - [(9XX]P’1(_1)]7

valid for a general scheme X. This has led to attempts to create a category of motives with
modulus based on a notion of “C-invariance.”

Here one has the problem that P! does not have the structure of an interval, a struc-
ture enjoyed by A!'. One considers A! together with “endpoints” 0, 1. Following the general
theory of a site with interval, as developed by Morel-Voevodsky [94, CHAP. 2], one needs
the multiplication map m : A! x A — A! to allow one to consider (A, 0, 1) as an abstract
interval. In the construction of the cycle complex with modulus, one identifies (Al ,0,1) with
(P! \ {1},0, 00), and the corresponding multiplication map m’ : (P! \ {1}) x (P \ {1}) —
P1\ {1} only extends as a rational map P! x P! —-»> P1. However, m’ becomes a morphism
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after blowing up the point (1, 1), which suggests that one should consider the closure of the
graph of m’ in P! x P! x P! as an allowable correspondence from P! x P! to P!

With this as starting point, Kahn, Miyazaki, Saito, and Yamazaki [69-71] follow
Voevodsky’s program, defining a category of modulus correspondences MCory, . Objects are
pairs (M, M ®°) with M a separated finite-type k-scheme and M * an effective Cartier divi-
sor on M such that the open complement M° := M \ M is smooth. The morphism group
MCor, (M, M), (N, N*)) is the subgroup of Corg (M°, N°) generated by subvarieties
Z (finite and surjective over a component of M °) such that

(i) The closure Z of Z in M x N is proper over M (not necessarily finite).
(ii) Let f : Z¥ — M x N be the normalization of Z. Then
f*pIM™ > f*py N>,

The composition law in Cory preserves conditions (i) and (ii), giving the category MCor;
with functor MCor; — Cory sending (M, M*®) to M° and with MCork((M, M),
(N, N*®)) — Cori(M°, N°) the inclusion. The product of pairs makes MCor; a sym-
metric monoidal category and the functor to Cory is symmetric monoidal.

Let O be the object (P!, {1}). As hinted above, the closure of the graph of
m': (P1\ {1}) x (P'\ {1}) — P!\ {1} defines a morphism m : O x O — O in MCory.

They then consider the abelian category of additive presheaves of abelian groups
on MCory,, MPST;, := PreShAP (MCory,). There is also a version MCory, of proper modulus
pairs (X, D), with X a proper k-scheme, as a full subcategory of MCor,, with its presheaf
category MPSTy.

They define a category of effective proper motives with modulus, MDM®(k), by
localizing the derived category D(MPSTy). Roughly speaking, they follow the Voevodsky
program, replacing the A!-localization with O localization. To get the proper Nisnevich
localization is a bit technical; we refer the reader to [71, DEFINITION 1.3.9] for details.

There is still quite a bit that is not known. One central problem is how to realize
the various constructions of the higher Chow groups with modulus as morphisms in a suit-
able triangulated category. There is a connection, at least for the modulus version of Suslin
homology and the Suslin complex, which we now describe.

One can show that the cubical version of the Suslin complex

C3*(X)e(Y) := Homcoy, (Y x 0%, X)/ degn

is naturally quasi-isomorphic to the simplicial version C3'(X)(Y), where / degn means
taking the quotient by the image of the pullback maps via the projections ¥ x [1" — Y x
0"~ For a modulus pair (X, D), one can similarly form the naive Suslin complex

CS™(X, D)(Y, E) := Hompcor, (Y, E) ® 0", X)/ degn.
Taking (Y, E) = (Speck, @), we have the complex

C3"™(X, D) := C*(X, D)(Speck, 0).
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Next, there is a derived Suslin complex RC3"(X, D).(—) with a natural map of
presheaves
C"(X. D)e(=) = RC™(X. D)e(-).

By [71, THEOREM 2], for (X, D) a proper modulus pair, RCS"(X, D).(—) computes the maps
in MDM® (k) as

H,(RC*™(X, D)(Speck,®)) = Homypyerrr ((Speck, @), M(X, D)).

However, one should not expect that the Suslin complex or its derived version should
yield a version of the higher Chow groups. If one looks back at the setting of DM(k),
the object that most naturally yields the higher Chow groups for an arbitrary finite type
k-scheme X is the motive with compact supports M ¢ (X). This is defined as C"S(Z5(X)),

c

where Z{ (X) is the presheaf with transfers with Z¢.(X)(Y') the free abelian group on integral

I
W CY x X, with W — Y quasi-finite and dominant over a component of ¥ € Smy. See
[127, CHAP. 5, PROPOSITION 4.2.9] for the relation of M€ (X) with Bloch’s higher Chow groups.

One can define a similar version with modulus as the object M¢(X, D) asso-
ciated to the presheaf Z{ (X, D), with Z{(X, D)(Y, E) C Zgmy (Y x X) the subgroup
generated by closed subvarieties W C (Y \ E) x (X \ D) that are quasi-finite and dom-
inant over Y, and with the usual modulus condition, that the normalization v : W& —

Y x X of the closure of W in Y x X satisfies
V¥(E x X) > v*(Y x D).

There is an analog of Suslin’s comparison theorem in the affine case, due to Kai—
Miyazaki [75]: They define an equi-dimensional cycle complex with modulus

(X, D, %) C z4(X, D, %)
which for d = 0 is the Suslin complex with modulus CS"(Z<.(X, D))(Spec k, @)

Theorem 5.3 (Kai—-Miyazaki). Let (X, D) be a modulus pair, with X affine. Then there is
a pro-isomorphism
{Ho (25" (X.mD, %))}, = {CHy(X.mD, )} .
Miyazaki [91] has defined objects z°® (X, D, d) € MNST,, with Z{(X, D) =
z*®i(X, D,0). The sheaf z%(X, D, r) is defined similarly to Z5(X, D), with z*®(X, D,
d)(Y, E) the group of cycles on (Y \ E) x (X \ D) generated by closed, integral
W C (Y \ E) x (X \ D) that are equi-dimensional of dimension d over Y \ E, domi-
nate a component of ¥ \ E, and with v : WV — ¥ x X satisfying the modulus condition

V¥(E x X) > v*(Y x D).
Moreover, for an arbitrary modulus pair (X, D), one has

23" (X, D) = C2% (2" (X, D.d))(Speck. 0),
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and there is the canonical map
C2™(z°" (X, D.d)) — RC*™(z*"(X. D.d)).
Letting CH{™ (X, D, p) = H,(z§™ (X, D, %)), we have the natural map
CH{™ (X, D, p) - CHy(X, D, p)

which is an isomorphism for X affine, and we have the natural maps for (X, D) a proper
modulus pair

CH{™(X, D, p) — Hp(RC*™(z*" (X, D, q))(Speck. 9))
— Homypyerry (M (Speck, 9)[p]. RC™(z°" (X, D, q))).
For a proper modulus pair, let M¢(X, D) denote the image of Z{(X, D) in

MDM® (k). One can ask if there are analogs of the theorem of Kahn—Miyazaki—Saito—Yama-
zaki.

Question 5.4. For (X, D) a proper modulus pair, are the maps
Hy(RC*™(Z$(X, D))(Speck, @) — Homypyperrr) (M (Speck, @)[pl. M€ (X, D))
isomorphisms? More generally, are the maps

Hy(RCJ*™(z°" (X, D.q))(Speck, 9))
— Homypyerr gy (M (Spec k, 9)[p]. RC3*(z*"(X, D, q)))

isomorphisms?
It is also not clear if the map
CH{™(X, D, p) - Hp(RC*™(z*"(X. D.q))(Speck. 9))

should be an isomorphism. Possibly one should also consider the Nisnevich hypercohomol-
ogy H™7(Xnis, qum (X, D, %)), with quui (X, D, %) defined by sheafifying U —
22U, U N D, %).

For Voevodsky motives, and for X a finite type k-scheme, the motivic Borel-Moore
homology is defined by

HyM (X, Z(q)) := Hompyen (Z(9)[p). M(X)©)
= Hp-2q (quui(X, %)) & Hp2q(24(X. %)) = CHy(X. p — 2¢).

This uses the duality M(X)¢ =~ M(X)V(d)[2d] for X of dimension d (valid in charac-
teristic zero, or after inverting p in characteristic p > 0), and the extension of Suslin’s
quasi-isomorphism z;q”i(X , %) <> z4(X, *) to arbitrary X. Moreover, we have M(X)¢ =
M(X) for X smooth and proper.

However, a corresponding motivic cohomology of modulus pairs seems to need a
larger category. This is hinted at by the use of the duality (in DM(k)) M(X)¢ =
M(X)V(d)[2d] in the computations described above. This says in particular that each

motive M(X) admits a “twisted” dual in DM (k), more precisely, the usual evaluation
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and coevaluation maps associated with a dual exist, but as maps with target or source some
Z/(d)[2d] rather than the unit. For a general proper modulus pair (X, D), this does not
seem to be the case; one seems to need modulus pairs with an anti-effective Cartier divisor.
Another way to say the same thing, if one looks for a proper modulus pair (X, D’) such
that Homypeir ) (M (X, D'), Z(q)[p]) looks at all like CHY (X, D,2¢ — p) for some given
proper modulus pair (X, D), the defining inequalities in Corry suggest that D’ could be —D.
See the section “Perspectives” in [71, INTRobUcTION] for further details in this direction.

5.4. Logarithmic motives and reciprocity sheaves

Grothendieck motives for log schemes have been constructed in [66], where a ver-
sion for mixed motives has also been constructed using systems of realizations. There the
emphasis is on versions of motives for homological or numerical equivalence in the setting
of log schemes. In this section we discuss a recent construction of a triangulated category of
log motives, by Binda—Park—@stver [19], that follows the Voevodsky program. We refer the
reader to the lectures notes of Ogus [97] for the facts about log schemes.

Recall that a log scheme is a pair (X, o : M — (Ox, X)) consisting of a scheme
X and a homomorphism of sheaves of commutative monoids « : M — (Ox, x) such that
a~1(O5) — Of is an isomorphism; without this last condition, the pair (X, o : M —
(Ox, x)) is called a pre-log structure. A pre-log structure & : M — (Ox, x) induces a log
structure ar'°2 : M'°¢ — (O, x) by taking M'°¢ to be the push-out (in the category of sheaves
of monoids) in

a 1(OF) —— M

|

Ox

Given a modulus pair (X, D), there are a number of (in general distinct) induced log
structures on X . For example, one can take the compactifying log structure, with M := Ox N
J+«Op,where U = X \ D and j : U — X is the inclusion. There are other log structures,
which in general depend on a choice of decomposition of D as a sum of effective Cartier
divisors (for example, the Deligne—Faltings log structure, discussed in [97, III, DEFINITION
1.7.1]).

Replacing the category of smooth k-schemes is the category 1ISmy, of fine, saturated,
log smooth and separated log schemes over the log scheme Spec k endowed with the trivial
log structure. We refer the reader to [19] for details; one needs these technical conditions to
construct the category of finite log correspondences. We call a separated, fine, saturated log
scheme an fs log scheme.

We sketch the construction of the category of finite log correspondences, and
describe how Binda—Park—@stvear follow Voevodsky’s program to define the triangulated
category logDM® (k) of effective log motives over k.
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For X € 1Smg, let X denote the underlying k-scheme. We let X° C X denote
the maximal open subscheme over which the log structure My — Oy is trivial, that is,
Myjy = Op,and let X = X \ X°.

Definition 5.5. 1. For X, Y € ISmg, the group 1Cor (X, Y) consisting of finite log corre-
spondences from X to Y is the free abelian group on integral closed subschemes Z C X x Y
such that

(i) Z — X is finite and is surjective to a component of X .

(ii) Let Z" be the log scheme with underlying scheme the normalization v : Z"V —
X x Y of Z and log structure (v o p1)f;geMX — Ozn~. Here My — Oy is the
given log structure on X and (v o Pl)f;geMX — Oz is the log structure induced
by the pre-log structure (v o p1) "' My — (v o p1)"!Ox — Oz. Then the map
of schemes p, o v : Z¥ — Y extends to a map of log schemes ZV — Y.

Remark 5.6. It follows from (i) and (ii) above that, for Z € 1Cor; (X, Y), the restriction of Z
to a cycle on the open subset X° x Y ° of X x Y actually lands in Cor (X °, Y °). Moreover,
by [19, LEMMA 2.3.1], if the extension in (ii) exists, it is unique, so there is no need to include
this as part of the data. In particular, the restriction map 1Corg (X, Y) — Corg(X°, Y°) is
injective ([19, LEMMA 2.3.2]).

The condition that there exists a map of log schemes (Z¥, (p; o v)l*ogMX) —
(Y, My) extending p, ov : ZV — Y is analogous to the modulus condition

V(D xY)>v*(X x E)

for a subvariety W C X \ D x Y \ E to define a finite correspondence of modulus pairs
from (X, D) to (Y, E).

For the composition law, the proof of [19, LEMMA 2.3.3] shows that, given elementary
log correspondences W € 1Cor (X, Y), and W’ € 1Cory (Y, Z), each integral component R
of W x Z N X x W'is the underlying scheme of a (unique!) elementary log correspondence
R € 1Cori (X, Z). It is then easy to show that there is a unique composition law

o:1Cor; (Y, Z) x 1Cor;(X,Y) — 1Cori (X, Z)

that is compatible with the composition law in Cor via the respective restriction maps.

This defines the additive category of finite log correspondences 1Cory with the same
objects as for 1Smy, giving the category of presheaves with log transfers, IPSTy, defined as
the category of additive presheaves of abelian groups on 1Corg. For a log scheme X € ISmyg,
let Z(X) denote the representable presheaf

Z1e(X)(Y) := 1Cory (Y, X).

The fiber product of log schemes induces a tensor product structure on IPSTy.
The next step is to define the log version of the Nisnevich topology.
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A morphism of log schemes f : (X, My — Ox), (Y, My — Oy) is strict if the map
of log structures f*My — My is an isomorphism. An elementary log Nisnevich square is
a cartesian square in the category of fs log schemes

V—Y 5.1
L
U—sXx
where f is strict étale, g is an open immersion, and f induces an isomorphism on reduced
schemes Y \ V — X\ U.

A log modification is a generalization of the notion of a log blow-up, which in turn
is a morphism of log schemes modeled on the birational morphism of toric varieties given
by a subdivision of the fan defining the target. We refer the reader to [19, APPENDIX A] for
details. The Grothendieck topology generated by the log modifications and strict Nisnevich
elementary squares is called the dividing Nisnevich topology on fs log schemes. In a sense,
this is a log version of the cdh topology, where all the modifications are taking place in the
boundary.

With this topology in hand, we have the subcategory INSTj of IPST of Nisnevich
sheaves with log transfers, just as for NST; C PSTy, by requiring that a presheaf with log
transfers be a sheaf for the dividing Nisnevich topology when restricted to 1Smy,.

Finally, we need a suitable interval object to define a good notion of homotopy
invariance. This is just as for the category MDM®™(k), where we consider [J as the scheme
P! with compactifying log structure for (P!, {1}). The product log scheme T also has
the compactifying log structure for the divisor 1 x P! + P! x 1. However, the closure T,
of the graph of the multiplication map m : T- — T is not a morphism 7 in 1Corg, as the
requirement that the map of T, to T be finite is not satisfied.

Another way to look at this is to note that the projection Ty, — T is a cover of 0
in the dividing Nisnevich topology, and becomes an isomorphism after d Nis-localization.
In a sense, this allows one to consider the sheaf agn;J as a version of a cylinder object and
allows many of the constructions of Morel-Voevodsky for a site with interval to go through,
although there are occasional technical difficulties that arise.

Definition 5.7. The tensor triangulated category of effective log motives over k,1ogDM (k),
is the Verdier localization of the derived category D(IPSTy) with respect to the localizing
subcategory generated by:

(IMV) for an elementary log Nisnevich square
V—
|

g

U——

Y
|+
X

Lyw(V) = Ziw(U) & Zy(Y) = Zyu(X).

we have the complex
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(IM) For a log modification f : Y — X in ISmy, we have the complex
Zye(Y) = Zie(X).
(ICI) For X € 1Smg, we have the complex
Zye(X x 0) = Zie(X).

For each fs smooth log scheme X & 1Smy, the image of Z;(X) in logDM®™ (k) is
the effective log motive IM®T(X), giving the functor

IMST : 1Smy, — logDM® (k).

The functor IM®" shares many of the formal properties of M : Smy — DM®(k); we refer
the reader to the [19, INTRODUCTION] for an overview.

Questions of representing known constructions such as the higher Chow groups
with modulus in logDM® (k), or finding direct connections of logDM°! (k) with the category
MDMeff(k) are not discussed in [19]. However, for (X, D) a proper modulus pair, one has the
log scheme [ (X, D), defined using the Deligne—Faltings log structure on X associated to the
ideal sheaf Oy (—D). In general, this is not saturated. Still, there should be presheaves with
log transfers Z, (X, D) and Z{ (X, D) using finite and quasi-finite “log correspondences,”
with value on Y € 1Smy, the free abelian group of integral subschemes W of Y x X that admit
amap of log schemes (W, (p; o v)*(My)) — [(X, D), as in the definition of ICory (—, —).
One could also expect to have presheaves [z(X, D, r) similarly defined, and corresponding
to the presheaves with modulus transfers z (X, D, r) constructed by Miyazaki. These could
be used to give a map

Hy (z;%(X, D, %)) — Homyy,pyerrry (Z(0)[p], M (12(X, D, 1))).

We have briefly mentioned reciprocity sheaves in our discussion of motives with
modulus. There is a nice connection of logDM(k) with the theory of reciprocity sheaves,
so we take the opportunity to say a few words about reciprocity sheaves before we describe
the theorem of Shuji Saito, which gives the connection between these two theories.

The notion of a reciprocity sheaf and its relation to motives with modulus goes back
to the theorem of Rosenlicht—Serre. In our discussion of reciprocity sheaves, we work over
a fixed perfect field k.

Theorem 5.8 (Rosenlicht—Serre [109, 111]). Let k be a perfect field, let C be a smooth com-
plete curve over k, let G be an smooth commutative algebraic group over k, and let f :
C --> G be a rational map over k. Let S C C be a finite subset such that f is a morphism
on C \ S. Then there is an effective divisor D supported in S such that, for g a rational
function on C with g = 1 mod D, one has

> ordp(g)- f(P)=0

PeC\S
inG.
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In [72], reciprocity functors and reciprocity sheaves are defined. We will just give a
sketch. One first defines for F' a presheaf with transfers (in the Voevodsky sense), and for
a proper modulus pair (X, D) with a section a € F(X \ D), what it means for a to have
modulus D. As an example, if p : C — X is a non-constant morphism of a smooth proper
integral curve C over k to X with p(C) not contained in D, and g is a rational function on
C such that g = 1 mod p*(D), then one is required to have

a(p«(div(g))) = 0 € F(Speck).

Here, foraO-cycle >, ny-xon X \ D,a(}_ nx-x) =Y Ny px«iy(a) € F(Speck),
where for a closed point x of X \ D, iy : x — X \ D is the inclusion and py : x — Speck
is the (finite) structure morphism. In general, one imposes a similar condition in F(S) for a
“relative curve” on X x S over some smooth base scheme S

A presheaf with transfers F is a reciprocity sheaf if for each quasi-affine U and
section a € F(U), there is a proper modulus pair (X, D) with U = X \ D such that a
has modulus D. Roughly speaking, one should think that each section of F has “bounded
ramification,” although the “ramification” for F itself may be unbounded.

This definition is not quite accurate, as a slightly different notion of “modulus pair”
from what we have defined here is used in [72]. A more elegant definition of reciprocity
sheaf is given in [73]. This new notion is a bit more restrictive than the old one, but by [73,
THEOREM 2], the two notions agree on for F' € MNST,.

Using the definition of [73], the reciprocity sheaves define a the full subcategory
RSTy of PSTy, strictly containing the subcategory HI;, C PSTy of A!-homotopy invariant
presheaves with transfer. There is also the subcategory RSTy; ¢ of NSTy, consisting of those
reciprocity presheaves that are Nisnevich sheaves.

Some examples of non-homotopy invariant sheaves in RSTy;s « include the sheaf of
n-forms over k, X — Q;’( k> the sheaf of absolute n-forms, X +— Q;’(, and for k of positive
characteristic, the truncated de Rham—Witt sheaves, X +— W, Q} The representable sheaf
of a commutative algebraic group G over k, X — G(X), is in RSTy; k, and for some G
(e.g. G = GI) this is also A !-homotopy invariant. This is not the case for unipotent G (e.g.
G =Gh).

Here is the promised theorem of Saito. For a sheaf G € INSTy, we say that G is
strictly O-invariant if forall X € ISmg, the map

H;Nis(X’ G|XdNis) - H;Nis(X X E’ G\XXEdNis)

induced by the projection X x O — X is an isomorphism. Here 4y, refers to the divided
Nisnevich site.

Theorem 5.9 (Saito [1e5, THEOREM 0.2]). There exists a fully faithful exact functor
log : RSTyis x — INSTy

such thatlog(F) is strictly O-invariant for every F € RSTyis k. Moreover, for each X € Smy,
there is a natural isomorphism

HY (X, Fix) = Homyg,pyergey (IMT1(X), log(F)[]).
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6. p-ADIC ETALE MOTIVIC COHOMOLOGY AND p-ADIC HODGE

THEORY

We discuss yet another theory of motivic cohomology that is not A!-homotopy
invariant.

Working over a base-field k and for m prime to the characteristic, we have the iso-
morphism of the étale sheafification Z/m(r)« with the étale sheaf u®". The étale sheaves
Z/m(r)¢ can be considered as objects in a version of Voevodsky’s DM constructed using the
étale topology rather than the Nisnevich topology, and their categorical cohomology agrees
with the usual étale cohomology [127, CHAP. 5, §3.3]. In particular, the complexes Z/m(r)g
have A!-homotopy invariant étale cohomology.

On the other hand, if k has characteristic p > 0, we have the isomorphism [52] of
the Nisnevich sheaves on Smy,

Z/p"(r) = WaQo,[-T], (6.1)

hence of étale sheaves
Z]p"(r)a = WnQjy,[—r].

Here something strange happens: the étale sheaf Z/ p™ (r)¢ is no longer strictly homotopy
invariant! In fact, the existence of the Artin—Schreyer étale cover A! — A! of degree p
implies that the étale version of DM®™(k) with coefficients modulo p” is zero if k has
characteristic p > 0 [127, CHAP. 5, PROPOSITION 3.3.3]. Thus Z/p" (r)s leaves the world of
Voevodsky’s motives and motivic cohomology.

For S = Spec A, with A a mixed characteristic (0, p) dvr, the complex Z/ p™ (r)¢ on
Smyg ¢ yields an interesting gluing of Z/ p" (r)s = /L?,,r over the characteristic zero quotient
field of A and Z/ p" (r)es = W, Q2
characteristic part again says that we have left homotopy invariance behind.

lrog[—r] over the characteristic p residue field. The positive

The complexes Z/ p™ (r)¢ have an interesting connection with a certain complex of
sheaves arising in p-adic Hodge theory. A version of this complex first appears in the paper
[4e] of Fontaine—-Messing, and plays an important role in the proof of their main result. Its
construction was reinterpreted by Kurihara [82], relying on the work of Bloch—Kato [28] and
Kato [79], and was generalized by Sato [1e6]. Geisser [49], following work of Schneider [1e8],
established the connection of the Fontaine—-Messing/Kurihara/Sato complex with Z / p" (1)«
in the case of a smooth degeneration, and this connection was partially extended by Zhong
[128] to the semi-stable case.

In their recent work on integral p-adic Hodge theory, Bhatt—-Morrow—Scholze [18]
have introduced a “motivic filtration” on p-adic étale K -theory, relying on a Postnikov tower
for topological cyclic homology, and the layers in this tower have been identified with the
pro-system {Z/ p" (r)e }n in a work-in-progress [16] by Bhargav Bhatt and Akhil Mathew.

Our goal in this section is to give some details of the story sketched above.

We first discuss the papers of Bloch—Kato, Fontaine—-Messing, Kurihara and Sato
without reference to all the advances in p-adic Hodge theory that followed these works;
we wanted to give the reader just enough background to put the connections with motivic
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cohomology in context. We will then describe the works of Geisser and Zhong, as well
as results of Geisser—Hesselholt that form some of the foundations for the work of Bhatt—
Morrow—Scholze. We conclude with a description of the Bhatt—-Morrow—Scholze motivic
tower and its connection with the p-adic cycle complexes.

We refer the reader to [15] for background on crystalline cohomology.

6.1. A quick overview of some p-adic Hodge theory

We begin with a few comments on the paper of Bloch and Kato [28], which we have
already mentioned in our discussion of the Beilinson—Lichtenbaum conjectures. They con-
sider the spectrum S of a complete dvr A with generic point n = Spec K — S and closed
point s = Spec k — S, and a smooth and proper S-scheme X — S with generic fiber
V := X, and special fiber ¥ := Xj. V, Y denote V, Y over the respective algebraic
closures K and k of K and k. Let A be the integral closure of A in K, S := Spec A,
and X = X xg S.Let G = Gal(K/K) and let C denote the completion of K.

The closure Y has its crystalline cohomology Hc”;ys()_’ / W(k)) with action of Frobe-
nius, giving the p*-eigenspace

HE (P W) € HE (T /W(H)) -

crys
We say Y is ordinary if

, S O e
dimyy gy, o (V/ W)™ = dimg H™ (V. Q5 o).

We have the inclusions i : ¥ — X, j : V — X and the spectral sequence
Ey' = HY(Y.i*R' j.(Z/p"Z)) = HY'(V.Z/p" L),
inducing a descending filtration F*H}(V,Q,) on H}(V,Q,) with F°H? = H? and
FIt1HY = 0.
We have the de Rham—Witt sheaf W Q¢ on Smy and the sheaf of differential forms
Qi_/K on Smg.

Theorem 6.1 (Bloch—Kato [28, THEOREM 8.7]). Suppose that k is perfect and that Y is ordi-

nary. Then there are natural G-equivariant isomorphisms

() @i HYV.Qp) = HL,(V /W) ().
(i) g HI(V.Qp) ®z, W(k) = HL (V. WQ)q(-i).

(i) g/ HI(V,Qp) ®g, C = HI(V, QY ) ®k C(—i).

We will not give any details of the proof here, but do want to mention that what ties
these different theories together is the sheaf of Milnor K-groups KX é"[ . This maps to étale
cohomology by the Galois symbol

Ogm  K) Jm — FL(uS)
for m prime to the characteristic, to the de Rham-Witt sheaf by the dlog map on Smy,

dloggfpn : JC;’I/p" — W,Q4,
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and to the sheaf of differential forms, by the dlog map on Smg,
dlog, ,n : J{é‘l/p" — QZ/S/p”.

The main structural results that underpin the proof of the Bloch—Kato theorem are
two comparison isomorphisms on the sheaf level. For the first, let W, Qﬁ)g C W,27 be the
étale subsheaf locally generated by the image dlog(X é‘l /p"M).

Theorem 6.2 ([28, COROLLARY 2.8]). Let F be a field of characteristic p > 0. Then the map
dlog : Ké”(F)/p” — W, Q4(F) defines an isomorphism ofKéu (F)/p" with WnQIqu(F).

Note that the composition
dlog
7/ p"(q) = 242/ p"(q) = K}/ p"[—q) —> Wa QL[]

is the map that defines the isomorphism (6.1).
The second result is a special case of the Bloch—Kato conjecture.

Theorem 6.3 (Bloch—Kato [28, THEOREM 5.12]). Let F' be a henselian discretely valued field
of characteristic 0, with residue field of characteristic p > 0. Then the Galois symbol

M q ®q
Kq (F)/pn g Héz(F’l’Lp" )
is an isomorphism for alln > 1.
Bloch and Kato use JC;” to relate i*qu*/L;?,,q to QZ/K/p” and WnQ?O;l via the
respective dlog maps. Relying on the isomorphisms of Theorem 6.2 and Theorem 6.3, these
maps from Milnor K-theory tie de Rham cohomology, crystalline cohomology and étale

cohomology together, and eventually lead to a proof of Theorem 6.1.
As part of the proof, they define a surjective map

y "R jpS — w,Ql ! (6.2)
on Yy with the following property: Let 6 : i * j. K é"’,ét — [*RY9j, ;Lf,,’ be the Galois symbol
map, let us, ..., u, be units on X near some point y of ¥ with restrictions u1,...,ugst0Y

and let v be a parameter in A. Then

y o 0({u1, .. .,uqfl,n}) = dlog({ﬁl, .. .,ﬁqfl}).

We highlight this because it will be used later on in a gluing construction that defines an
object of central interest for this section.

The next paper I want to mention is by Fontaine—Messing [4e]. They construct
a comparison isomorphism between de Rham cohomology and étale cohomology for a
smooth, proper scheme X over the ring of integers O for K a characteristic zero local field
(under some additional assumptions). The de Rham cohomology H c?R(V/ K) has its Hodge

2 In fact, at the beginning of §3 of [28], Bloch and Kato write, “The cohomological symbol
defined by Tate [114] gives a map . .., which one conjectures to be an isomorphism quite
generally.”
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filtration and via the comparison isomorphism Hk (V/K) =~ H(Y/W(k)) Qwx) K
HfR(V/ K) acquires a Frobenius operator ¢; call this object chrys(X ). Fontaine—Messing
construct the p-adic period ring Brys D K with a Galois action, a Frobenius and a filtration,
and show there are isomorphisms

$=1d

Fil®(Burys ®k HE (X)) ~ HI(Ve. Qp)

and
G
(Bcrys ®Qp Heql(VIZ’ QP)) = chrys(X)

both compatible with the “remaining” structures.
To set this up, they consider the syntomic topology on Schyy, k), where a cover is
a surjective syntomic map (we described syntomic maps in Section 3.3). The crystalline

structure sheaf 0,,°" defines a sheaf for the syntomic topology with a surjection to the usual

structure sheaf @, on Schy, ). Letting J, denote the kernel of 9,,°° — O,, one has the rth
divided power J,Er]; this gives us the sheaf S,f defined as the kernel of ¢ — p” : J,Er] — 09,
Modifying this by taking the image S;, of the reduction map SN',: i

Nr . .
. — S, gives the inverse

system {S] }, and the cohomology
H*(X,55,) = (im H*(X.5])) ®2, Q.
n

The ring BCJICYS is defined as follows. The characteristic p ring @ z/ p forms an inverse

system via the Frobenius endomorphism; let

0" =1limOg/p.
Frob
a perfect characteristic p ring. We have the ring of truncated Witt vectors W, (O") and a
surjection 1, : W, (O") = O z/P". Let WPP(Og) be the divided power envelope of the
kernel of 7,, forming the inverse system {W,>* (O z)}a>0. Let

Bl =K QW (k) liin WnDP((QK).

crys
n

+ and the filtration J\\*) of WPP(Og)

The Frobenius on W, (©") induces a Frobenius on B

. . % p+ +
induces a filtration Fil™ B¢  on BZ.,.

¢—p"

The derived push-forward of the complex J") £—25 O is an analog of the

Deligne complex, as expressed in the following theorem.

Theorem 6.4 ([48, COROLLARY TO THEOREM 1.6, LEMMA 3.1]). Suppose that X is admissible® and
A = W(k). Then for m < r < p there is an exact sequence

0— H"(X.8p,) — Fil" (B, ®x Hjp(V/K) “2> Hiw(V/K) — 0.
In other words,

H™(X. 5%, ) = (Fil' (B, @k Him(V/K)))"™"".
3 See [40, $2.1] for the definition of admissible X.
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To involve étale cohomology in the picture, Fontaine—Messing introduce the syn-
tomic—étale site on formal Spf(W (k))-schemes, where a cover is amap {Uy },, — {V; }» such
that U, — V), is a syntomic cover for all » and is an étale cover on the rigid analytic generic
fibers. This extends to the syntomic—étale site on X, where an object is U — X, quasi-finite
and syntomic, with Ug — Vg étale. Letting Z be the formal completion of X, we have the
diagram of sites

i = J
Zsyn—ét - Xsyn—ét <~ V[z,é[-

Fontaine-Messing prove a patching result, that a sheaf on X syn—ét 1S given by a triple
(7.,9,a), with ¥ asheaf on Zy, ¢, § asheaf on Vl&,év ando : ¥ — i*Rj§ amorphism.
Using this description, they construct a sheaf on X syn—ét by defining a certain morphism (see
[40, §5.1])

o: S — i*Rj*pofL’.

The resulting sheaf S7 has
JrSy =8l i*S; =S

It follows from proper base-change (see the proof of [4e, PROPOSITION 6.2]) that the
restriction map H* (X, syn—éts S~,f ) = H*(Zgyn—s. S} is an isomorphism, and we also have

(tim H* (Zygn-at S;)) ®z, Qp = (Fil' (B, ®x HE(V/K)))"~".
n
Moreover, the restriction map j* gives
j*: H*(Xsyn—étv Sr:) — Hg(Vg, M,?nr),
so passing to the limit, we have the map
B+ (R (B, @ HR(V/K))' ™" — HI (Vg Qp(r).

which they show is an isomorphism.
This gives a twisted version of the result announced at the beginning of our discus-
sion. To recover the untwisted version, they define a map

Qp()(K) — B,

by sending a p”-root of unity ¢ in K to the logarithm of the Teichmiiller lift of the mod p
reduction of &, and passing to the limit in n. Let t € Q,(1)(K) be a nonzero element and
define By = B:rrys[l /t], with induced filtration and Galois action. Twisting with respect to
t translates the twisted version to the untwisted one.

The sheaf §,: is only defined on X syn—é for X smooth over § and for r < p, and
with base-ring A equal to W(k), i.e., in the unramified case. Kato [79] studies the derived
push-forward §,,(r) of the syntomic sheaf 5,: to Smy . Kurihara [82, §1, THEOREM] considers

the ramified case and also clarifies the relation of S, (r) with the sheaf of log forms W}, Ql’O;l.
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Theorem 6.5 (Kurihara). Suppose that [k : k?] < oc. Let X — S be smooth and projective
and suppose that r < p — 1. Then there is a distinguished triangle in D(Yy),

Wa Qo [=r — 1] = 8u(r) = i* Rjupld — WaQ ' [—r].

Schneider [1e8] extends the construction of §,(r) to all r > 0 by using the Bloch—
Kato symbol map y of (6.2) to give a map s : IS,Rj*;L?,,r — i,kW,,Ql’O;1 with i*s the
composition

. . kor y _
i rgrR]*;L?,,r — Rr]*u;?,,r[—r] — WnQ{Ogl[—r].

Schneider then defines the sheaf §,(r) as Cone(s)[—1], giving the distinguished triangle

LW Qg =1 = 1] = Su(r) = RjuptS = ix Wa Qs [, 6.3)

which recovers the one in Kurihara’s theorem for » < p — 1 by applying i *.
Using a similar method, Schneider’s construction was extended to the semi-stable
case by Sato [186], who defines the object T, (r) € D(Xg) with T, (r) = 8, (r) in the smooth

case.

6.2. Etale motivic cohomology

We return to algebraic cycles. As before, we consider a smooth separated finite type
S-scheme X — § = Spec A with generic fiber j : V' — X and special fiberi : ¥ — X,
and with A a mixed characteristic (0, p) dvr with perfect residue field.

Geisser [49] considers the motivic complex Z(r)x on a smooth S-scheme X — S
as a sheaf of complexes on Xy;s. Here we use the reindexed Bloch cycle complex to define
Z(r)y(U) as

Z(r)yU) = z"(U,2r — %),

and define the motivic complexes Z(r)y and Z(r)y on V and Y similarly.

Let o : (—)¢ — (—)nis be the change of topology map. Sheafifying for the étale topol-
ogy gives complexes Z(r)e,x, Z(r)e,v, and Z(r)e,y . Geisser shows that various known
properties of Z(r)x, Z(r)y, and Z(r)y, such as the purity isomorphism [84, THEOREM 1.7]

P'Z(r)x = Z(r — Dy[-2],
the theorem of Geisser—Levine [52]
Z/p"(r)y = WaQi,, y[-7],
the Suslin—Voevodsky isomorphism in Db (V&) (Beilinson’s axiom (iv)(a))
J¥Z/p"(Nax =L/ p" (M)av = pg .
and the Beilinson—Lichtenbaum conjectures (now a theorem)
Z/p"(r)y ~ ‘CSrRO[*/,LS,r, R M, Z(r)ay =0

have as consequence

2094 M. LEVINE



Theorem 6.6 (Geisser [49, THEOREM 1.3]). Let X — Spec A be smooth and essentially of finite
type, with A a complete discrete valuation ring of mixed characteristic (0, p). Then there is
a distinguished triangle in D? (X4),

i*Wanogl[—r 1= Z/p"(re — rerj*u;?,,r — i*WnQI’O;[—r],

and an isomorphism 7] p" (r)e = Sn(r) in D?(X) that transforms this triangle to Schnei-
der’s defining triangle (6.3).

Zhong has extended this to the semi-stable case, establishing an isomorphism with
Sato’s construction T, (r) after a truncation [128, PROPOSITION 4.5]:

Ter/Pn(r)ét = T,(r).

Assuming a “weak Gersten conjecture” for Z/ p” (r)«, the truncation is removed [128, THEO-
REM 4.8].

6.3. The theorems of Geisser—Hesselholt

The construction of a motivic tower for integral p-adic Hodge theory by Bhatt—
Morrow-Scholze relies on properties of p-completed topological cyclic homology, includ-
ing the results of Geisser—Hesselholt identifying this with the p-completed étale K-theory.
We give a brief résumé of these constructions. Fix as before our mixed characteristic dvr A
with perfect residue field k.

Topological cyclic homology for a fixed prime p is a spectrum refined version of
Connes’ cyclic homology and is defined for a scheme X with a topology t € {ét, Nis, Zar};
we use the étale topology throughout. There is an inverse system of spectra {TC™ (X, p)}meN
defining TC(X; p) as the homotopy inverse limit

TC(X; p) := holim TC™ (X, p).
m

Let 7€; denote the étale sheaf associated to the presheaf of the ith pro-homotopy groups
U +— 7;TC (U; p). There is a descent spectral sequence

Ey' = HS (X, T€_,) = TC_s—(X: p)

and a cyclotomic trace map
trc : K(X) — TC(X; p).
Let k be a perfect field of characteristic p > 0. It follows from a result of Hesselholt

[60, THEOREM B] that there is a isomorphism of pro-sheaves on Smy

T, ~ WQl (6.4)

log*
The map trc induces the map of pro-sheaves on Smy
trc: K (Z/p) — TE€;;
where K;(Z/p’) is the pro-étale sheaf associated to the system of presheaves U +>

{K;(U,Z/p")},. Relying on the main theorem of [52] and the isomorphism (6.4), Geisser
and Hesselholt show
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Theorem 6.7 (Geisser—Hesselholt [58, COROLLARY 4.2.5, THEOREM 4.2.6]).

1. The trace map trc : K;(Z/p) — TE; is an isomorphism of pro-sheaves on
Smké,.

2. ForY € Smy, TC(Y; p) is weakly equivalent to the p-completed étale K -theory
spectrum of Y,

K4(Y)"™ :=holim K%(Y,Z/ p") = TC(Y; p),
m
and this weak equivalence arises from the weak equivalences at the finite level
trc : KY(Y,Z/p”) = TC(Y; p. Z/ p").

Now consider a smooth finite type scheme X — Spec A with special fiberi : Y — X
and generic fiber j : V — X, as before.

Theorem 6.8 (Geisser—Hesselholt [51, THEOREMS A AND B]). Suppose A is henselian.
A. Suppose X — Spec A is smooth and proper. Then
tre : K'(X,Z/p*) — TCq(X: p. Z/ p*)
is an isomorphism for all ¢ € Z and v > 1.

B. Suppose that X — Spec A is smooth and finite type. Then the map of pro-
sheaves on Yy,

i*Kg(Z)p*) = {i*TECF(p. 2/ P")} ppen
is an isomorphism for all ¢ € 7 and all v > 1.

Remark 6.9. To pass from the isomorphism of Theorem 6.7 to that of Theorem 6.8(B),
Geisser—Hesselholt rely on the theorem of McCarthy [88], stating that the cyclotomic trace
map from relative K-theory to relative TC,

tre : Ky (X /7", X/n""",Z/p¥) — TCy(X /n", X /7" ™", Z/p").

is an isomorphism for affine X. Thus, the K-theory and topological cyclic homology of
non-reduced schemes play a central role in the proof of Theorem 6.8.

6.4. Integral p-adic Hodge theory and the motivic filtration

Bhatt-Morrow—Scholze [17, 18] have constructed integral versions of p-adic Hodge
theory. Here we discuss some aspects of the theory of [18] and its relation to p-adic étale
motivic cohomology. This uses (p-completed) topological Hochschild homology
THH(—, Z,), topological negative cyclic homology TC™ (—, Z,), and topological peri-
odic cyclic homology TP(—, Z). For a nice, quick overview of these theories, we refer the
reader to [18, §1.2, §2.3], and to [18, THEOREM 1.12] for their relation to TC(—, Z,).
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Let C) be the completion of the algebraic closure of Q, with ring of integers Oc, .
As in our review of the work of Fontaine-Messing, we have the [F,-algebra Oc, / p, its per-
fection (9<bc,, and the ring of Witt vectors Ajyi(Oc,) := W(@%p). Hesselholt has connected
this with negative cyclic homology TC™, constructing an isomorphism

10TC™ (Oc,.Zp) = Aint(Oc,).

This has been generalized by Bhatt—Morrow—Scholze in the setting of perfectoid rings (see
[17, DEFINITION 3.5]). For a perfectoid ring R, we have Scholze’s ring Rb, defined as for (9%})
by taking the perfection of R/ p,
R’ :=1lim R/p.
1<I—nFrob/p

This gives the ring of Witt vectors Ai(R) := W(R) with Frobenius ¢ induced by the
Frobenius on R.

Theorem 6.10 (Bhatt—Morrow—Scholze [18, THEOREM 1.6]). Let R be a perfectoid ring. Then
there is a canonical ¢-equivariant isomorphism moTC™ (R, Zp) = Aint(R).

Fix a discretely valued extension K of QQ,, with ring of integers Ok having perfect
residue field k. Let C be the completed algebraic closure of K, with ring of integers Oc¢.
Let Ajyf := Ainf((QC)'

Let X be a smooth formal scheme over O¢. In [17], Bhatt-Morrow—Scholze con-
struct a presheaf of complexes of Aj-algebras on Xz, AQx, whose Zariski hyperco-
homology specializes to crystalline cohomology, p-adic étale cohomology and de Rham
cohomology via base-change with respect to suitable ring homomorphisms out of Ajyy,
replacing the ring homomorphism Ajy¢(Oc,) — Berys used in the Fontaine-Messing theory.
In [18], they refine and reinterpret this theory using TC™. They define the notion of a quasi-
syntomic ring and the associated quasi-syntomic site [18, DEFINITION 1.7]; this gives the
presheaf 7oTC™ (—; Z,) on the quasi-syntomic site gsyn ; over a quasi-syntomic ring A
and the associated derived global sections functor Rl"syn(/f ,—).

Theorem 6.11 ([18, THEOREM 1.8]). Let A be an Oc-algebra that can be written as the p-adic
completion of a smooth O¢ -algebra. There is a functorial (in A) ¢-equivariant isomorphism
of Exo-Aint-algebras

AQ 7 = RTy (A, 1oTC™ (= Zp)).

The Postnikov tower 7>, TC(—; Z,) for the presheaf of spectra TC(—; Z,) on Agsyn
induces the tower over TC(4; Z,:

-+« = Fil""'TC(4; Z,) — Fil"TC(4; Z,) — -+ — TC(A: Z,, (6.5)

by setting
Fil"TC(4; Zp) := RTyu(A, 1221 TC(—; Z)))

(see [18, §1.4]). Define the sheaves Z ;™ (n) by sheafifying the presheaf
A ZM(n)(A) = gy TC(A; Z,p)[-2n],
where grt, TC(A; Z,,) is the homotopy cofiber of Fil" "' TC(4; Z,) — Fil"TC(4; Z,).
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Theorem 6.12 ([18, THEOREM 1.15]). (1) Let k be a perfect field of characteristic
p >0, let A be a smooth k-algebra and let X = Spec A. Then there is an
isomorphism in the derived category of sheaves on the pro-étale site of X,

ZEMS (rx = WQ;(JOg [—r].

(2) Let C be an algebraically closed complete extension of Qp, let A be the comple-
tion of a smooth O ¢ -algebra, and let X, = SpfA. Then there is an isomorphism
in the derived category of sheaves on the pro-étale site of X,

ZEMS(V)X = 1<, RYZp(r)x ar

Here Z,(r)x & denotes the pro-étale sheaf { M?,,' }n on the rigid analytic generic

fiber X of X and RV is the nearby cycles functor.

The isomorphism in (1) above, combined with the main result of [52], gives us the
identification of pro-objects

Zy"(r)x = AL/ p" (r)x.etn

in the setting of (1).

Consider the case of a smooth Og-scheme X as before. Bhatt—Morrow—Scholze
suggest in [18, REMARK 1.16] that Zp™®/p” (r)x should be Schneider’s sheaf S, (r), and by
passage to the limit, there should be a distinguished triangle

LWL —r =11 = ZY(r) = 1< Rjx(Zp(r)va) = ixW QL [-7]. (6.6)

For X a smooth @ g-scheme with associated formal scheme X and special fiberi : ¥ — X,
this would give an isomorphism of i*ZgMS /p"(r)x with the étale motivic complex
i*Z/p™(r)¢ on Yy considered by Geisser.

This has been proven in a work—in—progress by Bhargav Bhatt and Akhil Mathew
[16]. They construct an isomorphism of a version of ZpM3 / p™ (r)x with Sato’s sheaf T, (r)x
in the semi-stable case; using Zhong’s extension of Geisser’s results, this gives an isomor-
phism

i*Zng/p" (Nx = i*1<,Z/p" (r)«

in the semi-stable case.

One has the Geisser—Hesselholt isomorphism (Theorem 6.8) of étale K-theory and
topological cyclic homology given by the cyclotomic trace map. Perhaps one can compare
the localization pro-distinguished triangle

K(Y;Zp) — K(X;Zp) - K(X\Y;Zp)

with the distinguished triangle (6.6). Assuming one does have the pro-isomorphism
Zp(r)e = Z3MS(r) as suggested above, it would be interesting to see if the identification of
the sheaves S, (r) with the étale motivic complexes Z/ p" (r)s and the Atiyah—Hirzebruch
spectral sequence from motivic cohomology to K-theory could yield a comparison with the
spectral sequence corresponding to the motivic tower Fil*TC(X; Z,) described above.
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The sheaf Z;™3(r) is built from TC(—; Z,), which by the Geisser—Hesselholt the-
orem is p-completed étale K-theory. As we mentioned before, the Geisser—Hesselholt iso-
morphism arises at least in part from McCarthy’s theorem identifying the relative K-theory
and relative TC of the nilpotent thickenings X /(") of the special fiber Y. However, the
motivic cohomology complexes do not detect the difference between X /(") and Y. Sup-
posing again that one does have a pro-isomorphism Z,(r)g = ZEMS (7), this says that in
mixed characteristic (0, p), one can still see the K-theory of the thickened fibers X /(")
reflected in the motivic complexes Zp (r)¢.

I am not aware of a categorical framework for the tower Fil” TC(/I ; Zp) and its layers
Z;M8(r), analogous to the framework for Voevodsky’s slice tower for K-theory given by
SH(k). As A'-homotopy invariance fails for these theories, one would need a stable homo-
topy theory with a weaker invariance property, perhaps modeled on the one of the categories
of motives with modulus discussed in the previous section, for these theories to find a home,
in which the Bhatt—-Morrow—Scholze tower (6.5) would be seen as a parallel to Voevodsky’s
slice tower.
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