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Abstract

The double ramification cycle DRg.A/ D DRg.�; �/ is a cycle in the moduli space of
stable curves parametrizing genus g curves admitting a map to P 1 with specified ramifica-
tion profiles �; � over two points. In 2016, Janda, Pandharipande, Zvonkine, and the author
proved a formula expressing the double ramification cycle in terms of basic tautolog-
ical classes, answering a question of Eliashberg from 2001. This formula has an intricate
combinatorial shape involving an unusual way to sum divergent series using polynomial
interpolation. Here we give some motivation for where this formula came from, relating it
both to an older partial formula of Hain and to Givental’s R-matrix action on cohomolog-
ical field theories.
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1. Introduction

Let g;n be nonnegative integers satisfying 2g � 2C n > 0, so that the moduli space
Mg;n of stable curves of genus g with n markings is nonempty. Let A D .a1; : : : ; an/ 2 Zn

be a vector of n integers satisfying a1 C � � � C an D 0. In this paper we will be interested in
a Chow cycle class

DRg.A/ 2 Ag.Mg;n/

that depends on this data.
There are two main perspectives on how to think about and define DRg.A/, the

double ramification cycle. The first is the source of its name; we think of it as parametrizing
the genus g curves C that admit a finite map C ! P 1 with specified ramification profiles
�;� over two points (say 0 and 1). These two ramification profiles are encoded in the vector
A: we can take the positive and negative components of A separately to get two partitions of
equal size. The marked points with nonzero ai should then be the points in C lying above 0
and 1, while the marked points with ai D 0 are unconstrained. Ramification above points
other than 0 and 1 is unconstrained.

The above description defines a double ramification locus inside the moduli space
of smooth curves Mg;n that is usually (but not always) of pure codimension g. To extend
this to a codimension g class on Mg;n, we can use the virtual class in relative Gromov–
Witten theory. There is a moduli space of stable (rubber) maps to P 1 with given marked
ramification over two points, Mg;n.P 1=¹0;1º; �; �/�, equipped with a forgetful map p W

Mg;n.P 1=¹0;1º; �; �/� ! Mg;n, and the double ramification cycle can be taken to be the
pushforward under this map of the virtual class,

DRg.A/ D p�

�
Mg;n

�
P 1=¹0;1º; �; �

���vir
2 Ag.Mg;n/:

The second perspective on DRg.A/ is via Abel–Jacobi maps. Let Xg ! Ag be the
universal abelian variety of dimension g. Then the data in the vector A can be used to define
a morphism jA W Mg;n ! Xg by

.C; p1; : : : ; pn/ 7!
�
Jac.C /;OC .a1p1 C � � � C anpn/

�
:

The double ramification locus is then the inverse image under this map of the zero section
Zg of Xg , since C admits a map to P 1 with the given ramification profiles if and only if
OC .a1p1 C � � � C anpn/ is trivial.

This Abel–Jacobi map extends easily to Mct
g;n, the moduli space of curves of com-

pact type (those with compact Jacobians), but using this perspective to define the double
ramification cycle on all of Mg;n requires more work. It also is not obvious that construct-
ing DRg.A/ in this way will give the same class as that given by relative Gromov–Witten
theory, even after restriction to Mct

g;n. For one approach to these questions using logarithmic
and tropical geometry, see the work of Marcus and Wise [13].

Eliashberg proposed the problem of giving a formula for the double ramification
cycle in 2001, in the context of symplectic field theory. This problem was solved by Janda,
Pandharipande, Zvonkine, and the author in 2016 [11], giving an explicit combinatorial for-
mula for the double ramification cycle. This formula has an unexpected form—an additional
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integer parameter r > 0 is introduced, then an expression is written down that becomes
polynomial in r for r sufficiently large, and finally this polynomial is specialized to r D 0.
Subsequent papers extending or generalizing the double ramification cycle formula in vari-
ous ways (e.g., [2, 5, 12]) have left the basic combinatorial structure of the formula virtually
unchanged. The purpose of this paper is to discuss this structure and give some motivation
for where it comes from.

In Section 2, we review the tautological classes in the Chow ring of the moduli
space of stable curves. In Section 3, we discuss results leading up to the formula of [11],
most notably Hain’s formula for the compact type double ramification cycle. Section 4 is
the heart of the paper and consists of an extended discussion motivating the shape of the
double ramification cycle formula. We conclude in Section 5 by stating the formula and
briefly explaining how its proof in [11] is related to some of the motivation in Section 4.

2. Tautological classes

2.1. Preliminaries
In this section we review the language in which the double ramification cycle formu-

la is written. This is the language of the tautological ring, a subringR�.Mg;n/ � A�.Mg;n/

containing most classes that arise naturally in geometry.
Following Faber and Pandharipande [6], the tautological rings R�.Mg;n/ can be

defined simultaneously for all g; n � 0 satisfying 2g � 2C n > 0 as the smallest subrings
of the Chow rings A�.Mg;n/ closed under pushforward by forgetful maps Mg;nC1 ! Mg;n

and gluing maps Mg;nC2 ! MgC1;n or Mg1;n1C1 � Mg2;n2C1 ! Mg1Cg2;n1Cn2 . Our dis-
cussions of tautological classes will use a more explicit description of them. Graber and
Pandharipande [8, Appendix A] gave a set of additive generators and a multiplication law sat-
isfied by these generators.

These additive generators are formed from three ingredients: psi classes, kappa
classes, and generalized gluing maps corresponding to stable graphs. The psi classes
 i 2 A1.Mg;n/, i D 1; : : : ; n correspond to the n marked points and are defined as the first
Chern classes of the cotangent line bundles to the curves at those points. The Arbarello–
Cornalba [1] kappa classes are then the pushforwards of powers of psi classes,

�a WD ��

�
 aC1

nC1

�
2 Aa.Mg;n/;

where � W Mg;nC1 ! Mg;n forgets the last marking. The kappa classes will not appear in
any of the formulas in this paper.

The tautological ring of the moduli space of smooth marked curves, R�.Mg;n/, is
the ring generated by these i and �a. To extend this toR�.Mg;n/we need classes supported
on boundary strata.

2.2. Stable graphs
A stable graph� is the combinatorial data of a boundary stratum in Mg;n. It consists

of the following:
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(1) a set of vertices V.�/;

(2) a genus gv � 0 at each vertex v 2 V.�/;

(3) a set of half-edges H.�/;

(4) an incidence map H.�/ ! V.�/;

(5) a partition ofH.�/ into sets of size 2 (called edges, the set of which is denoted
E.�/) and sets of size 1 (called legs);

(6) a bijection between the set of legs and ¹1; : : : ; nº.

The underlying graph is required to be connected. The stability constraint is that

2gv � 2C nv > 0

at each vertex v, where nv is the number of half-edges incident to v. The genera are con-
strained by the identity

2g � 2C n D

X
v2V.�/

.2gv � 2C nv/;

or equivalently that g �
P

v gv D h1.�/, the first Betti number of the graph. Such a stable
graph � corresponds to a generalized gluing map

�� W

Y
v2V.�/

Mgv ;nv ! Mg;n:

We can then consider classes

�� �.˛/ 2 A�.Mg;n/;

where � is a stable graph and ˛ is a monomial in the psi and kappa classes on the Mgv ;nv

factors. These are the additive generators for the tautological ring considered in [8].

2.3. Compact type
The moduli space of curves of compact type, denoted Mct

g;n, is the open subscheme
of Mg;n consisting of those curves whose dual graph is a tree. Its tautological ringR�.Mct

g;n/

is the image of R�.Mg;n/ under restriction, so it is additively generated by classes �� �.˛/

as above where � is a tree.
It will be convenient for us to have notation for the compact type boundary divi-

sor classes when stating Hain’s formula below, (3.2). If � is a stable graph with 2 vertices
and 1 edge and one of the vertices is genus h and has those legs with markings in a set
S � 1; 2; : : : ; n, let ıh;S D �� �.1/ be the corresponding boundary divisor class.

3. Previous formulas and results

The first progress towards a formula for the double ramification cycle was when
Faber and Pandharipande [7] proved that the double ramification cycle lies in the tautolog-
ical ring, and thus in theory must be expressible in terms of the generators described in
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the previous section. Their proof, although in principle constructive, involves a complicated
recursion and does not seem to yield a practical formula.

The first progress towards an explicit formula came when Hain [10] computed the
double ramification cycle when restricted to the compact type locus Mct

g;n. On this locus
the double ramification cycle is the pullback along an Abel–Jacobi map jA W Mct

g;n ! Xg;n

of the class of the zero section Zg;n of the universal abelian variety Xg;n ! Ag;n. Hain
showed that the class of this zero section is ŒZg;n� D ‚g=gŠ and computed the pullback of
the theta divisor ‚ as an explicit divisor on Mct

g;n,

j �
A‚ D

nX
iD1

a2
i

2
 i �

X
h;S

a2
S

4
ıh;S ; (3.1)

where aS D
P

i2S ai and the second sum runs over all h;S defining boundary divisor classes.
Hain’s formula for the compact type double ramification cycle is then

DRct
g.A/ D

1

gŠ

�
j �

A‚
�g

D
1

gŠ

 
nX

iD1

a2
i

2
 i �

X
h;S

a2
S

4
ıh;S

!g

: (3.2)

The divisor formula (3.1) is a homogeneous polynomial of degree 2 in A, so Hain’s
DR formula (3.2) is a homogeneous polynomial of degree 2g in A.

Grushevsky and Zakharov [9] extended Hain’s computation slightly, expanding from
Mct

g;n to a slightly larger open subscheme of Mg;n by adding the locus of curves whose dual
graph is a tree with a single loop added at one vertex. If � is the stable graph with a single
vertex and single loop, then their correction term is the codimension g part of

�� �

 
�

nY
iD1

exp
�
1

2
a2

i  i

� 1X
kD1

B2k

2kkŠ

�
 C  0

�k�1

!
; (3.3)

where  1; : : : ;  n are the psi classes on the legs,  ; 0 are the psi classes on the two half-
edges of the loop, and B2k is a Bernoulli number.

In particular, the double ramification cycle is no longer a homogeneous polynomial
in A when computed beyond compact type. This was also seen in work of Buryak, Shadrin,
Spitz, and Zvonkine [3], who showed that the top degree intersections of double ramification
cycles with monomials in the psi classes are inhomogeneous polynomials of degree 2g inA.

4. Motivation for the formula

In this section we discuss various observations and ideas that come about when
one tries to extend Hain’s formula (3.2) to Mg;n to obtain a full double ramification cycle
formula.

4.1. Expanding Hain’s formula
Exponentiating a boundary divisor class can be done using the multiplication laws

for tautological classes [8, Appendix A]. Multiplying out Hain’s formula (3.2) in this way gives
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a nice sum over trees: DRct
g.A/ is the codimension g part ofX

T stable tree

1

jAut.T /j
.�T /�

"
nY

iD1

exp
�
1

2
a2

i  hi

�
�

Y
eD¹h;h0º2E.T /

1 � exp.� 1
2
w.h/w.h0/. h C  h0//

 h C  h0

#
; (4.1)

where the function w W H.T / ! Z is defined here by contracting all the edges in the tree T
other than the one containing h and then letting w.h/ be the sum of the ai for the legs i on
the same vertex as the half-edge h.

Extending this formula to Mg;n requires us to provide a polynomial (or power series)
in the psi classes for every stable graph� , not just every stable tree. Thew.h/ definition above
does not naturally extend to non-separating edges, so it is not immediately clear how to do
this. Moreover, we know that this power series needs to be (3.3) for the single-loop graph,
so something quite new is going on even there.

4.2. Cohomological field theory axioms
A cohomological field theory (CohFT) is a collection of classes �g;n.
1; : : : ; 
n/

on Mg;n for all g and n, where the inputs 
i belong to some finite set S (a basis for the
state space of the CohFT). These classes must satisfy certain compatibility axioms relat-
ing them to each other under pullback by natural maps between the Mg;n. For one basic
treatment of CohFTs and Givental’s R-matrix action, see [14]. The double ramification cycle
is not quite a CohFT, but it satisfies some subset of the properties of one. For example, if
j W Mg1;n1C1 � Mg2;n2C1 ! Mg;n is a separating gluing map where the marked points split
into sets I1; I2 with jIi j D ni , then we have

j � DRg.a1; : : : ; an/ D DRg1

�
¹ai j i 2 I1º; t

�
˝ DRg2

�
¹ai j i 2 I2º;�t

�
;

where t 2 Z is the unique insertion that makes the parameters sum to 0 in each DR term on
the right.

If the double ramification cycle were a CohFT, we would want a similar formula for
the pullback along the nonseparating gluing map k W Mg�1;nC2 ! Mg;n: the natural thing
to write down would be

k� DRg.a1; : : : ; an/ D

X
t2Z

DRg�1.a1; : : : ; an; t;�t /;

but it is not clear how one might make sense of this infinite sum—it will not converge in
any standard sense. What is going wrong here is that CohFTs are supposed to depend multi-
linearly on parameters from a finite-dimensional state space, but double ramification cycles
take inputs in Z so the state space appears to be infinite-dimensional.

So the double ramification cycle behaves like a CohFT as far as separating nodes
are concerned, but the state space would have to be infinite-dimensional and this makes it
unclear what to do at nonseparating nodes.
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4.3. Givental’s R-matrix action
Teleman [16] proved that semisimple CohFTs all have a very particular graph sum

form, given by applying Givental’s R-matrix action to a CohFT that lives fully in codimension
zero. The rough shape of the resulting formula for a semisimple CohFT is

�g;n.
1; : : : ; 
n/ D

X
� stable graph

X
wWH.�/!S

1

jAut.�/j
.��/�

"
Y

v2V.�/

.vertex factor/
nY

iD1

.leg factor/
Y

eD¹h;h0º2E.�/

.edge factor/

#
;

where the second sum is over functions w on the half-edges of the graph taking values in
some setS (a basis for the state space of the CohFT) and the values ofw on the legs h1; : : : ;hn

are given as w.hi /D 
i . The various factors are then power series (that depend on w) in the
corresponding kappa and psi classes. The expanded version of Hain’s compact type for-
mula (4.1) is of this shape: we take S D Z, the vertex factor is 0 unless all of the incident
w.h/ sum to zero, and the edge factor is 0 unless the two w.h/ along the edge sum to zero.
These vanishings effectively place the following constraints on w (to get a nonzero contri-
bution to DRct

g.A/):

(1) w.hi / D ai for i D 1; 2; : : : ; n, where hi is the i th leg;

(2) w.h/C w.h0/ D 0 if ¹h; h0º is an edge;

(3)
P

h!v w.h/ D 0 for each vertex v.

We sayw is balanced (with respect to A) if it satisfies these constraints. In other words,w is
a flow on � with sources/sinks at the legs (with specified values given there by A). When �
is a tree, there is a unique such balanced w and we recover the w.h/ used in (4.1).

From this perspective it is natural to just try to take (4.1) and extend it to be a
Givental-type sum over arbitrary graphs (not just trees), but then there will be infinitely
many choices of w and the resulting infinite sums will be nonconvergent. Moreover, careful
comparison with the exact form of Givental’s R-matrix action suggests that the vertex factor
should contribute a total factor of something like “jZj

�h1.�/.” Note that the set of balanced
w is a torsor overH1.�I Z/Š Zh1.�/, so this factor feels like some sort of infinite averaging
procedure.

4.4. Divergent averages
Returning to the simplest non-tree case, the graph with one vertex and one loop,

matching things up with (3.3) would then require making sense of the “infinite average”
identity

1

jZj

X
c2Z

c2k
D B2k : (4.2)

This is reminiscent of the zeta regularization sumX
c�1

c2k�1
D �.1 � 2k/ D �

B2k

2k
;
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but there is no obvious way to make sense of this similarity. Moreover, more complicated
graphs require much more complicated divergent sums; for example, a graph with two ver-
tices, a double edge between them, and one leg on each vertex gives rise to infinite sums
like

1

jZj

X
cCdDa

c2kd2l (4.3)

which must be interpreted.

4.5. Interpolating finite rank CohFTs
The problem with writing down a double ramification cycle formula of this type is

clearly that the state space is infinite-dimensional. If we replace Z with Z=rZ everywhere
then there is no difficulty with writing down a similar-looking finite rank CohFT. The result
might be something like the following (the case of a diagonal R-matrix—for an example of
a more complicated CohFT of this general type, see [15]):X

� stable graph

X
wWH.�/!Z=rZ

balanced

1

jAut.�/j
.��/�

"
1

rh1.�/

nY
iD1

exp
�
Fw.hi /. hi

/
�

�

Y
eD¹h;h0º2E.�/

1 � exp.Fw.h/. h/C Fw.h0/. h0//

 h C  h0

#
;

for power series Fa.Z/ for a 2 Z=rZ with F0.Z/ D 0 and F�a.�Z/ D �Fa.Z/.
If we takeFa.Z/D

1
2
a2Z for �

r
2
< a�

r
2

then this CohFT starts to look very much
like the expanded version of Hain’s formula, (4.1). In fact, if � is a tree then the �-term in
this sum agrees with that in Hain’s formula for all sufficiently large r . So it is tempting to try
to take the limit as r ! 1 of these CohFTs. But this is not quite right: the r-version of the
left side of (4.2) is then

1

r

X
� r

2 <c� r
2

c2k :

This certainly does not converge as r ! 1. However, if we restrict to even r then it is
polynomial in r , and if we examine the coefficients of this polynomial then we see that B2k ,
the desired value, is the constant coefficient in r .

This suggests a potential interpretation even of more complicated sums like (4.3):
1

jZj

X
cCdDa

c2kd2l
D

1

jZ=0Zj

X
c;d2Z=0Z

cCdDa .mod 0/

c2kd2l

WD

�
1

jZ=rZj

X
c;d2Z=rZ

cCdDa .mod r/

c2kd2l

�
rD0

;

where c and d must be interpreted inside c2kd2l as elements of Z via some choice of mod r
representatives (we used �r=2C 1; : : : ; r=2 before but 0; : : : ; r � 1 will give the same final
answer) and setting r D 0 at the end is done by polynomial interpolation.
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4.6. Geometric interpretation from .k=r/-spin structures
An .k=r/-spin structure on a smooth curve C with marked points pi and weights

ai is a choice of line bundle L on C such that L˝r � !˝k
C .a1p1 C � � � C anpn/. If we take

k D 0 and assume the weights ai sum to zero then for any positive r any smooth curve will
have such “r th root structures.” But we can also interpret this construction as meaningful
when r D 0, when we get that a curve only admits a .0=0/-spin structure if it is in the double
ramification locus. This observation gives a vague geometric idea for what it might mean to
think of the double ramification cycle as given by specializing some parameter r to 0.

5. The double ramification cycle formula

We can now state the main result of [11], the double ramification cycle formula:

Theorem 1 ([11]). DRg.A/ is the codimension g part ofX
� stable graph

1

jAut.�/j
.��/�

"
1

jZjh
1.�/

X
wWH.�/!Z

balanced

nY
iD1

exp
�
1

2
a2

i  hi

�

�

Y
eD¹h;h0º2E.�/

1 � exp.� 1
2
w.h/w.h0/. h C  h0//

 h C  h0

#
;

where formal expressions of the form
1

jZj
h1.�/

X
wWH.�/!Z

balanced

P
�®
w.h/

¯�
(for P a polynomial) are evaluated by setting r D 0 in the corresponding r-polynomial

1

rh1.�/

X
wWH.�/!¹0;1;:::;r�1º

balanced mod r

P
�®
w.h/

¯�
:

The combinatorial result (necessary for this theorem statement to make sense) that
the expression in the final line is in fact a polynomial in r (for r sufficiently large) was proved
in [11, Appendix A].

The proof of Theorem 1 in [11] follows some of the motivation in Section 4. We first
explain the meaning of the additional r parameter. For each r > 0, let P 1Œr� denote the pro-
jective line with a BZr orbifold point at 0. One can then use C�-localization on the moduli
space of relative stable maps to P 1Œr�=¹1º to obtain complicated relations that entangle
double ramification cycles, classes coming from moduli of .0=r/-spin curves (discussed
briefly in the case of smooth curves in Section 4.6), and other basic tautological classes. The
relevant .0=r/-spin classes were previously computed by Chiodo [4] using Grothendieck–
Riemann–Roch.

These localization relations are too difficult to study effectively for specific values
of r , but it turns out that they have polynomial dependence on r . Taking the constant term
in r simplifies them greatly: most of the terms vanish, and the only remaining terms are a
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single double ramification cycle and the r D 0 interpolation of certain classes written in
terms of the Chern characters of the pushforward of the universal r th root line bundle on the
moduli space of .0=r/-spin curves. Chiodo’s formula [4] for these Chern characters gives
that these classes are CohFTs with formulas of the type described in Section 4.5. The power
series in psi classes appearing in these formulas do not look exactly like those appearing in
Theorem 1, but they have the same r D 0 interpolation. (In the language of Section 4.5, the
power series Fa.Z/ will be congruent to 1

2
a2Z mod r .) The result is a proof of Theorem 1.
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