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Abstract

In 1999, Khovanov showed that a link invariant known as the Jones polynomial is the
Euler characteristic of a homology theory. The knot categorification problem is to find a
general construction of knot homology groups, and to explain their meaning – what are
they homologies of?
Homological mirror symmetry, formulated by Kontsevich in 1994, naturally produces
hosts of homological invariants. Typically though, it leads to invariants which have no par-
ticular interest outside of the problem at hand.
I showed recently that there is a new family of mirror pairs of manifolds, for which homo-
logical mirror symmetry does lead to interesting invariants and solves the knot categori-
fication problem. The resulting invariants are computable explicitly for any simple Lie
algebra, and certain Lie superalgebras.
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1. Introduction

There are many beautiful strands that connect mathematics and physics. Two of the
most fruitful ones are knot theory and mirror symmetry. I will describe a new connection
between them. We will find a solution to the knot categorification problem as a new appli-
cation of homological mirror symmetry.

1.1. Quantum link invariants
In 1984, Jones constructed a polynomial invariant of links in R3 [42]. The Jones

polynomial is defined by picking a projection of the link to a plane, the skein relation it
satisfies

where n D 2, and the value for the unknot. It has the same flavor as the Alexander polynomial,
dating back to 1928 [8], which one gets by setting n D 0 instead.

The proper framework for these invariants was provided by Witten in 1988, who
showed that they originate from three-dimensional Chern–Simons theory based on a Lie
algebra Lg [82]. In particular, the Jones polynomial comes from Lg D su2 with links col-
ored by the defining two-dimensional representation. The Alexander polynomial comes from
the same setting by taking Lg to be a Lie superalgebra gl1j1. The resulting link invariants
are known as the Uq.Lg/ quantum group invariants. The relation to quantum groups was
discovered by Reshetikhin and Turaev [67].

1.2. The knot categorification problem
The quantum invariants of links are Laurant polynomials in q1=2, with integer coef-

ficients. In 1999, Khovanov showed [48,49] that one can associate to a projection of the link
to a plane a bigraded complex of vector spaces

C �;j .K/ D � � � C i�1;j .K/
@i�1

��! C i;j .K/
@i

�! � � � ;

whose cohomology H i;j .K/ D ker @i =im @i�1 categorifies the Jones polynomial,

JK.q/ D

X
i;j

.�1/i qj=2rkH i;j .K/:

Moreover, the cohomology groups

H �;�.K/ D

M
i;j

H i;j .K/

are independent of the choice of projection; they are themselves link invariants.

1.2.1.
Khovanov’s construction is part of the categorification program initiated by Crane

and Frenkel [25], which aims to lift integers to vector spaces and vector spaces to categories.
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A toy model of categorification comes from a Riemannian manifold M , whose Euler char-
acteristic

�.M/ D

X
k2Z

.�1/kdimH k.M/

is categorified by the cohomology H k.M/ D ker dk=im dk�1 of the de Rham complex

C �
D � � � C k�1 dk�1

���! C k dk
�! � � � :

The Euler characteristic is, from the physics perspective, the partition function of supersym-
metric quantummechanics withM as a target space�.M/ D Tr.�1/F e�ˇH , with Laplacian
H D dd � C d �d as the Hamiltonian, and d D

P
k dk as the supersymmetry operator. If h

is a Morse function on M , the complex can be replaced by a Morse–Smale–Witten complex
C �

h
with the differential dh D ehde�h. The complex C �

h
is the space of perturbative ground

states of a � -model on M with potential h [81]. The action of the differential dh is generated
by solutions to flow equations, called instantons.

1.2.2.
Khovanov’s remarkable categorification of the Jones polynomial is explicit and

easily computable. It has generalizations of similar flavor for Lg D sun, and links colored
by its minuscule representations [51].

In 2013,Webster showed [78] that for any Lg, there exists an algebraic framework for
categorification of Uq.Lg/ invariants of links in R3, based on a derived category of modules
of an associative algebra. The KLRW algebra, defined in [78], generalizes the algebras of
Khovanov and Lauda [50] and Rouquier [68]. Unlike Khovanov’s construction, Webster’s
categorification is anything but explicit.

1.2.3.
Despite the successes of the program, one is missing a fundamental principle which

explains why is categorification possible – the construction has no right to exist. Unlike in our
toy example of categorification of the Euler characteristic of a Riemanniann manifold, Kho-
vanov’s construction and its generalizations did not come from either geometry or physics
in any unified way. The problem Khovanov initiated is to find a general framework for link
homology, that works uniformly for all Lie algebras, explains what link homology groups
are, and why they exist.

1.3. Homological invariants from mirror symmetry
The solution to the problem comes from a new relation between mirror symmetry

and representation theory.
Homological mirror symmetry relates pairs of categories of geometric origin [55]:

a derived category of coherent sheaves and a version of the derived Fukaya category, in
which complementary aspects of the theory are simple to understand. Occasionally, one can
make mirror symmetry manifest, by showing that both categories are equivalent to a derived
category of modules of a single algebra.
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I will describe a new family of mirror pairs, in which homological mirror symmetry
can be made manifest and leads to the solution to the knot categorification problem [1, 2].
Many special features exist in this family, in part due to its deep connections to representation
theory. As a result, the theory is solvable explicitly, as opposed to only formally [4,5].

1.4. The solution
We will get not one, but two solutions to the knot categorification problem. The

first solution [1] is based on DX , the derived category of equivariant coherent sheaves on a
certain holomorphic symplectic manifold X, which plays a role in the geometric Langlands
correspondence. Recently,Webster proved thatDX is equivalent toDA , the derived category
of modules of an algebraA which is a cylindrical version of the KLRW algebra from [79,80].
The generalization allows the theory to describe links in R2 � S1, as well as in R3.

The second solution [2] is based on DY , the derived Fukaya–Seidel category of a
certain manifold Y with potential W . The theory generalizes Heegard–Floer theory [63,64,

66], which categorifies the Alexander polynomial, from Lg D gl1j1, to arbitrary Lg.
The two solutions are related by equivariant homological mirror symmetry, which

is not an equivalence of categories, but a correspondence of objects and morphisms coming
from a pair of adjoint functors. InDX , we will learn which question we need to ask to obtain
Uq.Lg/ link homology. In DY , we will learn how to answer it.

In [5], we give an explicit algorithm for computing homological link invariants from
DY , for any simple Lie algebra Lg and links colored by its minuscule representations. It has
an extension to Lie superalgebras Lg D glmjn and spmj2n. In [4], we set the mathematical
foundations of DY and prove (equivariant) homological mirror symmetry relating it to DX .

2. Knot invariants and conformal field theory

Most approaches to categorification of Uq.Lg/ link invariants start with quantum
groups and their modules. We will start by recalling how quantum groups came into the
story. The seeming detour will help us understand how Uq.Lg/ link invariants arise from
geometry, and what categorifies them.

2.1. Knizhnik–Zamolodchikov equation and quantum groups
Chern–Simons theory associates to a punctured Riemann surface A a vector space,

its Hilbert space. AsWitten showed [82], the Hilbert space is finite dimensional, and spanned
by vectors that have a name. They are known as conformal blocks of the affine Lie algebracLg� . The effective level � is an arbitrary complex number, related to q by q D e

2�i
� . While

in principle arbitrary representations of Lg can occur, in relating to geometry and categori-
fication, we will take them to be minuscule.

To get invariants of knots in R3, one typically takes A to be a complex plane with
punctures. It is equivalent, but for our purposes better, to take A to be an infinite complex
cylinder. This way, we will be able to describe invariants of links in R2 � S1, as well.
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2.1.1.
Every conformal block, and hence every state in the Hilbert space, can be obtained

explicitly as a solution to a linear differential equation discovered by Knizhnik and Zamolod-
chikov in 1984 [53]. The KZ equation we get is of trigonometric type, schematically

� @i V D

X
j ¤i

rij .ai =aj / V ; (2.1)

since A is an infinite cylinder. Here, @i D ai
@

@ai
, where ai is any of the n punctures in the

interior of A, colored by a representation Vi of Lg. The right hand side of (2.1) is given in
terms of classical r-matrices of Lg, and acts irreducibly on a subspace of V1 ˝ � � � ˝ Vn of
a fixed weight �, where V takes values [32,33].

The KZ equations define a flat connection on a vector bundle over the configuration
space of distinct points a1; : : : ; an 2 A. The flatness of the connection is the integrability
condition for the equation.

2.1.2.
The monodromy problem of the KZ equation, which is to describe analytic contin-

uation of its fundamental solution along a path in the configuration space, has an explicit
solution. Drinfeld [30] and Kazhdan and Lustig [47] proved that that the monodromy matrix
B of the KZ connection is a product of R-matrices of the Uq.Lg/ quantum group corre-
sponding to Lg. The R-matrices describe reorderings of neighboring pairs of punctures.

The monodromy matrix B is the Chern–Simons path integral on A � Œ0; 1� in pres-
ence of a colored braid. By composing braids, we get a representation of the affine braid
group based on the Uq.Lg/ quantum group, acting on the space of solutions to the KZ equa-
tion. The braid group is affine, since A is a cylinder and not a plane.

2.1.3.
Any link can be represented as a plat closure of some braid. The Chern-Simons path

integral together with the link computes a very specific matrix element of the braiding matrix
B, picked out by a pair of states in the Hilbert space corresponding to the top and the bottom
of Figure 1.

Figure 1

Every link arises as a plat closure of a braid.
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These states, describing a collection of cups and caps, are very special solutions of
the KZ equation in which pairs of punctures, colored by conjugate representations Vi and
V �

i , come together and fuse to disappear. In this way, both fusion and braiding enter the
problem.

2.2. A categorification wishlist
To categorify Uq.Lg/ invariants of links in R3, we would like to associate, to the

space of conformal blocks of cLg on the Riemann surface A, a bigraded category, which
in addition to the cohomological grading has a grading associated to q. Additional rk.Lg/

gradings are needed to categorify invariants of links inR2 � S1, as they depend on the choice
of a flat Lg connection around the S1. To braids, we would like to associate functors between
the categories corresponding to the top and bottom. To links, we would like to associate a
vector space whose elements are morphisms between the objects of the categories associated
to the top and bottom, up to the action of the braiding functor. Moreover, we would like to
do this in a way that recovers quantum link invariants upon decategorification. One typically
proceeds by coming up with a category, and then works to prove that decategorification gives
the link invariants one set out to categorify. A virtue of the solutions in [1,2] is that the second
step is automatic.

3. Mirror symmetry

Mirror symmetry is a string duality which relates � -models on a pair of Calabi–Yau
manifolds X and Y. Its mathematical imprint are relations between very different problems
in complex geometry of X (“B-type”) and symplectic geometry of Y (“A-type”), and vice
versa.

Mirror symmetry was discovered as a duality of � -models on closed Riemann sur-
faces D. In string theory, one must allow Riemann surfaces with boundaries. This enriches
the theory by introducing “branes,” which are boundary conditions at @D and naturally
objects of a category [9].

By asking howmirror symmetry acts on branes turned out to yield deep insights into
mirror symmetry. One such insight is due to Strominger, Yau, and Zaslov [75], who showed
that in order for every point-like brane on X to have a mirror on Y, mirror manifolds have
to be fibered by a pair of (special Lagrangian) dual tori T and T _, over a common base.

3.1. Homological mirror symmetry
Kontsevich conjectured in his 1994 ICM address [55] that mirror symmetry should

be understood as an equivalence of a pair of categories of branes, one associated to complex
geometry of X, the other to symplectic geometry of Y.

The category of branes associated to complex geometry ofX is the derived category
of coherent sheaves,

DX D DbCohT .X/:
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Its objects are “B-type branes,” supported on complex submanifolds of X. The category of
branes associated to symplectic geometry is the derived Fukaya category

DY D DFuk.Y/;

whose objects are “A-type branes,” supported on Lagrangian submanifolds of Y, together
with a choice of orientation and a flat bundle. For example, mirror symmetry should map
the structure sheaf of a point in X to a Lagrangian brane in Y supported on a T _ fiber. The
choice of a flat U.1/ connection is the position of the point in the dual fiber T .

Kontsevich’ homological mirror symmetry is a conjecture that the category of B-
branes on X and the category of A-branes on Y are equivalent,

DX Š DY ;

and that this equivalence characterizes what mirror symmetry is.

3.2. Quantum differential equation and its monodromy
Knizhnik–Zamolodchikov equation, which plays a central role in knot theory, has

a geometric counterpart. In the world of mirror symmetry, there is an equally fundamental
differential equation,

@i V˛ � .Ci /
ˇ
˛ Vˇ D 0: (3.1)

The equation is known as the quantum differential equation of X. Both the equation and its
monodromy problem featured prominently, starting with the first papers onmirror symmetry,
see [37] for an early account. In (3.1), .Ci /

ˇ
˛ D Ci ˛ı�ıˇ is a connection on a vector bundle

with fibersH even.X/ D
L

k H k.X;^kT �
X

/ over the complexifiedKahler moduli space. The
derivative stands for @i D ai

@
@ai

, so that @i a
d D .i ; d /ad for a curve of degree d 2 H2.X/.

The connection comes from quantum multiplication with classes i 2 H 2.X/. Given three
de Rham cohomology classes on X, their quantum product

C˛ˇ D

X
d�0;d2H2.X/

.˛; ˇ; /d ad (3.2)

is a deformation of the classical cup product .˛; ˇ; /0 D
R

X
˛ ^ ˇ ^  coming from

Gromov–Witten theory of X: .˛;ˇ; /d is computed by an integral over the moduli space of
degree d holomorphic maps fromD D P 1 toX whose image meets classes Poincaré dual of
˛; ˇ and  at points. The quantum product, together with the invariant inner product �˛ˇ DR

X
˛ ^ ˇ, gives rise to an associative algebra with structure constants C˛ˇ

ı
D C˛ˇ �ı .

Flatness of the connection follows from the WDVV equations [27,31,83].
From the mirror perspective of Y, the connection is the classical Gauss–Manin con-

nection on the vector bundle over themoduli space of complex structures onY, with fibers the
mid-dimensional cohomology H d .Y/ as mirror symmetry identifies H k.X; ^kT �

X
/ with

H k.Y; ^d�kT �
Y

/.

2114 M. Aganagic



3.2.1.
Solutions to the equation live in a vector space, spanned by K-theory classes of

branes [22,36,41,46]. These are B-type branes on X, objects of DX , and A-type branes on Y,
objects of DY . A characteristic feature is that the equation and its solutions mix the A- and
B-type structures on the same manifold.

From the perspective of X, the solutions of the quantum differential equation come
from Gromov–Witten theory. They are obtained by counting holomorphic maps from a
domain curve D to X, where D is best thought of as an infinite cigar [39,40] together with
insertions of a class in ˛ 2 H �

even.X/ at the origin, and ŒF � 2 K.X/ at infinity. The latter is
the K-theory class of a B-type brane F 2 DX which serves as the boundary condition at the
S1 boundary at infinity of D. In the mirror Y, the A- and B-type structures get exchanged.
In the interior of D, supersymmetry is preserved by B-type twist, and at the boundary at
infinity we place an A-type brane L 2 DY , whose K-theory class picks which solution of
the equation we get.

3.2.2.
One of the key mirror symmetry predictions is that monodromy of the quantum

differential equation gets categorified by the action of derived autoequivalences of DX . It is
related by mirror symmetry to the monodromy of the Gauss–Manin connection, computed
by Picard–Lefshetz theory, whose categorification by DY is developed by Seidel [71].

The flat section V of the connection in (3.1) has a close cousin. This is Douglas’
[9, 28, 29] …-stability central charge function Z0 W K.D/ ! C, whose existence motivated
Bridgeland’s formulation of stability conditions [17]. The…-stability central chargeZ0 arises
from the same setting as V , except one places trivial insertions at the origin of D. This
implies that monodromies ofV andZ0 coincide [22]. In the context of themirrorY, given any
brane L 2 DY , its central charge is simply Z0ŒL� D

R
L

�, where � is the top holomorphic
form on Y. The stable objects are special Lagrangians, on which the phase of � is constant.
By mirror symmetry, monodromy of Z0 is expected to induce the action of monodromy on
DX . Examples of braid group actions on the derived categories include works of Khovanov
and Seidel [52], Seidel and Thomas [74], and others [18,77].

4. Homological link invariants from B-branes

The Knizhnik–Zamolodchikov equation not only has the same flavor as the quantum
differential equation, but for some very special choices of X, they coincide. For the time
being, we will take Lg to be simply laced, so it coincides with its Langlands dual g.

4.1. The geometry
The manifold X may be described as the moduli space of G-monopoles on

R3
D R � C; (4.1)
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with prescribed singularities. The monopole group G is related to LG, the Chern–Simons
gauge group, by Langlands or electric–magnetic duality. In Chern–Simons theory, the knots
are labeled by representations of LG and viewed as paths of heavy particles, charged elec-
trically under LG. In the geometric description, the same heavy particles appear as singular,
Dirac-type monopoles of the Langlands dual group G. The fact the magnetic description is
what is needed to understand categorification was anticipated by Witten [84–87].

4.1.1.
Place a singular G monopole for every finite puncture on A Š R � S1, at the point

onR obtained by forgetting the S1. Singular monopole charges are elements of the cocharac-
ter lattice of G, which Langlands duality identifies with the character lattice of LG. Pick the
charge of the monopole to be the highest weight �i of the LG representation Vi coloring the
puncture. The relative positions of singular monopoles on R3 are the moduli of the metric
on X, so we will hold them fixed.

The smooth monopole charge is a positive root of LG; choose it so that the total
monopole charge is the weight � of subspace of representation

N
i Vi , where the conformal

blocks take values. For our current purpose, it suffices to assume

� D

X
i

�i �

rkX
aD1

da
Lea; (4.2)

is a dominant weight; Lea are the simple positive roots of Lg. Provided �i are minuscule
co-weights of G and no pairs of singular monopoles coincide, the monopole moduli space
X is a smooth hyper-Kahler manifold of dimension

dimC.X/ D 2
X

a

da:

It is parameterized, in part, by positions of smooth monopoles on R3.

4.1.2.
A choice of complex structure on X reflects a split of R3 as R � C. The relative

positions of singular monopoles onC become the complex structure moduli, and the relative
positions of monopoles on R the Kahler moduli.

This identifies the complexified Kahler moduli space of X (where the Kahler form
gets complexified by a periodic two-form) with the configuration space of n distinct punc-
tures on A D R � S1, modulo overall translations, as in Figure 2.

Figure 2

Punctures on A correspond to singular G-monopoles on R 2 R � C.
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4.1.3.
As a hyper-Kahler manifold, X has more symmetries than a typical Calabi–Yau.

For its quantum cohomology to be nontrivial, and for the quantum differential equation to
coincide with the KZ equation, we need to work equivariantly with respect to a torus action
that scales its holomorphic symplectic form

!2;0
! q !2;0:

For this to be a symmetry, we will place all the singular monopoles at the origin of C; X

has a larger torus of symmetries
T D ƒ � C�

q ;

whereƒ preserves the holomorphic symplectic form, and comes from the Cartan torus ofG.
The equivariant parameters of the ƒ-action correspond to the choice of a flat LG connection
of Chern–Simons theory on R2 � S1.

4.1.4.
The same manifold X has appeared in mathematics before, as a resolution of a

transversal slice in the affine Grassmannian GrG D G..z//=GŒŒz�� of G, often denoted by

X D Gr E�
� : (4.3)

The two are related by thinking of monopole moduli space X as obtained by a sequence of
Hecke modifications of holomorphic G-bundles on C [45].

Manifold X is also the Coulomb branch of a 3d quiver gauge theory with N D 4

supersymmetry, with quiver based on the Dynkin diagram of g, see e.g. [19]. The ranks of
the flavor and gauge symmetry groups are determined from the weights � and �.

4.1.5.
The vector E� D .�1; : : : ; �n/ in (4.3) encodes singular monopole charges, and the

order in which they appear on R, and � is the total monopole charge. The ordering of entries
of E� is a choice of a chamber in the Kahler moduli. We will suppress E� for the most part,
and denote all the corresponding distinct symplectic manifolds by X.

4.1.6.
By a recent theorem of Danilenko [26], the Knizhnik–Zamolodchikov equation cor-

responding to the Riemann surface A D R � S1, with punctures colored by minuscule rep-
resentations Vi of Lg, coincides with the quantum differential equation of the T -equivariant
Gromov–Witten theory on X D Gr E�

� .
This has many deep consequences.

4.2. Branes and braiding
Since the KZ equation is the quantum-differential equation of T -equivariant

Gromov–Witten theory of X, the space of its solutions gets identified with KT .X/, the
T -equivariant K-theory of X.
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This is the K-group of the category of its B-type branes, the derived category of
T -equivariant coherent sheaves on X,

DX D DbCohT .X/:

This connection between the KZ equation and DX is the starting point for our first solution
of the categorification problem.

4.2.1.
A colored braid with n strands in A � Œ0; 1� has a geometric interpretation as a path

in the complexified Kahler moduli of X that avoids singularities, as the order of punctures
on A corresponds to a choice of chamber in the Kahler moduli of X.

Themonodromy of the quantumdifferential equation along this path acts onKT .X/.
Since the quantum differential equation coincides with the KZ equation, by the theorem of
[26], KT .X/ becomes a module for Uq.Lg/, corresponding to the weight � subspace of
representation V1 ˝ � � � ˝ Vn.

The fact that derived equivalences ofDX categorify this action is not only an expec-
tation, but also a theorem by Bezrukavnikov and Okounkov [14], whose proof makes use of
quantization of X in characteristic p.

4.2.2.
From physics perspective, the reason derived equivalences of DX had to categorify

the action of monodromy of the quantum differential equation on KT .X/ is as follows.
Braid group acts, in the � -model on the cigar D from Section 3.2.1, by letting the

moduli of X vary according to the braid near the boundary at infinity. The Euclidean time,
running along the cigar, is identified with the time along the braid. This leads to a Berry
phase-type problem studied by Cecotti and Vafa [22]. It follows that the � -model on the
annulus, with moduli that vary according to the braid, computes the matrix element of the
monodromy B, picked out by a pair of branes F0 and F1 at its boundaries.

The � -model on the same Euclidian annulus, where we take the time to run around
S1 instead, computes the index of the superchargeQ preserved by the two branes. The coho-
mology of Q is computed by DX as its most basic ingredient, the space of morphisms

Hom�;�
DX

.BF0; F1/

between the branes. This is the space of supersymmetric ground states of the � -model on
a strip, obtained by cutting the annulus open. We took here all the variations of moduli to
happen near one boundary, at the expense of changing a boundary condition from F0 to
BF0. This does not affect the homology [1,35], for the very same reason the theory depends
on the homotopy type of the braid only. Per construction, the graded Euler characteristic of
the homology theory, computed by closing the strip back up to the annulus, is the braiding
matrix element,

�.B F0; F1/ D .B V0; V1/; (4.4)

between the conformal blocks V0;1 D V ŒF0;1� of the two branes.
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Thus, by viewing the same Euclidian annulus in two different ways, we learn that
the braid group action on the derived category

B W DX E�
! DX E�0 ; (4.5)

manifestly categorifies the monodromy matrix B 2 Uq.Lg/ of the KZ equation.

4.3. Link invariants from perverse equivalences
The quantumUq.Lg/ invariants of knots and links are matrix elements of the braid-

ing matrix B, so they too will be categorified by DX , provided we can identify objects
U 2 DX which serve as cups and caps.

Conformal blocks corresponding to cups and caps are defined using fusion [62].
The geometric analogue of fusion, in terms of X and its category of branes, was shown in
[1] to be the existence of certain perverse filtrations on DX , defined by abstractly by Chuang
and Rouqiuer [24]. The utility of perverse filtrations for understanding the action of braiding
on DX parallels the utility of fusion in describing the action of braiding in conformal field
theory. In particular, it leads to identification of the cup and cap branes U we need, and a
simple proof that Hom�;�

DX
.BU; U/ are homological invariants of links [1].

4.3.1.
Aswe bring a pair of punctures at ai and aj onA together, we get a new natural basis

of solutions to the KZ equation, called the fusion basis, whose virtue is that it diagonalizes
braiding. The possible eigenvectors are labeled by the representations

Vi ˝ Vj D

mmaxO
mD0

Vkm
; (4.6)

that occur in the tensor product of representations Vi and Vj labeling the punctures. Because
Vi and Vj are minuscule representations, the nonzero multiplicities on the right-hand side are
all equal to 1. The cap arises as a special case, obtained by starting with a pair of conjugate
representations Vi and V ?

i , and picking the trivial representation in their tensor product.

4.3.2.
From perspective of X, a pair of singular monopoles of charges �i and �j are

coming together on R, as in Figure 2, and we approach a wall in Kahler moduli at which
X develops a singularity. At the singularity, a collection of cycles vanishes. This is due to
monopole bubbling phenomena described by Kapustin and Witten in [45].

The types of monopole bubbling that can occur are labeled by representations Vkm

that occur in the tensor product Vi ˝ Vj . The moduli space of monopoles whose positions
we need to tune for the bubbling of type Vkm

to occur is Gr.�i ;�j /
�km

D T �Fkm
, where �km

is
the highest weight of Vkm

. This space is transverse to the locus where exactly�i C �j � �km

monopoles have bubbled off [1]. It has a vanishing cycle Fkm
, corresponding to the repre-

sentation Vkm
, as its zero section. (Viewing X as the Coulomb branch, monopole bubbling

is related to partial Higgsing phenomena.)
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4.3.3.
Conformal blocks which diagonalize the action of braiding do not in general come

from actual objects of the derived category DX . As is well known from Picard–Lefshetz
theory, eigensheaves of braiding, branes on which the braiding acts only by degree shifts
BE D EŒDE �¹CEº, are very rare.

What one gets instead [1] is a filtration

Dk0
� Dk1

� � � � � Dkmax D DX ; (4.7)

by the order of vanishing of the …-stability central charge Z0 W K.X/ ! C. More precisely,
one gets a pair of such filtrations, one on each side of the wall. Crossing the wall preserves
the filtration, but has the effect of mixing up branes at a given order in the filtration, with
those at lower orders, whose central charge vanishes faster. Because X is hyper-Kahler, the
…-stability central charge is given in terms of classical geometry (by Eq. (4.7) of [1]).

The existence of the filtration with the stated properties follows from the existence
of the equivariant central charge function Z;

Z W KT .X/ ! C; (4.8)

and the fact the action of braiding on KT .X/ lifts to the action on DX , by the theorem of
[14]. The equivariant central chargeZ is computed by the equivariant Gromov–Witten theory
on X in a manner analogous to V , starting with the � -model on the cigar D except with no
insertion at its tip. It reduces to the …-stability central charge Z0 by turning the equivariant
parameters off.

4.3.4.
While B has few eigensheaves in DX , it acts by degree shifts

B W Dkm
=Dkm�1

! Dkm
=Dkm�1

ŒDkm
�¹Ckm

º; (4.9)

on the quotient subcategories. The degree shifts may be read off from the eigenvectors of the
action of braiding on the equivariant central charge function Z. As the punctures at ai and
aj come together, the eigenvector corresponding to the representation Vkm

in (4.6), vanishes
as [1]

Zkm
D .ai � aj /Dkm CCkm =�

� finite:

It follows that braiding ai and aj counterclockwise acts by

Zkm
! .�1/Dkm q

1
2 Ckm Zkm

:

The cohomological degree shiftDkm
D dimC Fkm

is by the dimension of the vanishing cycle.
The equivariant degree shift Ckm

is essentially the one familiar from the action of braiding
on conformal blocks of cLg in the fusion basis [1].
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4.3.5.
The derived equivalences of this type are the perverse equivalences of Chuang and

Rouquier [23, 24]. They envisioned them as a way to describe derived equivalences which
come from variations of Bridgeland stability conditions, but with few examples from geom-
etry.

Traditionally, braid group actions on derived categories of coherent sheaves, or B-
branes, are fairly difficult to describe, see for example [20, 21]. Braid group actions on the
categories of A-branes are much easier to understand, via Picard–Lefshetz theory and its
categorical uplifts [71], see e.g. [52, 77]. The theory of variations of stability conditions, by
Douglas and Bridgeland, was invented to bridge the two [9,29].

4.3.6.
As a by-product, we learn that conformal blocks describing collections cups or caps

colored by minuscule representations, come from branes in DX which have a simple geo-
metric meaning [1].

Take X D Gr.�1;��
1 ;:::;�d ;��

d
/

0 corresponding to A with n D 2d punctures, colored
by pairs of complex conjugate, minuscule representations Vi and V �

i . We get a vanishing
cycle U in X which is a product of d minuscule Grassmannians,

U D G=P1 � � � � � G=Pd ;

where Pi is the maximal parabolic subgroup of G associated to representation Vi . This van-
ishing cycle embeds in X as a compact holomorphic Lagrangian, so in the neighborhood of
U , we can model X as T �U . The structure sheaf

U D OU 2 DX

of U is the brane we are after. The Grassmannian G=Pi is the cycle that vanishes when
a single pair of singular monopoles of charges �i and ��

i come together, as Gr.�i ;��
i /

0 D

T �G=Pi .
The brane U lives at the very bottom of a d -fold filtration which DX develops at

the intersection of d walls in the Kahler moduli of X corresponding to bringing punctures
together pairwise. It follows U is the eigensheaf of braiding each pair of matched endpoints.
It is extremely special, for the same reason the trivial representation is special.

4.3.7.
Just as fusion provides the right language to understand the action of braiding in con-

formal field theory, the perverse filtrations provide the right language to describe the action
of braiding on derived categories. Using perverse filtrations and the very special properties
of the vanishing cycle branes U 2 DX , one gets the following theorem [1]:

Theorem 1. For any simply laced Lie algebra Lg, the homology groups

Hom�;�
DX

.BU; U/;

categorify Uq.Lg/ quantum link invariants, and are themselves link invariants.
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4.3.8.
As an illustration, proving that (the equivalent of) the pitchfork move in the figure

below holds in DX

Figure 3

A move equivalent to the pitchfork move.

requires showing that we have a derived equivalence

B ı Ci Š C 00
i ; (4.10)

where Ci and C 00
i are cup functors on the right and the left in Figure 3, respectively. They

increase the number of strands by two and map

Ci W DXn�2
! DXn

and C 00
i W DXn�2

! DX00
n
;

where the subscript serves to indicate the number of strands. The functor B is the equiva-
lence of categories from the theorem of [14]

B W DXn
! DX00

n
;

corresponding to braiding Vk.ak/ with Vi .ai / ˝ V �
i .aj / where Vi and V �

i color the red and
Vk the black strand in Figure 3.

To prove the identity (4.10) note that

CiDXn�2
� DXn

and C 00
i DXn�2

� DX00
n
; (4.11)

are the subcategories which are the bottom-most part of the double filtrations of DXn
and

DX00
n
, corresponding to the intersection of walls at which the three punctures come together.

By the definition of perverse filtrations, the functor B acts at a bottom part of a double
filtration at most by degree shifts. The degree shifts are trivial too, since if they were not, the
relation we are after would not hold even in conformal field theory, and we know it does. To
complete the proof, one recalls that a perverse equivalence that acts by degree shifts that are
trivial is an equivalence of categories [24].

Proofs of invariance under the Reidermeister 0 and the framed Reidermeister I
moves are similar. The invariance under Reidermeister II and III moves follows from the
theorem of [14]. One should compare this to proofs of the same relations in [20, 21], which
are more technical and less general.

2122 M. Aganagic



4.3.9.
An elementary consequence is a geometric explanation of mirror symmetry which

relates the Uq.Lg/ invariants of a link K and its mirror reflection K�.
It is a consequence of a basic property of DX , Serre duality. Serre duality implies

the isomorphism of homology groups onX which is a 2d complex-dimensional Calabi–Yau
manifold,

HomDX

�
B U; UŒM �¹J0; EJ º

�
D HomDX

�
BU; UŒ2d � M�¹�d � J0; � EJ º

�
: (4.12)

The equivariant degree shift comes from the fact the unique holomorphic section of the
canonical bundle has weight d under the C�

q � T action. Mirror symmetry follows by taking
Euler characteristic of both sides [1].

4.4. Algebra from B-branes
Bezrukavnikov and Kaledin, using quantization in characteristic p, constructed a

tilting vector bundle T , on any X which is a symplectic resolution [12, 13,43,44]. Its endo-
morphism algebra

A D Hom�
DX

.T ; T /

is an ordinary associative algebra, graded only by equivariant degrees. The derived category
DA of its modules is equivalent to DX ,

DX Š DA ;

essentially per definition.
Webster recently computed the algebra A for our X [80], and showed that it coin-

cides with a cylindrical version of the KLRW algebra from [78]. Working with the cylindrical
KLRW algebra, as opposed to the ordinary one, leads to invariants of links in R2 � S1 and
not just in R3. The KLRW algebra generalizes the algebras of Khovanov and Lauda [50]

and Rouquier [68]. The cylindrical version of the KLR algebra corresponds to X which is a
Coulomb branch of a pure 3D gauge theory.

4.4.1.
The description of link homologies via DX D DCohT .X/ provides a geometric

meaning of homological Uq.Lg/ link invariants. Even so, without further input, the descrip-
tion of link homologies either in terms of DX or DA is purely formal. With the help of
(equivariant) homological mirror symmetry, we will give a description of link homology
groups which is explicit and explicitly computable; in this sense, link homology groups come
to life in the mirror.

5. Mirror symmetry for monopole moduli space

In the very best instances, homological mirror symmetry relating DY and DX can
bemademanifest, by showing that each is equivalent toDA , the derived category of modules
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of the same associative algebra A ;

DX Š DA Š DY : (5.1)

The algebra
A D Hom�

D.T ; T /

is the endomorphism algebra of a set of branes T D
L

C TC , which generate DX and DY .
For economy, we will be denoting branes related by mirror symmetry by the same letter.

An elementary example [10] is mirror symmetry relating a pair of infinite cylinders,
X D C� and Y D R � S1, whose torus fibers are dual S1’s. Both DX , the derived category
of coherent sheaves on X, and DY , based on the wrapped Fukaya category, are generated by
a single object T , a flat line bundle on X and a real-line Lagrangian on Y. Their algebras of
open strings are the same, equal to the algebra A D CŒx˙1� of holomorphic functions on
the cylinder.

Figure 4

A simple example of manifest mirror symmetry.

5.1. The algebra for homological mirror symmetry
In our setting, the generator T of DX is the tilting generator of Bezrukavnikov and

Kaledin from Section 4.4. Webster’s proof of the equivalence of categorification of Uq.Lg/

link invariants and B-type branes onX and via the cKLRW algebraA should be understood
as the first of the two equivalences in (5.1).

5.1.1.
The mirror Y of X is the moduli space of G monopoles, of the same charges as X

except on R2 � S1 instead of on R3, with only complex and no Kahler moduli turned on,
and equipped with a potential [2]. Without the potential, the mirror to Y would be another
moduli space of G monopoles on R2 � S1.

The theory based on DY , the derived Fukaya–Seidel category of Y, is in the same
spirit as the work of Seidel and Smith [72]. They pioneered geometric approaches to link
homology, but produced a only singly graded theory, known as symplectic Khovanov homol-
ogy. The computation of DY , which makes mirror symmetry in (5.1) manifest, is given in
the joint work with Danilenko, Li, and Zhou [4].

5.2. The core of the monopole moduli space
Working equivariantly with respect to a C�

q -symmetry which scales the holomor-
phic symplectic form of X, all the information about its geometry should be encoded in a
core locus preserved by such actions.
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The core X is a singular holomorphic Lagrangian in X which is the union of sup-
ports of all stable envelopes [7,61]. Equivalently,X is the union of all attracting sets ofƒ-torus
actions on X, where we let ƒ vary over all chambers. If we view X as the monopole moduli
space, we can put this more simply: X is the locus where all the monopoles, singular or not,
are at the origin of C in R � C. Viewing it as a Coulomb branch, X is the locus at which
the complex scalar fields in vector multiplets vanish.

We will define the equivariant mirror Y of X to be the ordinary mirror of its core,
so we have

X Y

X Y

mirror

equiv. mirror

mirror

Working equivariantly with respect to the T -action onX, the equivariant mirror gets a poten-
tial W , making the theory on Y into a Landau–Ginsburg model. While X embeds into X as
a holomorphic Lagrangian of dimension d , Y fibers over Y with holomorphic Lagrangian
.C�/d fibers.

5.2.1.
A model example is X which is the resolution of an An�1 hypersurface singularity,

uv D zn;X is themoduli space of a single smoothG D SU.2/=Z2 monopole, in the presence
of n singular ones. The core X is a collection of n � 1 P 1’s with a pair of infinite discs
attached, as in Figure 5.

Figure 5

Core X of a resolution of the An�1 singularity.

The ordinary mirrorY ofX is the complex structure deformation of the “multiplica-
tive” An�1 surface singularity, with a potential which we will not need. Y is a C� fibration
over Y which is itself an infinite cylinder, a copy of C� with n points deleted. At the marked
points, the C� fibers degenerate. There are n � 1 Lagrangian spheres in Y, which are mirror
to n � 1 P 1’s in X. They project to Lagrangians in Y which begin and end at the punctures.

5.2.2.
Themodel example corresponds to LG D SU.2/Chern–Simons theory onR2 � S1,

and bsu2 conformal blocks on A D R � S1. The n punctures on A are colored by the fun-
damental, two-dimensional representation V1=2 of su2, and we take the subspace of weight
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Figure 6

Lagrangian spheres in Y mirror the vanishing P1’s in X.

one level below the highest. Note that Y coincides with the Riemann surface A where the
conformal blocks live. This is not an accident.

In the model example, both X and Y are S1 fibrations over R with n marked points.
At the marked points, the S1 fibers of X degenerate. In Y , this is mirrored by fibers that
decompactify, due to points which are deleted.

5.2.3.
More generally, for X D Gr E�

� we have da smooth G-monopoles colored by simple
roots Lea and otherwise identical. It follows that the common base of SYZ fibrations of
X and Y is the configuration space of the smooth monopoles on the real line R with n

marked points. Themarked points are labeled by the weights�i of Lg, which are the singular
monopole charges.

An explicit description of Y , as well as its category of A-branes DY , is given [4].
Here we will only describe some of its features. In an open set, Y coincides with

Y0 D

rkO
aD1

Symda A;

the configuration space of d D
Prk

aD1 da points on the punctured Riemann surface A, “col-
ored” by simple roots Lea of Lg, but otherwise identical. The open set is the complement of
the divisor of zeros and of poles of function f 0 in (5.5).

The top holomorphic form on Y is

� D

rk̂

aD1

dâ

˛D1

dy˛;a

y˛;a

; (5.2)

where y˛;a are coordinates on d copies of A, viewed as the complex plane with 0 and 1

deleted. While � itself is not globally well defined, so KY is not trivial, �˝2 is well defined
and

2c1.KY / D 0: (5.3)

This allows DY to have a Z-valued cohomological grading. The symplectic form on Y is
inherited from the symplectic form on Y, by restricting it to the vanishing .S1/d in each of
its .C�/d fibers over Y [4]. The precise choice of symplectic structure is the one compatible
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with mirror symmetry which we used to define Y , as the equivariant mirror of X D Gr E�
�

and the ordinary mirror of its core.
Including the equivariant T -equivariant action on X and X corresponds to adding

to the � -model on Y a potential

W D �0W 0
C

rkX
aD1

�a W a; (5.4)

which is a multivalued holomorphic function on Y ; �a are the equivariant parameters of the
ƒ-action on X, and

q D e2�i�0 :

The potentials W 0 and W a are given by

W 0
D lnf 0; W a

D ln
daY

˛D1

ya;˛;

where

f 0.y/ D

rkY
aD1

daY
˛D1

Q
i .1 � ai =y˛;a/hLea;�i iQ

.b;ˇ/¤.a;˛/.1 � yˇ;b=y˛;a/hLea;Lebi=2
: (5.5)

The superpotential W breaks the conformal invariance of the � -model to Y if �0 ¤ 0, since
only a quasihomogenous superpotential is compatible with it. This is mirror to breaking of
conformal invariance on X by the C�

q -action for q ¤ 1.
Since W 0 and W a are multivalued, Y is equipped with a collection of closed one-

forms with integer periods

c0
D dW 0=2�i; ca

D dW a=2�i 2 H 1.Y; Z/;

which introduce additional gradings in the category of A-branes, as in [73].

5.2.4.
From the mirror perspective, the conformal blocks of cLg come from the B-twisted

Landau–Ginsburg model .Y; W / on D which is an infinitely long cigar, with A-type bound-
ary condition at infinity corresponding to a Lagrangian L 2 Y . The partition function of the
theory has the following form:

V˛ŒL� D

Z
L

ˆ˛ � e�W ; (5.6)

where ˆ˛ are chiral ring operators, inserted at the tip of the cigar [22,39,40]. By placing the
trivial insertion at the origin instead, we get the equivariant central charge function ZŒL� DR

L
� e�W ; by further turning the equivariant parameters off, the potential W vanishes and

the equivariant central charge becomes the ordinary brane central charge Z0ŒL� D
R

L
�.

We have (re)discovered, from mirror symmetry, an integral representation of the
conformal blocks of cLg. This “free field representation” of conformal blocks, remarkable
for its simplicity [32], goes back to the 1980s work of Kohno and Feigin and Frenkel [34,54],
and of Schechtman and Varchenko [69,70].
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5.2.5.
There is a reconstruction theory, due to Givental [38] and Teleman [76], which says

that, starting with the solution of the quantum differential equation or its mirror counterpart,
one gets to reconstruct all genus topological string amplitudes for any semisimple 2D field
theory. The semisimplicity condition is satisfied in our case, asW has isolated critical points.
It follows the B-twisted Landau–Ginsburg model on .Y; W / and A-twisted T -equivariant
sigma model on X are equivalent to all genus [2]. Thus, equivariant mirror symmetry holds
as an equivalence of topological string amplitudes.

5.3. Equivariant Fukaya–Seidel category
For every A-brane L at the boundary at infinity of the cigar D , we get a solution of

the KZ equation. The brane is an object of

DY D D
�
F S.Y; W /

�
;

the derived Fukaya–Seidel category of Y with potential W . The category should be thought
of as a category of equivariant A-branes, due to the fact W in (5.4) is multivalued. Another
novel aspect of DY is that it provides an example of Fukaya–Seidel category with coeffi-
cients in perverse schobers. This structure, inherited from equivariant mirror symmetry, was
discovered in [4].

5.3.1.
Objects of DY are Lagrangians in Y , equipped with some extra data. A Lagrangian

in Y is a product of d one-dimensional curves on A which are colored by simple roots and
may be immersed; or a simplex obtained from an embedded curve, as a configuration space
of d partially ordered colored points. The theory also includes more abstract branes, which
are iterated mapping cones over morphisms between Lagrangians.

5.3.2.
The extra data includes a grading by Maslov and equivariant degrees. The equivari-

ant grading of a brane inDY is defined by choosing a lift of the phase of e�W to a real-valued
function on the Lagrangian L. The equivariant degree shift operation,

L ! L¹ Edº;

with Ed 2 ZrkC1, corresponds to changing the lift of W on L, now viewed as a graded
Lagrangian, W j

L¹ Edº
D W jL C 2�i E� � Ed . This is analogous to how a choice of a lift of the

phase of �˝2 defines the Maslov, or cohomological, grading of a Lagrangian. This restricts
the Lagrangians that give rise to objects of DY to those for which such lifts can be defined.

More generally, branes in DY are graded Lagrangians L equipped with an extra
structure of a local system ƒ of modules of a certain algebra B we will describe shortly. For
the time being, only branes for which ƒ is trivial will play a role for us.
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5.3.3.
The space of morphisms between a pair of Lagrangian branes in a derived Fukaya

category
Hom�;�

DY
.L0; L1/ D kerQ=imQ;

is defined by Floer theory, which itself is modeled after Morse theory approach to supersym-
metric quantum mechanics, from the introduction. The role of the Morse complex is taken
by the Floer complex.

For branes equipped with a trivial local system, the Floer complex

CF�;�.L0; L1/ D

M
P 2L0\L1

CP (5.7)

is a graded vector space spanned by the intersection points of the two Lagrangians, together
with the action of a differential Q. The complex is graded by the fermion number, which is
the Maslov index, and the equivariant gradings, thanks to the fact W is multivalued.

The action of the differential on this space

Q W CF�;�.L0; L1/ ! CF�C1;�.L0; L1/

is generated by instantons. In Floer theory, the coefficient ofP 0 inQP is obtained by “count-
ing” holomorphic strips in Y with boundary on L0 and L1, interpolating from P to P 0, of
Maslov index 1 and equivariant degree 0. The cohomology of the resulting complex is Floer
cohomology.

5.3.4.
A simplification in the present case is that, just as branes have a description in terms

of the Riemann surface, so do their intersection points, as well as the maps between them.
The theory that results is a generalization of Heegard–Floer theory, which is associ-

ated to Lg D gl1j1 and categorifies the Alexander polynomial [63,64]. Heegard–Floer theory
has target Ygl1j1

D Symd .A/, the symmetric product of d copies of A. Ygl1j1
should be

thought of as a configuration space of fermions on the Riemann surface, as opposed to anyons
for Ysu2 ; in particular, their top holomorphic forms differ.

While we so far assumed that Lg is simply laced, the DY has an extension to non-
simply-laced Lie algebras, as well as glmjn and spmj2n Lie superalgebras, described in [3,5].

5.4. Link invariants and equivariant mirror symmetry
Mirror symmetry helps us understand exactly which questions we need to ask to

recover homological knot invariants from Y .

5.4.1.
Since Y is the ordinarymirror ofX , we should start by understanding how to recover

homological knot invariants from X , rather than X. Every B-brane on X which is relevant
for us comes from a B-brane on X via an exact functor

f� W DX ! DX ; (5.8)
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which interprets a sheaf “downstairs” on X as a sheaf “upstairs” on X. The functor f� is
more precisely the right-derived functor Rf�. Its adjoint

f �
W DX ! DX (5.9)

is the left derived functor Lf �, and corresponds to tensoring with the structure sheaf ˝OX ,
and restricting. Adjointness implies that, given any pair of branes on X that come from X ,

F D f�F; G D f�G;

the Hom’s upstairs, in DX , agree with the Hom’s downstairs, in DX ,

HomDX
.F ; G / D HomDX

.f �f�F; G/; (5.10)

after replacing F with f �f�F . The functor f �f� is not identity on DX .

5.4.2.
The equivariant homological mirror symmetry relatingDX andDY is not an equiv-

alence of categories, but a correspondence of branes and Hom’s which come from a pair of
adjoint functors h� and h�, inherited from f� and f � via the downstairs homological mirror
symmetry:

DX

DY

h�

h�

Alternatively, h� and h� come by composing the upstairs mirror symmetry with a pair of
functors k� W DY ! DY and k� W DY ! DY , which are mirror to f � and f�. The functors
k�; k� come from Lagrangian correspondences; their construction is described in joint work
with McBreen, Shende, and Zhou [6]. The functor k� amounts to pairing a brane downstairs,
with a vanishing torus fiber over it; this is how Figure 6 arises in our model example. The
adjoint functors let us recover answers to all interesting questions about X from Y .

5.4.3.
For any simply laced Lie algebra Lg, the branes U 2 DX which serve as cups

upstairs are the structure sheaves of (products of) minuscule Grassmannians, as described in
Section 4.3.6. They come via the functor h� from branes IU 2 DY downstairs, on Y

U D h�IU;

which are (products of) generalized intervals. A minuscule Grassmannian G=Pi is the h�-
image of a brane which is the configuration space of colored points on an interval ending
on a pair of punctures on A corresponding to representations Vi and V �

i . The points are
colored by simple positive roots in �i C ��

i D
P

a da;i
Lea, and ordered in the sequence

by which, to obtain the lowest weight ��
i in representation Vi , we subtract simple positive
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Figure 7

The cup and cap A-branes corresponding to the defining representation of Lg D su4, colored by its three simple
roots; they are equivariant mirror to a B-brane supported on a P4 as its structure sheaf.

roots from the highest weight �i . Because Vi and V �
i are minuscule representations, the

ordering and hence the brane IU is unique, up to equivalence and a choice of grading. The
U branes project back down as generalized figure-eight branes; these are nested products of
figure-eights, colored by simple roots

h�U D h�h�IU D EU;

and ordered analogously, as in Figure 7. As objects of DY , these branes are best described
iterated cones over more elementary branes, mirror to stable basis branes [5]. The cup and
cap branes all come with trivial local systems, for which the Floer complexes are the familiar
ones, given by (5.7).

As an example, for Lg D su2 the only minuscule representation is the defining
representation Vi D V 1

2
, which is self-conjugate. The cup brane U in X is a product of d

non-intersecting P 1’s. It comes, as the image of h�, from a brane IU in Y which is a product
of d simple intervals, connecting pairs of punctures that come together. TheU-brane projects
back down, via the h� functor, as a product of d elementary figure-eight branes. The branes
are graded by Maslov and equivariant gradings, as described in [2].

5.4.4.
In the description based on Y , both the branes, and the action of braiding on them

is geometric, so we can simply start with a link and a choice of projection to the surface
A D R � S1. A link contained in a three ball in R2 � S1 is equivalent to the same link in
R3, and projects to a contractible patch on A.

To translate the link to a pair of A-branes, start by choosing bicoloring of the link
projection, such that each of its components has an equal number of red and blue segments,
and the red always underpass the blue. For a link component colored by a representation Vi

of Lg, place a puncture colored by its highest weight �i where a blue segment begins and
its conjugate ��

i where it ends; the orientation of the link component distinguishes the two.
The mirror Lagrangians IU andBEU are obtained by replacing all the blue segments by the
interval branes, and all the red segments by figure-eight branes, related by equivariant mirror
symmetry to minuscule Grassmannian branes. This data determines both Y and the branes
on it we need. The variant of the second step, applicable for Lie superalgebras, is described
in [5].
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Figure 8

A bicoloring of the left-handed trefoil.

Equivariant mirror symmetry predicts that a homological link invariant is the space
of morphisms

Hom�;�
DY

.BEU; IU/ D

M
k2Z; Ed2ZrkC1

HomDY

�
BEU; IUŒk�¹ Edº

�
; (5.11)

the cohomology of the Floer complex of the two branes. In what follows, will explain how
to compute it.

Figure 9

The branes corresponding to the left-handed trefoil in Lg D su2. The knot was isotoped relative to Figure 8.

5.4.5.
To evaluate the Euler characteristic of the homology in (5.11), one simply counts

intersection points of Lagrangians, keeping track of gradings. For links inR3, the equivariant
grading in (5.11) collapses to a Z-grading. The Euler characteristic becomes

�.BEU; IU/ D

M
P 2BEU\IU

.�1/M.P /qJ.P /; (5.12)

where M.P / and J.P / are the Maslov and c0-grading of the point P ; as in Heegard–Floer
theory, there are purely combinatorial formulas for them [3,5]. Mirror symmetry implies that
this is the Uq.Lg/ invariant of the link in R3.
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The fact that for Lg D su2 the graded count of intersection points in (5.12) repro-
duces the Jones polynomial is a theorem of Bigelow [15], building on the work of Lawrence
[56–58]. Bigelow also proved the statement for Lg D suN with links colored by the defin-
ing representation [16]. The equivariant homological mirror symmetry explains the origin of
Bigelow’s peculiar construction, and generalizes it to other Uq.Lg/ link invariants.1

5.4.6.
The action of the differentialQ on the Floer complex, defined by counting holomor-

phic maps from a disk D to Y with boundaries on the pair of Lagrangians, should have a
reformulation [2] in terms of counting holomorphic curves embedded in D � A with certain
properties, generalizing the cylindrical formulation of Heegard–Floer theory due to Lipshitz
[59]. The curve must have a projection to D as a d D

P
a da-fold cover, with branching

only between components of one color, and a projection to A as a domain with boundaries
on one-dimensional Lagrangians of matching colors. In addition, the potential W must pull
back to D as a regular holomorphic function. Computing the action of Q in this framework
reduces to solving a sequence of well defined, but hard, problems in complex analysis in
one dimension, which are applications of the Riemannian mapping theorem, similar to that
in [63].

6. Homological link invariants from A-branes

To compute the link homology groups

Hom�;�
DY

.BEU; IU/; (6.1)

we will make use of mirror symmetry which relates X and Y and is the equivalence of
categories

DX Š DA Š DY ; (6.2)

proven in [4]. A basic virtue of mirror symmetry is that it sums up holomorphic curve counts.
In our case, it solves all the disk-counting problems required to find the action of the differ-
ential Q on the Floer complex underlying (6.1).

6.1. The algebra of A-branes
As in the simplest examples of homological mirror symmetry, DX and DY are both

generated by a finite set of branes.

6.1.1.
From perspective of Y , the generating set of branes come from products of real line

Lagrangians on A, colored by d D
P

a da simple roots. The brane is unchanged by reorder-
ing a pair of its neighboring Lagrangian components, provided they are colored by roots

1 In [60], Bigelow’s representation of the Jones polynomial, specialized to q D 1, was related
to the Euler characteristic of symplectic Khovanov homology of [73].
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which are not linked in the Dynkin diagram hLea;L ebi D 0. It is also unchanged by passing
a component colored by Lea across a puncture colored by a weight �i with hLea; �i i D 0.

There is a generating brane

TC D Ti1 � � � � � Tid 2 DY ;

for every inequivalent ordering of d colored real lines on the cylinder. Their direct sum

T D

M
C

TC 2 DY ;

is the generator of DY which is mirror to the tilting vector bundle on X , which generates
DX . This generalizes the simplest example of mirror symmetry from Section 5.1. As before,
we will be denoting branes on X and on Y related by homological mirror symmetry by the
same letter.

6.1.2.
Awell known phenomenon in mirror symmetry is that it may introduce Lagrangians

with an extra structure of a local system, a nontrivial flat U.1/ bundle. The mirror of a struc-
ture sheaf of a generic point, in our model example of mirror symmetry from Section 5.1, is
a Lagrangian of this sort.

Here, we find a generalization of this [4]. The pair of adjoint functors h� and h�

that relate DY with its equivariant mirror DX equip each T -brane with a vector bundle or,
more precisely, with a local system of modules for a graded algebra B. The algebra is a
product B D

Nrk
aD1 Bda

, where Bd has a representation as the quotient of the algebra of
polynomials in d variables z1; : : : ; zd which sets their symmetric functions to zero. The z’s
have equivariant q-degree equal to one.

As a consequence, the downstairs theory is not simply the Fukaya category of Y ,
but a Fukaya category with coefficients [4]: Floer complexes assign to each intersection point
P 2 L0 \ L1 a vector space homB.ƒ0jP ; ƒ1jP / of homomorphisms of B-modules ƒ0;1

whichL0;1 are equipped with. The cup and cap branesEU and IU comewith trivial modules
for B. The TC branes correspond to modules for B equal to B itself.

6.1.3.
Since the TC -branes are noncompact, defining the Hom’s between them requires

care. The Hom’s
HomDY

�
TC ; T 0

C Œk�¹ Edº
�

D HF
�
T

�

C
; T 0

C Œk�¹ Edº
�

are defined through a perturbation of TC which induces wrapping near infinities of A, as in
Figure 4, and other examples of wrapped Fukaya categories.

The Floer cohomology groups HF are cohomology groups of the Floer complex
whose generators are intersection points of the TC branes, with coefficients in B. The gen-
erators all have homological degree zero, so the Floer differential is trivial, and

HomDY

�
TC ; TC 0 Œk�¹ Edº

�
D 0; for all k ¤ 0 and all Ed : (6.3)

2134 M. Aganagic



The Floer product on DY makes

A D Hom�
DY

.T; T / D

M
C ;C 0

M
Ed2ZrkC1

HomDX

�
TC ; TC 0¹ Edº

�
into an algebra, which is an ordinary associative algebra, graded only by equivariant degrees.

6.1.4.
The vanishing in (6.3) mirrors the tilting property of T viewed as the generator

ofDX . The tilting vector bundle T 2 DX is inherited from the Bezrukavnikov–Kaledin tilting
bundle T on X;

T D

M
C

TC 2 DX ;

from Section 4.4, as the image of the f � functor, which is tensoring with the structure sheaf
of X and restriction, f �T D T 2 DX . The endomorphism of the upstairs tilting generator
T ;

A D Hom�
DX

.T ; T /;

is the cylindrical KLRW algebra.
Since T is a vector bundle on X, the center of A is the algebra of holomorphic

functions on X. The downstairs algebra is a quotient of the upstairs one, by a two-sided
ideal

A D A =I : (6.4)

The ideal I is generated by holomorphic functions that vanish on the core X .

6.1.5.
The cKLRW algebra A is defined as an algebra of colored strands on a cylinder,

decorated with dots, where composition is represented by stacking cylinders and rescaling
[80]. The local algebra relations are those of the ordinary KLRW algebra from [78]. Placing
the theory on the cylinder, it gets additional gradings by the winding number of strands of a
given color, corresponding to the equivariant ƒ-action on X.

The elements of the algebraA D A =I have a geometric interpretation by recalling
the Floer complex CF�.TC ; TC 0/ is fundamentally generated by paths rather the intersec-
tion points. The S1 of the algebra cylinder is the S1 in the Riemann surface A; its vertical
direction parameterizes the path. The geometric intersection points of the T -branes on A

correspond to strings in A. The flat bundle morphisms, a copy of B for each geometric inter-
section point, dress the strings by dots of the same color. The algebra B is the quotient, of
the subalgebra of A generated by dots, by the ideal I of their symmetric functions.

6.2. The meaning of link homology
Since T D

L
C TC generates DY , like every Lagrangian in DY , the BEU brane

has a description as a complex

BEU Š � � �
t1
�! BE1.T /

t0
�! BE0.T /; (6.5)
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every term of which is a direct sum of TC -branes. The complex is the projective resolution
of the BEU brane. It describes how to get the BEU 2 DY brane by starting with the direct
sum brane

BE.T / D

M
k

BEk.T /Œk�; (6.6)

with a trivial differential, and taking iterated cones over elements tk 2 A. This deforms the
differential to

QA D

X
k

tk 2 A; (6.7)

which takes
QA W BE.T / ! BE.T /Œ1�;

as a cohomological degree 1 and equivariant degree 0 operator, which squares to zeroQ2
A D 0

in the algebra A.

6.2.1.
The category of A-branes DY has a second, Koszul dual set of generators, which

are the vanishing cycle branes I D
L

C IC of [2]. The I - and the T -branes are dual in the
sense that the only nonvanishing morphisms from the T - to the I -branes are

HomDY
.TC ; IC 0/ D CıC ;C 0 : (6.8)

The IC -branes and the T C -branes are, respectively, the simple and the projective modules
of the algebra A.

6.2.2.
Among the I -branes, we find the branes IU 2 DY which serve as cups. This is a

wonderful simplification because it implies that from the complex in (6.5), we get for free a
complex of vector spaces:

0 ! homA

�
BE0.T /; IU¹ Edº

� t0
�! homA

�
BE1.T /; IU¹ Edº

� t1
�! � � � : (6.9)

The maps in the complex (6.9) are induced from the complex in (6.5). The cohomologies of
this complex are the link homologies we are after,

HomDY

�
BEU; IUŒk�¹ Edº

�
D H k

�
homA.BEU; IU/

�
: (6.10)

6.2.3.
We learn that link homology captures only a small part of the geometry of BEU,

the braided cup brane, or more precisely, of the complex that resolves it. Because the T -
branes are dual to the I -branes by (6.8), almost all terms in the complex (6.9) vanish. The
cohomology (6.10) of small complex that remains is the Uq.Lg/ link homology.
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6.2.4.
The complex (6.9) itself has a geometric interpretation as the Floer complex,

CF�;�.BEU; IU/:

Namely, the vector space at the kth term of the complex

homA

�
BEk.T /; IU¹ Edº

�
is identified, by construction described in section 6.3, with that spanned by the intersection
points of the BEU brane and the IU brane, of cohomological degree Œk� and equivariant
degree ¹ Edº.

The maps in the complex

� � �
tk�1
��! homA

�
BEk.T /; IU¹ Edº

� tk
�! homA

�
BEkC1.T /; IU¹ Edº

� tkC1
���! � � �

encode the action of the Floer differential. A priori, computing these requires counting holo-
morphic disk instantons. In our case, mirror symmetry (6.2) has summed them up.

6.3. Projective resolutions from geometry
The projective resolution in (6.5) encodes all the Uq.Lg/ link homology, and more.

Finding the resolution requires solving two problems, both in general difficult. We will solve
simultaneously [5].

6.3.1.
The first problem is to compute which module of the algebra A the braneBEU gets

mapped to by the Yoneda functor

L 2 DY ! Hom�;�
DY

.T; L/ 2 DA:

This functor, which is the source of the equivalence DY Š DA, maps a brane L to a right
module for A, on which the algebra acts as

Hom�;�
DY

.T; L/ ˝ Hom�
DY

.T; T / ! Hom�;�
DY

.T; L/:

Evaluating this action requires counting disk instantons.

6.3.2.
The second problem is to find the resolution of this module, as in (6.5). The Yoneda

functor maps the TC branes to projective modules of the algebra A, so the resolution in (6.5)
is a projective resolution of the A module corresponding to the BEU brane. This problem
is known to be solvable, however, only formally so, by infinite bar resolutions.

6.3.3.
In our setting, these two problems get solved together. Fortune smiles since the

BEU 2 DY branes are products of d one-dimensional Lagrangians on A, for which the
complex resolving brane (6.5) can be deduced explicitly, from the geometry of the brane.
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6.3.4.
Take a pair of branes L0 and L00 on Y which are products of d one-dimensional

Lagrangians on A, chosen to coincide up to one of their factors. Up to permutation, we can
take

L0
D L1 � L2 � � � � � Ld ; L00

D L00
1 � L2 � � � � � Ld :

If L0
1 and L00

1 (which are necessarily of the same color) intersect over a point p 2 L0
1 \ L00

1

of Maslov index zero, we get a new one dimensional Lagrangian L1 which is a cone over p,

L1 D Cone.p/ D L0
1

p
�! L00

1;

as well as a new d -dimensional Lagrangian L on Y given by

L D L1 � L2 � � � � � Ld : (6.11)

The Lagrangian is a cone over the intersection point P of L0 and L00 which is of the form

P D .p; idL2 ; : : : ; idLd
/ 2 L0

\ L00; (6.12)

and which also has Maslov index zero, L D Cone.P /.
Conversely, any L brane which is of the product form in (6.11) can be written as a

complex [11]

L Š L0 P
�! L00 (6.13)

with an explicit map P coming from a one-dimensional intersection point in one of its fac-
tors, as in (6.12).

6.3.5.
To find the projective resolution of the BEU brane in (6.5), start by isotoping the

brane, by stretching it straight along the cylinder.
Let the brane break at the two infinities of A, to get the direct sum brane BE.T /

in (6.6), on which the complex is based. To find the maps in the complex, record how the
brane breaks, iterating the above construction, one one-dimensional intersection point at the
time. Every intersection point of the form (6.12) translates to a specific element of the algebra
A and a specificmap in the complex. The result is a product of d one-dimensional complexes,
which describes factors of BEU, and captures almost all the terms in the differential QA.
The remaining ones follow, up to quasi-isomorphisms, by asking that the differential closes
Q2

A D 0 in the algebra A. The fact that not all terms in QA are geometric is a general feature
of d > 1 theories.

In practice, it is convenient to first break the brane one of the two infinities of A,
and only then on the other. The branes at the intermediate stage are images, under the h�

functor, of stable basis branes [7, 61] on DX . The stable basis branes play a similar role to
that of Verma modules in category O. The detailed algorithm is given in [5].
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6.3.6.
As an example, take the left-handed trefoil and Lg D su2, which leads to the brane

configuration from Figure 9. For simplicity, consider the reduced knot homology, where the
unknot homology is set to be trivial. As in Heegard-Floer theory, this corresponds to erasing
a component from the BEU and the IU branes, and leads to Figure 10. This also brings
us back to the setting of our running example, where Y is the equivariant mirror to X, the
resolution of the An�1 surface singularity, with n D 4.

Figure 10

Resolution of the BEU brane corresponding to the reduced trefoil. The axis of the cylinder A is oriented
vertically here; the branes do not wind around the S1.

The corresponding algebra A D
Ln�1

i;j D0 Hom
�
DY

.Ti ; Tj / is the path algebra of
an affine An�1 quiver, whose nodes correspond to Ti branes. The arrows aiC1;i 2

HomDY
.Ti ;TiC1/ and bi;iC1 2HomDY

.TiC1;Ti ¹1º/ satisfy ai;i�1bi�1;i D 0 D bi;iC1aiC1;i ,
with i defined modulo n. The a’s and b’s correspond to intersections of T -branes, near one
or the other infinity of A; we have suppressed their ƒ-equivariant degrees.

Isotope the BEU brane straight along the cylinder A. Let it break into T -branes,
as in Figure 10, while recording how the brane breaks, one connected sum at a time. Every
connected sum of a pair of T -branes is a cone over their intersection point, at one of the two
infinities of A, and a specific element of the algebra A. This leads to the complex

which closes by the A-algebra relations.
The reduced homology of the trefoil is the cohomology of the complex

homA.BE�; IU¹dº/ in (6.9). The only non-zero contributions come from the T2 brane,
since the cup brane IU D I2 is dual to it. All the maps evaluate to zero, as IU brane is a
simple module for A. As a consequence,

HomDY

�
BEU; IUŒk�¹dº

�
D H k.homA

�
BE�; I2¹dº

�
/;
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equals to Z only for .k; d/ D .0; 0/; .2; �2/; .3; �3/, and vanishes otherwise. Here, k D M

is the Maslov or cohomological degree and d D J the Jones grading. This is the reduced
Khovanov homology of the left-handed trefoil, up to regrading: Khovanov’s .i; j / gradings
are related to .M; J / by i D M C 2J C i0 and j D 2J C j0 where i0 D 0, j0 D d C nC �

n�, where nC D 0, n� D 3 are the numbers of positive and negative crossings, and d D 1

is the dimension of Y [2].

6.3.7.
The theory extends to non-simply-laced Lie algebras, and to Lie superalgebras glmjn

and spmj2n, as described in [5]. The algebra A corresponding to Lg which is a Lie superal-
gebra, is not an ordinary associative algebra but a differential graded algebra; the projective
resolutions are then in terms of twisted complexes. This section gives a method for solving
the theory which is new even for Lg D gl1j1, corresponding to Heegard-Floer theory. The
solution differs from that in [65], in particular since our Heegard surface is A D R � S1,
independent of the link.
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