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1. Introduction

Bridgeland stability conditions and wall-crossing have provided answers to many
questions in algebraic geometry a priori unrelated to derived categories, including hyper-
kähler varieties—their rational curves, their birational geometry, their automorphisms, and
their moduli spaces—, Brill–Noether questions, Noether–Lefschetz loci, geometry of cubic
fourfolds, or higher-rank Donaldson–Thomas theory. Our goal is to answer the question:
why? What makes these techniques so effective, and what exactly do they add beyond, for
example, classical vector bundle techniques?

The common underlying strategy can be roughly summarized as follows. For each
stability condition on a derived category Db.X/ of an algebraic varietyX and each numerical
class, moduli spaces of semistable objects in Db.X/ exist as proper algebraic spaces. This
formalism includes many previously studied moduli spaces: moduli spaces of Gieseker- or
slope-stable sheaves, of stable pairs, or of certain equivalences classes of rational curves
in X . The set of stability conditions on Db.X/ has the structure of a complex manifold;
when we vary the stability condition, stability of a given object only changes when we cross
the walls of a well-defined wall and chamber structure.

The typical ingredients when approaching a problem with stability conditions are
the following:

(large volume) There is a point in the space of stability conditions where stable
objects have a “classical” interpretation, e.g. as Gieseker-stable sheaves.

(point of interest) There is a point in the space of stability conditions where stability
has strong implications, e.g., vanishing properties, or even there is no semistable
object of a given numerical class.

(wall-crossing) It is possible to analyze the finite set of walls between these two
points, and how stability changes when crossing each wall.

In general, it is quite clear from the problem which are the points of interest, and the main
difficulty consists in analyzing the walls. In the ideal situation, which leads to sharp exact
results, these walls can be characterized purely numerically; there are only a few such ideal
situations, K3 surfaces being one of them. Otherwise, the study of walls can get quite
involved, even though there are now a number of more general results available, e.g., a wall-
crossing formula for counting invariants arising from moduli spaces.

We illustrate the case of K3 surfaces, or more generally K3 categories, in Section 3,
with applications to hyperkähler varieties, to Brill–Noether theory of curves, and to the
geometry of special cubic fourfolds. The study of other surfaces or the higher-dimensional
case becomes more technical, and the existence of Bridgeland stability conditions is not yet
known in full generality. There are weaker notions of stability, which in the threefold case
already lead to striking results. We give an overview of this circle of ideas in Section 4, along
with three applications related to curves. We give a brief introduction to stability conditions
in Section 2, and pose some questions for future research in Section 5.
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Derived categories of coherent sheaves on varieties have been hugely influential
in recent years; we refer to [17, 19, 46, 74] for an overview of the theory. Moduli spaces of
sheaves on K3 surfaces have largely been influenced by [61]; we refer to [63] for an overview
of applications of these techniques and to [39] for the higher-dimensional case of hyperkähler
manifolds. For the original motivation from physics, we refer to [26,41].

Our survey completely omits the quickly developing theory and applications of sta-
bility conditions on Kuznetsov components of Fano threefolds. We also will not touch the
rich subject of extra structures on spaces of stability conditions, developed, for example, in
the foundational papers [22,23]; we also refer to [72] for a symplectic perspective.

2. Stability conditions on derived categories

Recall slope-stability for sheaves on an integral projective curve C : we set

�.E/ D
degE
rkE

2 .�1;C1�; visualized by Z.E/ D � degE C i rkE;

and call a sheaf slope-semistable if every subsheaf F � E satisfies �.F / � �.F /. The set
of semistable sheaves of fixed rank and degree is bounded and can be parameterized by a
projective moduli space. Moreover, semistable sheaves generate Coh.C /, in the sense that
every sheaf E admits a (unique and functorial) Harder–Narasimhan (HN) filtration

0 D E0 � E1 � E2 � � � � � Em D E

with El=El�1 semistable, and �.E1/ > �.E2=E1/ > � � � > �.Em=Em�1/.
How to generalize this to a variety X of dimension n � 2? Given a polarizationH ,

one can define the slope �H using Hn�1 � ch1.E/ as the degree. To distinguish, e.g., the
slope of the structure sheaf OX from that of an ideal sheaf Ix � OX for x 2 X , we can
further refine the notion of slope and use lower-degree terms of the Hilbert polynomial
pE .m/ D �.E.mH// as successive tie breakers; this yields Gieseker stability.

One of the key insights in Bridgeland’s notion of stability conditions introduced
in [20] is that instead we can, in fact, still use a notion of slope-stability, defined as the quotient
of “degree” by “rank.” The price we have to pay is to replace Coh.X/ by another abelian
subcategory A of the bounded derived category Db.X/ of coherent sheaves on X , and to
generalize the notions of “degree” and “rank” (combined into a central charge Z as above).

To motivate the definition, consider again slope-stability for a curve C . First, for
� 2 .0; 1�, let P .�/ � Coh.C / � Db.C / be the category of slope-semistable sheaves E
with Z.E/ 2 R>0 � ei�� , i.e., of slope �.E/ D � cot.��/, and let P .� C n/ D P .�/Œn�

for n 2 Z be the set of semistable objects of phase � C n. Every complex E 2 Db.C / has
a filtration into its cohomology objects H l .E/Œ�l �. We can combine this with the classical
HN filtration of H l .E/Œ�l � for each l to obtain a finer filtration for E where every filtration
quotient is semistable, i.e., an object of P .�/ for � 2 R. The properties of this structure
are axiomatized by conditions (1)–(4) in Definition 2.1 below. But crucially it can always be
obtained from slope-stability in an abelian category A; we just have to generalize the setting
A � Db.A/ to A � D being the “heart of a bounded t-structure” in a triangulated category.
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When combined with the remaining conditions in Definition 2.1, the main payoff
are the strong deformation and wall-crossing properties of Bridgeland stability conditions.
Given any small deformation of “rank” and “degree” (equivalently, of the central chargeZ),
we can accordingly adjust the abelian category A (or, equivalently, the set of semistable
objects P ) and obtain a new stability condition. Along such a deformation, moduli spaces
of semistable objects undergo very well-behaved wall-crossing transformations.

2.1. Bridgeland stability conditions
We now consider more generally an admissible subcategory D of Db.X/ for a

smooth and proper variety X over a field k, namely a full triangulated subcategory whose
inclusion D ,! Db.X/ admits both a left and a right adjoint. For instance, D D Db.X/;
otherwise we think of D as a smooth and proper noncommutative variety.

We fix a finite rank free abelian group ƒ and a group homomorphism

v W K0.D/ ! ƒ

from the Grothendieck group K0.D/ of D to ƒ.

Definition 2.1. A Bridgeland stability condition on D with respect to .v; ƒ/ is a pair
� D .Z;P / where

• Z W ƒ ! C is a group homomorphism, called central charge, and

• P D .P .�//�2R is a collection of full additive subcategories P .�/ � D

satisfying the following conditions:

(1) for all nonzero E 2 P .�/, we have Z.v.E// 2 R>0 � ei�� ;

(2) for all � 2 R, we have P .� C 1/ D P .�/Œ1�;

(3) if �1 > �2 and Ej 2 P .�j /, then Hom.E1; E2/ D 0;

(4) (Harder–Narasimhan filtrations) for all nonzeroE 2 D , there exist real numbers
�1 > �2 > � � � > �m and a finite sequence of morphisms

0 D E0
s1
�! E1

s2
�! � � �

sm
�! Em D E

such that the cone of sl is a non-zero object of P .�l /;

(5) (support property) there exists a quadratic form Q on ƒR D ƒ˝ R such that

• the kernel of Z is negative definite with respect to Q, and

• for all E 2 P .�/ for any � we have Q.v.E// � 0;

(6) (openness of stability) the property of being in P .�/ is open in families of
objects in D over any scheme;

(7) (boundedness) objects in P .�/ with fixed class v 2 ƒ are parameterized by a
k-scheme of finite type.
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An object of the subcategory P .�/ is called � -semistable of phase �, and � -stable
if it admits no non-trivial subobject in P .�/. The set of Bridgeland stability conditions on
D is denoted by Stab.D/, where we omit the dependence on .v;ƒ/ from the notation.

Conditions (1)–(4) form the original definition in [20] and ensure we have a notion
of slope-stability. The support property is necessary to show that stability conditions vary
continuously (see Theorem 2.2 below) and admit a well-behaved wall and chamber struc-
ture: fundamentally, this is due to the simple linear algebra consequence that given C > 0,
there are only finitely many classes w 2 ƒ of semistable objects with jZ.w/j < C . Condi-
tions (6) and (7) were introduced in [73, 74], with similar versions appearing previously in
[42, Section 3]; they guarantee the existence of moduli spaces of semistable objects.

Theorem 2.2 (Bridgeland deformation theorem). The set Stab.D/ has the structure of a
complex manifold such that the natural map

Z W Stab.D/ ! Hom.ƒ;C/; .Z;P / 7! Z

is a local isomorphism at every point.

For conditions (1)–(5), this is a reformulation of Bridgeland’s main result [20, The-
orem 1.2]. It says that � D .Z;P / can be deformed uniquely given a small deformation of
Z ÝZ0, roughly as long as Z0.E/ ¤ 0 remains true for all � -semistable objects E. (More
precisely, any path where Q remains negative definite on KerZ0 can be lifted uniquely to a
path in Stab.D/.) With the additional conditions (6) and (7), Theorem 2.2 was proved in [73,

Theorem 3.20] and [67, Section 4.4], where the most difficult aspect is to show that openness
of stability is preserved under deformations.

The theory has been developed over an arbitrary base scheme in [8]. A stability
condition over a base is the datum of a stability condition on each fiber, such that families of
objects over the base have locally constant central charges, satisfy openness of stability, and
a global notion of HN filtration after base change to a one-dimensional scheme; moreover,
we impose a global version of the support property and of boundedness. An analogue of
Theorem 2.2 holds; differently to the absolute case, assuming the support property is not
enough and the proof requires the additional conditions (6) and (7).

The construction of Bridgeland stability conditions is discussed in Section 4; in
particular, they exist on surfaces and certain threefolds.

2.2. Stability conditions as polarizations
It was first suggested in the arXiv version of [21] to think of � as a polarization of

the noncommutative variety D . We now review some results partly justifying this analogy.
A polarization of a variety X by an ample line bundle H gives projective moduli spaces of
H -Gieseker-stable sheaves; the following two results provide an analogue.

Theorem 2.3 (Toda, Alper, Halpern-Leistner, Heinloth). Given � 2 Stab.D/ and v 2 ƒ,
there is a finite type Artin stack M� .v/ of � -semistable objects E with v.E/ D v and fixed
phase. In characteristic zero, it has a proper good moduli spaceM� .v/ in the sense of Alper.
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Proof. The existence as Artin stack is [73, Theorem 3.20], while the existence of a good moduli
space is proven in [2, Theorem 7.25]; see also [8, Theorem 21.24].

Theorem 2.4. The algebraic spaceM� .v/ admits a Cartier divisor `� that has strictly pos-
itive degree on every curve. In characteristic zero, if M� .v/ is smooth, or more generally if
it has Q-factorial log-terminal singularities, then M� .v/ is projective.

Proof. The existence of the Cartier divisor and its properties is the Positivity Lemma in [12],
see also [8, Theorem 21.25]. The projectivity follows from [76, Corollary 3.4].

As studied extensively in Donaldson theory in the 1990s, the Gieseker-moduli
spaces may change as H crosses walls in the ample cone.

Theorem 2.5. Fix a vector v 2 ƒ. Then there exists a locally finite union Wv of real-
codimension one submanifolds in Stab.D/, called walls, such that on every connected com-
ponent C of the complement Stab.D/ n Wv , called a chamber, the moduli space M� .v/ is
independent of the choice � 2 C .

Theorem 2.5 follows from the results in [21, Section 9]; see also [73, Proposition 2.8]

and [10, Proposition 3.3]. The set Wv consists of stability conditions for which there exists an
exact triangleA!E !B of semistable objects of the same phase with v.E/D v, but v.A/
not proportional to v. Locally, the wall is defined by Z.A/ being proportional to Z.E/, and
the objects E is unstable on the side where arg.Z.A// > arg.Z.E//; often it is stable near
the wall on the other side, e.g., when A and B are stable and the extension is nontrivial. The
support property (5) is again crucial in the proof of Theorem 2.5: it constrains the classes
a D v.A/, b D v.B/ involved in a wall, and locally that produces a finite set.

Sometimes, one can describe Wv completely, namely when we know which of the
moduli spaces M� .a/ and M� .b/ are nonempty.

2.3. K3 categories
Such descriptions of Wv have been particularly powerful in the case of K3 cat-

egories; it has also been carried out completely for Db.P2/, where the answer is more
involved [24,54]. For this section, we work over the complex numbers and let D be

(1) the derived category D D Db.S/ of a smooth projective K3 surface, or

(2) the Kuznetsov component

D D Ku.Y / D O?
Y \ OY .1/

?
\ OY .2/

?
� Db.Y /

of the derived category of a smooth cubic fourfold Y , or

(3) the Kuznetsov component of a Gushel–Mukai fourfold defined in [47].

In (1) we can also allow a Brauer twist; one expects further examples of Kuznetsov compo-
nents of Fano varieties where similar results hold. In all these cases, D is a Calabi–Yau-2
category: there is a functorial isomorphism Hom.E;F /D Hom.F;EŒ2�/_ for allE;F 2 D .
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Moreover, it has an associated integral weight two Hodge structureH�.D ;Z/ with an even
pairing . ; /; in the case of a K3 surface, H�.Db.S/;Z/ D H�.S;Z/ with H 0 and H 4

considered to be .1; 1/-classes; in the other cases, the underlying lattice is the same, and
after the initial indirect construction in [1] there is now an intrinsic construction based on
the topological K-theory and Hochschild homology of D [64]. There is a Mukai vector
vWK0.D/ ! H 1;1.D ;Z/ satisfying �.E; F / D �.v.E/; v.F // for all E;F 2 D .

In all three cases, there is a main component Stab�.D/ � Stab.D/ with an effec-
tive version of Theorem 2.2 for ƒ D H 1;1.D ;Z/: the map Z is a covering of an explicitly
described open subset of Hom.ƒ;C/, see [21] for case (1), [8,9] for case (2), and [65] for case
(3).

Now consider a family of such K3 categories, given by a family of K3 surfaces
or Fano fourfolds over a base scheme, respectively. In this case, Mukai’s classical defor-
mation argument applies: every stable object E in a given fiber is simple, i.e., it satisfies
Hom.E;E/ D C, and so Ext2.E;E/ D C by Serre duality; therefore the obvious obstruc-
tion to extending E across the family, namely that v.E/ remains a Hodge class, is the only
one. Extending such deformation arguments to D was the original motivation for introduc-
ing stability conditions for families of noncommutative varieties, see [8, Section 31]. They
allows us to deduce nonemptiness of moduli spaces from the previously known case of K3
surfaces (and simplify the previous classical argument for Gieseker stability on K3 surfaces
by reduction to elliptically fibered K3s, see [18]), which leads to the following result.

Theorem 2.6 (Mukai, Huybrechts, O’Grady, Yoshioka, Toda [8,12,65]). Let v 2H 1;1.D ;Z/

be primitive, and � 2 Stab�.D/ be generic. Then M� .v/ is nonempty if and only if
v2 WD .v; v/ � �2; in this case, it is a smooth projective irreducible holomorphic sym-
plectic (IHS) variety.

More precisely,M� .v/ is of K3Œn�-type, where nD .v2 C 2/=2, i.e., it is deformation
equivalent to the Hilbert scheme of n points on a K3 surface (see [25,34] for the basic theory
of irreducible holomorphic symplectic varieties). If v2 � 2, the Mukai morphism

# WH 2
�
M� .v/;Z

�
! H�.D ;Z/

induced by a (quasi)universal family gives an identification of H 2.M� .v/;Z/ with v?. If
v2 D 0, then M� .v/ is a K3 surface and H 2.M� .v/;Z/ is identified with v?=v.

Knowing exactly which semistable objects exist then allows us to describe exactly
when we are on a wall. While a complete result as in [11, Theorem 5.7] also needs to treat
essential aspects of the wall-crossing behavior, the basic result is simple to state:

Theorem 2.7 ([11]). Let v 2H 1;1.D ;Z/ be a primitive class. Then � D .Z;P / 2 Stab�.D/

lies on a wall for v if and only if there exists classes a; b 2 H 1;1.D ;Z/ with v D a C b,
a2; b2 � �2 and Z.a/;Z.b/ are positive real multiples of Z.v/.

And the fundamental reason is similarly simple to explain: by Theorem 2.6, this
allows for the existence of extensions

0 ! A ! E ! B ! 0 (2.1)
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where v.A/ D a, v.E/ D v, v.B/ D b, and A;E; B are all semistable of the same phase.
For stronger results, we need to know when such E can become stable near the wall.

3. Constructions based on K3 categories

In this section we present three applications of stability conditions on K3 categories,
to irreducible holomorphic symplectic varieties, to curves, and to cubic fourfolds.

3.1. Curves in irreducible holomorphic symplectic manifolds
LetM be a smooth projective irreducible holomorphic symplectic (IHS) variety of

K3Œn�-type, with n � 2. We let qM be the Beauville–Bogomolov–Fujiki quadratic form on
H 2.M;Z/. By [25, Section 3.7.1], there exists a canonical extension

#M W .H 2.M;Z/; qM / ,! eƒM
of lattices and weight-2 Hodge structures, where the lattice eƒM is isometric to the extended
K3 lattice U˚4 ˚E8.�1/

˚2. Let us denote by v 2 eƒM a generator of #.H 2.M;Z//?: it is
of type .1; 1/ and square v2 D 2n� 2. The lattice eƒM is called the Markman–Mukai lattice
associated toM . IfM DM� .v/, for a stability condition � 2 Stab�.Db.S// on a K3 surface
S , then eƒM D H�.S;Z/ with the Mukai pairing, the notation for the vector v is coherent,
and #M is the Mukai morphism mentioned after Theorem 2.6.

We let Pos.M/ be the connected component of the positive cone of M containing
an ample divisor class:

Pos.M/ WD
®
D 2 H 2.M;R/ W qM .D/ > 0

¯C
:

The following result rephrases and proves a conjecture by Hassett–Tschinkel and
gives a complete description of the ample cone of M .

Theorem 3.1. Let M be a smooth projective IHS variety of K3Œn�-type. The ample cone of
M is a connected component of

Pos.M/ n

[
a2eƒ1;1M such that

a2��2 and
0�.a;v/�v2=2

a?:

Theorem 3.1 is proved in [11] for moduli spaces of stable sheaves/complexes on a K3
surface, and extended in [7] to all IHS of K3Œn�-type, by using deformation theory of rational
curves on IHS varieties.

The approach to Theorem 3.1 via wall-crossing is as follows. Let S be a K3
surface and M D M�0.v/ be a moduli space of �0-stable objects in Db.S/, where v 2

H 1;1.Db.S/; Z/ is a primitive vector of square v2 � 2. As � varies in the chamber C

containing �0, Theorem 2.4 gives a family of ample divisor classes `� in Pos.M/. When
� reaches a wall of C , as given by Theorem 2.7, the class `� remains nef. On the other
hand, consider an object E that becomes strictly semistable on the wall, admitting an exact
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sequence as in (2.1). Varying the extension class in a line in P .Ext1.B;A// produces a P1 of
such objects, and Theorem 2.4 shows that `� has degree zero on this curve. We have found
an extremal curve and, dually, a boundary wall of the ample cone.

Ideal sheaves of points

Stable sheaves on elliptic K3s

Stable sheaves on K3s

Stable objects on K3s

Rat’l curves on moduli spaces

Rat’l curves on IHSs of K3Œn�-type

autoequivalences[77]

deformation[77]

wall-crossing,
deformation
of objects
[18]

wall-crossing[12,73]

wall-crossing[11]

deformation of rat’l curves [7]

Figure 1

The approach to Theorem 3.1.

We summarize the history underlying Theorem 3.1 with the diagram in Figure 1.
The analogue of Theorem 2.6 for Gieseker-stable sheaves involves a two-step argument,
using autoequivalences and deformations. Wall-crossing techniques then imply the existence
of Bridgeland stable objects on K3 surfaces, and thus Theorem 2.6. As discussed above,
a finer wall-crossing analysis based on Theorem 2.7 then produces the extremal rational
curves on moduli spaces that appear implicitly as extremal curves in Theorem 3.1. Finally,
another deformation argument, involving rational curves, deduces Theorem 3.1 for all IHS
manifolds of K3Œn�-type. Wall-crossing combined with stability conditions in families can
also simplify the approach to Theorem 2.6, see [18].

3.2. Curves
Consider a Brill–Noether (BN) wall in Stab.Db.X// for a variety X : the structure

sheaf OX is stable and of the same phase � as objects E of a fixed class v. Then OX is an
object of the abelian category P .�/ with no subobjects; hence the evaluation map OX ˝

H 0.E/ ! E must be injective, giving a short exact sequence

0 ! OX ˝H 0.E/ ! E ! Q ! 0 (3.1)

where Q 2 P .�/ is also semistable. Applying known inequalities for Chern classes of
semistable objects to ch.Q/ D v � h0.E/ ch.OX / can directly lead to bounds on h0.E/.
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This simple idea turns out to be powerful. For a K3 surface S , we can be more
precise: applying Theorem 2.6 to the class ofQ, we can construct allE with given r D h0 as
a Grassmannian bundle Gr.r;Ext1.Q;OS // of extensions over the moduli space of suchQ.

Corollary 3.2. Let S be a K3 surface, v 2 H 1;1.S;Z/ primitive and � be a stability condi-
tion near the Brill–Noether wall for v. If the lattice generated by v and v.OS / is saturated,
then the locus of objects E 2 M� .v/ with h0.E/ D r has expected dimension.

In [5], this is applied, in the case where Pic.S/ D Z �H , to rank zero classes of the
form v D .0;H; s/. In this case, there are no walls between the BN wall and the large volume
limit; hence Corollary 3.2 applies in the large volume limit, and thus to zero-dimensional
torsion sheaves supported on curves in the primitive linear system. This gives a variant of
Lazarsfeld’s proof [49] of the Brill–Noether theorem: every curve in the primitive linear
system is Brill–Noether general.

This approach has been significantly strengthened in [27]: instead of requiring E to
be semistable near the Brill–Noether wall, it is sufficient to control the classes occurring in
its HN filtration. A bound on h0 is obtained by applying Corollary 3.2 to all HN filtration
factors. Thus we need to consider a point near the Brill–Noether walls for all HN factors,
and which is the limit point where Z.OX /Ý 0.

Proposition 3.3 ([27, Proposition 3.4]). Let S be a K3 surface of Picard rank one. There
exists a limit point � of the space of stability conditions, with central charge Z, and a con-
stant C , such that for (most) objects in the heart, we have

h0.E/C h1.E/ � C �

X
l

ˇ̌
Z.El=El�1/

ˇ̌
;

where E0 � E1 � � � � � Em is the HN filtration of E near � .

The following application completes a program originally proposed by Mukai [62]:

Theorem 3.4 ([27, 28]). Let S be a polarised K3 surface with Pic.S/ D Z � H and genus
g � 11, and let C 2 jH j. Then S is the unique K3 surface containing C , and can be recon-
structed as a Fourier–Mukai partner of a Brill–Noether locus of stable vector bundles on C
with prescribed number of sections.

The structure of the argument is as follows. The numerics are chosen such that there
is a two–dimensional moduli space OS , necessarily a K3 surface, of stable bundles E on S
whose restrictionEjC is automatically in the Brill–Noether locus. Conversely, given a stable
bundle V on C , its push-forward i�V along i WC ,! S is stable at the large volume limit.
Standard wall-crossing arguments bound its HN filtration near the limit point � in Proposi-
tion 3.3, which then gives a bound on h0.V /. The argument also shows that equality—the
Brill–Noether condition—only holds for the HN filtration E ! EjC D i�V ! E.�H/Œ1�,
i.e., when V is the restriction of a vector bundle in OS . Thus OS is a Brill–Noether locus on C ,
and S can be reconstructed as a Fourier-Mukai partner of OS .

2181 The unreasonable effectiveness of wall-crossing in algebraic geometry



3.3. Surfaces in cubic fourfolds
Let Y � P5 be a complex smooth cubic fourfold and let h be the class of a hyper-

plane section. Following [38], we say that Y is special of discriminant d , and write Y 2 Cd , if
there exists a surface†� Y such that h2 and† span a saturated rank two lattice inH 4.Y;Z/

with

det

 
h4 h2 �†

h2 �† †2

!
D d:

The locus Cd is non-empty if and only if d � 0; 2 .mod 6/ and d > 6; in this case, Cd is an
irreducible divisor in the moduli space of cubic fourfolds.

Given d it is not known in general which degree h2 �† and self-intersection†2 can
be realised. The following gives an answer for an infinite series of d .

Theorem 3.5 ([6]). Let a � 1 be an integer and let d WD 6a2 C 6aC 2. Let Y be a general
cubic fourfold in Cd . Then there exist surfaces † � Y such that

• deg.†/ WD h2 �† D 1C
3
2
a.aC 1/ and †2 D

dCdeg.†/2
3

;

• H�.Y;I†.a � j // D 0, for all j D 0; 1; 2.

In fact, we obtain a family of such surfaces†. It is parameterized by (an open subset
of) the K3 surface S of degree d D 6a2 C 6a C 2 associated to every Y 2 Cd by Hassett
[38] via the Hodge structures of Y and S .

The proof of Theorem 3.5 is based on an enhancement of Hassett’s Hodge-theoretic
relation to the derived category: by [1,8], we have Ku.Y /D Db.S/. By [53], the Lehn-Lehn-
Sorger-van Straten IHS eightfoldX associated to Y of [50] can be realised as a moduli space
of stable objects in Ku.Y /. It admits a Lagrangian embedding Y ,! X . Markman’s Torelli
Theorem [59] implies thatX and the Hilbert schemeS Œ4� are birational; for a� 2, and Y 2 Cd

very general, we use Theorem 3.1 to show that the nef cone and the movable cone of S Œ4�

are the same, and hence X and S Œ4� are isomorphic. Now for s 2 S general let �s � S Œ4� be
the locus of subschemes containing s; then † D Y \ �s is the desired surface.

We are interested in this construction because it produces many rational morphisms
from Y as follows. The rational map S Œ4� ! S Œ5�; Z 7! Z [ s is resolved by the blow-up
Bl�s S Œ4� ! S Œ5�. Restricting to the cubic, we obtain an embedding Bl† Y ! S Œ5�. We then
use wall-crossing for S Œ5�, interpreted as a moduli space in Ku.Y /D Db.S/, and restrict the
resulting birational transformations to Bl† Y . In the case aD 2, this recovers completely the
picture described in [69] and thus the rationality of all cubics in C38. Analogous constructions
likely exist for arbitrary d � 2 .mod 6/ if we replace �s with a locus of sheaves not locally
free at s inside a moduli space of stable sheaves.

4. Threefolds

Stability conditions on a threefold X have been constructed in a three step pro-
cess. Initially we consider slope-stability. In the second step, we reinterpret slope-stability
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by changing the abelian subcategory of Db.X/ and rotating the central charge; the classical
Bogomolov–Gieseker inequality then allows us to deform this to obtain tilt-stability, which
behaves much like Bridgeland stability conditions on surfaces. Finally, a conjectural gen-
eralized Bogomolov–Gieseker type inequality, Conjecture 4.7, for tilt-stable objects allows
one to repeat this procedure and produce actual stability conditions.

Already the second step, tilt-stability, has geometric consequences when combined
with Conjecture 4.7. We present three applications: to a bound for the genus of a curve on
a threefold [58], to higher rank Donaldson–Thomas theory on Calabi–Yau threefolds [30,31],
and to Clifford-type bounds for vector bundles on curves and quintic threefolds [51].

4.1. The generalized Bogomolov–Gieseker inequality
We will now describe the first and second step of this construction. For more details,

we refer to [8, Part V], [67] and [13]. Throughout this section, we letX be a smooth projective
variety of dimension n, over the complex numbers unless noted otherwise, and let H in
NS.X/ be the class of an ample divisor on X .

The twisted Chern character. Let

 WD e�B
� .1; 0;��; 3; : : : ; n/ 2

nM
lD0

CHlnum.X/Q; (4.1)

with B 2 NS.X/Q, � 2 CH2num.X/Q such thatHn�2 � � D 0, and 3; : : : ; n arbitrary. We
let

ch WD  � chWK0.X/ !

nM
lD0

CHlnum.X/Q

be the Chern character twisted by  . If  D e�B (e.g. in the case of surfaces) then ch is
usually denoted by chB . When X is a threefold of Picard rank 1, � D 0.

LetƒH � QnC1 be the image of the morphism v

H WK0.Db.X//! QnC1 given by

v

H .E/ WD

�
Hn

� ch0.E/;H
n�1

� ch1.E/; : : : ;H � chn�1.E/; chn.E/
�
:

It is a free abelian group of rank nC 1. Given v 2 ƒ

H , we denote by vl its l-th component.

For l D 0; : : : ; n, we denote byƒ
H;�l

the sublattice of rank l C 1 generated by the first l C 1

components and by v�l the corresponding truncated vector.

Slope-stability (step 1). This is analogous to the curve case in Section 2. We define the
slope of a coherent sheaf E 2 Coh.X/ as

�

H .E/ WD �

�
v

H .E/

�
D v1.E/=v0.E/; with �H .E/ D C1 if v0.E/ D 0:

A sheaf E is �H -semistable if for every non-zero subsheaf F ,! E, we have �H .F / �

�

H .E=F /. In particular, torsion sheaves are semistable of slope C1. Harder–Narasimhan

(HN) filtrations for slope stability exist; if the sheaf has torsion, the first HN factor is the tor-
sion part. As before, we visualize the slope with the (weak) stability function Z W ƒ


H ! C

given by
Z.v/ WD �v1 C iv0:
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The Bogomolov–Gieseker inequality. Let us assume n � 2 and define the quadratic form
� on ƒH;�2 of signature .2; 1/ by

�.v/ WD v21 � 2v0v2:

The following result is a consequence of [16,33,68] and the Hodge index theorem:

Theorem 4.1 (Bogomolov–Gieseker inequality). Let E 2 Coh.X/ be a �H -semistable
sheaf. Then

�
�
v

H .E/

�
� 0: (4.2)

Remark 4.2. The theory works similarly in finite characteristic. Inequalities similar to (4.2)
proved by Langer in [48] are not sufficient to construct stability conditions. Instead, by
[43, Theorem 1.3], there exists a constant CX;H 2 R�0 such that inequality (4.2) holds if we
add the term CX;H �H 2=2 to  . This is sufficient for the construction tilt-stability below.

Tilt-stability (step 2). Constructing tilt-stability from slope stability needs two opera-
tions, see also Figure 2. First, let ˇ 2 R. We rotate the central charge Z by setting Zˇ WD

v0 C i.v1 � ˇv0/, and modify the abelian category accordingly to obtain Coh
H;ˇ

.X/ as
follows:

T ˇ
WD
®
E 2 Coh.X/W�;�H .E/ > ˇ

¯
;

F ˇ
WD
®
E 2 Coh.X/W�;CH .E/ � ˇ

¯
; (4.3)

Coh
H;ˇ

.X/ WD
®
E 2 Db.X/ W H l .E/ D 0; for l ¤ 0;�1;H �1.E/ 2 F ˇ ;H0.E/ 2 T ˇ

¯
;

where we denoted by �;˙H the first and last slope of the HN filtration with respect to
�

H -stability. By tilting theory [36], Coh

H;ˇ
.X/, the extension-closure of F ˇ Œ1� and T ˇ ,

is the heart of a bounded t-structure on Db.X/; in particular, it is an abelian category.

T ˇ W

�
;�
H > ˇ F ˇ W

�
;C
H � ˇ

F ˇ Œ1�

�v1

v0 v1
v0

D ˇ

Slope stability in Coh.X/

F ˇ Œ1� T ˇ

v0

v1 � ˇv0

Rotated slope stability
in Coh

H;ˇ
.X/

˛v0 � v2

v1 � ˇv0

Tilt stability

Figure 2

Rotating and deforming slope stability to obtain tilt stability.

The pair .Zˇ ;Coh
H;ˇ

.X// admits HN filtrations. The difference to slope stability
in Coh.X/ is subtle: torsion sheaves supported codimension � 2 are in both categories,
considered to have slope C1, and thus now have bigger phase than objects in F ˇ Œ1�.
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For the second part, we deform Zˇ while preserving the category Coh
H;ˇ

.X/. We
follow the presentation in [51] and denote by U the open subset of R2 given by

U WD

²
.˛; ˇ/ 2 R2 W ˛ >

ˇ2

2

³
: (4.4)

For .˛; ˇ/ 2 U , we consider the slope �
H;˛;ˇ

induced on Coh
H;ˇ

.X/ by the central charge

Z˛;ˇ .v/ WD �.v2 � ˛v0/C i.v1 � ˇv0/: (4.5)

Objects semistable with respect to v
H;˛;ˇ

are called tilt-semistable. HN filtrations exist and
Theorem 4.1 applies equally to tilt-semistable objects, which ensures that tilt-stability has a
wall-and-chamber structure analogous to Bridgeland stability as we deform .˛; ˇ/ 2 U .

Remark 4.3. We can be more precise and sometimes obtain a larger set of tilt-stability
conditions. Following [32], we define the Le Potier function ˆX;H W R ! R as

ˆ

X;H .x/ WD lim sup

�!x

²
v

H .E/2

v

H .E/0

W E 2 Coh.X/ is �H -semistable with �H .E/ D �

³
:

It is upper semicontinuous, and by Theorem 4.1 it satisfies ˆX;H .x/ � x2=2. Tilt-stability
is well defined for all .˛; ˇ/ 2 R2 such that ˛ > ˆX;H .ˇ/.

Example 4.4. If X is a surface, then .Z˛;ˇ ; Coh
H;ˇ

.X// induces a Bridgeland stability
condition on Db.X/, as constructed in [3]. The support property is given by the quadratic
form (4.2). If X has finite Albanese morphism, then all stability conditions on Db.X/ with
respect to .vH ; ƒ


H / are given by those constructed in Remark 4.3, up to linear action [32].

A stronger version of Theorem 4.1, involving ch1.E/2 rather than just .H: ch1.E//2, gives
a support property with respect to the full numerical Grothendieck group of Db.X/ and
allows us to vary H ; see [13, Theorem 3.5]. In the case of a K3 surface S , the closure of the
locus of such stability conditions and its translates under autoequivalences give the connected
component Stab�.Db.S// mentioned in Section 2.3.

The generalized Bogomolov–Gieseker inequality. Let us assume n � 3. The main open
question is to find an inequality involving v3 for tilt-semistable objects, generalizing (4.2).
For .˛; ˇ/ 2 U , let us define the quadratic form Q˛;ˇ on ƒH;�3 of signature .2; 2/ by

Q˛;ˇ .v/ WD ˛.v21 � 2v0v2/C ˇ.3v0v3 � v1v2/C .2v22 � 3v1v3/:

Definition 4.5. We say that .X;H/ satisfies the  -generalized Bogomolov–Gieseker (BG)
inequality at .˛; ˇ/ 2 U , if for all E 2 Coh

H;ˇ
.X/ which are �

H;˛;ˇ
-semistable, we have

Q˛;ˇ

�
v

H .E/

�
� 0: (4.6)

Theorem 4.6 ([13,67]). A polarized threefold satisfying the  -generalized BG inequality at
a point .˛; ˇ/ 2 U admits Bridgeland stability conditions.

The construction of these stability conditions from tilt stability is completely analo-
gous to the construction of tilt stability from slope-stability discussed above. It was con-
jectured in [14, Conjecture 1.3.1] that all polarized threefolds satisfy the generalized BG
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inequality for all .˛; ˇ/ 2 U and  D e�B ; this turned out to be too optimistic, see [71].
The following is a modification of the original conjecture, based on [51,66]:

Conjecture 4.7. Let .X;H/ be a smooth complex projective polarized variety. There exists
a class  D X;H as in (4.1) and an upper semicontinuous function f D f


X;H W R ! R such

that .X;H/ satisfies the  -generalized BG inequality for all .˛; ˇ/ 2 R2 with ˛ > f .ˇ/.

Conjecture 4.7 has been established in a number of three-dimensional cases:

• prime Fano threefolds [52,57,70], with  D 1 and f X;H .x/ D x2=2;

• abelian threefolds [13, 56], with  D e�B , for all B 2 NS.X/R, and
f

X;H .x/ D x2=2;

• the quintic threefold [51], with  D 1 and f X;H .x/ D x2=2C .x � bxc/.bxc C

1 � x/=2;

• the complete intersection of quadratic and quartic hypersurfaces in P5 [55], with
 D 1 and

f

X;H .x/ D x2=2C

�
x � bxc

��
bxc C 1 � x

�
=2I

• the blow-up of P3 at a point [66], with H D �KX=2,  D .1; 0;��; 0/,

� D
1

12

�
c2.X/ �

H � c2.X/

H 3
H 2

�
;

and f X;H .x/ D x2=2C .x � bxc C 1/2; and

• threefolds with nef tangent bundle [15,45], with H any ample divisor,  D e�B ,
for all B 2 NS.X/R (except in the case X D P .TP2/, where H D �KX=2 and
 D 1), and f X;H .x/ D x2=2.

Similar versions have been proved for all Fano threefolds [15, 66] and for Calabi–
Yau double and triple solids [44]. It is also known in some cases in arbitrary characteristic,
e.g., P3 (whereCP3;H D 0,  D 1, f X;H .x/D x2=2). There is no known counterexample to
Conjecture 4.7 with f X;H .x/D x2=2; a nontrivial choice of  is instead necessary: the blow-
up of P3 at a point with the anticanonical polarization does not satisfy the  -generalized BG
inequality if we take  D 1 and f X;H .x/ D x2=2 [71].

4.2. Tilt-stability methods
We now describe three limit points of tilt-stability in the set U defined in (4.4), the

small and large volume limit and the Brill–Noether point. The latter two are generalizations
of limits discussed in Section 3.2 for Bridgeland stability conditions in the K3 surface case.

Throughout this section we fix a class v 2 ƒ

H , and assume v0 ¤ 0 for simplicity.

Walls. We want to understand walls in U for tilt-stability .Z˛;ˇ ;CohH;ˇ .X//, defined by
(4.5) and (4.3), of objects of class v. We may assume N�.v/ � 0 and define

p.v/ WD

�
v2

v0
;
v1

v0

�
2 R2 n U:
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˛

ˇ

�
p.OX /

�
p.v/

U

W1

WBN

�

ˇ

Figure 3

Walls for v.

Given a line L containing p.v/, we define the potential wall in U for v associated to L by

WL WD
®
.˛; ˇ/ 2 U \ L

¯
:

The main property of walls are the following, see also Figure 3. Two objects of
Coh

H;ˇ
.X/ with classes v and w have the same slope with respect to �

˛;ˇ;H
if and only

if .˛; ˇ/ lies on the line passing through p.v/ and p.w/. If an object of class v is tilt-
(semi)stable at one point of WL, then it is tilt-(semi)stable for all points in WL. Moreover,
actual walls for v are a locally finite set of potential walls, and tilt-stability is unchanged
except when crossing one of these walls.

The following elementary observation is often useful for induction arguments:

Remark 4.8. Given a wall W for v in U , let w1; : : : ; wm be the classes of the Jordan–
Hölder factors of a tilt-semistable object with class v at a point of W . Then the version of
Theorem 4.1 for tilt-stable objects implies that �.wl / � �.v/, for all l D 1; : : : ; m, with
equality if and only if all .wl /�2 and v�2 are proportional and �.wl / D �.v/ D 0. In par-
ticular, the structure sheaf OX or its shift OX Œ1� is tilt-stable everywhere in U .

Example 4.9. The equation Q˛;ˇ .v/ D 0 defines a line containing p.v/. If it intersects U ,
we call the associated potential wall the BG wall, which gives a bound on walls for v.

The small volume limit point. Assume that �.v/ > 0. We define the two small volume
limit points ˇ.v/ as the points .ˇ2=2; ˇ/ 2 R2 where the tangent to the parabola contains
p.v/.

By the local finiteness of walls, they can accumulate only at the small volume limit
points, and only finitely many lie outside a neighborhood of them. Objects which are tilt-
stable in a neighborhood of a small volume limit point are called ˇ-stable and have strong
vanishing properties, which are useful both in proving cases of Conjecture 4.7 or in appli-
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cations of it. For instance, if Conjecture 4.7 is true and the BG wall exists, there are no
ˇ-stable objects for the corresponding small limit point. In the approach mentioned in the
Introduction, the small limit point is a promising choice for a point of interest.

The large volume limit point. As in Figure 3, consider the horizontal line

L1 WD ¹ˇ D v1=v0º:

It is called the large volume limit wall for v and a point in it is called a large volume limit point.
Object which are tilt-stable on a point inU nearby the large volume limit wall—equivalently,
for ˛ Ý C1—essentially correspond to Gieseker-stable sheaves or derived duals of them,
according to which side of the wall we are.

The Brill–Noether point. The last point we are interested in helps studying global sections
of objects. In the K3 surface case, as discussed in Section 3.2, this is where applications
to Brill–Noether theory come from. In tilt-stability, it is given by the potential wall WBN

associated to the line passing through p.v/ and .0; 0/, see again Figure 3. We call the point
.0; 0/ the Brill–Noether (BN) point.

4.3. Tilt-stability applications
In this section, we give an informal exposition of three applications of tilt-stability

and Conjecture 4.7.

Curves on threefolds. Let X D P3. We want to study the following question, called the
Halphen problem: what is the maximal genus g of an integral curve in P3 of degree d
which is not contained in a surface of degree < k? While the question is open for smaller
d , a celebrated theorem of Gruson–Peskine and Harris [35, 37] gives such maximal genus
G.d; k/, when d > k.k � 1/ We give an idea how to reprove this theorem by using tilt-
stability. The approach works for any threefold which satisfies Conjecture 4.7 and a few
extra assumptions, see [58, Theorem 1.2] for the precise statement. For instance, it yields new
results for principally polarized abelian threefolds of Picard rank 1.

Let C be a curve as above whose genus is larger than the expected bound G.d; k/.
We look at the twisted ideal sheaf IC .k � 1/ and we let v D v.IC .k � 1//; here  D 1 and
the generalized BG inequality holds, for all .˛; ˇ/ 2 U . The first step is a straightforward
application of Conjecture 4.7, which shows that in a neighborhood of the small volume limit
point, there are no tilt-semistable objects with class v. The second step is to use the informa-
tion that C is not contained in a surface of degree k � 1, which says that the BN wall does
not give a wall for IC .k � 1/. To summarize: IC .k � 1/ is tilt-stable at the large volume
limit, it must be destabilized at a certain wall, which cannot be on the BN wall.

To get a contradiction we need to analyze the finitely many walls for IC .k � 1/. This
is where the assumption d > k.k � 1/ comes in. In fact, possible destabilizing subobjects for
IC .k � 1/ are always reflexive sheaves: in the range d > k.k � 1/ they have rank either 1
or 2. The rank 1 case, namely invertible sheaves, can be dealt with by the fact that the BN
wall is not an actual wall. For the rank 2 case, we use once more a similar strategy to get
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bounds on the third Chern character of such rank 2 sheaves and thus a contradiction, since
we have control on the discriminant, by Remark 4.8.

Higher rank DT invariants on CY3s. Let .X; H/ be a complex polarized Calabi–Yau
threefold. In a recent sequence of papers [30, 31], Feyzbakhsh and Thomas proved the fol-
lowing theorem: if .X; H/ satisfies the generalized BG inequality on U , then the higher
rank Donaldson–Thomas (DT) theory is completely governed by the rank 1 theory, i.e.,
Hilbert schemes of curves. There is some flexibility on the assumption on the generalized
BG inequality; in particular, their theorem holds for the examples of Calabi–Yau threefolds
where Conjecture 4.7 has been proved, e.g. for the quintic threefold.

The fundamental idea is as follows. Fix a class v of rank r . The DT invariant
DTlarge-v.v/ of tilt-semistable objects of class v near the large-volume limit is essentially
the classical DT invariant. Now let n � 0. The role of the point of interest is first played by
a variant of the Brill–Noether wall: the Joyce–Song wall WJS where v and OX .�n/Œ1� have
the same slope. This is a wall not for v (where it is contained in the large-volume chamber),
but for the class v.n/ D v � v.OX .�n// of rank r � 1: there are objects E of class v.n/

destabilised by a short exact sequence F ! E ! OX .�n/Œ1� with F 2 M˛;ˇ .v/. They are
generically parameterised by a projective bundle over the DT moduli space for v.

Now consider the DT invariant DT.˛;ˇ/.v.n// as .˛; ˇ/ moves on a path from the
small-volume limit—our point of interest—for v.n/ to its large-volume limit. Conjecture 4.7
shows DTsmall-v.v

.n// D 0. Applying the generalised BG inequality again, the authors show
that except for the Joyce–Song wall, all other walls are defined by sheaves of rank � r � 1.
Thus, the Joyce–Song wall-crossing formula in [40] gives a relation of the form

DTlarge-v.v
.n// D DTsmall-v.v

.n//C Wall-crossing contributions

D 0C WallCr.lower rank DT invariants/C �.OX .�n/; v/ � DTlarge-v.v/:

This shows that DTlarge-v.v/ is determined by lower rank DT invariants.

The quintic threefold and Clifford-type bounds. In the proof of the generalized BG
inequality for the quintic threefold in [51], the first idea is the following: if we know the gen-
eralized BG inequality at the BN point, we know it everywhere (for an appropriately chosen
function f in Conjecture 4.7). Here, Li uses the same idea as in Section 3.2: a stronger clas-
sical Bogomolov–Gieseker type inequality for the quotient Q in (3.1) implies a bound for
h0.E/, and consequently for �.E/ and thus ch3.E/. The stronger bound forQ is deduced by
a restriction theorem from stronger bounds on .2; 5/-complete intersection surfaces. Using
the logic of Section 3.2 in reverse, this bound is reduced to Clifford-type bounds for stable
vector bundles on .2; 2; 5/-complete intersection curves C . Now we consider the embedding
C � S2;2 of C into the .2; 2/-complete intersection del Pezzo surface S2;2. Riemann-Roch
directly implies a stronger Bogomolov–Gieseker inequality on S2;2, and shifting the logic
of Section 3.2 back to forward gear implies the desired Clifford bounds.

These Clifford bound arguments yield new results even for planar curves [29].
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5. Further research directions

A proof of Conjecture 4.7, and thus the existence of Bridgeland stability conditions
on threefolds, would evidently be tremendous progress. We present here some more specific
open questions related to the topic of our survey.

The quintic threefold and Toda’s conjecture. The picture for Bridgeland stability condi-
tions is not yet complete, even for quintic threefolds. The expectation in [4] (see also [19,

Remark 3.9] for more details) is the following: there exists a closed embedding

I W MK !
�
Aut

�
Db.X/

�
n Stab

�
Db.X/

�
=C
�
; where MK WD

�®
 2 CW 5 ¤ 1

¯
=�5

�
and I. / D .Z ;P / where Z is a solution of the associated Picard–Fuchs equation
(see [75, Section 3.2]). Li’s Theorem in [51] describes only a neighborhood of the large volume
limit. The global picture would follow from an appropriate answer to the following question.

Question 5.1. Is there a better bound for the Le Potier function for quintic threefolds (extend-
ing [75, Conjecture 1.2] for slope 1

2
to arbitrary slope), and a version of Conjecture 4.7 with

f .x/ approximating this Le Potier function?

Higher dimension. The first step towards stability conditions in higher dimension would
be the following:

Question 5.2. Can we prove Conjecture 4.7 by induction on the dimension of X once it is
known for (a suitable class of) threefolds?

Moduli spaces of polarized noncommutative varieties. A natural extension of the results
in Section 2.3 would be to answer the following:

Question 5.3. Is any smooth projective polarized irreducible holomorphic symplectic vari-
ety .M;H/ of K3Œn�-type isomorphic to the moduli space .M� .v/; `� / of � -stable objects
for a stability condition � on a K3 category D?

A candidate for D has been constructed in [60], over an open subset of the moduli
space. It is not known if it can be realized as an admissible subcategory. The question is
closely related to the following, completing the analogy between stability conditions and
polarizations:

Question 5.4. Is there an algebraic moduli space of polarised non-commutative K3 surfaces,
parameterising pairs .D ; �/where D is a K3 category deformation–equivalent to Db.S/ for
a projective K3 surface S , and � is a stability condition on D?

The theory of stability conditions in families developed in [8] provides a definition
of morphisms to this moduli space.
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