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ABSTRACT

The Hodge theory of complex algebraic varieties is at heart a transcendental comparison

of two algebraic structures. We survey the recent advances bounding this transcendence,

mainly due to the introduction of o-minimal geometry as a natural framework for Hodge

theory.
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1. INTRODUCTION

Let X be a smooth connected projective variety over C, and X" its associated
compact complex manifold. Classical Hodge theory [52] states that the Betti (i.e., singular)
cohomology group Hé‘ (X™,7Z) is a polarizable Z.-Hodge structure of weight k: there exists
a canonical decomposition (called the Hodge decomposition) of complex vector spaces

HE(X™.Z) @z C= @ HPI(X™) satisfying HP4(X™) = HOP(X™)
p+a=k
and a (—1)*-symmetric bilinear pairing g : Hé‘ (X*™,Z) x Hé‘ (X2, Z) — Z whose com-
plexification makes the above decomposition orthogonal, and satisfies the positivity condi-
tion (the signs are complicated but are imposed to us by geometry)

i?79gg.c(a, o) > 0 for any nonzero @ € HP1(X™).

Deligne [29] vastly generalized Hodge’s result, showing that the cohomology H];‘ (X Z) of
any complex algebraic variety X is functorially endowed with a slightly more general graded
polarizable mixed 7-Hodge structure, that makes, after tensoring with Q, Héf (X", Q) a
successive extension of polarizable Q-Hodge structures, with weights between 0 and 2k.
As mixed Q-Hodge structures form a Tannakian category MHSg, one can conveniently
(although rather abstractly) summarize the Hodge—Deligne theory as functorially assigning
to any complex algebraic variety X a QQ-algebraic group: the Mumford—Tate group MTx
of X, defined as the Tannaka group of the Tannakian subcategory (Hg (X", Q)) of MHSq
generated by Hg (X", Q). The knowledge of the group MTy is equivalent to the knowledge
of all Hodge tensors for the Hodge structure Hg (X*", Q).

These apparently rather innocuous semilinear algebra statements are anything but
trivial. They have become the main tool for analyzing the topology, geometry and arithmetic
of complex algebraic varieties. Let us illustrate what we mean with regard to topology, which
we will not go into later. The existence of the Hodge decomposition for smooth projective
complex varieties, which holds more generally for compact Kéihler manifolds, imposes many
constraints on the cohomology of such spaces, the most obvious being that their odd Betti
numbers have to be even. Such constraints are not satisfied even by compact complex man-
ifolds as simple as the Hopf surfaces, quotients of C2 \ {0} by the action of Z given by
multiplication by A # 0, |A| # 1, whose first Betti number is one. Characterizing the homo-
topy types of compact Kihler manifolds is an essentially open question, which we will not
discuss here.

The mystery of the Hodge—Deligne theory lies in the fact that it is at heart not an
algebraic theory, but rather the transcendental comparison of two algebraic structures. For
simplicity, let X be a smooth connected projective variety over C. The Betti cohomology
Hg(X™, Q) defines a Q-structure on the complex vector space of the algebraic de Rham
cohomology Hi(X/C) := H*(X, Q%) under the transcendental comparison isomor-

X/C
phism:

@ Hjp(X/C) = H*(X™, Q) =: Hjg(X™,C) = H3(X™, Q) ®a C,  (I.1)
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where the first canonical isomorphism is the comparison between algebraic and analytic
de Rham cohomology provided by GAGA, and the second one is provided by integrat-
ing complex C* differential forms over cycles (de Rham’s theorem). The Hodge filtra-
tion FZ on Hy(X™, Q) ®q C is the image under = of the algebraic filtration F? =
Im(H*(X, Q;ﬁé) — H3(X/C)) on the left-hand side.

The surprising power of the Hodge—Deligne theory lies in the fact that, although
the comparison between the two algebraic structures is transcendental, this transcendence
should be severely constrained, as predicted, for instance, by the Hodge conjecture and the
Grothendieck period conjecture:

¢ For X smooth projective, it is well known that the cycle class [Z] of any codimen-
sion k algebraic cycle on X with Q coeflicients is a Hodge class in the Hodge
structure H2K(X*" Q)(k). Hodge [52] famously conjectured that the converse
holds true: any Hodge class in H2¥ (X, Q)(k) should be such a cycle class.

¢ For X smooth and defined over a number field K C C, its periods are the coeffi-
cients of the matrix of Grothendieck’s isomorphism (generalizing (1.1))

w : Hip(X/K) ®x C = H3(X™, Q) ®q C

with respect to bases of Hj, (X/K) and Hg (X, Q). The Grothendieck period
conjecture (combined with the Hodge conjecture) predicts that the transcendence
degree of the field kx C C generated by the periods of X coincides with the
dimension of MTy.

This tension between algebraicity and transcendence is perhaps best revealed when consid-
ering Hodge theory in families, as developed by Griffiths [43]. Let f : X — S be a smooth
projective morphism of smooth connected quasiprojective varieties over C. Its complex ana-
Iytic fibers X", s € §*", are diffeomorphic, hence their cohomologies Vz s := Hy (X", Z),
s € §% are all isomorphic to a fixed abelian group Vz and glue together into a locally con-
stant sheaf Vz := R*® f*",Z on $*". However, the complex algebraic structure on X;, hence
also the Hodge structure on Vg ¢, varies with s, making R® f*"7Z a variation of Z-Hodge
structures (ZVHS) V on S, which can be naturally polarized. One easily checks that the
Mumford-Tate group G5 := MTy,, s € S, is locally constant equal to the so-called generic
Mumford-Tate group G, outside of a meagre set HL(S, f) C S, the Hodge locus of the
morphism f, where it shrinks as exceptional Hodge tensors appear in HS(X:", Z). The
variation V is completely described by its period map

®: 8™ 5 T\D.

Here the period domain D classifies all possible Z-Hodge structure on the abelian group
Vg, with a fixed polarization and Mumford—Tate group contained in G; and ® maps a point
s € S to the point of D parameterizing the polarized Z-Hodge structure on V7 defined by
Vz,s (well defined up to the action of the arithmetic group I" := G N GL(Vz)).

The transcendence of the comparison isomorphism (1.1) for each fiber X is embod-
ied in the fact that the Hodge variety I"\ D is, in general, a mere complex analytic variety
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not admitting any algebraic structure; and that the period map & is a mere complex analytic
map. On the other hand this transcendence is sufficiently constrained so that the following
corollary of the Hodge conjecture [96] holds true, as proven by Cattani—Deligne—Kaplan [22]:
the Hodge locus HL(S, f') is a countable union of algebraic subvarieties of S. Remarkably,
their result is in fact valid for any polarized ZVHS V on S, not necessarily coming from
geometry: the Hodge locus HL(S, V®) is a countable union of algebraic subvarieties of S.

In this paper we report on recent advances in the understanding of this interplay
between algebraicity and transcendence in Hodge theory, our main object of interest being
period maps & : S — T"\ D. The paper is written for nonexperts: we present the mathe-
matical objects involved, the questions, and the results but give only vague ideas of proofs,
if any. It is organized as follows. After Section 2 presenting the objects of Hodge theory
(which the advanced reader will skip to refer to on occasion), we present in Section 3 the
main driving force behind the recent advances: although period maps are very rarely complex
algebraic, their geometry is tame and does not suffer from any of the many possible patholo-
gies of a general holomorphic map. In model-theoretic terms, period maps are definable
in the o-minimal structure R, exp. In Section 4, we introduce the general format of bialge-
braic structures for comparing the algebraic structure on S and that on (the compact dual D
of) the period domain D. The heuristic provided by this format, combined with o-minimal
geometry, leads to a powerful functional transcendence result: the Ax—Schanuel theorem for
polarized Z VHS. It also suggests to interpret variational Hodge theory as a special case of an
atypical intersection problem. In Section 5 we describe how this viewpoint leads to a stun-
ning improvement of the result of Cattani, Deligne, and Kaplan: in most cases HL(S, V®)
is not only a countable union of algebraic varieties, but is actually algebraic on the nose (at
least if we restrict to its components of positive period dimension). Finally, in Section 6 we
turn briefly to some arithmetic aspects of the theory.

For the sake of simplicity, we focus on the case of pure Hodge structures, only men-
tioning the references dealing with the mixed case.

2. VARIATIONS OF HODGE STRUCTURES AND PERIOD MAPS

2.1. Polarizable Hodge structures

Letn € Z.Let R=7,Q,or R. An R-Hodge structure V of weight n is a finitely gen-
erated R-module Vg together with one of the following equivalent data: a bigrading V¢ (:=
VRQRrC) = @p+q=n VP4 called the Hodge decomposition, such that VP4 = V9P (the
numbers (dim V' #9),,,—, are called the Hodge numbers of ); or a decreasing filtration
F* of V¢, called the Hodge filtration, satisfying F? @ F"*T1-P = V. One goes from one to
the other through F? = @ri p VI Tand VP =FP N 'F4. The following group-theoretic
description will be most useful to us: a Hodge structure is an R-module Vg and a real alge-
braic representation ¢ : S — GL(VR) whose restriction to G, r is defined over Q. Here
the Deligne torus S denotes the real algebraic group C* of invertible matrices of the forms
(% _ab ), which contains the diagonal subgroup G, r. Being of weight n is the requirement
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that ¢|g,,  acts via the character z > z™". The space V 77 is recovered as the eigenspace for
the character z > 27?279 of S(R) >~ C*. A morphism of Hodge structures is a morphism
of R-modules compatible with the bigrading (equivalently, with the Hodge filtration or the
S-action).

Example 2.1. We write R(n) for the unique R-Hodge structure of weight —2n, called the
Tate—Hodge structure of weight —2n, on the rank-one free R-module (277i)" R C C.

One easily checks that the category of R-Hodge structures is an abelian category
(where the kernels and cokernels coincide with the usual kernels and cokernels in the cat-
egory of R-modules, with the induced Hodge filtrations on their complexifications), with
natural tensor products V' ® W and internal homs hom(V, W) (in particular, duals V'V :=
hom(V, R(0))). For R = Q, or R, we obtain a Tannakian category, with an obvious exact
faithful R-linear tensor functor w : (Vg,¢) > Vg.In particular, R(n) = R(1)®".If V is an
R-Hodge structure, we write V(n) := V ® R(n) its nth Tate twist.

If V = (VR, ¢) is an R-Hodge structure of weight n, a polarization for V is a mor-
phism of R-Hodge structures g : V®2 — R(—n) such that (277i)"q(x, ¢(i) y) is a positive-
definite bilinear form on Vg, called the Hodge form associated with the polarization. If there
exists a polarization for V' then V is said polarizable. One easily checks that the category of
polarizable Q-Hodge structures is semisimple.

Example 2.2. Let M be a compact complex manifold. If M admits a Kdhler metric, the
singular cohomology H[ (M, Z) is naturally a Z-Hodge structure of weight n, see [52], [94,
CHAP. 6]:
H}(M.Z) ®7 C = Hjp(M.C) = € HP4(M),
p+q=n

where H 37, (M, C) denotes the de Rham cohomology of the complex (4°*(M,C), d) of C*
differential forms on M, the first equality is the canonical isomorphism obtained by inte-
grating forms on cycles (de Rham theorem), and the complex vector subspace H 74 (M) of
H} (M, C) is generated by the d-closed forms of type (p, ¢), and thus satisfies automat-
ically HP4(M) = H?P(M). Although the second equality depends only on the complex
structure on M , its proof relies on the choice of a Kihler form w on M through the following
sequence of isomorphisms:

Hip(M.C) S g (M) = @ #>X9M) > @ HPI(M).
pt+q=n pt+q=n

where J; (M) denotes the vector space of A -harmonic differential forms on M and
H i’f (M) its subspace of A,-harmonic (p, g)-forms. The heart of Hodge theory is thus
reduced to the statement that the Laplacian A, of a Kdhler metric preserves the type of forms.
The choice of a Kéhler form w on M also defines, through the hard Lefschetz theorem [94,
THEOREM 6.25], a polarization of the R-Hodge structure H" (M, R), see [94, THEOREM 6.32]. If
f : M — N is any holomorphic map between compact complex manifolds admitting Kéhler
metrics then both f* : HY (N,Z) — H} (M, Z) and the Gysin morphism fi : H} (M, Z) —
HJE~2"(N, Z)(—r) are morphism of Z-Hodge structures, where r = dim M — dim N.
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Example 2.3. Suppose moreover that M = X" is the compact complex manifold analyti-
fication of a smooth projective variety X over C. In that case, H} (X, Z) is a polarizable
Z-Hodge structure. Indeed, the Kihler class [w] can be chosen as the first Chern class of an
ample line bundle on X, giving rise to a rational Lefschetz decomposition and (after clear-
ing denominators by multiplying by a sufficiently large integer) to an integral polarization.
Moreover, the Hodge filtration F'* on Hj (X", C) can be defined algebraically: upon identi-
fying HE (X*", C) with the algebraic de Rham cohomology Hj(X/C) := H" (X, Q;(/C)’
the Hodge filtration is given by F? = Im(H" (X, Q;ﬁé) — HE (X, C)). It follows that
if X is defined over a subfield K of C, then the Hodge filtration F* on HJ(X*,C) =
H}{(X/K) ®k C is defined over K.

Example 2.4. The functor which assigns to a complex abelian variety 4 its H, (4™, Z)
defines an equivalence of categories between abelian varieties and polarizable Z-Hodge
structures of weight 1 and type (1, 0) and (0, 1).

2.2. Hodge classes and Mumford-Tate group

Let R =7 or Q and let V be an R-Hodge structure. A Hodge class for V is a
vector in V%0 N Vg = F°V¢ N Vg. For instance, any morphism of R-Hodge structures
f 'V — W defines a Hodge class in the internal hom(V, W). Let T™" Vg denote the Q-
Hodge structure Vg’” ® hom(V, R(O))g”. A Hodge tensor for V is a Hodge class in some
T Vo.

The main invariant of an R-Hodge structure is its Mumford—Tate group. For any R-
Hodge structure V' we denote by (1) the Tannakian subcategory of the category of Q-Hodge
structures generated by Vg; in other words, (V') is the smallest full subcategory containing
V', Q(0) and stable under 6, ®, and taking subquotients. If wy denotes the restriction of the
tensor functor w to (), the functor Aut® (wy ) is representable by some closed Q-algebraic
subgroup Gy C GL(Vqg), called the Mumford—Tate group of V', and wy defines an equiva-
lence of categories (V') >~ Repgy Gy . See [33, 11, 2.11].

The Mumford—Tate group Gy can also be characterized as the fixator in GL(Vg) of
the Hodge tensors for V, or equivalently, writing V' = (VR, ¢), as the smallest Q-algebraic
subgroup of GL(Vg) whose base change to R contains the image Im ¢. In particular ¢ fac-
torizes as ¢ : S — Gy r. The group Gy is thus connected, and reductive if V' is polarizable.
See [2, LEMMA 2].

Example 2.5. Gz,) = Gy, if n # 0 and Gz) = {1}.

Example 2.6. Let A be a complex abelian variety andlet V := H é (A*™,Z) be the associated
Z-Hodge structure of weight 1. We write G4 := Gy . The choice of an ample line bundle
on A defines a polarization ¢ on V. On the one hand, the endomorphism algebra D :=
End®(A)(:= End(4) ®z Q) is a finite-dimensional semisimple Q-algebra which, in view
of Example 2.4, identifies with End(Vg)®4. Thus G4 C GLp(Vg). On the other hand, the
polarization ¢ defines a Hodge class in hom(ng, Q(—1)) thus G4 has to be contained in
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the group GSp(Vg. ¢) of symplectic similitudes of Vg with respect to the symplectic form
q. Finally, G4 C GLp (Vo) N GSp(Vop, q).

If A = E is an elliptic curve, it follows readily that either D = Q and Gg = GL,,
or D is an imaginary quadratic field (£ has complex multiplication) and Gg = Tp, the
Q-torus defined by Tp (S) = (D ®qg S)* for any Q-algebra S.

2.3. Period domains and Hodge data

Let Vz be a finitely generated abelian group Vz of rank r. Fix a positive integer
n, a (—1)"-symmetric bilinear form gz on Vz and a collection of nonnegative integers
(h?1) (p,q > 0, p + g = n) such that h?4 = h?? and > h?? = r. Associated with
(n, qz, (h?1)) we want to define a period domain D classifying Z-Hodge structures of
weight n on Vz, polarized by gz, and with Hodge numbers h7-4. Setting f? = Zrzp AT
we first define the compact dual D parametrizing the finite decreasing filtrations F'® on V¢
satisfying (F?)tez = F"*1=P and dim F? = fP. This is a closed algebraic subvariety of
the product of Grassmannians [, Gr(f?, V). The period domain D C D™ is the open
subset where the Hodge form is positive definite. If G := GAut(Vg, gg) denotes the group
of similitudes of gg, one easily checks that G(C) acts transitively on D™ which is thus a
flag variety for G¢; and that the connected component G := G%"(R)™ of the identity in the
derived group G%"(IR) acts transitively on D, which identifies with an open G-orbit in D.If
we fix a base point 0 € D and denote by P and M its stabilizer in G(C) and G, respectively,
the period domain D is thus the homogeneous space

D =G/M < D™ = G(C)/P.

The group P is a parabolic subgroup of G(C). Its subgroup M = P N G, consisting of real
elements, not only fixes the filtration F,; but also the Hodge decomposition, hence the Hodge
form, at o. It is thus a compact subgroup of G and D is an open elliptic orbit of G in D.

Example 2.7. Letn = 1, suppose that the only nonzero Hodge numbers are 110 = 10! = g,
qz is a symplectic form and D is the subset of Gr(g, V) consisting of gc-Lagrangian sub-
spaces F'! on which igc (u, i) is positive definite. In this case G = GSp,,, G = Sp,, (R),
M = SO, (R) is a maximal compact subgroup of the connected Lie group G, and D =
G/M is a bounded symmetric domain naturally biholomorphic to Siegel’s upper half-space
g of g x g-complex symmetric matrices Z = X 4 iY with Y positive definite. When
g = 1, D is the Poincaré disk, biholomorphic to the Poincaré upper half-space $.

More generally, let G be a connected reductive Q-algebraic group and let ¢ : S —
Gr be a real algebraic morphism such that ¢g,, ,, is defined over Q. We assume that G is
the Mumford—Tate group of ¢. The period domain (or Hodge domain) D associated with
¢ : S — Gr is the connected component of the G(R)-conjugacy class of ¢ : S — Gr in
Hom(S, Ggr). Again, one easily checks that D is an open elliptic orbit of G := G*"(R)*
in the compact dual flag variety D™, the G(C)-conjugacy class of ¢c o i : Gm,c — G,
where it 1 Gm,c = Sc = Gm,c X Gm,c is the cocharacter z — (z, 1). See [41] for details.
The pair (G, D) is called a (connected) Hodge datum. A morphism of Hodge data (G, D) —
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(G’, D’) is a morphism p : G — G’ sending D to D’. Any linear representation A : G —
GL(Vg) defines a G(Q)-equivariant local system V, on D™. Moreover, each point x €
D, seen as a morphism ¢x : S — Gg, defines a Q-Hodge structure Vy := (Vg, A o ¢x).
The G(C)-equivariant filtration F '"\VJ;L := GY(C) xp_ F*V,,c of the holomorphic vector
bundle "&v& :=G*(C) xp4 Vo on D™ induces the Hodge filtration on V for each x € D.
The Mumford-Tate group of V is G precisely when x € D \ | J t(D’), where t ranges

through the countable set of morphisms of Hodge data t : (G’, D’ )r—> (G, D). The complex
analytic subvarieties t(D’) of D are called the special subvarieties of D.

The following geometric feature of D will be crucial for us. The algebraic tangent
bundle T D naturally identifies, as a G¢-equivariant bundle, with the quotient vector bundle
Vad /F 0V, q, where Ad : G — GL(g) is the adjoint representation on the Lie algebra g of G.
In particular, it is naturally filtered by the F iTD:=F! 'ﬁAd /F 0"\3Ad, i < —1.The subbundle
F~'T D is called the horizontal tangent bundle of D.

2.4. Hodge varieties

Let (G, D) be a Hodge datum as in Section 2.3. A Hodge variety is the quotient
'\ D of D by an arithmetic lattice I" of G(Q) ™ := G(Q) N G. It is thus naturally a complex
analytic variety, which is smooth if T is torsion-free. The special subvarieties of I'\ D are the
images of the special subvarieties of D under the projection 7 : D — I'\ D (one easily checks
these are closed complex analytic subvarieties of I'\ D). For any algebraic representation
A : G — GL(Vg), the G(Q)-equivariant local system YV/A as well as the filtered holomorphic
vector bundle (WV?A, F*®) on D are G-equivariant when restricted to D, hence descend to a
triple (Vy, (V;, F*), V) on I'\ D. Similarly, the horizontal tangent bundle of D defines the
horizontal tangent bundle Ty, (T\ D) C T(I'\ D) of the Hodge variety I"\ D.

2.5. Polarized Z-variations of Hodge structures

Hodge theory as recalled in Section 2.1 can be considered as the particular case over
a point of Hodge theory over an arbitrary base. Again, the motivation comes from geometry.
Let f : Y — B be a proper surjective complex analytic submersion from a connected Kéhler
manifold Y to a complex manifold B. It defines a locally constant sheaf Vz := R® f.Z of
finitely generated abelian groups on B, gathering the cohomologies H§ (Y, Z), b € B. Upon
choosing a base point by € B, the datum of Vz is equivalent to the datum of a monodromy
representation p : w1 (B, bg) — GL(Vg p,). On the other hand, the de Rham incarnation of
the cohomology of the fibers of f is the holomorphic flat vector bundle (V := Vz ®z, Op ~
R® Q5 /B V), where Op is the sheaf of holomorphic functions on B, 22}, /B is the relative
holomorphic de Rham complex and V is the Gauss—Manin connection. The Hodge filtra-
tion on each Hg (Y}, C) is induced by the holomorphic subbundles F? := R* f*Q;ﬁg of
V. The Hodge filtration is usually not preserved by the connection, but Griffiths [42] cru-
cially observed that it satisfies the rransversality constraint VF? C Q} ®@, F?~'. More
generally, a variation of Z-Hodge structures (ZVHS) on a connected complex manifold
(B,0p) is a pair V := (Vgz, F*), consisting of a locally constant sheaf of finitely gener-
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ated abelian groups Vz on B and a (decreasing) filtration F* of the holomorphic vector
bundle V := Vz ®z, Op by holomorphic subbundles, called the Hodge filtration, satisty-
ing the following conditions: for each b € B, the pair (Vj, F};) is a Z-Hodge structure; and
the flat connection V on 'V defined by V¢ satisfies Griffiths’ transversality,

VF* C Qp ®o, F*'. 2.1

A morphism V — V' of ZVHSs on B is a morphism f : Vz — V, of local systems such
that the associated morphism of vector bundles f : V — V’ is compatible with the Hodge
filtrations. If V has weight k, a polarization of V is a morphism q : V ® V — Zp(—k)
inducing a polarization on each Z-Hodge structure Vj, b € B. In the geometric situation,
such a polarization exists if there exists an element n € H?(Y, Z) whose restriction to each
fiber Y} defines a Kéhler class, for instance if f is the analytification of a smooth projective
morphism of smooth connected algebraic varieties over C.

2.6. Generic Hodge datum and period map

Let S be a smooth connected quasiprojective variety over C and let V be a polarized
ZVHS on S*". Fix a base point o € S, let p : S 5 §an be the corresponding universal
cover and write Vz := Vz ,, gz := qz.,. The pulled-back polarized ZVHS p*V is canoni-
cally trivialized as (ﬁ‘ x Vg, (5’7‘7‘ x Ve, F*),V =d, qz). In [31, 7.5], Deligne proved that
there exists a reductive Q-algebraic subgroup ¢ : G — GL(Vq), called the generic Mumford—
Tate group of V, such that, for all points 5§ € S the Mumford-Tate group Gy, Fp) is
contained in G, and is equal to G outside of a meagre set of gan (such points § are said
Hodge generic for V). A closed irreducible subvariety ¥ C S is said Hodge generic for
V if it contains a Hodge generic point. The setup of Section 2.3 is thus in force. With-
out loss of generality, we can assume that the point 0 is Hodge generic. Let (G, D) be
the Hodge datum (called the generic Hodge datum of S*" for V) associated with the polar-
ized Hodge structure (Vz, F). The ZVHS p*V is completely described by a holomorphic
map & 50 D, which is naturally equivariant under the monodromy representation
p:m1(S*,0) > I' := G N GL(V7z), hence descends to a holomorphic map @ : §** — '\ D,
called the period map of S for V. We thus obtain the following commutative diagram in the
category of complex analytic spaces:

~

sm_® _pc D (2.2)
PJ j:rt
s 2. 1\D.

Notice that the pair (Vg, (V, F*)) is the pullback under @ of the pair (V,, (V,, F*))
on the Hodge variety I'\ D defined by the inclusion ¢ : G < GL(Vg). Griffiths’ transversality
condition is equivalent to the statement that ® is horizontal, d®(T'S*™) C T,(I'\D). By
extension we call period map any holomorphic, horizontal, locally liftable map from S*" to
a Hodge variety I"\ D.
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The Hodge locus HL(S, V®) of S for V is the subset of points s € S for which
the Mumford-Tate group Gy is a strict subgroup of G, or equivalently for which the Hodge
structure Vg admits more Hodge tensors than the very general fiber V. Thus

HL(S,V®) = g o~ (I'\D'), (2.3)
(G',D")—>(G,D)
where the union is over all strict Hodge subdata and I'"\ D’ is a slight abuse of notation for
denoting the projection of D’ C D to '\ D.

Let Y C S be a closed irreducible algebraic subvariety i : ¥ — S. Let (Gy, Dy)
be the generic Hodge datum of the ZVHS V restricted to the smooth locus of Y. The alge-
braic monodromy group Hy of Y for V is the identity component of the Zariski-closure in
GL(Vg) of the monodromy of the restriction to Y of the local system Vz. It follows from
Deligne’s (in the geometric case) and Schmid’s (in general) “Theorem of the fixed part” and
“Semisimplicity Theorem” that Hy is a normal subgroup of the derived group G‘I’fr, see [2,
THEOREM 1].

3. HODGE THEORY AND TAME GEOMETRY

3.1. Variational Hodge theory between algebraicity and transcendence

Let S be a smooth connected quasi-projective variety over C and let V = (Vz, F*®)
be a polarized ZVHS on S*". Let (G, D) be the generic Hodge datum of S for V and let
® : §* — '\ D be the period map defined by V.

The fact that Hodge theory is a transcendental theory is reflected in the following
facts:

e First, the triplets (Vy, (V;, F*®), V) on '\ D (for A : G — GL(Vgp) an algebraic
representation) do not in general satisfy Griffiths’ transversality, hence do not
define a ZVHS on I'\ D. They do if and only if V is of Shimura type, i.e., (G, D) is
a (connected) Shimura datum (meaning that the weight zero Hodge structures on
the fibers of Vjq are of type {(—1, 1), (0, 0), (1, —1)}); or equivalently, if the hor-
izontal tangent bundle 7} D coincides with T'D. In other words, Hodge varieties
are in general not classifying spaces for polarized Z VHS.

 Second, and more importantly, the complex analytic Hodge variety I'\ D is in gen-
eral not algebraizable (i.e., it is not the analytification of a complex quasiprojective
variety). More precisely, let us write D = G/M as in Section 2.3. A classical
property of elliptic orbits like D is that there exists a unique maximal compact
subgroup K of G containing M [46]. Supposing for simplicity that G is a real
simple Lie group G, then T\ D is algebraizable only if G/K is a hermitian sym-
metric domain and the projection D — G/ K is holomorphic or antiholomorphic,
see [45].

On the other hand, this transcendence is severely constrained, as shown by the following
algebraicity results:
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 If (G, D) is of Shimura type, then I'\ D = Sh™" is the analytification of an algebraic
variety, called a Shimura variety Sh [8,3e,32]. In that case Borel [17, THEOREM 3.10]
proved that the complex analytic period map ® : $* — Sh™" is the analytification
of an algebraic map.

* Let S C S be a log-smooth compactification of S by a simple normal cross-
ing divisor Z. Following Deligne [28], the flat holomorphic connection V on
V defines a canonical extension V of V to S. Using GAGA for S, this defines
an algebraic structure on (V, V), for which the connection V is regular. Around
any point of Z, the complex manifold S*" is locally isomorphic to a product
(A*)* x Al of punctured polydisks. Borel showed that the monodromy repre-
sentation p : m1(S™,5,) > ' C G(Q) of V is “tame at infinity,” that is, its
restriction to Zk = nl((A*)k x Al ) is quasiunipotent, see [82, (4.5)]. Using this
result, Schmid showed that the Hodge filtration F'* extends holomorphically to the
Deligne extension V. This is the celebrated Nilpotent Orbit theorem [82, (4.12)]. It
follows, as noticed by Griffiths [82, (4.13)], that the Hodge filtration on 'V comes
from an algebraic filtration on the underlying algebraic bundle, whether V is of
geometric origin or not.

* More recently, an even stronger evidence came from the study of Hodge loci.
Cattani, Deligne, and Kaplan proved the following celebrated result (generalized
to the mixed case in [18-21]):

Theorem 3.1 ([22]). Let S be a smooth connected quasiprojective variety over C and V
be a polarized ZVHS over S. Then HL(S, V®) is a countable union of closed irreducible

algebraic subvarieties of S.

In view of this tension between algebraicity and transcendence, it is natural to ask
if there is a framework, less strict than complex algebraic geometry but more constraining
than complex analytic geometry, where to analyze period maps and explain its remarkable
properties.

3.2. O-minimal geometry

Such a framework was in fact envisioned by Grothendieck in [47, §56] under the name
“tame topology,” as a way out of the pathologies of general topological spaces. Examples of
pathologies are Cantor sets, space-filling curves but also much simpler objects like the graph
I' :={(x,sin %), 0<x <1} CR?%*itsclosure T := I' II I, where I := {0} x [-1,1] C R?
is connected but not arc-connected; dim(T" \ ") = dim I", which prevents any reasonable
stratification theory; and I' N R is not “of finite type.” Tame geometry has been developed
by model theorists as o-minimal geometry, which studies structures where every definable
set has a finite geometric complexity. Its prototype is real semialgebraic geometry, but it is
much richer. We refer to [34] for a nice survey.
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Definition 3.2. A structure § expanding the real field is a collection § = (S}),eN, Where
S, is a set of subsets of R” such that for every n € N:

(1) all algebraic subsets of R” are in S,,.

(2) S, is a boolean subalgebra of the power set of R” (i.e., S, is stable by finite
union, intersection, and complement).

B)IfAeS,and B e S,,then A X B € S;41m.
(4) Let p : R**1 — R” be a linear projection. If A € S, then p(A4) € S,.

The elements of S, are called the S-definable sets of R”. A map f : A — B between §-
definable sets is said to be §-definable if its graph is S-definable.

A dual point of view starts from the functions, namely considers sets definable in a
first-order structure § = (R, 4, X, <, (f;)ier) where I isasetand the f; : R" — R,i e[,
are functions. A subset Z C R” is §-definable if it can be defined by a formula

Z ={(x1,....xn) € R" | §(x1,...,xy) is true},

where ¢ is a first-order formula that can be written using only the quantifiers ¥ and 3 applied
to real variables; logical connectors; algebraic expressions written with the f;; the order
symbol <; and fixed parameters A; € R. When the set / is empty the S-definable subsets
are the semialgebraic sets. Semialgebraic subsets are thus always §-definable.

One easily checks that the composite of §-definable functions is §-definable, as are
the images and the preimages of §-definable sets under §-definable maps. Using that the
euclidean distance is a real-algebraic function, one shows easily that the closure and interior
of an §-definable set are again S-definable.

The following o-minimal axiom for a structure § guarantees the possibility of doing
geometry using §-definable sets as basic blocks.

Definition 3.3. A structure § is said to be o-minimal if S; consists precisely of the finite
unions of points and intervals (i.e., the semialgebraic subsets of R).

Example 3.4. The structure Ry, := (R, +, X, <, sin) is not o-minimal. Indeed, the infinite
union of points 7Z = {x € R | sinx = 0} is a definable subset of R in this structure.

Any o-minimal structure $ has the following main tameness property: given finitely
many $-definable sets Uy, ..., Uy C R”, there exists a definable cylindrical cellular decom-
position of R” such that each Uj is a finite union of cells. Such a decomposition is defined
inductively on n. For n = 1, this is a finite partition of R into cells which are points or open
intervals. For n > 1, it is obtained from a definable cylindrical cellular decomposition of
R"~! by fixing, for any cell C C R*1, finitely many definable functions fc; : C — R,
1 <i <kc,with fco:=—00< fc1 << fcke < JCke+1 := +00, and defining the
cells of R” as the graphs {(x, fc,i(x)),x € C},1 <i < k¢, and the bands {(x, fc,(x) <
y < fci+1(x)),x e C,y e R},0 <i <kc, forall cells C of R*~1,
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The simplest o-minimal structure is the structure R, consisting of semialge-
braic sets. It is too close to algebraic geometry to be used for studying transcendence
phenomena. Luckily much richer o-minimal geometries do exist. A fundamental result of
Wilkie, building on the result of Khovanskii [54] that any exponential set {(xq, ..., Xx,) €
R" | P(x1,...,Xn,exp(x1),...,exp(x,)) = 0} (where P € R[X1,..., Xn, Y1,...,. Y3])
has finitely many connected components, states:

Theorem 3.5 ([971). The structure Reyp, := (R, +, %, <,exp : R — R) is o-minimal.
In another direction, let us define
Ran == (R, +, x, <,{f} for f restricted real analytic function),

where a function f : R” — R is a restricted real analytic function if it is zero outside [0, 1]"
and if there exists a real analytic function g on a neighborhood of [0, 1]” such that f and
g are equal on [0, 1]". Gabrielov’s result [37] that the difference of two subanalytic sets is
subanalytic implies rather easily that the structure R, is o-minimal. The structure generated
by two o-minimal structures is not o-minimal in general, but Van den Dries and Miller [35]
proved that the structure Rg,exp generated by R,, and Ry, is o-minimal. This is the o-
minimal structure which will be mainly used in the rest of this text.
Let us now globalize the notion of definable set using charts:

Definition 3.6. A definable topological space X is the data of a Hausdorff topological
space X, a finite open covering (U;)1<;j <k of X, and homeomorphisms y; : U; — V; C R”
such that all V;, V;; := ¢;(U; NUj) and ¢; o wj_l : Vij — Vj; are definable. As usual the
pairs (U;, ;) are called charts. A morphism of definable topological spaces is a continuous
map which is definable when read in the charts. The definable site X of a definable topo-
logical space X has for objects definable open subsets U C X and admissible coverings are
the finite ones.

Example 3.7. Let X be an algebraic variety over R. Then X (R) equipped with the euclidean
topology carries a natural R,j,-definable structure (up to isomorphism): one covers X by
finitely many (Zariski) open affine subvarieties X; and take U; := X; (R) which is naturally
a semialgebraic set. One easily check that any two finite open affine covers define isomorphic
Rg-structures on X(R). If X is an algebraic variety over C then X(C) = (Resc;r X)(R)
carries thus a natural R,.-structure. We call this the Rj,-definabilization of X and denote
it by X Raig,

In the rest of this section, we fix an o-minimal structure § and write “definable”
for §-definable. Given a complex algebraic variety X we write X for the §-definabili-
zation X 5.

3.3. O-minimal geometry and algebraization

Why should an algebraic geometer care about o-minimal geometry? Because o-
minimal geometry provides strong algebraization results.
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3.3.1. Diophantine criterion
The first algebraization result is the celebrated Pila—Wilkie theorem:

Theorem 3.8 ([771). Let Z C R" be a definable set. We define Z™¢ as the union of all con-
nected positive-dimensional semialgebraic subsets of Z. Then, denoting by H : Q" — R
the standard height function:

YVe>0, 3C:>0, VT >0, |[{xe(Z\Z"NQ" H(x)<T}| <CT".

In words, if a definable set contains at least polynomially many rational points
(with respect to their height), then it contains a positive dimensional semialgebraic set! For
instance, if f : R — R is a real analytic function such that its graph I'r N [0, 1] x [0, 1]
contains at least polynomially many rational points (with respect to their height), then the
function f is real algebraic [15]. This algebraization result is a crucial ingredient in the proof
of functional transcendence results for period maps, see Section 4.

3.3.2. Definable Chow and definable GAGA

In another direction, algebraicity follows from the meeting of o-minimal geometry
with complex geometry. The motto is that o-minimal geometry is incompatible with the many
pathologies of complex analysis. As a simple illustration, let f : A* — C be a holomorphic
function, and assume that f is definable (where we identify C with R? and A* C R? is semi-
algebraic). Then f does not have any essential singularity at O (i.e., f is meromorphic).
Otherwise, by the Big Picard theorem, the boundary F_f \ I'r of its graph would contain
{0} x C, hence would have the same real dimension (two) as I's, contradicting the fact that
I'y is definable.

Let us first define a good notion of a definable topological space “endowed with a
complex analytic structure.” We identify C” with R?" by taking real and imaginary parts.
Given U C C" a definable open subset, let Ocn(U) denote the C-algebra of holomorphic
definable functions U — C. The assignment U ~> Ocn(U) defines a sheaf Oc» on C*
whose stalks are local rings. Given a finitely generated ideal I C Ocn(U), its zero locus
V(I) C U is definable and the restriction Oy (7 := (Oy /1 Oy )|v(r) define a sheaf of local
rings on V(I). o

Definition 3.9. A definable complex analytic space is a pair (X, @) consisting of a defin-
able topological space X and a sheaf @ on X such that there exists a finite covering of X
by definable open subsets X; on which (X, Ox),x; is isomorphic to some (V (1), Oy ()).

Bakker et al. [1e, THEOREM 2.16] show that this is a reasonable definition: the sheaf
O, in analogy with the classical Oka’s theorem, is a coherent sheaf of rings. Moreover,
one has a natural definabilization functor (X, Ox) » (X%, Oyuwr) from the category of
separated schemes (or algebraic spaces) of finite type over C to the category of definable
complex analytic spaces, which induces a morphism g : (X%, Oyar) — (X, Ox) of locally

ringed sites.
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Let us now describe the promised algebraization results. The classical Chow’s the-
orem states that a closed complex analytic subset Z of X" for X smooth projective over
C is in fact algebraic. This fails dramatically if X is only quasiprojective, as shown by the
graph of the complex exponential in (A2)®. However, Peterzil and Starchenko, generalizing
[36] in the Ry, case, have shown the following:

Theorem 3.10 ([69,70]). Let X be a complex quasiprojective variety and let Z C X* be a
closed analytic subvariety. If Z is definable in X' then Z is complex algebraic in X .

Chow’s theorem, which deals only with spaces, was extended to sheaves by Serre
[83]: when X is proper, the analytification functor (-)*" : Coh(X) — Coh(X?") defines an
equivalence of categories between the categories of coherent sheaves Coh(X) and Coh(X?").
In the definable world, let X be a separated scheme (or algebraic space) of finite type over C.
Associating with a coherent sheaf F on X the coherent sheaf FU' := F ®,-19, Oxar on
the S-definabilization X %' of X, one obtains a definabilization functor (-)%f : Coh(X) —
Coh(X %), Similarly there is an analytification functor X ~ X from complex defin-
able analytic spaces to complex analytic spaces, that induces a functor (-)*" : Coh(X) —
Coh(X™).

Theorem 3.11 ([18]). For every separated algebraic space of finite type X, the definabiliza-
tion functor ()% : Coh(X) — Coh(X ") is exact and fully faithful (but it is not necessarily
essentially surjective). Its essential image is stable under subobjects and subquotients.

Using Theorem 3.11 and Artin’s algebraization theorem for formal modification
[4], one obtains the following useful algebraization result for definable images of algebraic
spaces, which will be used in Section 3.6.2:

Theorem 3.12 ([10]). Let X be a separated algebraic space of finite type and let & be a
definable analytic space. Any proper definable analytic map ® : X% — & factors uniquely
asto f9 where f : X — Y is a proper morphism of separated algebraic spaces (of finite
type) such that Oy — f+Ox is injective, and 1 : Y %' < & is a closed immersion of definable
analytic spaces.

3.4. Definability of Hodge varieties
Let us now describe the first result establishing that o-minimal geometry is poten-
tially interesting for Hodge theory.

Theorem 3.13 ([11]). Any Hodge variety T\ D can be naturally endowed with a functorial
structure (I'\ D)Rate of Raig-definable complex analytic space.

Here “functorial” means that that any morphism (G’, D’) — (G, D) of Hodge data
induces a definable map (I'"\ D’)Ras — (I'\ D)Raz of Hodge varieties. Let us sketch the
construction of (I'"\ D)Ras. Without loss of generality (replacing G by its adjoint group if
necessary), we can assume that G is semisimple, G = G(R)™. For simplicity, let us assume
that the arithmetic lattice I is torsion free. We choose a base point in D = G/ M . Notice that
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G and G/M C DR are naturally endowed with a G-equivariant semialgebraic structure,
making the projection G — G/M semialgebraic. To define an Rjg-structure on I'\(G/M ),
it is thus enough to find a semialgebraic open fundamental set F C G/M for the action
of I' and to write '\G/M = T'\ F, where the right-hand side is the quotient of F by the
closed étale semialgebraic equivalence relation induced by the action of I on D. Here by
fundamental set we mean that the set of y € I" such that yF N F # @ is finite. We construct
the fundamental set F' using the reduction theory of arithmetic groups, namely the theory
of Siegel sets. Let K be the unique maximal compact subgroup of G containing M. For
any QQ-parabolic P of G with unipotent radical N, the maximal compact subgroup K of G
determines areal Levi L C G which decomposes as L = AQ where A is the center and Q is
semisimple. A semialgebraic Siegel set of G associated to P and K is then a set of the form
G =U(aA>o)W where U CN(R), W C QK are bounded semialgebraic subsets, @ € A, and
A is the cone corresponding to the positive root chamber. By a Siegel set of G associated
to K we mean a semialgebraic Siegel set associated to P and K for some Q-parabolic P of G.
Suppose now that I' C G is an arithmetic group. A fundamental result of Borel [16] states that
there exists finitely many Siegel sets ©; C G, 1 <i <s, associated with K, whose images
in '\ G/ K cover the whole space; and such that forany 1 <i # j <s, thesetof y € I" such
that y&; N &; # @ is finite. We call the images ©; p := &; /M Siegel sets for D. Noticing
that these Siegel sets for D are semialgebraic in D, we can take F = [[;_, &; p. Itis not
difficult to show that the R,-structure thus constructed is independent of the choice of the
base point eM € G/M . The functoriality follows from a nontrivial property of Siegel sets
with respect to morphisms of algebraic groups, due to Orr [68].

3.5. Definability of period maps
Once Theorem 3.13 is in place, the following result shows that o-minimal geometry
is a natural framework for Hodge theory:

Theorem 3.14 ([11]). Let S be a smooth connected complex quasiprojective variety. Any
period map ® : S*™ — T'\ D is the analytification of a morphism ® : SRaexw — (T'\ D )Ranexp
0f Ran,exp-definable complex analytic spaces, where the Ry exp-structures on S(C) and '\ D
extend their natural R ye-structures defined in Example 3.7 and Theorem 3.13, respectively.

In down-to-earth terms, this means that we can cover S by finitely many open affine
charts S; such that ® restricted to (Resc;rS;)(R) = S;(C) and read in a chart of I'\ D
defined by a Siegel set of D, can be written using only real polynomials, the real exponential
function, and restricted real analytic functions! This statement is already nontrivial when
S = Sh is a Shimura variety and ®*" : §* — '\ D is the identity map coming from the
uniformization 7 : D — S of $?" by the hermitian symmetric domain D = G/K. In that
case the R,j;-definable varieties ShR and (I'\ D)Rat are not isomorphic, but Theorem 3.14
claims that their R, cxp-extensions ShRwmer and (r \D)]R“"”exp are. This is equivalent to show-
ing that the restriction mg,, : ©p — § Ranew t0 a Siegel set for D can be written using only
real polynomials, the real exponential function, and restricted real analytic functions. This
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is a nice exercise on the j-function when Sh is a modular curve, was done in [71] and [76] for
Sh = A, and [58] in general.

Let us sketch the proof of Theorem 3.14. We choose a log-smooth compactification
of S, hence providing us with a definable cover of SR by punctured polydisks (A*)¥ x Al
We are reduced to showing that the restriction of ® to such a punctured polydisk is Rag exp-
definable. This is clear if k = 0, as in this case ¢ : Ak — '\ D is even R,,-definable.
For k > 0, let e : exp(27i-) : & — A* be the universal covering map. Its restriction to a
sufficiently large bounded vertical strip V := [a, b] X ]0, +00[ C = {x + iy, y > 0} is
Rn,exp-definable. Considering the following commutative diagram:

~

vk x Al ® D OF

] I

(A" x Al gan —>T\D.

it is thus enough to show that & o D:VEx Al '\ D is Run exp-definable.

Let the coordinates of (A*)k x Albet;, 1 <i <k +1,thoseof ¥ be z;, 1 <i <k,
so thate(z;) = t;. Let T; be the monodromy at infinity of ® around the hyperplane (z; = 0),
boundary component of S \ S. By Borel’s theorem 7} is quasiunipotent. Replacing S by a
finite étale cover, we can without loss of generality assume that each 7; = exp(N;), with N; €
g nilpotent. The Nilpotent Orbit Theorem of Schmid is equivalent to saying that @ Vkx
A! = D canbe written as 5(21 v Zho kbl e e a ltl) = exp(Zf=1 ZiNy) W (ty, ... tgyr)
for W : A¥ x Al > D holomorphic map. On the one hand, W is R,,-definable as a
function of the variables f;, hence Ry exp-definable as a function of the variables z;, 1 <
i <k, and the variables #;, k + 1 < j < k + [. On the other hand, exp(Z:f:1 z;N;) €
G(C) is polynomial in the variables z;, as the monodromies N; are nilpotent and commute
pairwise. As the action of G(C) on D is algebraic, it follows that S:VEx Al 5 Dis
Ran,exp-definable. The proof of Theorem 3.14 is thus reduced to the following, proven by
Schmid when k = 1,/ = 0 [82, 5.29]:

Theorem 3.15 ([11]). The image E(Vk x Al lies in a finite union of Siegel sets of D.

This can be interpreted as showing that, possibly after passing to a definable cover
of V¥ x A!, the Hodge form of & is Minkowski reduced with respect to a flat frame. This is
done using the hard analytic theory of Hodge forms estimates for degenerations of variations
of Hodge structure, as in [53, THEOREMS 3.4.1 AND 3.4.2] and [23, THEOREM 5.21].

Remark 3.16. Theorems 3.13 and 3.14 have been extended to the mixed case in [9].
3.6. Applications
3.6.1. About the Cattani-Deligne—Kaplan theorem

As a corollary of Theorems 3.14 and 3.10 one obtains the following, which, in view
of (2.3), implies immediately Theorem 3.1:
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Theorem 3.17 ([11]). Let S be a smooth quasiprojective complex variety. Let V be a polar-
ized ZVHS on S* with period map ® : S™ — T'\ D. For any special subvariety T'\D' C
I'\D, its preimage ®~1(I'"\ D’) is a finite union of irreducible algebraic subvarieties of S.

Indeed, it follows from Theorem 3.13 that I'"\ D’ is definable in (I"\ D )R, By The-
orem 3.14, its preimage ®~'(I"\D’) is definable in SR=er As & is holomorphic and
I'"\D’ C T\ D is a closed complex analytic subvariety, ®~!(I'"\ D’) is also a closed complex
analytic subvariety of S*". By Theorem 3.10, it is thus algebraic in S.

Remark 3.18. Theorem 3.17 has been extended to the mixed case in [9], thus recovering
[18-21].

Let Y C S be a closed irreducible algebraic subvariety. Let (Gy, Dy) C (G, D) be
the generic Hodge datum of V restricted to the smooth locus of of Y. There exist a smallest
Hodge subvariety 'y \ Dy of I'\ D containing ®(Y®"). The following terminology will be
convenient:

Definition 3.19. Let S be a smooth quasiprojective complex variety. Let V be a polarized
ZVHS on $* with period map ® : S* — I'\ D. A closed irreducible subvariety ¥ C S is
called a special subvariety of S for V if it coincides with an irreducible component of the
preimage ®~!(T'y\ Dy).

Equivalently, a special subvariety of S for V is a closed irreducible algebraic subva-
riety ¥ C § maximal among the closed irreducible algebraic subvarieties Z of S such that
the generic Mumford—Tate group Gz of V|z equals Gy.

3.6.2. A conjecture of Griffiths

Combining Theorem 3.14 this time with Theorem 3.12 leads to a proof of an old
conjecture of Griffiths [44], claiming that the image of any period map has a natural structure
of quasiprojective variety (Griffiths proved it when the target Hodge variety is compact):

Theorem 3.20 ([10]). Let S be a smooth connected quasiprojective complex variety and let
@ : S — I'\ D be a period map. There exists a unique dominant morphism of complex alge-
braic varieties f : S — T, with T quasiprojective, and a closed complex analytic immersion
t: T*™ — T\D such that ® = 1o f*.

Let us sketch the proof. As before, let S C S be a log-smooth compactification by a
simple normal crossing divisor Z. It follows from a result of Griffiths [43, PROP. 9.111)] that ©
extends to a proper period map over the components of Z around which the monodromy is
finite. Hence, without loss of generality, we can assume that @ is proper. The existence of f
in the category of algebraic spaces then follows immediately from Theorems 3.14 and 3.12
(for § = Rap,exp). The proof that T is in fact quasiprojective exploits a crucial observation of
Griffiths that '\ D carries a positively curved Q-line bundle £ := ®p det(F 7). This line
bundle is naturally definable on (I'\ D). Using the definable GAGA Theorem 3.11, one
shows that its restriction to 7% comes from an algebraic Q-line bundle L7 on T, which
one manages to show to be ample.
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4. FUNCTIONAL TRANSCENDENCE

4.1. Bialgebraic geometry

As we saw, Hodge theory, which compares the Hodge filtration on H g (X/C) with
the rational structure on Hy (X", C), gives rise to variational Hodge theory, whose funda-
mental diagram (2.2) compares the algebraic structure of S with the algebraic structure on
the dual period domain D. Assuch, itis a partial answer to one of the most classical problem
of complex algebraic geometry: the transcendental nature of the topological universal cover
of complex algebraic varieties. If S is a connected complex algebraic variety, the universal
cover S™ has usually no algebraic structure as soon as the topological fundamental group
1(S?) is infinite. As an aside, let us mention an interesting conjecture of Kéllar and Pardon
[6e], predicting that if X is a normal projective irreducible complex variety whose universal
cover X is biholomorphic to a semialgebraic open subset of an algebraic variety then X
is biholomorphic to C”* x D x F*, where D is a bounded symmetric domain and F is a
normal, projective, irreducible, topologically simply connected, complex algebraic variety.
We want to think of variational Hodge theory as an attempt to provide a partial algebraic
uniformization: the period map emulates an algebraic structure on S\"‘Y‘, modeled on the flag
variety D.The remaining task is then to describe the transcendence properties of the complex
analytic uniformization map p : S _, §an with respects to the emulated algebraic structure
on S™ and the algebraic structure S on S%". A few years ago, the author [55], together with
Ullmo and Yafaev [59], introduced a convenient format for studying such questions, which
encompasses many classical transcendence problems and provides a powerful heuristic.

Definition 4.1. A bialgebraic structure on a connected quasiprojective variety S over C is
a pair
(f : 8% = Z™ p: 7 (S™) — Aut(2))

where Z denotes an algebraic variety (called the algebraic model of 5"‘7"), Aut(Z) is its group
of algebraic automorphisms, p is a group morphism (called the monodromy representation)
and f is a p-equivariant holomorphic map (called the developing map).

An irreducible analytic subvariety ¥ C S s said to be an algebraic subvari-
ety of S for the bialgebraic structure (f, p) if ¥ is an analytic irreducible component of
[ (mlar) (where mZar denotes the Zariski-closure of f(Y) in Z). An irreducible
algebraic subvariety ¥ C S’\‘;“, resp. W C S, is said to be bialgebraic if p(Y) is an algebraic
subvariety of S, resp. any (equivalently one) analytic irreducible component of p~! (W) is
an irreducible algebraic subvariety of S The bialgebraic subvarieties of S are precisely the
ones where the emulated algebraic structure on S and the one on S interact nontrivially.

Example 4.2. (a) rori, S = (C*)". The uniformization map is the multiexponential
p = (exp(2mi-),...,exp(2mi+)) : C" — (C*)",

and f is the identity morphism of C”. An irreducible algebraic subvariety ¥ C C” (resp.
W C (C*)") is bialgebraic if and only if Y is a translate of a rational linear subspace of
C" = Q" ®q C (resp. W is a translate of a subtorus of (C*)").
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(b) abelian varieties, S = A is a complex abelian variety of dimension n. Let p : Lie A =~
C™ — A be the uniformizing map of a complex abelian variety A of dimension n. Once more
Sa — C” and f is the identity morphism. One checks easily that an irreducible algebraic
subvariety W C A is bialgebraic if and only if W is the translate of an abelian subvariety
of A.

(c) Shimura varieties, (G, D) is a Shimura datum. The quotient S** = I'\D (forI' C G :=
G*"(R)™ a congruence torsion-free lattice) is the complex analytification of a (connected)
Shimura variety Sh, defined over a number field (a finite extension of the reflex field of
(G, D)). And f is the open embedding D <> D™.

Let us come back to the case of the bialgebraic structure on S
(®:85™ - D™ p:m(S™) — T C G(Q))

defined by a polarized ZVHS V and its period map ® : $*" — '\ D with monodromy p :
71(S*) — T’ C G(Q) (in fact, all the examples above are of this form if we consider more
generally graded-polarized variations of mixed Z-Hodge structures). What are its bialgebraic
subvarieties? To answer this question, we need to define the weakly special subvarieties of
'\ D, as either a special subvariety or a subvariety of the form

Tu\Dg x {t} C Tg\Dy x T \DL C T\D,

where (H x L, Dy x Dyp) is a Hodge subdatum of (G*, D) and {t} is a Hodge generic
point in 't \ Dy . Generalizing Theorem 3.17, the preimage under ® of any weakly special
subvariety of '\ D is an algebraic subvariety of S [56]. An irreducible component of such a
preimage is called a weakly special subvariety of S for V (or ®).

Theorem 4.3 ([56]). Let @ : S* — '\ D be a period map. The bialgebraic subvarieties of
S for the bialgebraic structure defined by ® are precisely the weakly special subvarieties
of S for ®. In analogy with Definition 3.19, they are also the closed irreducible algebraic
subvarieties Y C S maximal among the closed irreducible algebraic subvarieties Z of S
whose algebraic monodromy group Hz equals Hy .

When S = Sh is a Shimura variety, these results are due to Moonen [65] and [91].
In that case the weakly special subvarieties are also the irreducible algebraic subvarieties of
Sh whose smooth locus is totally geodesic in Sh*" for the canonical Kihler—Einstein metric
on Sh* = I"\ D coming from the Bergman metric on D, see [65].

To study not only functional transcendence but also arithmetic transcendence, we
enrich bialgebraic structures over Q. A Q-bialgebraic structure on a quasi-projective variety
S defined over Q is a bialgebraic structure ( f : S zan p - 71(S*) — Aut(Z)) such
that Z is defined over Q and the homomorphism / takes values in Autg Z. An algebraic
subvariety Y C S is said to be defined over Q if its model mzm C Z is. A Q-bialgebraic
subvariety W C S is an algebraic subvariety of S defined over Q and such that any (equiv-
alently one) of the analytic irreducible components of p~1 (W) is an algebraic subvariety of
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S defined over Q. A Q-bialgebraic point s € S(Q) is also called an arithmetic point. Exam-
ple 4.2a) is naturally defined over Q, with arithmetic points the torsion points of (C*)”.
In Example 4.2b) the bialgebraic structure can be defined over Q if the abelian variety A
has CM, and its arithmetic points are its torsion points, see [9e]. Example 4.2c) is naturally
a Q-bialgebraic structure, with arithmetic points the special points of the Shimura vari-
ety (namely the special subvarieties of dimension zero), at least when the pure part of the
Shimura variety is of Abelian type, see [84]. In all these cases it is interesting to notice that the
Q-bialgebraic subvarieties are the bialgebraic subvarieties containing one arithmetic point
(in Example 4.2c) these are the special subvarieties of the Shimura variety).

The bi-algebraic structure associated with a period map @ : S* — I'\ D is defined
over Q as soon as S is. In this case, we expect the Q-bi-algebraic subvarieties to be precisely
the special subvarieties, see [55, 2.6 AND 3.4].

4.2. The Ax-Schanuel theorem for period maps

The geometry of bialgebraic structures is controlled by the following functional
transcendence heuristic, whose idea was introduced by Pila in the case of Shimura varieties,
see [73,74]:

Ax—Schanuel principle. Let S be an irreducible algebraic variety endowed with a non-trivial
bialgebraic structure. Let U C S x S he an algebraic subvariety (for the product bialge-
braic structure) and let W be an analytic irreducible component of U N A, where A denotes
the graph of p : S s S Then codimy W > dim Wbi, where W' denotes the smallest
bialgebraic subvariety of S containing p(W).

When applied to a subvariety U C S x San of the form ¥ x mzar forY c §@
algebraic, the Ax—Schanuel principle specializes to the following:

Ax—Lindemann principle. Let S be an irreducible algebraic variety endowed with a nontrivial
bialgebraic structure. Let Y C S be an algebraic subvariety. Then WZM is a bialgebraic
subvariety of S.

AXx [5, 6] showed that the abstract Ax—Schanuel principle holds true for Exam-
ple 4.2a) and Example 4.2b) above, using differential algebra. Notice that the Ax—Lindemann
principle in Example 4.2a) is the functional analog of the classical Lindemann theorem stat-
ing that if oy, ..., o, are Q-linearly independent algebraic numbers then e®!, ..., e* are
algebraically independent over Q. This explains the terminology. The Ax-Lindemann prin-
ciple in Example 4.2¢c) was proven by Pila [72] when S is a product Y (1)" x (C*)*, by
Ullmo—Yafaev [92] for projective Shimura varieties, by Pila—Tsimerman [76] for g, and by
Klingler—Ullmo—Yafaev [s8] for any pure Shimura variety. The full Ax—Schanuel principle
was proven by Mok—Pila—Tsimerman for pure Shimura varieties [64].

We conjectured in [55, cond. 7.5] that the Ax-Schanuel principle holds true for the
bi-algebraic structure associated to a (graded-)polarized variation of (mixed) ZHS on an
arbitrary quasiprojective variety S. Bakker and Tsimerman proved this conjecture in the
pure case:
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Theorem 4.4 (Ax—Schanuel for ZVHS, [12]). Let ® : S*™ — T'\ D be a period map. Let
V CSxDbean algebraic subvariety. Let U be an irreducible complex analytic component
of W N (S xp\p D) such that

codimsxp U < codimg, ;5 W + codimsxp (S xr\p D). 4.1
Then the projection of U to S is contained in a strict weakly special subvariety of S for ®.

Remark 4.5. The results of [64] were extended by Gao [39] to mixed Shimura varieties of
Kuga type. Recently the full Ax—Schanuel [55, coNJ. 7.5] for variations of mixed Hodge struc-
tures has been fully proven independently in [4e] and [26].

The proof of Theorem 4.4 follows a strategy started in [58] and fully developed in
[64] in the Shimura case, see [88] for an introduction. It does not use Theorem 3.14, but only a
weak version equivalent to the Nilpotent Orbit Theorem, and relies crucially on the definable
Chow Theorem 3.10, the Pila—Wilkie Theorem 3.8, and the proof that the volume (for the
natural metric on I'\ D) of the intersection of a ball of radius R in I'\ D with the horizon-
tal complex analytic subvariety ®(S*") grows exponentially with R (a negative curvature
property of the horizontal tangent bundle).

4.3. On the distribution of the Hodge locus

Theorem 4.4 is most useful, even in its simplest version of the Ax—Lindemann the-
orem. After Theorem 3.1 one would like to understand the distribution in S of the special
subvarieties for V. For instance, are there any geometric constraints on the Zariski closure of
HL(S, V®)? To approach this question, let us decompose the adjoint group G*¢ into a prod-
uct G x --- x G, of its simple factors. It gives rise (after passing to a finite étale covering if
necessary) to a decomposition of the Hodge variety I'\ D into a product of Hodge varieties
'\D; x---x '\ D,. A special subvariety Z of S for V is said of positive period dimension
if dimg ©(Z*) > 0; and of factorwise positive period dimension if, moreover, the projec-
tion of ®(Z*") on each factor I';\ D; has positive dimension. The Hodge locus of factorwise
positive period dimension HL(S, V®)g,, is the union of the strict special subvarieties of
positive period dimension, it is contained in the Hodge locus of positive period dimension
HL(S, V®),,s union of the strict special subvarieties of positive period dimension, and the
two coincide if G* is simple.

Using the Ax—Lindemann theorem special case of Theorem 4.4 and a global alge-
braicity result in the total bundle of V, Otwinowska and the author proved the following:

Theorem 4.6 ([56]). Let V be a polarized ZVHS on a smooth connected complex quasi-
projective variety S. Then either HL(S, V®)fp0S is Zariski-dense in S; or it is an algebraic
subvariety of S (i.e., the set of strict special subvarieties of S for V of factorwise positive
period dimension has only finitely many maximal elements for the inclusion).

Example 4.7. The simplest example of Theorem 4.6 is the following. Let § C Ag be a
Hodge-generic closed irreducible subvariety. Either the set of positive-dimensional closed
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irreducible subvarieties of S which are not Hodge generic has finitely many maximal ele-
ments (for the inclusion), or their union is Zariski-dense in S

Example 4.8. Let B C PH°(P2, O(d)) be the open subvariety parametrizing the smooth
surfaces of degree d in ]P’é. Suppose d > 3. The classical Noether theorem states that any
surface Y C ]P’(é corresponding to a very general point [Y] € B has Picard group Z: every
curve on Y is a complete intersection of ¥ with another surface in Pé. The countable union
NL(B) of closed algebraic subvarieties of B corresponding to surfaces with bigger Picard
group is called the Noether—Lefschetz locus of B. Let V — B be the ZVHS R? f*Zprim,
where f : ¥ — B denotes the universal family of surfaces of degree d. Clearly NL(B) C
HL(B, V®). Green (see [94, PRoP. 5.28]) proved that NL(B), hence also HL(B, V®), is
analytically dense in B. Now Theorem 4.6 implies the following: Let S C B be a Hodge-
generic closed irreducible subvariety. Either S N HL(B, V®)g, contains only finitely many
maximal positive-dimensional closed irreducible subvarieties of S, or the union of such sub-
varieties is Zariski-dense in S'.

5. TYPICAL AND ATYPICAL INTERSECTIONS: THE ZILBER—-PINK

CONJECTURE FOR PERIOD MAPS

5.1. The Zilber-Pink conjecture for ZVHS: Conjectures

In the same way that the Ax—Schanuel principle controls the geometry of bialge-
braic structures, the diophantine geometry of Q-bialgebraic structures is controlled by the
following heuristic:

Atypical intersection principle. Let S be an irreducible algebraic Q-variety endowed with
a Q-bialgebraic structure. Then the union Satyp of atypical Q-bialgebraic subvarieties of S
is an algebraic subvariety of S (i.e., it contains only finitely many atypical Q-bialgebraic
subvarieties maximal for the inclusion).

Here a Q-bialgebraic subvariety ¥ C S is said to be atypical for the given bial-
gebraic structure on S if it is obtained as an excess intersection of f (S%) with its model

~—Zar
f(Y) C Z;and Suyp denotes the union of all atypical subvarieties of S. As a particular

case of the atypical intersection principle:

Sparsity of arithmetic points principle. Let S be an irreducible algebraic Q-variety endowed
with a Q-bialgebraic structure. Then any irreducible algebraic subvariety of S containing
a Zariski-dense set of atypical arithmetic points is a Q-bialgebraic subvariety.

This principle that arithmetic points are sparse is a theorem of Mann [63] in Exam-
ple 4.2a). For abelian varieties over Q (Example 4.2b)), this is the Manin—Mumford conjec-
ture proven first by Raynaud [8e], saying that an irreducible subvariety of an abelian variety
over Q containing a Zariski-dense set of torsion point is the translate of an abelian subva-
riety by a torsion point. For Shimura varieties of abelian type (Example 4.2c)), this is the
classical André-Oort conjecture [1, 67] stating that an irreducible subvariety of a Shimura
variety containing a Zariski-dense set of special points is special. It has been proven in this
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case using tame geometry and following the strategy proposed by Pila—Zannier [78] (let us
mention [3,58,72,76,87,89,98]; and [38] in the mixed case; see [59] for a survey). Recently the
André—Oort conjecture in full generality has been obtained in [75], reducing to the case of
abelian type using ingredients from p-adic Hodge theory. We refer to [99] for many examples
of atypical intersection problems.

In the case of Shimura varieties (Example 4.2¢)) the general atypical intersection
principle is the Zilber—Pink conjecture [51,79,1@0]. Only very few instances of the Zilber—Pink
conjecture are known outside of the André—Oort conjecture, see [27, 49, 50], for example.

For a general polarized ZVHS V with period map & : §*" — I'\ D, which we can
assume to be proper without loss of generality, we already mentioned that even the geometric
characterization of the Q-bialgebraic subvarieties as the special subvarieties is unknown.
Replacing the Q-bialgebraic subvarieties of S by the special ones, we define:

Definition 5.1. A special subvariety Z = ®~1(I'z\Dz)? C S is said atypical if either Z
is singular for V (meaning that ®(Z") is contained in the singular locus of the complex
analytic variety ®(S*")), or if ®(5*") and I'z\ Dz do not intersect generically along ®(Z):

codimpyp ®(Z™) < codimp\p P(S™) 4 codimpr\p ['z\Dz.
Otherwise, it is said to be typical.

Defining the atypical Hodge locus HL(S, V®),y, C HL(S, V®) as the union of the
atypical special subvarieties of S for V, we obtain the following precise atypical intersection
principle for ZVHS, first proposed in [55] in a more restrictive form:

Conjecture 5.2 (Zilber-Pink conjecture for ZVHS, [13,55]). Let V be a polarizable ZVHS
on an irreducible smooth quasiprojective variety S. The atypical Hodge locus HL(S, V®) 4y,
is a finite union of atypical special subvarieties of S for V. Equivalently, the set of atypical
special subvarieties of S for V has finitely many maximal elements for the inclusion.

Notice that this conjecture is in some sense more general than the above atypical
intersection principle, as we do not assume that S is defined over Q; this has to be compared
to the fact that the Manin—-Mumford conjecture holds true for every complex abelian variety,
not necessarily defined over Q.

Example 5.3. Recently Baldi and Ullmo [14] proved a special case of Conjecture 5.2 of much
interest. Margulis® arithmeticity theorem states that any lattice in a simple real Lie group G
of real rank at least 2 is arithmetic: it is commensurable with a group G(Z), for G a Q-
algebraic group such that G(R) = G up to a compact factor. On the other hand, the structure
of lattices in a simple real Lie group of rank 1, like the group PU(#n, 1) of holomorphic
isometries of the complex unit ball B{. endowed with its Bergman metric, is an essentially
open question. In particular, there exist nonarithmetic lattices in PU(n, 1), n = 2, 3. Let
t: A = PU(n, 1) be a lattice. The ball quotient S*" := A\Bg is the analytification of a
complex algebraic variety S. By results of Simpson and Esnault-Groechenig, there exists a
ZNHS @ : §* — T'\(B¢ x D') with monodromy representation p : A — PU(n, 1) x G’
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whose first factor A — PU(n, 1) is the rigid representation ¢. The special subvarieties of
S for V are the totally geodesic complex subvarieties of S*". When A is nonarithmetic,
they are automatically atypical. In accordance with Conjecture 5.2 in this case, Baldi and
Ullmo prove that if A is nonarithmetic, then S*" contains only finitely many maximal totally
geodesic subvarieties. This result has been proved independently by Bader, Fisher, Miller,
and Stover [7], using completely different methods from homogeneous dynamics.

Among the special points for a ZVHS V, the CM-points (i.e., those for which the
Mumford-Tate group is a torus) are always atypical except if the generic Hodge datum
(G, D) is of Shimura type and the period map ® is dominant. Hence, as explained in [s5,
SECTION 5.2], Conjecture 5.2 implies the following:

Conjecture 5.4 (André—Oort conjecture for ZVHS, [551). Let V be a polarizable ZVHS on
an irreducible smooth quasiprojective variety S. If S contains a Zariski-dense set of CM-
points then the generic Hodge datum (G, D) of V is a Shimura datum, and the period map
@ : §* — '\ D is an algebraic map, dominant on the Shimura variety T'\ D.

Example 5.5. Consider the Calabi—Yau Hodge structure V' of weight 3 with Hodge numbers
h3% = h%1 = 1 given by the mirror dual quintic. Its universal deformation space S is the
projective line minus 3 points, which carries a ZVHS V of the same type. This gives a non-
trivial period map @ : S* — '\ D, where D = Sp(4,R)/U(1) x U(1) is a 4-dimensional
period domain. This period map is known not to factorize through a Shimura subvariety (its
algebraic monodromy group is Sp,). Conjecture 5.4 in that case predicts that S contains only
finitely many points CM-points s. A version of this prediction already appears in [48]. The
more general Conjecture 5.2 also predicts that S’ contains only finitely many points s where
Vs splits as a direct sum of two (Tate twisted) weight one Hodge structures (VS2 1o Vsl’z)
and its orthogonal for the Hodge metric (Vf’o oV ’3) (the so-called “rank two attractors”

points, see [66]).

Conjecture 5.2 about the atypical Hodge locus takes all its meaning if we compare
it to the expected behavior of its complement, the fypical Hodge locus HL(S, V&), =
HL(S, V®) \ HL(S, V& ):

Conjecture 5.6 (Density of the typical Hodge locus, [13]). IfHL(S, V®)typ is not empty then
it is dense (for the analytic topology) in S*".

Conjectures 5.2 and 5.6 imply immediately the following, which clarifies the possi-
ble alternatives in Theorem 4.6:

Conjecture 5.7 ([13]). Let V be a polarizable ZVHS on an irreducible smooth quasi-
projective variety S. If HL(S, V®)y, is empty then HL(S, V®) is algebraic; otherwise,
HL(S, V®) is analytically dense in S™.
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5.2. The Zilber-Pink conjecture for ZVHS: Results

In [13] Baldi, Ullmo, and I establish the geometric part of Conjecture 5.2: the max-
imal atypical special subvarieties of positive period dimension arise in a finite number of
families whose geometry is well understood. We cannot say anything on the atypical locus
of zero period dimension (for which different ideas are certainly needed):

Theorem 5.8 (Geometric Zilber-Pink, [13]). Let V be a polarizable Z.VHS on a smooth
connected complex quasiprojective variety S. Let Z be an irreducible component of the
Zariski closure of HL(S, V®)pos’atyp ;= HL(S, V‘X’)pos N HL(S, V®)atyp in S. Then:

(a) Either Z is a maximal atypical special subvariety,

(b) Or the generic adjoint Hodge datum (G, Dg,) decomposes as a nontrivial
product (G', D") x (G”, D"), inducing (after replacing S by a finite étale cover
if necessary)

®jzm = (¥, ") : Z" — Tg,\Dg, = ['\D' x T”"\D" C T\D,

such that Z contains a Zariski-dense set of atypical special subvarieties for ®"
of zero period dimension. Moreover, Z is Hodge generic in the special subva-
riety ®1(Tg,\Dg,)° of S for @, which is typical.

Conjecture 5.2, which also takes into account the atypical special subvarieties of
zero period dimension, predicts that the branch (b) of the alternative in the conclusion of The-
orem 5.8 never occurs. Theorem 5.8 is proven using properties of definable sets and the
Ax—Schanuel Theorem 4.4, following an idea originating in [89].

As an application of Theorem 5.8, let us consider the Shimura locus of S for V,
namely the union of the special subvarieties of S for V which are of Shimura type (but
not necessarily with dominant period maps). In [55], I asked (generalizing the André—Oort
conjecture for ZVHS) whether a polarizable ZVHS V on § whose Shimura locus in Zariski-
dense in S is necessarily of Shimura type. As a corollary of Theorem 5.8 we obtain:

Theorem 5.9 ([13]). Let V be a polarizable Z.VHS on a smooth irreducible complex quasi-
projective variety S, with generic Hodge datum (G, D). Suppose that the Shimura locus of
S for V of positive period dimension is Zariski-dense in S. If G* is simple then V is of
Shimura type.

5.3. On the algebraicity of the Hodge locus

In view of Conjecture 5.7, it is natural to ask if there a simple combinatorial crite-
rion on (G, D) for deciding whether HL(S, V),y, is empty. Intuitively, one expects that the
more “complicated” the Hodge structure is, the smaller the typical Hodge locus should be,
due to the constraint imposed by Griffiths’ transversality. Let us measure the complexity of
V by its level: when G* is simple, it is the greatest integer k such that g7 £ 0 in the
Hodge decomposition of the Lie algebra g of G; in general one takes the minimum of these
integers obtained for each simple Q-factor of G*. While strict typical special subvarieties
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usually abound for ZVHSs of level one (e.g., families of abelian varieties, see Example 4.7;
or families of K3 surfaces) and can occur in level two (see Example 4.8), they do not exist
in level at least three!

Theorem 5.10 ([13]). Let V be a polarizable ZVHS on a smooth connected complex quasi-
projective variety S. If V is of level at least 3 then HL(S, V®)y, = @ (and thus HL(S, V®) =
HL(S, V&)uyp).

The proof of Theorem 5.10 is purely Lie-theoretic. Let (G, D) be the generic Hodge
datum of V and ® : §* — T\ D its period map. Suppose that ¥ C S is a typical special
subvariety, with generic Hodge datum (Gy, Dy). The typicality condition and the horizon-
tality of the period map @ imply that g = g~ for all i > 2 (for the Hodge structures
on the Lie algebras gy and g defined by some point of Dy ). Under the assumption that V
has level at least 3, we show that this is enough to ensure that gy = g, hence Y = S. Hence
there are no strict typical special subvariety.

Notice that Conjecture 5.2 and Theorem 5.10 imply:

Conjecture 5.11 (Algebraicity of the Hodge locus in level at least 3, [13]). Let V be a polar-
izable ZZVHS on a smooth connected complex quasiprojective variety S. If V is of level at
least 3 then HL(S, V®) is algebraic.

The main result of [13], which follows immediately from Theorems 5.8 and 5.10, is
the following stunning geometric reinforcement of Theorems 3.1 and 4.6:

Theorem 5.12 ([13]). If V is of level at least 3 then HL(S, V®)p,0s is algebraic.

As a simple geometric illustration of Theorem 5.12, we prove the following, to be
contrasted with the n = 2 case (see Example 4.8):

Corollary 5.13. Let Pg("’d) be the projective space parametrizing the hypersurfaces X
ofPﬁé+1 of degree d (where N(n,d) = ("+Z+l) —1). Let U, 4 C Pg("’d) be the Zariski-
open subset parametrizing the smooth hypersurfaces X and let V — U, 4 be the ZVHS
corresponding to the primitive cohomology H" (X, Z)prim. If n > 3 and d > 5, then
HL(Up 4, V®)pos C Uy 4 is algebraic.

5.4. On the typical Hodge locus in level one and two
In the direction of Conjecture 5.6, we obtain:

Theorem 5.14 (Density of the typical locus, [13]). Let V be a polarized ZVHS on a smooth
connected complex quasiprojective variety S. If the typical Hodge locus HL(S, V‘X’)[yp is
nonempty (hence the level of V is one or two by Theorem 5.10) then HL(S, V®) is analyti-
cally (hence Zariski) dense in S.

Notice that, in Theorem 5.14, we also treat the typical Hodge locus of zero period
dimension. Theorem 5.14 is new even for S a subvariety of a Shimura variety. Its proof is
inspired by the arguments of Chai [24] in that case.
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It remains to find a criterion for deciding whether, in level one or two, the typical
Hodge locus HL(S, V®),y, is empty or not. We refer to [57, THEOREM 2.15] and [8s, 86] for
results in this direction.

6. ARITHMETIC ASPECTS
We turn briefly to some arithmetic aspects of period maps.

6.1. Field of definition of special subvarieties

Once more the geometric case provides us with a motivation and a heuristic. Let
f : X — S be a smooth projective morphism of connected algebraic varieties defined over
a number field L C C and let V be the natural polarizable ZVHS on S*" with underlying
local system R*® f,2"Z. In that case, the Hodge conjecture implies that each special subvariety
Y of S for V is defined over Q and that each of the Gal(Q/L)-conjugates of Y is again
a special subvariety of S for V. More generally, let us say that a polarized ZVHS V =
(Vz,(V, F*,V),q) on S is defined over a number field L. C C if S, 'V, F*® and V are
defined over L (with the obvious compatibilities).

Conjecture 6.1. Let V be a ZVHS defined over a number field L C C. Then any special
subvariety of S for V is defined over Q, and any of its finitely many Gal(Q/L)-conjugates
is a special subvariety of S for V.

There are only few results in that direction: see [95, THEOREM @.6] for a proof under a
strong geometric assumption; and [81], where it is shown that when S (not necessarily V) is
defined over @, then a special subvariety of S for V is defined over Q if and only if it contains
a Q-point of S. In [57] Otwinowska, Urbanik, and I provide a simple geometric criterion for
a special subvariety of S for V to satisfy Conjecture 6.1. In particular we obtain:

Theorem 6.2 ([57]). Let V be a polarized ZVHS on a smooth connected complex quasi-
projective variety S. Suppose that the adjoint generic Mumford—Tate group G of V is
simple. If S is defined over a number field L, then any maximal (strict) special subvari-
ety Y C S of positive period dimension is defined over Q. If. moreover, V is defined over L
then the finitely many Gal(Q/ L)-translates of Y are special subvarieties of S for V.

As a corollary of Theorems 5.12 and 6.2, one obtains the following, which applies
for instance in the situation of Corollary 5.13.

Corollary 6.3. Let V be a polarized variation of Z-Hodge structure on a smooth connected
quasiprojective variety S. Suppose that V is of level at least 3, and that it is defined over Q.
Then HL(S, V®) 05 is an algebraic subvariety of S, defined over Q.

It is interesting to notice that Conjecture 5.11, which is stronger than Theorem 5.12,
predicts the existence of a Hodge generic Q-point in S for V in the situation of Corollary 6.3.
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As the criterion given in [57] is purely geometric, it says nothing about fields of
definitions of special points. It is, however, strong enough to reduce the first part of Conjec-
ture 6.1 to this particular case:

Theorem 6.4. Special subvarieties for Z.VHSs defined over Q are defined over Q if and only
if it holds true for special points.

6.2. Absolute Hodge locus

Interestingly, Conjecture 6.1 in the geometric case follows from an a priori much
weaker conjecture than the Hodge conjecture. Let f : X — S be a smooth projective mor-
phism of smooth connected complex quasiprojective varieties. For any automorphism o €
Aut(C/Q), we can consider the algebraic family f° : X° — S°, whereo™1: S = § x¢c o
C 5 S is the natural isomorphism of abstract schemes; and the attached polarizable ZVSH
VO = (Vg, V7, F*?,V?) with underlying local system VJ = R f°{'Z on (S?)*. The
algebraic construction of the algebraic de Rham cohomology provides compatible canonical
comparison isomorphisms (7 : (V, F*?,V?) = 0_1*('\7, F*, V) of the associated alge-
braic filtered vector bundles with connection. More generally, a collection of ZVHS (V)
with such compatible comparison isomorphisms is called a (de Rham) motivic variation of
Hodge structures on S, in which case we write V := V!¢, Following Deligne (see [25] for a
nice exposition), an absolute Hodge tensor for such a collection is a Hodge tensor o for Vj

qgr of the de Rham component of « defines a Hodge tensor

such that the conjugates o~
in Vg( 5) for all 0. The generic absolute Mumford—Tate group for (V7). is defined in terms
of the absolute Hodge tensors as the generic Mumford-Tate group is defined in terms of the

Hodge tensors. Thus G C GA!. In view of Definition 3.19 the following is natural:

Definition 6.5. Let (V?), be a (de Rham) motivic variation of Hodge structure on a smooth
connected complex quasiprojective variety S. A closed irreducible algebraic subvariety Y
of S is called absolutely special if it is maximal among the closed irreducible algebraic
subvarieties Z of S satisfying G5 = G,

In the geometric case, the Hodge conjecture implies, since any automorphism o €
Aut(C/Q) maps algebraic cycles in X to algebraic cycles on X, the following conjecture
of Deligne:

Conjecture 6.6 ([33]). Let (V9)q be a (de Rham) motivic variation of Hodge structure on
S. Then all Hodge tensors are absolute Hodge tensors, i.e., G = GAH.

This conjecture immediately implies:

Conjecture 6.7. Let (V)4 be a (de Rham) motivic variation of Hodge structure on S. Then
any special subvariety of S for V is absolutely special for (V).

Let us say that a (de Rham) motivic variation (V?), is defined over Q if V7 =
V for all o € Aut(C/Q). In the geometric case, any morphism f : X — S defined over
Q defines such a (de Rham) motivic variation (V?), over Q. Notice that the absolutely
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special subvarieties of S for (V)4 are then by their very definition defined over Q, and
their Galois conjugates are also special. In particular, Conjecture 6.7 implies Conjecture 6.1
in the geometric case. As proven in [95], Deligne’s conjecture is actually equivalent to a
much stronger version of Conjecture 6.1, where one replaces the special subvarieties of S
(components of the Hodge locus) with the special subvarieties in the total bundle of 'V®
(components of the locus of Hodge tensors).

Recently T. Kreutz, using the same geometric argument as in [57], justified Theo-
rem 6.2 by proving:

Theorem 6.8 ([62]). Let (V)4 be a (de Rham) motivic variation of Hodge structure on S.
Suppose that the adjoint generic Mumford—Tate group G is simple. Then any strict maximal
special subvariety Y C S of positive period dimension for V is absolutely special.

We refer the reader to [61], as well as [93], for other arithmetic aspects of Hodge loci
taking into account not only the de Rham incarnation of absolute Hodge classes but also
their £-adic components.
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