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Abstract

We give a short overview of a new notion of continuous K-theory, which is defined for a
certain class of large (enhanced) triangulated categories. For compactly generated triangu-
lated categories, this continuous K-theory gives the usual nonconnective K-theory of the
category of compact objects. We formulate a general theorem about the computation of
continuous K-theory for the category of sheaves (of modules) on a locally compact Haus-
dorff space. This result already gives a surprising answer for the category of sheaves on the
real line.
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1. Introduction

This paper is a very short introduction to a recent new notion of K-theory for a
certain class of “large” (enhanced) triangulated categories. We call it “continuous K-theory.”
We explain the general idea and formulate some results, including the computation of K-
theory for categories of sheaves on locally compact (Hausdorff) spaces. The detailed study
with complete proofs will appear in [2].

It is well known that the usual Grothendieck group K0.A/ of an additive cate-
gory A vanishes when A has countable direct sums (Eilenberg swindle). More generally,
for any enhanced triangulated category C , its (nonconnective) K-theory spectrum K.C/ is
contractible. In particular, when C D D.R/ is the unbounded derived category of modules
over a ring, we get Kn.D.R// D 0 for n 2 Z.

This very observation has been used by M. Schlichting to define the negative K-
theory. Namely, a short exact sequence of enhanced triangulated categories

0! A! B ! C ! 0

gives rise to the long exact sequence of K-groups. If B has countable direct sums, we have
Kn.A/ŠKnC1.C/. In particular, ignoring the set-theoretic issues, we can takeB D Ind.A/

andC DCalkA WD .Ind.A/=A/Kar, which is the Calkin category ofA (an algebraic analogue
of the usual Calkin algebra of a Hilbert space, namely bounded operators modulo compact
operators).

One characterization of dualizable presentable categories is that they can be rep-
resented as a kernel of a localization, C D ker.Ind.A/

F
�! Ind.B//, where the functor F

commutes with direct sums and takes compact objects to compact objects. The idea is to
define K-theory of such a category using the localization property for K-theory. Namely,
Kcont.C/ WD Fiber.K.A/ ! K.B//. However, such an approach would require checking
the independence on the choice of the representation of C as such a kernel (and also the
functoriality of Kcont is not really immediate from such a definition).

An alternative characterization of dualizable categories is the following: these are
presentable categories C such that the Yoneda embedding YC W C ! Ind.C/ has a twice left
adjoint. Using it, one can define the continuous Calkin category CalkcontC , namely the “virtual
quotient by compact objects.” Then we simply put

Kcont.C/ WD �K
�
CalkcontC

�
:

Continuous K-theory is functorial with respect to strongly continuous functors, that
is, the functors whose right adjoint commutes with infinite direct sums.

We have the following computation of the continuous K-theory for categories of
sheaves on locally compact Hausdorff spaces.

Theorem 1.1. Let X be a locally compact Hausdorff space, and let R be a presheaf of DG
rings on X . Then we have a natural isomorphism

Kcont�Shv.X;Mod-R/
�
Š �c

�
X; K.R/

�
:
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In particular, for any n 2 Z�0 and any DG ring A, we have

Kcont�Shv.Rn;Mod-A
�
/ Š �nK.A/;

hence
Kcont

0

�
Shv.Rn;Mod-A/

�
Š Kn.A/:

Another interesting class of dualizable categories for which it would be very inter-
esting to compute the continuous K-theory comes from the theory of condensedmathematics
due to Clausen and Scholze [17, 18]. These are the so-called categories of nuclear modules.
We only briefly mention them in the case of affine formal schemes.

Although it would be natural to consider stable1-categories, in this paper we will
restrict to DG categories to fix the ideas.

The paper is organized as follows. In Section 2 we recall the basic notions about DG
categories. In Section 3 we recall presentable and dualizable DG categories, and give some
examples.

Section 4 is devoted to the classical algebraic K-theory. In Section 5 we introduce
the notion of continuous K-theory of dualizable categories.

Finally, in Section 6 we discuss in some detail Theorem 1.1, giving a sketch of its
proof in the case of X D R and a constant presheaf of DG rings.

2. Preliminaries on DG categories

We refer to [8,10] for a general introduction and overview of DG algebras, DG cat-
egories, and the derived categories of DG modules. We refer to [1] for the notion of an
enhanced triangulated category. We refer to [20,21] for the model structures on the category
of small DG categories.

For a small DG category A over a base ring k, we denote by D.A/ the derived
category of right A-modules. We will denote by Mod-A the “correct” DG category of
A-modules, for example, the DG category of semi-free A-modules. Moreover, for a usual
associative ringR (considered as a DG algebra overZ concentrated in degree zero), we write
Mod-R for the (correct) category of DG R-modules, i.e., complexes of usual R-modules

In some cases we will also write Ind.A/ (ind-objects) instead of Mod-A, provided
that A is pretriangulated. We will denote by dgcattrk the 1-category of pretriangulated
Karoubi complete small DG categories.

We denote by Perf.A/ � Mod-A the full DG subcategory of perfect A-modules.
We denote by PsPerf.A/ �Mod-A the full DG subcategory of pseudoperfect modules, i.e.,
A-modules which are perfect over k.

The tensor product of DG categories will always be derived over k. Given small DG
categoriesA andB, we denote by Fun.A;B/ the “correct” DG category of functorsA!B,
i.e., the internal Hom in the symmetric monoidal homotopy category of DG categories (with
inverted quasiequivalences).

Although in this paper we do not need the notions of smoothness and properness of
DG algebras and DG categories, we recall them here for completeness.
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Definition 2.1. A DG algebra A over k is called proper if A is perfect as a complex of
k-modules.

Definition 2.2. A DG algebra A over k is called smooth if A 2 Perf.A ˝ Aop/, i.e., the
diagonal A-A-bimodule is perfect.

Note that for a proper (resp. smooth) DG algebra A, we have Perf.A/ � PsPerf.A/

(resp. PsPerf.A/ � Perf.A/). If X is a separated scheme of finite type over a field k, and
Perf.X/ ' Perf.A/, then X is smooth (resp. proper) if and only if such is A.

A morphism of DG algebras f W A! B is called a homological epimorphism if the
map B

L
˝A B ! B is an isomorphism in D.k/. This is equivalent to f being a homotopy

epimorphism, i.e., the map B th
A B ! B is an isomorphism in Ho.dgalgk/.

The notion of a homological epimorphism for a functor between small DG cate-
gories is defined similarly; it is also equivalent to the property of being a homotopy epimor-
phism (in the Morita model structure).

3. Presentable and dualizable DG categories

We fix some base commutative ring k. In what follows, we will mostly ignore set-
theoretic issues. Recall that a DG category C is presentable if

1) C is pretriangulated;

2) the homotopy category H 0.C/ has small direct sums;

3) there exists a regular cardinal � such that the triangulated category H 0.C/ is
generated by �-compact objects.

Recall that an object x of a triangulated category T is �-compact if for any small family
of objects ¹yj ºj 2J , and for any morphism x

f
�!

L
j 2J yj , there exists a subset I � J with

jI j < � such that f factors through
L

i2I yi .
In other words, conditions 2) and 3) mean that the triangulated category H 0.C/ is

well generated in the terminology of Neeman [14].
We will call a functor F W C ! D between such DG categories continuous if it

commutes with small direct sums. We denote by dgcatcontk the 1-category of presentable
DG categories and continuous functors.

There is a natural symmetric monoidal structure on dgcatcontk —the Lurie tensor
product. It is uniquely determined by the internal Hom, given by Funcont.C ; D/—the full
subcategory of Fun.C ; D/ formed by continuous functors. Denoting this tensor product by
�b̋�, we thus have for any C1; C2; D 2 dgcatcontk a full embedding

Funcont.C1b̋kC2; D/ ,! Fun.C1 ˝k C2; D/;

and the essential image consists of bicontinuous bifunctors.
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Definition 3.1. A presentable DG category C is dualizable if it is a dualizable object in the
symmetric monoidal category .dgcatcontk ; b̋k/.

Remark 3.2. In fact, dualizability of a presentable DG category is independent of the base
ring k.

The following is due to Lurie.

Theorem 3.3 ([12]). Let C be a presentable DG category. The following are equivalent:

(i) C is dualizable.

(ii) There is a short exact sequence

0! C ! Mod-A
�˝AB
����! Mod-B ! 0;

where A!B is a homological epimorphism of DG algebras, i.e., B
L
˝A B

�
�!B .

(iii) Same as (ii) with small DG categories instead of DG algebras.

(iv) C is a retract in dgcatcontk of a compactly generated category.

(v) The Yoneda embedding YC W C ! Ind.C/ has a twice left adjoint.

(vi) Any continuous localization of presentable DG categories D ! C has a con-
tinuous section (not necessarily fully faithful).

We call a continuous functor F W C ! D strongly continuous if its right adjoint is
continuous. We denote by dgcatdualk � dgcatcontk the (nonfull) subcategory formed by dualiz-
able categories and strongly continuous functors. We have a fully faithful embedding

dgcattrk ,! dgcatdualk ; A 7! Mod-A:

Moreover, we have

.Mod-A/b̋k.Mod-B/ ' Mod-.A˝k B/:

For a homological epimorphism A! B , we have

ker.Mod-A! Mod-B/_
' ker.A-Mod! B-Mod/:

Example: derived categories of almost modules. The first class of examples is given by
(a not necessarily commutative version of) the basic setup for almost mathematics [3,4]. Let
R be an associative ring, and I � R an ideal such that I 2 D I and I is flat as a left or right
R-module. Then I

L
˝R I Š I , hence R ! R=I is a homological epimorphism. We get a

dualizable category
C.R; I / WD ker.Mod-R! Mod-R=I/:

If 1C I � R�, then C.R; I / has no nonzero compact objects. This observation is
originally due to Keller [9].
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Example: sheaves on exponentiable spaces. Recall that a topological space X is exponen-
tiable if the functor X � � W Top! Top commutes with colimits. This is equivalent to X

being core-compact: for any point x 2 X and any open neighborhood U of x, there exists
an open neighborhood V of x such that V � U . Here V � U means that V is relatively
compact in U , i.e., any open cover of U admits a finite subcover of V . In particular, any
locally compact Hausdorff space is exponentiable, and such is any spectral space.

Let R be a DG ring and denote by Shv.X;Mod-R/ the DG category of sheaves of
R-modules. Then the category Shv.X;Mod-R/ is dualizable [12]. Similarly, one can replace
a single DG ring R with a presheaf of DG rings R.

Remark 3.4. We consider sheaves of R-modules which are not necessarily hypercomplete.
In particular, even if X is sober (that is, any irreducible closed subset has a unique generic
point), there might be some sheavesF which have zero stalks at all points ofX . For example,
this happenswhenRDZ,X D Œ0;1�N is the Hilbert cube, andF is the sheaf such thatF .U /

is the (complex computing the) Borel–Moore homology HBM
� .U; Z/. See [11] for details.

Below we will formulate a result on the computation of the continuous K-theory of
such categories when X is locally compact Hausdorff.

Example: sheaves with condition on the singular support. Let X be a (paracompact
Hausdorff) C 1-manifold, and R a DG ring. Recall that the singular support SS.F / � T �X

of a sheafF 2 Shv.X;Mod-R/ is defined as follows (see [6] for details). For a point .x0; �0/2

T �X , we have .x0; �0/ 62 SS.F / if and only if there exists an open neighborhood .x0; �0/ 2

U � T �X such that, for any point .x1; �1/ 2 U and for any C 1-function f W V ! R,
x1 2 V � �.U / such that df .x1/ D �1, we have �¹f .x/�f .x1/º.F /x1 D 0. Hence, SS.F /

is a conical closed subset.
Now, let ƒ � T �X be any conical closed subset. Denote by Shvƒ.X;Mod-R/ �

Shv.X;Mod-R/ the full subcategory of sheavesR such that SS.F /�ƒ. Then the inclusion
functor Shvƒ.X;Mod-R/ ,! Shv.X;Mod-R/ has a left adjoint. In particular, the category
Shvƒ.X;Mod-R/ is dualizable.

Example: nuclear modules. The following class of examples comes from the theory of con-
densed mathematics due to Clausen and Scholze [17,18]. These are the categories of nuclear
modules on sufficiently nice analytic spaces.

We mention here the following characterization of the category of nuclear modules
on an affine formal scheme (for simplicity assumed to be noetherian).

Theorem 3.5. Let R be a commutative noetherian ring, and I � R an ideal. Then the fol-
lowing hold:

1) The inverse limit lim
 �n

.Mod-R=I n/ exists in dgcatdualZ (and is totally different
from the usual inverse limit).

2) The category of nuclear modules on Spf.R OI
/ defined in [17] embeds fully faith-

fully (and strongly continuously) into the above inverse limit.
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Nonexample. One of the characterizations of dualizable categories (condition (ii) of The-
orem 3.3) is via taking kernels of extension of scalars for a homological epimorphism of
DG algebras A! B . However, for a general morphism A! B the kernel of the functor
�˝A B is some “random” presentable DG category which does not have to be dualizable.
For example, takeAD kŒx;y�,B D kŒt; t�1� (deg.x/D deg.y/D deg.t/D 0), and consider
the morphism

f W A! B; f .x/ D t; f .y/ D 0:

Then one can show that the kernel ker.Mod-A
�˝AB
����! Mod-B/ is not dualizable (a

pleasant exercise).

4. K-theory of rings, abelian categories, and

triangulated categories

In this section we recall the notion of a Grothendieck group in various contexts, and
very briefly recall the higher K-theory, as well as negative K-theory.

Recall that for an associative ring R, the Grothendieck group K0.R/ is generated
by the isomorphism classes ŒP � of finitely generated (right) projective R-modules, subject
to relation ŒP ˚Q� D ŒP �C ŒQ�.

For an abelian category A, the group K0.A/ is defined similarly, but now we have
a relation ŒY � D ŒX�˚ ŒZ� for each short exact sequence

0! X ! Y ! Z ! 0:

For a triangulated category T , we obtain the group K0.T / by replacing short exact
sequences with exact triangles

0! X ! Y ! Z ! XŒ1�:

For an abelian category A, we have a natural isomorphism

K0

�
Db.A/

� �
�! K0.A/; ŒX� 7!

X
i

.�1/i
�
H i .X/

�
:

For a ring R, we have an isomorphism

K0

�
Perf.R/

� �
�! K0.R/;

�
P �

�
7!

X
i

�
P i

�
;

for a bounded complex P � of finitely generated projective R-modules.
In particular, if R is right noetherian and has finite homological dimension, then

K0.R/ Š K0

�
Perf.R/

�
Š K0.Modf:g:-R/:

For a scheme X (quasicompact, quasiseparated), one defines

K0.X/ WD K0.Dperf.X//:

If X is noetherian, we have G0.X/ D K0.Coh.X// D K0.Db
coh.X//.
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It is easy to check that for a noetherian scheme X and for a closed subset Z, we
have an exact sequence

G0.Z/ Š K0

�
CohZ.X/

�
! G0.X/! G0.X �Z/! 0:

More generally, for an abelian category A and a Serre subcategory B � A (that
is, a full subcategory closed under subobjects, quotient objects, and extensions), we have an
exact sequence

K0.B/! K0.A/! K0.A=B/! 0:

Similarly, for a triangulated category T and a full idempotent complete triangulated
subcategory � , we have an exact sequence

K0.�/! K0.T /! K0.T =�/! 0:

It is well known that the above definition of K0 can be extended to higher K-groups
Kn.�/: for associative rings (via Quillen’s plus construction [15]), for abelian categories (via
Quillen’s Q-construction [15]) and for enhanced triangulated categories (via Waldhausen’s
S-construction [23]). These are again compatible with each other: Kn.R/ Š Kn.Perf.R//,
Kn.A/ Š Kn.Db.A//.

One of the most important properties of higher algebraic K-theory is the localization
sequence. Namely, for an enhanced triangulated category T and a full idempotent complete
triangulated subcategory � � T , we have a long exact sequence

� � � ! K1.�/! K1.T /! K1.T =�/!

! K0.�/! K0.T /! K0.T =�/! 0:

Now, an important observation is that if a triangulated category T has at least count-
able direct sums, then K0.T / D 0. Indeed, for any object X 2 T , we have

ŒX�C
�
X .N/

�
D

�
X ˚X .N/

�
D

�
X .N/

�
; hence ŒX� D 0

(Eilenberg swindle).
Essentially the same argument (applied to the identity functor) shows that, for an

enhanced triangulated category T with countable direct sums, we have Kn.T / D 0, n � 0.
This actually allows defining negative K-theory, which was studied by Schlichting [16].

Namely, let T D Perf.B/ for a DG category B. Let us define the Calkin category
CalkB as the (Karoubi completion of) the quotient .Mod-B= Perf.B//Kar. Then we have a
short exact sequence

0! Perf.B/! Mod-B ! CalkB ! 0;

which forces the definition K�1.Perf.B// WD K0.CalkB/ (ignoring set theory for simplic-
ity). Iterating, one gets the groups Kn.Perf.B// for all negative integers n.

Let us remark that the terminology “Calkin category” comes from functional anal-
ysis. Namely, for a field k and a vector space V , we have EndCalkk.V /D Endk.V /=V � ˝ V .
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This is an algebraic version of the usual Calkin algebra of a Hilbert space H , defined as
B.H /=C.H /. HereC.H / is the ideal of compact operators, andwe haveC.H /DH � ˝H .

Summarizing, for an enhanced triangulated category T , one has K-groups Kn.T /,
which are stable homotopy groups of the nonconnective K-theory spectrum K.T /. For a
short exact sequence of enhanced triangulated categories

0! T1 ! T2 ! T3 ! 0;

we have an exact triangle of spectra

K.T1/! K.T2/! K.T3/! K.T1/Œ1�:

5. Continuous K-theory

Condition .v/ of Theorem 3.3 gives a canonical short exact sequence (strictly speak-
ing, we have to choose a regular cardinal to get presentable compactly generated categories)

0! C
Y LL

C
���! Mod-C ! Mod-Calkcont.C/! 0:

Here Calkcont is the Karoubi closure of the image of Cone.Y LL
C
! YC / W C !

Mod-C . This allows defining continuous K-theory for dualizable categories (and a continu-
ous version of any localizing invariant):

Kcont
W dgcatdualk ! Sp; Kcont.C/ WD �K

�
Calkcont.C/

�
:

Moreover, this is the only way to extend K-theory to dualizable categories such that

• For a small DG category A, we have K.Mod-A/ Š K.A/.

• Kcont is a localizing invariant.

In particular, if a dualizable category is represented as a kernel of extension of scalars for a
homological epimorphism A! B , then we have

Kcont�ker.Mod-A! Mod-B/
�
Š Fiber

�
K.A/! K.B/

�
:

The independence of this fiber of the choice of a homological epimorphism A! B

is closely related with (and, in fact, reproves) the excision theorem of Tamme [22].
It is not hard to deduce the general properties of continuous K-theory from the corre-

sponding properties of the usual nonconnective K-theory. In particular, continuous K-theory
commutes with filtered colimits in dgcatdualZ . Furthermore, one can deduce from the results
of [7] that continuous K-theory commutes with the products in dgcatdualZ (which are quite
different from the products in dgcatcontZ /.
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6. Continuous K-theory of categories of sheaves

This section is devoted to Theorem 1.1 from the introduction. We first recall its
formulation. Let X be a locally compact Hausdorff space. Let R be a presheaf of DG rings
on X .

Theorem 6.1. We have a natural isomorphism Kcont.Shv.X;Mod-R// Š �c.X; K.R//. In
particular, for any n 2 Z�0 and any DG ring A, we have

Kcont�Shv.Rn;Mod-A/
�
Š �nK.A/;

hence
Kcont

0

�
Shv.Rn;Mod-A/

�
Š Kn.A/:

6.1. The case of the real line
Below we sketch the proof of Theorem 6.1 in the special case when X D R

and R is the constant presheaf of DG rings with value A. We consider the subcategories
ShvR�R�0.R;Mod-A/, ShvR�R�0.R;Mod-A/, and ShvR�¹0º.R;Mod-A/ ' Mod-A. Here,
of course, we identify T �R with R �R. The following assertion is standard.

Proposition 6.2. For a sheaf F 2 Shv.R;Mod-A/, the following are equivalent:

(i) SS.F / � R �R�0;

(ii) for any real numbers a < b, the natural map �..�1; b/; F /! �..a; b/; F /

is an isomorphism.

It is not hard to check the following “gluing” statement.

Proposition 6.3. We have a homotopy Cartesian square of DG categories

Shv.R;Mod-A/ �����! ShvR�R�0.R;Mod-A/??y ??y
ShvR�R�0.R;Mod-A/ �����! ShvR�¹0º.R;Mod-A/:

(6.1)

Here each of the functors is left adjoint to the inclusion.

Since all the functors in the diagram (6.1) are localizations, we obtain the homotopy
Cartesian square of (continuous) K-theory spectra

Kcont.Shv.R;Mod-A// �����! Kcont.ShvR�R�0.R;Mod-A//??y ??y
Kcont.ShvR�R�0.R;Mod-A// �����! Kcont.ShvR�¹0º.R;Mod-A// D K.A/:

(6.2)

The special case of Theorem 6.1 states that Kcont.Shv.R; Mod-A// Š �K.A/.
Using the commutative diagram (6.2), we observe that this assertion reduces to the vanish-
ing of Kcont.ShvR�R�0.R;Mod-A// (note that, by symmetry, this implies the vanishing of
Kcont.ShvR�R�0.R;Mod-A//).
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Sketch of the proof of the vanishing of Kcont.ShvR�R�0.R;Mod-A//. We define two auxil-
iary DG categoriesB andC as follows.We haveOb.B/DOb.C/DR, and the morphisms
are given by

B.a; b/ D

8<: A; for a � b;

0; otherwise,
C.a; b/ D

8<: A; for a D b;

0; otherwise.

The compositions are induced by the multiplication in A. Denote by F WB! C the obvious
functor given by F.a/ D a. We claim that this functor is a homological epimorphism. This
is straightforward to check. The only property of R we need here is that R is a dense linearly
ordered set, i.e., for any a < b there exists c such that a < c < b.

The above description of sheaveswith singular support inR�R�0 (Proposition 6.2)
implies a short exact sequence in dgcatdualZ , namely

0! ShvR�R�0.R;Mod-A/! Mod-B
F �

��! Mod-C ! 0:

Indeed, condition (ii) of Proposition 6.2 means that a sheaf F 2 ShvR�R�0.R;Mod-A/ is
determined by its sections on the negative rays .�1; a/, together with compatible restriction
maps �..�1; b/; F /! �..�1; a/; F / subject to the following condition: for any a 2 R,
the natural map

�
�
.�1; a/; F

�
! lim
 �
b<a

�
�
.�1; b/; F

�
is an isomorphism.

This exactly identifies ShvR�R�0.R;Mod-A/with the right orthogonal complement
F�.Mod-C/? � Mod-B. But the full subcategory F�.Mod-C/ � Mod-B is both left and
right admissible, hence its right orthogonal complement is equivalent to the left orthogonal
complement, which exactly equals the kernel ker.Mod-B ! Mod-C/.

Finally, we obtain an exact triangle of spectra

Kcont�ShvR�R�0.R;Mod-A/
�
! K.B/! K.C/;

so we are reduced to showing that the map K.B/!K.C/ is an isomorphism. This is imme-
diate from the two standard properties of K-theory:

1) it is additive with respect to finite semiorthogonal decompositions;

2) it commutes with filtered colimits.

This finishes the (sketch of the) proof.

6.2. Reduction to the hypercomplete case
We recall the definition of a hypercomplete space in a slightly different form to avoid

going into details.

Definition 6.4. A sober topological spaceX is hypercomplete if for any nonzero (homotopy)
sheaf of spectra F on X there is a point x 2 X such that the stalk Fx is nonzero.
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A paracompact space of finite covering dimension is hypercomplete. One can prove
Theorem 6.1 in the hypercomplete case indirectly by “sheafifying” the assertion and reducing
to stalks.

The general case can be reduced to the hypercomplete case using Urysohn’s lemma.
Namely, each compact Hausdorff space can be embedded into a product of an infinite number
of copies of the closed unit interval Œ0; 1� (for example, one can take the product over all
continuous functions X ! Œ0; 1�). This allows representing X as a cofiltered limit of spaces
Xi which are closed subsets of finite-dimensional cubes, hence are hypercomplete. This
allows reducing Theorem 6.1 to the hypercomplete case.

6.3. Continuous presheaves and continuous partially ordered sets
We now sketch another more conceptual approach to computing the K-theory of the

category of sheaves, and also recall the relevant notion of a continuous poset and a continuous
category.

The notion of a continuous (abstract, discrete) category C is due to Johnstone and
Joyal [5]. This means that the Yoneda embedding functor from C the the category Ind.C/ of
ind-objects has a twice left adjoint (as in condition (v) of Theorem 3.3). Note that having a
single left adjoint means exactly that the category C has small filtered colimits. It is proved
in [5] that a category C with small filtered colimits is continuous if and only if there is some
categoryD and a pair of functorsF WC! Ind.D/,G W Ind.D/!C such thatG ıF Š idC ,
and both F and G commute with filtered colimits (as in condition (iv) of Theorem 3.3).

If one considers a partially ordered set P as a category, then we recover the notion
of a continuous poset [13], which generalizes the notion of a continuous lattice due to Scott
[19]. Namely, recall that in a partially ordered set an element x is way below y, written as
x � y, if for any directed family of elements ¹zi 2 P ºi2I such that the supremum (join)
sup¹zi ; i 2 I º exists and sup¹zi ; i 2 I º � y, there exists some i 2 I such that zi � x.

Definition 6.5. A partially ordered set P is continuous if the following conditions hold:

1) any directed subset of elements of P has a supremum;

2) for any element x 2 P , the set ¹y 2 P W y � xº is directed and sup¹y 2 P W

y � xº D x.

It is proved in [5] that a poset P is continuous if and only if the associated category
is continuous. The collection of open subsets of a locally compact Hausdorff space X is a
continuous poset. Here we have U � V if and only if NU � V and NU is compact. More
generally, a topological space is exponentiable (= core-compact) if and only if the collection
of its open subsets is a continuous poset.

Let nowR be a presheaf of DG rings on a continuous posetP . Let us call a presheaf
F of R-modules a sheaf if for any x 2 P we have an isomorphism

F .x/
�
�! lim
 �

y�x

F .y/:
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Denote by Shv.P;Mod-R/ the DG category of sheaves (they are actually the sheaves with
respect to a suitable Grothendieck topology). We have the following result.

Proposition 6.6.

1) The category Shv.P;Mod-R/ is dualizable.

2) We have a natural isomorphism

Kcont�Shv.P;Mod-R/
�
Š

M
x�x

K
�
R.x/

�
:

Recall that an element x 2 P such that x � x is called compact, and this is the
special case of the usual notion of a compact object of a category with small filtered colimits.

Now, let us return to a locally compact Hausdorff space X with a presheaf of DG
rings R. For a presheaf F of R-modules, the sheafiness condition can be separated into the
following two conditions:

(i) for any open U � X , we have an isomorphism

F .U /
�
�! lim
 �

V �U

F .V /;

(ii) for any pair of open subsets U1; U2 � X , we have a Cartesian square
F .U1 [ U2/ �����! F .U1/??y ??y

F .U2/ �����! F .U1 \ U2/:

Let us call a presheafF ofR-modules continuous if it satisfies condition (i) (but not
necessarily condition (ii)). We denote by PShcont.X;Mod-R/ the DG category of continuous
presheaves. We get the following corollary of Proposition 6.6.

Corollary 6.7.

1) The category PShcont.X;Mod-R/ is dualizable.

2) We have
Kcont�PShcont.X;Mod-R/

�
Š

M
U �U

K
�
R.U /

�
:

Here the summation is taken over open-compact subsets U � X .

This computation leads to another way of computing the continuous K-theory of
sheaves of R-modules. Namely, assuming X is compact for simplicity, one can “approx-
imate” the category Shv.X; Mod-R/ by certain finite limits of categories of continuous
presheaves on various closed subsets of X , and eventually reduce the statement of Theo-
rem 6.1 to Corollary 6.7.
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