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Abstract

We survey some recent developments in the study of canonical Kähler metrics on algebraic
varieties and their relation with stability in algebraic geometry.
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The study of canonical Kähler metrics on algebraic varieties is a very active program
in complex geometry. It is a common playground of several fields: differential geometry,
partial differential equations, pluripotential theory, birational algebraic geometry, and non-
Archimedean analysis. We will try to give the reader a tour of this vast program, emphasizing
recent developments and highlighting interactions of different concepts and techniques. This
article consists of three parts. In the first part, we discuss important classes of canonical
Kähler metrics, and explain a well-established variational formalism for studying their exis-
tence. In the second part, we discuss algebraic aspects by reviewing recent developments
in the study of K-stability with the help of deep tools from algebraic geometry and non-
Archimedean analysis. In the third part, we discuss how the previous two parts are connected
with each other. In particular, we will discuss the Yau–Tian–Donaldson (YTD) conjecture
for canonical Kähler metrics in the first part.

1. Canonical Kähler metrics on algebraic varieties

1.1. Constant scalar curvature Kähler metrics
Let X be an n-dimensional projective manifold equipped with an ample line

bundle L. By Kodaira’s theorem, we have an embedding �m W X ! P N by using a complete
linear system jmLj form � 1. If we denote by hFS the standard Fubini–Study metric on the
hyperplane bundle over P N with Chern curvature !FS D �ddc loghFS, then h0 D ��mh

1=m
FS is

a smooth Hermitian metric on L whose Chern curvature !0 D
1
m
��m!FS D �ddc log h0 is a

Kähler form in c1.L/ 2 H 2.X;R/. In this paper we will use the convention ddc D

p
�1

2�
@N@.

We will also use singular Hermitian metrics. An upper-semicontinuous function
' 2 L1.!n/ is called an !0-psh potential if  C ' is a plurisubharmonic function for any
local potential of!0 (i.e.,!0 D ddc locally); h' WD h0e

�' is then called a psh Hermitian
metric on L. Denote by PSH.!0/ the space of !0-psh functions. By a @N@-lemma, any closed
positive .1; 1/-current in c1.L/ is of the form !' WD !0 C ddc' D �ddc log h' with ' 2

PSH.!0/. Moreover, !'2 D !'1 if and only if '2 � '1 is a constant. Define the space of
smooth strictly !0-psh potentials (also called Kähler potentials) by

H WD H .!0/ D
®
' 2 C1.X/ W !' D !0 C ddc' > 0

¯
: (1.1)

Fix any ' 2 H . If !' D
p

�1
P

i;j .!'/i Njdzi ^ d Nzj under a holomorphic coordinate chart,
then its Ricci curvature form Ric.!'/ D

p
�1

2�

P
i;j Ri Njdzi ^ d Nzj is given by

Ri Nj WD Ric.!'/i Nj D �
@2 log det..!'/k Nl /

@zi@ Nzj
:

Then Ric.!'/ is a real closed .1;1/-form which represents the cohomology class c1.�KX /DW

c1.X/. Here �KX D ^nT .1;0/X is the anticanonical line bundle ofX . The scalar curvature
of !' is given by the contraction

S.!'/ D !i Nj
'

�
Ric.!'/

�
i Nj

D
n � Ric.!'/ ^ !n�1

'

!n
'

:
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Further, !' is called a constant scalar curvature Kähler (cscK) metric if S.!'/ is the con-
stant S which is the average scalar curvature and is determined by cohomology classes:

S D
nhc1.X/ � c1.L/

�n�1; ŒX�i

V
with V D

˝
c1.L/

�n; ŒX�
˛
: (1.2)

The Kähler potential of a cscK metric is a solution to a 4th order nonlinear PDE. In gen-
eral, there are obstructions to the existence of cscK metrics. For example, the Matsushima–
Lichnerowicz theorem states that if .X; L/ admits a cscK metric then the automorphism
group Aut.X;L/ must be reductive. Our goal is to discuss the Yau-Tian-Donaldson conjec-
ture which would provide a sufficient and necessary algebraic criterion for the existence of
cscK metrics.

1.2. Kähler–Einstein metrics and weighted Kähler–Ricci soliton
Kähler–Einstein metrics form an important class of cscK metrics. A Kähler form

!' is called Kähler–Einstein (KE) if Ric.!'/ D �!' for a real constant �. A necessary
condition for the existence of KE metrics is that the cohomology class c1.X/ 2 H 2.X;R/

is either negative, numerically trivial, or positive. The existence for the first two cases was
understood in 1970s: there always exists a Kähler–Einstein metric if c1.X/ is negative (by
the work of Aubin and Yau), or if c1.X/ is numerically trivial (by the work of Yau).

Now we assume that X is a Fano manifold. In other words, �KX is an ample line
bundle, and we set L D �KX . Any ' 2 H corresponds to a volume form

�' WD js�
j
2
h'
.
p

�1/n
2

s ^ Ns D �0e
�' with s D dz1 ^ � � � ^ dzn; s

�
D @z1 ^ � � � ^ @zn :

The KE equation in this case is reduced to a complex Monge–Ampère equation for ', namely

.! C ddc'/n D e�'�0:

We also consider an interesting generalization of Kähler–Einstein metrics on Fano manifolds
with torus actions. Assume that T Š .C�/r is an algebraic torus and T Š .S1/r � T is a
compact real subtorus. We will use the following notation:

NZ D Homalg.C
�;T /; NQ D NZ ˝Z Q; NR D NZ ˝Z R: (1.3)

Assume that T acts faithfully onX . Then there is an induced T -action on �KX . Each � 2NR

corresponds to a holomorphic vector field V� on X . Denote by H T the set of T -invariant
Kähler potentials. For any ' 2 H T , the T -action becomes Hamiltonian with respect to !' .
Denote by m' W X ! N �

R Š Rr the corresponding moment map, and let P be the image of
m' . By a theorem of Atiyah–Guillemin–Sternberg, P is a convex polytope which depends
only on the Kähler class c1.L/. Let g W P ! R be a smooth positive function. The following
equation will be called the g-weighted soliton (or just g-soliton) equation for ' 2 H .�KX /

T .

g.m'/.!0 C ddc'/n D e�'�0:

An equivalent tensorial equation is given by Ric.!'/ D !' C ddc logg.m'/.

Example 1.1. If g.y/D e�hy;�i, then the above equation becomes the standard Kähler–Ricci
soliton equation Ric.!'/ D !' C LV�

!' where L denotes the Lie derivative.
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1.3. Kähler–Einstein metrics on log Fano pairs
Singular algebraic varieties and log pairs are important objects in algebraic geom-

etry, and appear naturally for studying limits of smooth varieties. It is thus natural to study
canonical Kähler metric on general log pairs. We recall a definition from birational alge-
braic geometry. Let X be a normal projective variety and D be a Q-Weil divisor. Assume
that KX CD is Q-Cartier. Let � W Y ! X be a resolution of singularities of .X;D/ with
simple normal crossing exceptional divisors

P
i Ei . We then have an identity

KY D ��.KX CD/C

X
i

aiEi : (1.4)

Here A.X;D/.Ei / WD ai C 1 is called the log discrepancy of Ei . The pair .X; D/ has klt
singularities if A.X;D/.Ei / > 0 for any Ei . We will always assume that .X;D/ has klt sin-
gularities.

If KX C D is ample or numerically trivial, Yau and Aubin’s existence result had
been generalized to the singular and log case in [32], partly based on Kołodziej’s pluripoten-
tial estimates. There were many related works by Yau, Tian, H. Tsuji, Z. Zhang, and many
others.

Now we assume that �.KX CD/ is ample and call .X;D/ a log Fano pair. Then
one can consider Kähler–Einstein equation or, more generally, g-soliton equation on .X;D/.
Note that there is a globally defined volume form as in the smooth case: choose a local
trivializing section s ofm.KX CD/with the dual s� and define�0 D js�j

2=m

h0
.
p

�1
mn2

s ^

Ns/1=m. Assume that T acts on X faithfully and preserves the divisor D. With the notation
from before, we say that ' is the potential for a g-weighted soliton on .X;D/ if ' is a bounded
!0-psh function that satisfies the equation

g.m'/.! C ddc'/n D e�'�0: (1.5)

For any bounded ' 2 PSH.!0/, the g-weighted Monge–Ampère measure on the left-hand
side of (1.5) is well defined by the work of Berman–Witt–Nyström [10] and also by Han–
Li [38], generalizing the definition of Bedford–Taylor (when g D 1). It is known that any
bounded solution ', if it exists, is orbifold smooth over the orbifold locus of .X;D/. More-
over, if p is a regular point of supp.D/ such that D D .1 � ˇ/¹z1 D 0º locally for a holo-
morphic function z1 (with ˇ 2 .0; 1�), then the associated Kähler metric is modeled by
Cˇ � Cn�1 where Cˇ D .C; dr2 C ˇ2r2d�2/ is the 2-dimensional flat cone with cone
angle 2�ˇ.

1.4. Ricci-flat Kähler cone metrics
The class of Ricci-flat Kähler cone metrics is closely related to KE/g-soliton met-

rics, and is interesting in both complex geometry and mathematical physics (see [57]).
Let Y D Spec.R/ be an .nC 1/-dimensional normal affine variety with a singularity

o 2 Y . Assume that an algebraic torus OT Š .C�/rC1 acts faithfully on Y , with o being the
only fixed point. Define ONQ, ONR similar to (1.3). The OT -action corresponds to a weight
decomposition of the coordinate ring R D

L
˛2ZrC1 R˛ . The Reeb cone can be defined as

ONC

R D
®
� 2 ONR W h˛; �i > 0 for all ˛ 2 ZrC1

n ¹0º with R˛ ¤ 0
¯
:
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Any O� 2 ONC

R is called a Reeb vector and corresponds to an expanding holomorphic vector
field V O�

. Assume, furthermore, that Y is Q-Gorenstein and there is a OT -equivariant
nonvanishing section s 2 jmKY j, which induces a OT -equivariant volume form dVY D

.
p

�1
m.nC1/2

s ^ Ns/1=m on Y . We call the data .Y; O�/ with O� 2 ONC

R a polarized Fano cone.
Let OT Š .S1/rC1 be a compact real subtorus of OT . A OT -invariant function r W Y !

R�0 is called a radius function for O� 2 ONC

R if b! D ddcr2 is a Kähler cone metric on Y � D

Y n ¹oº and 1
2
.r@r �

p
�1J.r@r // D V O�

. Here J is a complex structure on Y � and b! is
called a Kähler cone metric if G WD

1
2
b!.�; J �/ on Y � is isometric to dr2 C r2GS where

S D ¹r D 1º and GS D GjS . In the literature of CR geometry, the induced structure on the
linkS by a Kähler cone metric is called a Sasaki structure. Alsob!D ddcr2 is called Ricci-flat
if Ric.b!/ D 0. In this case, the radius function satisfies the equation (up to rescaling)

.ddcr2/nC1
D dVY :

If O� 2 ONQ, thenb! is called quasiregular, and V O�
generates a C�-subgroup h O�i of OT . The GIT

quotient X D Y ==h O�i admits an orbifold structure encoded by a log Fano pair .X; D/. A
straightforward calculation shows that a quasiregular .Y; O�/ admits a Ricci-flat Kähler cone
metric if and only if .X;D/ admits a Kähler–Einstein metric.

In general, there are many irregular Ricci-flat Kähler cone metrics, i.e., with O� 2

ONR n ONQ. Recent works by Apostolov–Calderbank–Jubert–Lahdili establish an equivalence
between Ricci-flat Kähler cone metrics and special g-soliton metrics. More precisely, fix any
O� 2 ONC

Q and consider the quotient .X;D/ D Y ==h O�i as above. It is shown in [2] (see also
[47]) that the Ricci-flat Kähler cone metric on .Y; O�/ is equivalent to the g-soliton metric on
.X;D/ with g.y/ D .nC 1C hy; �i/�n�2 where � (equivalently, V� ) is induced by O� on X .

1.5. Analytic criteria for the existence
We now review a well-understood criterion for the existence of above canonical

Kähler metrics. The general idea is to view corresponding equations as Euler–Lagrange
equations of appropriate energy functionals and then use a variational approach to prove
that the existence of solutions is equivalent to the coercivity of the energy functionals. First
we have the following functionals defined for any ' 2 H (see (1.1)):

E.'/ D
1

.nC 1/V

nX
kD0

Z
X

'!k
' ^ !n�k

0 ; ƒ.'/ D
1

V

Z
X

'!n
0 ; (1.6)

J.'/ D ƒ.'/ � E.'/; E�.'/ D
1

V

n�1X
kD0

Z
X

'� ^ !k
' ^ !n�1�k : (1.7)

Here V is defined in (1.2) and � is any closed real .1; 1/-form.
The following functionals are important for studying the cscK problem:

H.'/ D
1

V

Z
X

log
!n

'

�0

!n
' ; M.'/ D H.'/C E� Ric.!0/.'/C S � E.'/: (1.8)

The above H.'/ is usually called the entropy of the measure !n
' . One can verify that any

critical point of M is the potential of a cscK metric.
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For Kähler–Einstein (KE) metrics on Fano manifolds, we have more functionals:

L.'/ D � log
�
1

V

Z
X

e�'�0

�
; D.'/ D �E.'/C L.'/: (1.9)

A critical point of D is also a KE potential. These functionals can be generalized to the
settings of g-weighted solitons and Ricci-flat Kähler cone metrics (see [47] for references).

To apply the variational approach, one first needs a “completion” of H . Such a
completion was defined by Guedj–Zeriahi extending the local study of Cegrell. Following
[7], one way to introduce this is to first define the E functional for any ' 2 PSH.!0/ by

E.'/ D inf
®
E. Q'/ W Q' � '; Q' 2 H .!0/

¯
; (1.10)

Then define the set of finite energy potentials as

E1
WD E1.!0/ D

®
' 2 PSH.!0/ W E.'/ > �1

¯
: (1.11)

After the work [6], E1 can be endowed with a strong topology which is the coarsest refinement
of the weak topology (i.e., the L1-topology) that makes E continuous. The above energy
functionals can be extended to E1, and they satisfy important regularization properties:

Theorem 1.2 (see [6,8]). For any ' 2 E1, there exists ¹'kºk2N � H such that F.'k/! F.'/
for F 2 ¹E;ƒ;E� Ric;Hº.

We would like to emphasize the result for F D H, which was proved in [8]. The idea
of proof there is to first regularize the measure !n

' with converging entropy and then use
Yau’s solution to complex Monge–Ampère equations with prescribed volume forms. Later
we will encounter the same idea in the non-Archimedean setting.

Another key concept is the geodesic between two finite energy potentials. For
'i 2 E1, i D 0; 1, the geodesic connecting them is the following p�

1!0-psh function on
X � Œ0; 1� � S1 where p1 is the projection to the first factor (see [7,26]):

ˆ D sup
°
‰ W ‰ is S1-invariant and p�

1!0-psh; lim
s!i

‰.�; s/ � '.i/; i D 0; 1
±
: (1.12)

The concept of geodesics originates from Mabuchi’s L2-Riemannian metric on H . Accord-
ing to the work of Semmes and Donaldson, if 'i 2 H , i D 0; 1, then the geodesic ˆ is a
solution to the Dirichlet problem of homogeneous complex Monge–Ampère equation�

p�
1!0 C ddcˆ

�nC1
D 0; ˆ.�; i/ D 'i ; i D 0; 1: (1.13)

Since ˆ is S1-invariant, we can consider ˆ as a family of !0-psh functions ¹'.s/ºs2Œ0;1�.

Theorem 1.3 ([5, 8]). Let ˆ D ¹'.s/ºs2Œ0;1� be a geodesic segment in E1. Then .1/ s 7!

E.'.s// is affine; .2/ s 7! M.'.s// is convex.

Results in Theorem 1.3 are important in the variational approach. If a geodesic is
smooth, the statements follow from straightforward calculations. However, there are exam-
ples (first due to Lempert–Vivas) showing that the solution to (1.13) in general does not have
sufficient regularity. So the proofs of the above results are more involved.
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In this paper QT will always denote a maximal torus of the linear algebraic group
Aut.X;L/ and QT is a maximal real subtorus of QT . In the following result, we use the trans-
lation invariance F.' C c/D F.'/ for F 2 ¹M;Jº and hence F.!'/ WD F.'/ is well defined.

Theorem 1.4 ([9,23,27]). There exists a QT -invariant cscK metric in c1.L/ if and only if M
is reduced coercive, which means that there exist ; C > 0 such that for any ' 2 H

QT ,

M.!'/ �  � inf
�2 QT

J.��!'/ � C: (1.14)

This type of result goes back to Tian’s pioneering work in [64] which proves that
if X is a Fano manifold with a discrete automorphism group, then the existence of Kähler–
Einstein metric is equivalent to the properness of the M-functional, and is also equivalent to
the properness of the D functional. Tian’s work has since been refined and generalized for
other canonical metrics. For the necessity direction (from existence to reduced coercivity),
there is now a general principle due to Darvas–Rubinstein ([27]) that can be applied for all
previously-mentioned canonical Kähler metrics. The sufficient direction (from reduced coer-
civity to existence) for Kähler–Einstein metrics is reproved in [6] using pluripotential theory,
which works equally well in the setting of log Fano pairs. See [10, 38] for the extension to
the g-soliton case. The existence result for smooth cscK metrics is accomplished recently by
Chen–Cheng’s new estimates [23]. The use of maximal torus appears in [44,45], refining an
earlier formulation of Hisamoto [39]. There is also an existence criterion when QT is replaced
by any connected reductive subgroup of Aut.X;L/ that contains a maximal torus.

2. Stability of algebraic varieties and non-Archimedean

geometry

2.1. K-stability and non-Archimedean geometry
The concept of K-stability, as first introduced by Tian [64] and Donaldson [30],

is motivated by results from geometric analysis. On the other hand, the recent develop-
ment shows that various tools from algebraic geometry are crucial in unlocking many of its
mysteries.

Definition 2.1. A test configuration for a polarized manifold .X;L/ consists of .X;L/ that
satisfies: (i) � W X ! C is a flat projective morphism from a normal variety X, and L is a �-
semiample Q-line bundle; (ii) There is a C�-action on .X;L/ such that � is C�-equivariant;
(iii) There is a C�-equivariant isomorphism .X;L/ �C C� Š .X � C�; p�

1L/.
Configuration .X;L/ is called a product test configuration if there is a C�-equi-

variant isomorphism .X;L/ Š .X � C; p�
1L/ where the C�-action on the right-hand side

is the product action of a C�-action on .X;L/ with the standard multiplication on C.
Two test configurations .Xi ;Li /, i D 1; 2 are called equivalent if there exists a test

configuration .X0;L0/ with C�-equivariant birational morphisms �i W X0 ! Xi satisfying
��

1L1 D L0 D ��
2L2. For any test configuration .X;L/, by taking fiber product, one can

always find an equivalent test configuration .X0;L0/ such that X0 dominates X � C.
Given any test configuration .X;L/, there is a canonical compactification over P 1

denoted by .X;L/ which is obtained by adding a trivial fiber over ¹1º D P 1 n C.
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The notion of a test configuration is a way to formulate the degeneration of .X;L/.
In fact, any test configuration is induced by a one-parameter subgroup of PGL.N C 1;C/

for a Kodaira embedding X ! P N .
We will continue our discussion in a framework of non-Archimedean geometry as

proposed by Boucksom–Jonsson. Let XNA denote the Berkovich analytification of X with
respect to the trivial absolute value on C (see [18] for references).XNA is a topological space
consisting of real valuations on subvarieties ofX , and contains a dense subsetXdiv

Q consisting
of divisorial valuations onX . Any test configuration .X;L/ defines a function onXNA in the
following way. First, up to equivalence, we can assume that there is a birational morphism
� W X ! XC WD X � C. Write L D ��p�

1L C E where E is a Q-divisor supported on
X0. For any v 2 XNA, denote by G.v/ the C�-invariant semivaluation on XC that satisfies
G.v/jC.X/ D v and G.v/.t/ D 1 where t is the coordinate of C. One then defines

�.X;L/.v/ D G.v/.E/; for any v 2 XNA: (2.1)

The set of such functions onXNA obtained from test configurations is denoted by H NA which
is considered as the set of smooth non-Archimedean psh potentials on the analytification
of L. The following functionals, defined on the space of test configurations, correspond to
the Archimedean (i.e., complex-analytic) functionals in (1.6)–(1.7):

ENA.X;L/ D
L

�nC1

.nC 1/V
; ƒNA.X;L/ D

1

V
L

�n
� ��LP1 ; (2.2)

JNA.X;L/ D ƒNA.X;L/ � ENA.X;L/; .EKX /NA.X;L/ D
1

V
KX � L

�n
; (2.3)

HNA.X;L/ D
1

V
K

log
X=XP1

� L�n; MNA.X;L/ D HNA
C .EKX /NA

C S � ENA; (2.4)

where we assume that X dominatesXP1 DX � P 1 by �, andLP1 Dp�
1L,K log

X=XP1
DKX C

Xred
0 � .��.KX�P1 CX � ¹0º//. These functionals were defined before the introduction of

the non-Archimedean framework. For example, the ENA functional appeared in Mumford’s
study of Chow stability of projective varieties.

Assume that X0 D
P

i biFi where Fi are irreducible components. Set vi D

b�1
i ordFi

ı p�
1 2 Xdiv

Q and let ıvi
be the Dirac measure supported at ¹vi º. Chambert–Loir

defined the following non-Archimedean Monge–Ampère measure using the intersection
theory:

MANA.�.X;L// D

X
i

bi

�
L�n

� Fi

�
ıvi
: (2.5)

Mixed non-Archimedean Monge–Ampère measures are similarly defined. It then turns
out that the functionals from (2.2)–(2.3) can be obtained by using the same formula as
in (1.6)–(1.7) but with the ordinary integrals replaced by corresponding non-Archimedean
ones, while the HNA functional has the following expression after [19]:

HNA.X;L/ D
1

V

Z
XNA

AX .v/MANA.�.X;L//.v/: (2.6)

Here AX is a functional defined on XNA that generalizes the log discrepancy functional on
Xdiv

Q (see [41]). We can now recall the notion of K-stability:

2293 Canonical Kähler metrics and stability



Definition 2.2. A polarized manifold .X;L/ is K-semistable, K-stable or K-polystable if any
nontrivial test configuration .X;L/ for .X;L/ satisfies MNA.X;L/ � 0, MNA.X;L/ > 0,
or MNA.X;L/ � 0 and D 0 only if .X;L/ is a product test configuration, respectively.

This is like a Hilbert–Mumford’s numerical criterion in the Geometric Invariant
Theory.1 The recent development of K-stability involves a strengthened notion called reduced
uniform K-stability, which matches the reduced coercivity in (1.14) (see [19,29,39]). Recall
that QT denotes a maximal torus of Aut.X;L/, and QNQ is defined similar to (1.3).

Definition 2.3. A polarized manifold .X;L/ is uniformly K-stable (resp. reduced uniformly
K-stable) if there exists  > 0 such that any test configuration .X;L/ satisfies MNA.X;L/�

 � JNA.X;L/ (resp. MNA.X;L/ �  � inf�2 QNQ
JNA.X� ;L�/).

Here the twist .X� ;L�/ is introduced by Hisamoto [39]. One way to define it as a test
configuration is by resolving the composition of birational morphisms .X;L/ Ü .XC D

X � C; LC D p�
1L/

��

! .XC; LC/ where �� is the C�-action generated by �. Alternatively,
it can be defined in a more general setting of filtrations (see Example 2.8).

2.2. Non-Archimedean pluripotential theory
We discuss how non-Archimedean pluripotential theory as developed by Bouck-

som–Jonsson can be applied to study K-stability. Corresponding to a regularization result
in the complex analytic case, an u.s.c. function � W XNA ! R [ ¹C1º is called a non-
Archimedean psh potential if it is a decreasing limit of a sequence from H NA. Denote
the space of such functions by PSHNA. Boucksom–Jonsson introduced the following non-
Archimedean version of the finite energy space. First corresponding to (1.10), for any � 2

PSHNA, define
ENA.�/ D inf

®
ENA. Q�/ W Q� � �; Q� 2 H NA¯:

Then, corresponding to (1.11), define the space of non-Archimedean finite energy potentials
by

.E1/NA
D
®
� 2 PSHNA

W ENA.�/ > �1
¯
:

This space is again equipped with a strong topology which makes ENA continuous.
Boucksom–Jonsson showed in [22] that the non-Archimedean Monge–Ampère measure
MANA.�/ is well defined for any � 2 .E1/NA such that if ¹�kºk2N � H NA converges to
� strongly, then MANA.�k/ converges to MANA.�/ weakly.

A large class of potentials come from filtrations (see [19]). Set Rm D H 0.X;mL/.

Definition 2.4. A filtration is the data F D ¹F �Rm � RmI� 2 R;m 2 Nº that satisfies the
following four conditions:

(i) F �Rm � F �0

Rm, if � � �0;

1 In the classical formulation, Tian’s CM weight or, equivalently, the Donaldson–Futaki
invariant is used to define the K-stability. However, to fit our discussion in the non-
Archimedean framework, we use the equivalent formulation via the MNA functional.
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(ii) F �Rm D
T

�0<� F �0

Rm;

(iii) F �Rm � F �0

Rm0 � F �C�0

RmCm0 , for �; �0 2 R and m;m0 2 N;

(iv) There exist e�; eC 2 Z such that F me�Rm D Rm and F meCRm D 0 for m 2

Z�0.

Filtration F is finitely generated if its extended Rees algebra R.F / is finitely generated
where

R.F / D

M
�2R

M
m2N

t��F �Rm:

In this case F induces a degeneration of X into X0 D Proj.
L

m;� F �Rm=F
>�Rm/.

For a general F , ¹F �R`I� 2 Rº generates a filtration LF .`/ onR.`/ WD
L

m2N Rm`,
which induces a non-Archimedean psh potential L�.`/ 2 H NA. Define

�F D

�
lim sup
`!C1

L�.`/
��

where .�/� denotes the upper-semicontinuous regularization.

Example 2.5. Filtration F is a Z-filtration if F �Rm D F d�eRm. By [19,63,69], there is a
one-to-one correspondence between test configurations equipped with relatively ample Q-
polarizations and finitely generated Z-filtrations. Any test configuration .X;L/ defines such
a filtration by

F �Rm D
®
s 2 Rm W t�d�es 2 H 0.X; mL/

¯
: (2.7)

Conversely, if F is a finitely generated Z-filtration, then .X WD ProjCŒt�.R.
LF .`///; 1

`
OX.1//

is a test configuration for ` sufficiently divisible.

Example 2.6. In Definition 2.1 of test configurations, if we do not require L to be �-
semiample, then we call .X;L/ a model (of .X � C; p�

1L/). The same definition in (2.7)
defines a filtration also denoted by F.X;L/. However, in general the filtration is not finitely
generated anymore. Fix any model .X;L/ such that L is big over X (we call such .X;L/
a big model for .X;L/). In [46] we obtained the following formula for the non-Archimedean
Monge–Ampère measure of � D �.X;L/ WD �F.X;L/

which generalizes (2.5):

MANA.�/ D

X
i

bi

�˝
L

�n˛
� Fi

�
ıvi
: (2.8)

Here for any divisorD, we use the notion of a positive intersection product introduced in [17]:˝
L

�nC1˛
WD vol.L/ D lim

m!C1

h0.X; mL/

mnC1

.nC1/Š

;
˝
L

�n˛
�D WD

1

nC 1

d

dt

ˇ̌̌̌
tD0

vol.L C tD/:

Example 2.7. Any v 2 Xdiv
Q defines a filtration: for any � 2 R and m 2 Z�0, define

F �
v Rm D

®
s 2 Rm W v.s/ � �

¯
: (2.9)

Boucksom–Jonsson proved in [21] that MANA.�Fv
/ D V � ıv .
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Example 2.8. Assume a torus QT Š .C�/r -acts on .X; L/. Then we have a weight decom-
positionRm D

L
˛2Zr Rm;˛ . For any � 2 QNR, we can define the �-twist of a given filtration:

F �
�
Rm D F ��h˛;�iRm;˛ . On the other hand, there is an induced QNR-action on .XNA/

QT

which sends .�; v/ to v� 2 .XNA/
QT determined by the following condition: if f 2 C.X/˛

which means f ı t�1 D t˛ � f for any t 2 QT , then v�.f /D h˛; �i C v.f /. We then have the
following formula: MANA.�F�

/ D .��/�MANA.�F / (see [44,45]).

Generalizing the case of test configurations, Boucksom–Jonsson showed that the
non-Archimedean functionals from (2.2)–(2.4) are well defined for all � 2 .E1/NA by using
integrals over XNA mentioned before (for example, for HNA use (2.6)).

Example 2.9. For any filtration F , it is known that �F 2 .E1/NA. Following [19], define

vol.F .t// D lim
m!C1

dimC F mtRm

mn=nŠ
:

Then ENA is the following “expected vanishing order” with respect to F (see [21]).

ENA.�F / D
1

V

Z
R
t
�
�dvol.F .t//

�
: (2.10)

Similar to Theorem 1.2, we also have important regularization properties:

Theorem 2.10 ([22]). For any � 2 .E1/NA, there exists ¹�kºk2N � H NA (i.e., �k D �.Xk ;Lk/

for a test configuration .Xk ;Lk/) such that �k ! � in the strong topology and FNA.�k/ !

FNA.�/ for F 2 ¹E;ƒ;EKX º.

Boucksom–Jonsson conjectured that the same conclusion should also hold for HNA.
This conjecture is still open in general and it is important in the non-Archimedean approach
to the YTD conjecture. We have made progress in this direction.

Theorem 2.11 ([45,46]). (1) For any� 2 .E1/NA, there exist models ¹.Xk ;Lk/ºk2N

such that �k D �.Xk ;Lk/ ! � in the strong topology and HNA.�k/! HNA.�/.

(2) For any big model .X;L/, we have the following formula that generalizes (2.4):

MNA.X;L/ D
1

V
˝
L

�n˛
�KX=P1 C

S

.nC 1/V
˝
L

�nC1˛
:

The idea for proving the first statement is similar to the Archimedean setting in [8].
First we regularize the measure MANA.�/ with converging entropy. In fact, we find a way to
regularize it by using measures supported at finitely many points in Xdiv

Q . Then we use the
solution of non-Archimedean Monge–Ampère equations obtained in [18] to get the wanted
potentials which are known to be associated to models. However, in the non-Archimedean
case, there is not yet a characterization of measures associated to test configurations which
prevents us from regularizing via test configurations. The second statement in Theorem 2.11
follows from the formula (2.8), and it prompts us to propose the following algebro-geometric
conjecture which would strengthen the classical Fujita approximation theorem.
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Conjecture 2.12. Let X be a smooth .nC 1/-dimensional projective variety. Let L be a big
line bundle over X. Then there exist birational morphisms �k W Xk ! X and decomposi-
tions ��

k
L D Lk CEk in N 1.X/Q with Lk semiample and Ek effective such that

lim
k!C1

L
�nC1

k D vol.L/; lim
k!C1

L
�n

k �KXk
D

1

nC 1

d

dt
vol.L C tKX/

ˇ̌̌̌
tD0

D
˝
L

�n˛
�KX :

It is easy to show that this conjecture is true if L admits a birational Zariski decom-
position. The author verified this conjecture for certain examples of big line bundles due to
Nakamaya which do not admit such decompositions (see [46]). Y. Odaka observed that when
.X;L/ is a big model for a polarized spherical manifold (for example, a polarized toric man-
ifold), X is a Mori dream space which implies that L admits a Zariski decomposition and
hence the above conjecture holds true.

2.3. Stability of Fano varieties
In this section, we assume that X is a Q-Fano variety (i.e., �KX is an ample Q-

line bundle and X has at worst klt singularities). Corresponding to (1.9), we have a non-
Archimedean D functional. For general test configurations, it first appeared in Berman’s
work [4] and was reformulated in [19] using non-Archimedean potentials:

LNA.X;L/ D inf
v2Xdiv

Q

�
AX .v/C �.X;L/.v/

�
; DNA.X;L/ D �ENA.X;L/C LNA.X;L/:

The notions of Ding-stability and uniform Ding-stability are defined if MNA is replaced by
DNA in Definitions 2.2 and 2.3. In general, we have the inequality MNA.X;L/� DNA.X;L/.
For Fano varieties, special test configurations play important roles. A test configuration
.X;L/ is called special if the central fiber X0 is a Q-Fano variety and L D �KX=P1 .
For special test configurations, we have DNA D MNA D �ENA DW FutX0

.�/, the last quan-
tity being the Futaki invariant on X0 for the holomorphic vector field � that generates the
C�-action. The importance of special test configurations was first pointed out in Tian’s work
[64] motivated by compactness results from metric geometry. The following results show
their importance from the point of view of algebraic geometry:

Theorem 2.13 ([35,44,52], see also [7,21]). For any Q-Fano variety, K-stability is equivalent
to Ding-stability, and they are equivalent to K-stability or Ding-stability over special test con-
figurations. Moreover, the same conclusion holds true if stability is replaced by semistability,
polystability, or reduced uniform stability.

The proofs of these results depend on a careful process of Minimal Model Program
first used in [52] to transform any given test configuration into a special one. Moreover, crucial
calculations show that the relevant invariants such as MNA or DNA decrease along the MMP
process. Theorem 2.13 leads directly to a valuative criterion for K-stability. To state it, first
define for any v 2 Xdiv

Q an invariant (see Example 2.9):

SL.v/ WD
1

V

Z C1

0

vol
�
F .t/

v

�
dt D

1

V

Z
R
t
�
�dvol

�
F .t/

v

��
D ENA.�Fv

/: (2.11)
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Let QT be a maximal torus of Aut.X/ and .Xdiv
Q /

QT be the set of QT -invariant divisorial valu-
ations. Define the following invariant (.�; v/ 7! v� is the action appeared in Example 2.8):

ı.X/ D inf
v2Xdiv

Q

AX .v/

SX .v/
; ı QT .X/ D inf

v2.Xdiv
Q /

QT
sup

�2 QNR

AX .v�/

SX .v�/
:

Here we use the convention that AX .vtriv/=SX .vtriv/ D C1 for the trivial valuation vtriv.

Theorem 2.14. The following statements are true.

(1) ([35,42]) X is K-semistable if ı.X/ � 1.

(2) ([34,35]) X is uniformly K-stable if and only if ı.X/ > 1.

(3) ([15,35,42])X is K-stable if and only ifAX .v/>S.v/ for any nontrivial v 2Xdiv
Q .

(4) ([44]) X is reduced uniformly K-stable if and only if ı QT .X/ > 1.

To get these, we first use the fact as pointed out in [19] that for a special test con-
figuration .X;L/, the valuation ordX0

of the function field C.X � C/ restricts to become
a divisorial valuation v 2 Xdiv

Q . A crucial observation is then made in [42]: F �
.X;L/

Rm D

F
�CmAX .v/

v Rm (see (2.9)). This implies vol.F .t/

.X;L/
/ D vol.F .tCAX .v//

v /, which, together
with (2.10), leads to2

MNA.X;L/ D DNA.X;L/ D AX .v/ � ENA.Fv/ D AX .v/ � S.v/: (2.12)

This, together with Theorem 2.13, already gives the sufficient condition for the K-(semi)sta-
bility. The criterion for uniform K-stability follows from a similar argument and K. Fujita’s
inequality, 1

n
S.v/ � JNA.Fv/ � nS.v/ [34]. For reduced uniform stability, another identity

AX .v�/ � S.v�/ D AX .v/ � S.v/C FutX .�/ proved in [44] is needed.
As we will see in Section 3.2, a main reason for introducing the (reduced) uniform

K-stability is that it is much easier to use in making connection with the (reduced) coercivity
in the complex analytic setting. On the other hand, we now have the following fundamental
result:

Theorem 2.15 ([56]). Let X be a Q-Fano variety. Then X is K-stable if and only if X is
uniformly K-stable. More generally, X is reduced uniformly stable if and only if X is K-
polystable. Moreover, these statements hold true for any log Fano pair.

This is achieved by several works. First, according to a work of Blum–Liu–Xu [13],
divisorial valuations on X associated to special test configurations are log canonical places
of complements. By deep boundedness of Birkar and Haccon–McKernan–Xu, it was also
shown that there exists a quasimonomial valuation (i.e., a monomial valuation on a smooth
birational model) that achieves the infimum defining ı.X/ (and a similar result holds more
generally for ı QT .X/). Then the main problem becomes proving a finite generation property
for the minimizing valuation, which is achieved by using deep techniques from birational

2 The original argument in [42] also explicitly relates the filtration F.X;L/ to a filtration of
the section ring of X0 induced by the C�-action.
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algebraic geometry in [56]. In fact, in the past several years, the algebraic study of K-stability
for Fano varieties has flourished, and there are many important results which answer funda-
mental questions in this subject. We highlight two such achievements:

(1) Algebraic construction of projective moduli space of K-polystable Fano varieties. This
is achieved in a collection of works, settling different issues in the construction including
boundedness, separatedness, properness, and projectivity. Moreover, concrete examples of
compact moduli spaces have been identified. We refer to [56,70] for extensive discussions on
related topics.

(2) Fujita–Odaka [36] introduced quantizations of the ı.X/ invariant: for each m 2 N,

ım.X/ D inf
®
lct.X;D/ W D is of m-basis type

¯
whereD is ofm-basis type ifD D

1
mNm

PNm

iD1¹si D 0º where ¹si º is a basis ofH 0.X;mL/.
Blum–Jonsson [12] proved limm!C1 ım.X/D ı.X/. This provides a practical tool to verify
uniform stability of Fano varieties. Ahmadinezhad–Zhuang [1] further introduced new tech-
niques for estimating the ım and ı invariant which lead to many new examples of K-stable
Fano varieties. All of these culminate in the recent determination of deformation types of
smooth Fano threefolds that contain K-polystable ones (see [3]).

In another direction, Han–Li [37] establishes a valuative criterion for g-weighted
stability, corresponding to the study of g-solitons. A key idea in such an extension is using
a fibration technique for a polynomial weights (as motivated by the theory of equivariant
de Rham cohomology) and then using the Stone–Weierstrass approximation to deal with
the general g. Moreover, there is a notion of stability for Fano cones introduced earlier by
Collins–Székelyhidi associated to Ricci-flat Kähler cone metrics. It is shown recently that
this stability of Fano cones is, in fact, equivalent to a particular g-weighted stability of log
Fano quotients (see [2,47]).

The techniques developed in the study of (weighted) K-stability of Fano varieties
have also been applied to treat an optimal degeneration problem that is motivated by the
Hamilton–Tian conjecture in differential geometry (see [74] for background of this conjec-
ture). This is formulated as a minimization problem for valuations in [38] which defines the
following functional (cf. (2.12) and (2.11)), for any valuation v 2 XNA,

Q̌.v/ D AX .v/C log

 
1

V

Z C1

0

e�t
�
�dvol

�
F .t/

v

��!
:

Very roughly speaking, the Q̌ functional is an antiderivative of a certain weighted Futaki
invariant. This functional is a variant of invariants that appeared in previous works of Tian–
Zhang–Zhang–Zhu, Dervan–Székelyhidi, and Hisamoto (see [74] for more details). The
results from [14, 37, 51] together prove the following algebraic version of Hamilton–Tian
conjecture:

Theorem 2.16. For any Q-Fano variety, there exists a unique quasimonomial valuation v�

that minimizes Q̌, whose associated filtration Fv�
is finitely generated and induces a degener-
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ation ofX to a Q-Fano variety X0 together with a vector field V� . Moreover, X0 degenerates
uniquely to an e�h�;�i-weighted polystable Q-Fano variety (cf. Example 1.1).

Combined with previous works, the uniqueness part in particular confirms a conjec-
ture of Chen–Sun–Wang about the algebraic uniqueness of limits under normalized Kähler–
Ricci flows on Fano manifolds (see [62]).

2.4. Normalized volume and local stability theory of klt singularities
A similar minimization problem for valuations was actually studied even earlier in

the local setting, which motivates the formulation and the proof of Theorem 2.16. Let .X;x/
be a klt singularity. Denote by ValX;x the space of real valuations that have center x. The
following normalized volume functional was introduced in [43]: for any v 2 ValX;x ,

cvol.v/ WD

8<:AX .v/
n � vol.v/; if AX .v/ < C1;

C1; otherwise.
(2.13)

Here AX .v/ is again the log discrepancy functional and vol.v/ is defined as

vol.v/ D lim
p!C1

dimC.OX;x=ap.v//

pn=nŠ
where ap.v/ D

®
f 2 OX;x I v.f / � p

¯
:

The expression in (2.13) is inspired by the work of Martelli–Sparks–Yau [57] on a volume
minimization property of Reeb vector fields associated to Ricci-flat Kähler cone metrics.
In [43] we started to consider the minimization of cvol over ValX;x and define the invariantcvol.X;x/D infv2ValX;x

cvol.v/. We proved that the invariant cvol.X;x/ is strictly positive and
further conjectured the existence, uniqueness of minimizing valuations which should have
finite generated associated graded rings. For a concrete example, it was shown by the author
and Y. Liu that for an isolated quotient singularity X D Cn=� , cvol.Cn=�; 0/ D

nn

j�j
and the

exceptional divisor of the standard blowup obtains the infimum.
This minimization problem was proposed by the author to attack a conjecture of

Donaldson–Sun, which states that the metric tangent cone at any point on a Gromov–
Hausdorff limit of Kähler–Einstein manifolds depends only on the algebraic structure (see
[62]). This conjecture has been confirmed in a series of following-up papers [51, 53, 54].
Algebraically, we have the following results regarding this minimization problem.

Theorem 2.17. (1) There exists a valuation that achieves the infimum in definingcvol.X; x/. Moreover, this minimizing valuation is quasimonomial and unique
up to rescaling.

(2) A divisorial valuation v� is the minimizer if and only if it is the exceptional
divisor of a plt blowup and also the associated log Fano pair is K-semistable.

The first statement is a combination of works by Harold Blum, Chenyang Xu, and
Ziquan Zhuang [11,71,72] partly based on calculations from [42,43]. The second statement was
proved in Li–Xu [54] (see also [11]) by extending the global argument from [52] to the local
case, and it shows a close relationship between the local and global theory. In fact, it is in
proving the affine cone case of this statement when valuative criterion for K-(semi)stability
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was first discovered in [42]. A similar statement is true for more general quasimonomial
minimizing valuations [53]. However, the finite generation conjecture from [43] is still open
in general, and seems to require deeper boundedness property of Fano varieties.

We also like to mention that Yuchen Liu obtained a surprising local-to-global com-
parison inequality by generalizing an estimate of Kento Fujita:

Theorem 2.18 ([55]). For any closed point x on a K-semistable Q-Fano variety X , we have

.�KX /
�n

�
.nC 1/n

nn
cvol.X; x/: (2.14)

For example, if x 2X is a regular point, (2.14) recovers Fujita’s beautiful inequality,
namely .�KX /

�n � .nC 1/n for any K-semistableX [33]. Inequality (2.14) has applications
in controlling singularities on the varieties that correspond to boundary points of moduli
spaces. In order for this to be effective, good estimates of cvol.X; x/ for klt singularities need
to be developed. In particular, it is still interesting to understand better the cvol invariants and
associated minimizers for 3-dimensional klt singularities. For more discussion on related
topics, we refer to the survey [48].

3. Archimedean (complex analytic) theory vs.

non-Archimedean theory

3.1. Correspondence between Archimedean and non-Archimedean objects
In this section, we discuss results showing a general philosophy that non-Archime-

dean objects encode the information of corresponding Archimedean objects “at infinity.”
Let .X;L/ be a test configuration and Qh be a smooth psh metric on L. Via the

isomorphism .X;L/ �C C� Š X � C�, we get a path ê D ¹ Q'.s/ºs2R of smooth !0-psh
potentials where s D � log jt j2. With these notation, we have the following slope formula:

Theorem 3.1 ([20,59,64,67]). The slope at infinity of a functional F 2 ¹E;ƒ; I;J;Mº is given
by the corresponding non-Archimedean functional

F0 1.ê/ WD lim
s!C1

F. Q'.s//

s
D FNA.X;L/ D FNA.�.X;L//:

There is a more canonical analytic object associated to a test configuration. Recall
from section 1.5 that by a geodesic ray ˆ D ¹'.s/ºs2Œ0;C1/ in E1 we mean that ˆjŒs1;s2� is
a geodesic connecting '.s1/, '.s2/ for any s1; s2 2 Œ0;1/ (see (1.12)).

Theorem 3.2 ([60]). Given any test configuration .X;L/ for .X;L/, there exists a geodesic
ray ˆ.X;L/ emanating from any given smooth potential '0.

On the other hand, recall from section 2.1 that there is a non-Archimedean potential
associated to .X;L/ (see (2.1)). Berman–Boucksom–Jonsson proved that there is a direct
relation between geodesic rays and non-Archimedean potentials. First they showed that any
geodesic ray ˆ defines a non-Archimedean potential (cf. (2.1))

ˆNA.v/ WD �G.v/.ˆ/; for any v 2 Xdiv
Q ;
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whereG.v/.ˆ/ is the generic Lelong number ofˆ considered as a singular quasi-psh poten-
tial on a birational model where the center of the valuation G.v/ is a prime divisor.

Theorem 3.3 ([7]). The following statements are true:

(1) The mapˆ 7!ˆNA has the image contained in .E1/NA. Conversely, for any � 2

.E1/NA, there exists a geodesic ray denoted by .�/ that satisfies .�/NA D �.

(2) For any geodesic ray ˆ, b̂ D .ˆNA/ satisfies b̂NA D ˆNA 2 .E1/NA andb̂ � ˆ.

(3) ForˆD .�/with � 2 .E1/NA, E0 1.ˆ/D ENA.�/, and there exists a sequence
of test configurations .Xm;Lm/ such thatˆ is the decreasing limit ofˆ.Xm;Lm/

(see Theorem 3.2).

Berman–Boucksom–Jonsson proved ˆNA 2 PSHNA by blowing up multiplier ideal
sheaves ¹J.mˆ/ºm2N and using their global generation properties to construct test configu-
rations ¹.Xm;Lm/º such that �.Xm;Lm/ decreases toˆNA. Because of the second statement,
any geodesic ray .�/ with � 2 .E1/NA is called maximal in [7]. By the last statement, max-
imal geodesic rays can be approximated by (geodesic rays associated to) test configurations.
Moreover, when � D �.X;L/ 2 H NA, .�/ coincides with the geodesic ray from Theo-
rem 3.2. Further useful properties of maximal geodesic rays are known (cf. Theorem 3.1):

Theorem 3.4 ([45]). Let ˆ be a maximal geodesic ray.

(1) We have the identity .E� Ric.!0//0 1.ˆ/ D .EKX /NA.ˆNA/.

(2) H0 1.ˆ/ � HNA.ˆNA/. Moreover, ifˆD ˆ.X;L/ is associated to a test config-
uration, then H0 1.ˆ/ D HNA.ˆNA/.

It is natural to conjecture that H0 1.ˆ/D HNA.ˆNA/ always holds for any maximal
geodesic ray ˆ. This is implied by the algebraic Conjecture 2.12, according to [45,46].

As pointed out in [7], by a construction of Darvas, there are abundant nonmaximal
geodesic rays. In fact, analogous local examples have been used by the author to disprove a
conjecture of Demailly on Monge–Ampère mass of psh singularities. It is thus a surprising
fact that maximal geodesic rays are the only ones of interest in the cscK problem.

Theorem 3.5 ([45]). If a geodesic ray ˆ satisfies M0 1.ˆ/ < C1, then ˆ is maximal.

Note that M0 1.ˆ/ D lims!C1
M.'.s//

s
exists by Theorem 1.3. This result resolves

a difficulty raised in Boucksom’s ICM talk [16], and implies that destabilizing geodesic rays
can always be approximated by test configurations, thus giving a very strong evidence for the
validity of Yau–Tian–Donaldson Conjecture 3.6. The proof of Theorem 3.5 starts with an
equisingularity property

R
X�¹jt j<1º

e�˛.b̂�ˆ/ < C1 for any ˛ > 0, and then uses Jensen’s
inequality, together with a comparison principle, for the E functional to get a contradiction
with the finite slope assumption if b̂ D .ˆNA/ ¤ ˆ.
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3.2. Yau–Tian–Donaldson conjecture for general polarized manifolds
The Yau–Tian–Donaldson (YTD) conjecture says that the existence of canonical

Kähler metrics on projective manifolds should be equivalent to a certain K-stability condi-
tion. For a general polarization, it is believed that one needs to use a strengthened definition
of K-stability such as Definition 2.3. In particular, we have the following version.

Conjecture 3.6 (uniform YTD conjecture). A polarized manifold .X; L/ admits a cscK
metric if and only if .X;L/ is reduced uniformly K-stable.

The implication from existence to stability is known, and follows from Theorems 1.4
and 3.1. The other direction is still open in general. However, based on the results discussed
thus far, we can explain the proof of a weak version.

Theorem 3.7 ([45]). If .X;L/ is uniformly stable over models (i.e., there exists  > 0 such
that MNA.X;L/ �  � JNA.X;L/ for any model .X;L/), then it admits a cscK metric.

Summary of proof. Step 1. By Theorem 1.4, we need to show that M is coercive. Assume
that the coercivity fails. Then there exists a geodesic ray ˆ D ¹'.s/ºs2Œ0;1/ satisfying

M0 1.ˆ/ � 0; J0 1.ˆ/ D 1; sup
�
'.s/

�
D 0:

Such a destabilizing geodesic rayˆ was constructed in [7,27] from a destabilizing sequence.
In this construction, both the convexity of M from Theorem 1.3 and a compactness result
for potentials with uniform entropy bounds from [6] play crucial roles.

Step 2. By Theorem 3.5,ˆ is maximal. Set � DˆNA. By using Theorem 3.3(3) and
Theorem 3.4(1), we derive the identities

E0 1.ˆ/ D ENA.�/; .E� Ric.!0//0 1.ˆ/ D .EKX /NA.�/; J0 1.ˆ/ D JNA.�/:

Moreover, by Theorem 3.4(2), H0 1.ˆ/ � HNA.�/ so that M0 1.ˆ/ � MNA.�/.
Step 3. By Theorem 2.11, there exist models .Xm;Lm/ such that �m D �.Xm;Lm/

converges to � in the strong topology and

lim
m!C1

MNA.�m/ D MNA.�/; lim
m!C1

JNA.�m/ D JNA.�/:

Step 4. We can complete the proof by getting a contradiction to the stability assumption:

0 � M0 1.ˆ/ � MNA.�/ D lim
m!C1

MNA.�m/ �stability lim
m!C1

JNA.�m/ D JNA.�/ D 1:

There is a version of Theorem 3.7 in [45] when Aut.X;L/ is continuous. Moreover, it
is shown in [46] that Conjecture 2.12 implies Conjecture 3.6. As mentioned earlier, if .X;L/
is any polarized spherical manifold, Conjecture 2.12 is true and hence in this case the YTD
Conjecture 3.6 is proved. Based on this fact, Delcroix [28] obtained further refined existence
results in this case.

We should mention that Sean Paul (see [58]) has works that give a beautiful interpre-
tation of the coercivity of M-functional using a new notion of stability for pairs. However, it
is not clear how K-stability discussed here can directly imply his stability notion.
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3.3. YTD conjecture for Fano varieties
3.3.1. Non-Archimedean approach
Our proof of Theorem 3.7 is in fact modeled on a non-Archimedean approach to

the uniform YTD conjecture proposed by Berman–Boucksom–Jonsson in [7]. They carried
it out sucessfully for smooth Fano manifolds with discrete automorphism groups. The main
advantage in the Fano case is that DNA satisfies a regularization property and can be used in
place of MNA to complete the argument. Recently their work has been extended to the most
general setting of log Fano pairs.

Theorem 3.8 ([44,49,50]). A log Fano pair .X;D/ admits a Kähler–Einstein metric if and
only if it is reduced uniformly stable for all special test configurations.

Note that this combined with Theorem 2.15 also proves the K-polystable version of
the YTD conjecture. Theorem 3.8 can be used to get examples of Kähler–Einstein metrics on
Fano varieties with large symmetry groups (see, for example, [40]). The proof of Theorem 3.8
is much more technical than [7] because we need to overcome the difficulties caused by
singularities. The first key idea is to use an approximation approach initiated in [49]. Consider
the log resolution � W X 0 ! X as in Section 1.3 and reorganize (1.4) as

�KX 0 �D" D
1

1C "

�
��.�KX �D/C "H

�
DW L";

where H D ��.�KX �D/ �
P

k �kEk is ample by choosing appropriate ¹�kº and D" DP
k.�ak C

"
1C"

/�kEk with 0 � " � 1. In [49] we considered the simple case when ak 2

.�1; 0� for all k. In this case for 0 < " � 1, .X 0; D"/ is a smooth log Fano pair. A crucial
calculation using the valuative criterion from Theorem 2.14 shows that (semi)stability of
.X;D/ implies the uniform stability of .X 0;D"/ for " > 0. Moreover, we can prove a version
of YTD conjecture for .X 0; D"/ and deduce that it admits a Kähler–Einstein metric. Next
we take a limit as " ! 0 to get a Kähler–Einstein metric on .X;D/ itself. The proof of this
convergence depends on technical uniform pluripotential and geometric estimates.

In [50], we dealt with the general case when D" is not necessarily effective. A key
difficulty for the argument in [7] to work on singular varieties is that it is not clear how
to use multiplier ideal sheaves to approximate a destabilizing geodesic ray ˆ when X is
singular. To circumvent this difficulty, we first need to perturbˆ to become a singular quasi-
psh potentialˆ" on .X 0 � C; p0 �

1 L"/. Since X 0 is smooth, we know how to approximateˆ"

by test configurations for .X 0; L"/ thanks to [7]. However, due to the ineffectiveness of D",
the remaining arguments depend more heavily on non-Archimedean analysis and some key
observation on convergence of slopes. In [45] we further derived the valuative criterion for
reduced uniform stability and understood how the torus action induces an action on the space
of non-Archimedean potentials in order to incorporate group actions in the argument. Note
that the non-Archimedean approach a priori does not prove the statement in Theorem 3.8
involving special test configurations. Fortunately, Theorem 2.13 fills this gap.

By using the fibration and approximation techniques mentioned earlier, Theorem 3.8
has been extended to the case of g-soliton on log Fano pairs in [38]. As explained in [2,47],
this can be used prove the YTD conjecture for Ricci-flat Kähler cone metrics thanks to its
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equivalence to particular g-solitons (see Section 1.4). This generalizes the result of Collins–
Székelyhidi on YTD conjecture for Fano cones with isolated singularities [25].

3.3.2. Other approaches
For completeness, we briefly mention other approaches to the YTD conjecture on

Fano manifolds. The classical way to solve the Kähler–Einstein equation is through various
continuity methods. Traditionally, one uses Aubin’s continuity method involving twisted KE
metrics. A more recent continuity method uses KE metrics with edge cone singularities as
proposed by Donaldson. Finally, there is a Kähler–Ricci flow approach. Tian’s early works
showed that the most difficult part in proving the YTD conjecture by continuity methods
is to establish the algebraicity of limit objects in the Gromov–Hausdorff topology, and he
had essentially reduced this difficulty to proving some partial C 0-estimates. The partial C 0-
estimates were later proved in different settings, starting with Donaldson–Sun’s work in the
Kähler–Einstein case, which led to the solution of the YTD conjecture for smooth Fano man-
ifolds in [24,65]. Moreover, the partial C 0-estimates has applications in constructing moduli
spaces of smoothable Kähler–Einstein varieties and proving quasiprojectivity of the moduli
spaces of KE manifolds, and these applications preclude the algebraic approach mentioned
earlier (see [68]). We also refer to [31,66] for surveys on related topics in this approach.

Very recently, yet another quantization approach is carried out by Kewei Zhang
based partly on an earlier work of Rubinstein–Tian–Zhang. Zhang considered an analytic
invariant of Moser–Trudinger type, namely

ıA.X/ D sup
²
c W sup

'2H

Z
X

e�c.'�E.'// < C1

³
:

It is easy to show that the coercivity of D-functional is equivalent to ıA.X/ > 1. The authors
of [61] introduced a quantization ıA

m.X/ by using a quantization of E on the space of Bergman
metrics, and further proved ıA

m.X/D ım.X/. Using some deep results in complex geometry
including Tian’s work on Bergman kernels and Berndtsson’s subharmonicity theorem, it
is proved in [73] that limm!C1 ıA

m.X/ D ıA.X/. Combining these discussions with the
algebraic convergence result of Blum–Jonsson and the valuative criterion of uniform stability
of Fujita discussed earlier, Zhang gets ıA.X/ D ı.X/ and completes the proof of uniform
version of YTD conjecture for smooth Fano manifolds. It would be interesting to extend
this approach to the more general case (i.e., Fano varieties with continuous automorphism
groups).

We finish by remarking that it is of interest to apply the ideas and methods from
the above two approaches to study the YTD conjecture for general polarizations. For the
approach involving partial C 0-estimates, the geometry is complicated by collapsing phe-
nomenon in the Gromov–Hausdorff convergence with only scalar curvature bounds, which
is very difficult to study with current techniques. For the quantization approach, there were
some attempts by Mabuchi in several works. But the precise picture seems again unclear.
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