
Effective results in
the three-dimensional
minimal model
program
Yuri Prokhorov

Abstract

We give a brief review on recent developments in the three-dimensional minimal model
program.

Mathematics Subject Classification 2020

Primary 14E30; Secondary 14J30, 14B05, 14E05

Keywords

Minimal model, Mori contraction, terminal (canonical) singularity, flip, extremal ray

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 3, pp. 2324–2345
DOI 10.4171/ICM2022/30

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


In this note we give a brief review on recent developments in the three-dimensional
minimal model program (MMP for short). Certainly, this is not a complete survey of all
advances in this area. For example, we do not discuss the minimal models of varieties of
nonnegative Kodaira dimension, as well as applications to birational geometry and moduli
spaces.

The aim of the MMP is to find a good representative in a fixed birational equivalence
class of algebraic varieties. Starting with an arbitrary smooth projective variety, one can
perform a finite number of certain elementary transformations, called divisorial contractions
and flips, and at the end obtain a variety which is simpler in some sense. Most parts of the
MMP are completed in arbitrary dimension. One of the basic remaining problems is the
following:

Describe all the intermediate steps and the outcome of the MMP.

The MMP makes sense only in dimensions � 2, and for surfaces it is classical and well
known. So the first nontrivial case is the three-dimensional one. It turns out that to proceed
with the MMP in dimension � 3, one has to work with varieties admitting certain types of
very mild, the so-called terminal, singularities. On the other hand, dimension 3 is the last
dimension where one can expect effective results: in higher dimensions, classification results
become very complicated and unreasonably long.

We will work over the field C of complex numbers throughout. A variety is either
an algebraic variety or a reduced complex space.

1. Singularities

Recall that a Weil divisorD on a normal variety is said to be Q-Cartier if its multi-
ple nD, for some n, is a Cartier divisor. For any morphism f W Y ! X , the pull-back f �D
of a Q-Cartier divisor D is well defined as a divisor with rational coefficients (Q-divisor).
A variety X has Q-factorial singularities if any Weil divisor on X is Q-Cartier.

Definition 1.1. A normal algebraic variety (or an analytic space) X is said to have terminal
(resp. canonical, log terminal, log canonical) singularities if the canonical Weil divisorKX

is Q-Cartier and, for any birational morphism f W Y ! X , one can write

KY D f �KX C

X
aiEi ; (1.1.1)

where Ei are all the exceptional divisors and ai > 0 (resp. ai � 0, ai > �1, ai � �1) for
all i . The smallest positive m such that mKX is Cartier is called the Gorenstein index of X .
Canonical singularities of index 1 are rational Gorenstein.

The class of terminal Q-factorial singularities is the smallest class that is closed
under the MMP. Canonical singularities are important because they appear in the canoni-
cal models of varieties of general type. A crucial observation is that terminal singularities
lie in codimension � 3. In particular, terminal surface singularities are smooth and termi-
nal threefold singularities are isolated. Canonical singularities of surfaces are called Du Val

2325 Effective results in the three-dimensional minimal model program



or rational double points. Any two-dimensional log terminal singularity is a quotient of a
smooth surface germ by a finite group [32]. Terminal threefolds singularities were classified
by M. Reid [65] and S. Mori [43].

Example. Let X � C4 be a hypersurface given by the equation

�.x1; x2; x3/C x4 .x1; : : : ; x4/ D 0;

where � D 0 is an equation of a Du Val (ADE) singularity. Then the singularity of X at 0 is
canonical Gorenstein. It is terminal if and only if it is isolated. Singularities of this type are
called cDV.

According to [65], any three-dimensional terminal singularity of index m > 1 is a
quotient of an isolated cDV-singularity by the cyclic group �m of order m. More precisely,
we have the following

Theorem 1.2 ([65]). Let .X 3 P / be an analytic germ of a three-dimensional terminal sin-
gularity of indexm� 1. Then there exist an isolated cDV-singularity .X] 3P ]/ and a cyclic
�m-cover

� W .X]
3 P ]/ �! .X 3 P /

which is étale outside P .

The morphism � in the above theorem is called the index-one cover. A detailed
classification of all possibilities for the equations of X] � C4 and the actions of �m was
obtained in [43] (see also [66]).

Example. Let the cyclic group �m act on Cn diagonally via

.x1; : : : ; xn/ 7! .—a1x1; : : : ; —
anxn/; — D —m D exp.2  i =m/:

Then we say that .a1; : : : ; an/ is the collection of weights of the action. Assume that the
action is free in codimension 1. Then the quotient singularity Cn=�m 3 0 is said to be of
type 1

m
.a1; : : : ; an/. According to the criterion (see [66, Theorem 4.11]), this singularity is

terminal if and only if
nX

iD1

kai > m for k D 1; : : : ; m � 1;

where is the smallest residue modm. In the threefold case this criterion has a very simple
form: a quotient singularity Cm=�m is terminal if and only if it is of type 1

m
.1;�1;a/, where

gcd.m; a/ D 1. This is a cyclic quotient terminal singularity.

Example ([43,66]). Let the cyclic group �m act on C4 diagonally with weights .1;�1;a; 0/,
where gcd.m; a/ D 1. Then for a polynomial �.u; v/, the singularity at 0 of the quotient®

x1x2 C �.xm
3 ; x4/ D 0

¯
=�m

is terminal whenever it is isolated. The index of this singularity equals m.
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As a consequence of the classification, we obtain that the local fundamental group
of the (analytic) germ of a three-dimensional terminal singularity of index m is cyclic of
order m:

 1

�
X n ¹P º

�
' Z=mZ: (1.2.1)

In particular, for any Weil Q-Cartier divisor D on X , its mth multiple mD is Cartier
[32, Lemma 5.1].

The class of canonical threefold singularities is much larger than the class of termi-
nal ones. However, there are certain boundedness results. For example, it is known that the
index of a strictly canonical isolated singularity is at most 6 [31].

The modern higher-dimensional MMP often works with pairs, and one needs to
extend Definition 1.1 to a wider class of objects.

Definition. Let X be a normal variety and let B be an effective Q-divisor on X . The pair
.X; B/ is said to be plt (resp. lc) if KX C B is Q-Cartier and, for any birational morphism
f W Y ! X , one can write

KY C BY D f �.KX C B/C

X
aiEi ;

whereBY is the proper transform ofB ,Ei are all the exceptional divisors and ai >�1 (resp.
ai � �1) for all i . The pair .X;B/ is said to be klt if it is plt and bBc D 0.

2. Minimal model program

Basic elementary operations in the MMP are Mori contractions.
A contraction is a proper surjective morphism f W X ! Z of normal varieties with

connected fibers. The exceptional locus of a contraction f is the subset Exc.f / � X of
points at which f is not an isomorphism. A Mori contraction is a contraction f W X ! Z

such that the varietyX has at worst terminal Q-factorial singularities, the anticanonical class
�KX is f -ample, and the relative Picard number ¡.X=Z/ equals 1. A Mori contraction is
said to be divisorial (resp. flipping) if it is birational and the locus Exc.f / has codimen-
sion 1 (resp. � 2). For a divisorial contraction, the exceptional locus Exc.f / is a prime
divisor. A Mori contraction whose target is a lower-dimensional variety is called a Mori
fiber space. Then the general fiber is a Fano variety with at worst terminal singularities. In
the particular cases where the relative dimension of X=Z equals 1 (resp. 2), the Mori fiber
space f W X ! Z is called a Q-conic bundle (resp. Q-del Pezzo fibration). If Z is a point,
then X is a Fano variety with at worst terminal Q-factorial singularities and Pic.X/ ' Z.
For short, we call such varieties Q-Fano.

The MMP procedure is a sequence of elementary transformations which are con-
structed inductively [35,39]. LetX be a projective algebraic variety with terminal Q-factorial
singularities. If the canonical divisor KX is not nef, then there exists a Mori contraction
f W X ! Z. If f is divisorial, then Z is again a variety with terminal Q-factorial singular-
ities and, in this situation, we can proceed with the MMP replacing X with Z. In contrast,
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a flipping contraction takes us out the category of terminal Q-factorial varieties. To proceed,
one has to perform a surgery operation as follows:

X

f &&

// XC

f Cww
Z

where f C is a contraction whose exceptional locus has codimension � 2 and the divisor
KXC is Q-Cartier and f C-ample. Then the variety XC again has terminal Q-factorial sin-
gularities, and we can proceed by replacing X with XC.

The process described above should terminate, and at the end we obtain a variety
NX such that either NX has a Mori fiber space structure NX ! NZ or K NX is nef. One of the

remaining open problems is the termination of the program, to be more precise, termination
of a sequence of flips. The problem was solved affirmatively in dimension � 4 [35, 69], for
varieties of general type, for uniruled varieties [5], and in some other special cases. We refer
to [3] for more comprehensive survey of the higher-dimensional MMP.

The MMP has a huge number of applications in algebraic geometry. The most
impressive consequence of the MMP is the finite generation of the canonical ring

R.X;KX / WD

M
n�0

H 0
�
X;OX .mKX /

�
of a smooth projective variety X [5, 15]. Another application of the MMP is the so-called
Sarkisov program which allows decomposing birational maps between Mori fiber spaces
into composition of elementary transformations, called Sarkisov links [9, 16, 68]. Also the
MMP can be applied to varieties with finite group actions and to varieties over nonclosed
fields (see [63]).

As was explained above, the Mori contractions are fundamental building blocks in
the MMP. To apply the MMP effectively, one needs to understand the structure of its steps in
details. For a Mori contraction f W X ! Z of a three-dimensional variety X , there are only
the following possibilities:

• f is divisorial and the image of the (prime) exceptional divisor E WD Exc.f / is
either a point or an irreducible curve,

• f is flipping and the exceptional locus Exc.f / is a union of a finite number of
irreducible curves,

• Z is a surface and f is a Q-conic bundle,

• Z is a curve and f is a Q-del Pezzo fibration,

• Z is a point and X is a Q-Fano threefold.

Mori contractions of smooth threefolds to varieties of positive dimension where classified
in the pioneering work of S. Mori [42]. S. Cutkosky [12] extended this classification to the
case of Gorenstein terminal varieties. Smooth Fano threefolds of Picard number 1 where
classified by Iskovskikh [22,23] (see also [25]). Fano threefolds with Gorenstein terminal sin-
gularities are degenerated smooth ones [57]. Below we are going to discuss Mori contractions
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of threefolds. We are interested only in the biregular structure of a contraction f W X ! Z

near a fixed fiber f �1.o/, o 2 Z. Typically, we do not consider the simple case where X is
Gorenstein.

3. General elephant

A natural way to study higher-dimensional varieties is the inductive one. Typically,
to apply this method, we need to find a certain subvariety of dimension one less (divisor)
which is sufficiently good is the sense of singularities.

Conjecture 3.1. Let f W X ! .Z 3 o/ be a threefold Mori contraction, where .Z 3 o/ is a
small neighborhood. Then the general memberD 2 j�KX j is a normal surface with Du Val
singularities.

The conjecture was proposed by M. Reid who called a good member of j�KX j “ele-
phant.” We follow this language and call Conjecture 3.1 the General Elephant Conjecture.
The importance of the existence of a good member in j�KX j is motivated by many reasons:

• The general elephant passes through all the non-Gorenstein points of X and so it
encodes the information about their types and configuration (cf. Proposition 3.2
below).

• For flipping contractions, Conjecture 3.1 is a sufficient condition for the existence
of threefold flips [32].

• For a divisorial contraction f W X ! Z whose fibers have dimension � 1, the
imageDZ WD f .D/ of a Du Val elephantD 2 j�KX j must be again Du Val and
the image � WD f .E/ of the exceptional divisor is a curve on DZ . Then one can
reconstruct f starting from the triple .Z � DZ � �/ by using a certain bira-
tional procedure. Such an approach was successfully worked out in many cases
by N. Tziolas [71–74].

• If f WX ! .Z 3 o/ is a Q-del Pezzo fibration such that generalD 2 j�KX j is Du
Val, then, composing the projectionD !Z with minimal resolution QD !D, we
obtain a relatively minimal elliptic fibration whose singular fibers are classified
by Kodaira [36]. Then one can get a bound of multiplicities of fibers and describe
the configuration of non-Gorenstein singularities.

• For a Q-Fano threefold X , a Du Val general elephant is a (singular) K3 surface.
In the case where the linear system j�KX j is “sufficiently big,” this implies the
existence of a good Gorenstein model [1].

Shokurov [70] generalized Conjecture 3.1 and introduced a new notion which is
very efficient in the study of pluri-anticanonical linear systems. Omitting technicalities, we
reproduce a weak form of Shokurov’s definition.

2329 Effective results in the three-dimensional minimal model program



Definition. An n-complement of the canonical class KX is a member D 2 j�nKX j such
that the pair .X; 1

n
D/ is lc. An n-complement is said to be klt (resp. plt) if such is the pair

.X; 1
n
D/.

According to the inversion of adjunction [70], the existence of a Du Val general ele-
phantD 2 j�KX j is equivalent to the existence of a plt 1-complement. Shokurov developed
a powerful theory that works in arbitrary dimension and allows constructing complements
inductively (see [64,70] and references therein).

Note that Reid’s general elephant fails for Fano threefolds. For example, in [6,21] one
can find examples of Q-Fano threefolds with an empty anticanonical linear system. Because
of this, the statement of Conjecture 3.1 sometimes is called a “principle.” Nonetheless, there
are only a few examples of such Fano threefolds. In the case dim.Z/ > 0, Conjecture 3.1
is expected to be true without exceptions. The following should be considered as the local
version of Conjecture 3.1.

Proposition 3.2 (Reid [66]). Let .X 3 P / be the analytic germ of a threefold terminal sin-
gularity of index m > 1. Then the general member D 2 j�KX j is a Du Val singularity.
Furthermore, let � W X 0 ! X be the index-one cover and letD0 WD ��1.D/. Then the cover
D0 ! D belongs to one of the following six types:

.X 3 P / D0 ! D .X 3 P / D0 ! D

cA/m Ak�1
mW1

���! Akm�1 cAx/2 A2k�1
2W1

���! DkC2

cAx/4 A2k�2
4W1

���! D2kC1 cD/2 DkC1
2W1

���! D2k

cD/3 D4
3W1

���! E6 cE/2 E6
2W1

���! E7

4. Divisorial contractions to a point

In this section we treat divisorial Mori contractions of a divisor to a point. Such con-
tractions are studied very well due to works of Y. Kawamata [34], A. Corti [10], M. Kawakita
[26–30], T. Hayakawa [18–20], and others. In this case, General Elephant Conjecture 3.1 has
been verified:

Theorem 4.1 (Kawakita [28, 29]). Let f W X ! .Z 3 o/ be a divisorial Mori contraction
that contracts a divisor to a point. Then the general member D 2 j�KX j is Du Val.

One of the main tools in the proofs is the orbifold Riemann–Roch formula [66]:
if X is a three-dimensional projective variety with terminal singularities and D is a Weil
Q-Cartier divisor on X , then for the sheaf L D OX .D/ there is a formula of the form

�.L / D �.OX /C
1

12
D � .D �KX / � .2D �KX /C

1

12
D � c2 C

X
P

cP .D/; (4.1.1)

where the sum rungs over all the virtual quotient singularities of X , i.e., over the actual
singularities of X that are replaced with their small deformations [66], and cP .D/ is a local
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contribution due to singularity at P , depending only on the local analytic type of D at P .
There is an explicit formula for the computation of cP .D/.

Except for a few hard cases, the classification of divisorial Mori contractions of a
divisor to a point has been completed. A typical result here is to show that a contraction is a
weighted blowup with some explicit collection of weights:

Theorem 4.2 (Y. Kawamata [34]). Let f W X ! .Z 3 o/ be a divisorial Mori contraction
that contracts a divisor to a point. Assume that o 2 Z is a cyclic quotient singularity of type
1
r
.a;�a; 1/. Then f is the weighted blowup with weights .a=r; 1 � a=r; 1=r/.

Theorem 4.3 (M. Kawakita [26]). Let f WX ! .Z 3 o/ be a divisorial Mori contraction that
contracts a divisor to a smooth point. Then f is the weighted blowup with weights .1; a; b/,
where gcd.a; b/ D 1.

These results are intensively used in the three-dimensional birational geometry, for
example, in the proof of birational rigidity of index-1 Fano threefold weighted hypersur-
faces [11].

5. Del Pezzo fibrations

Much less is known about the local structure of Q-del Pezzo fibrations. As was
explained in Section 3, the existence of a Du Val general elephant would be very helpful in
the study such contractions. However, in this case Conjecture 3.1 is established only in some
special situations.

An important question that can be asked in the Del Pezzo fibration case is the pres-
ence of multiple fibers.

Theorem 5.1 ([49]). Let f W X ! Z be a Q-del Pezzo fibration and let f �.o/DmoFo be a
special fiber of multiplicitymo. Thenmo � 6 and all the cases 1 �mo � 6 occur. Moreover,
the possibilities for the local behavior of Fo near singular points are described.

The main idea of the proof is to apply the orbifold Riemann–Roch formula (4.1.1)
to the divisor Fo and its multiples.

Example. Suppose that the cyclic group �4 acts on P 1
x � P 1

y � Ct via

.x; yI t / 7�! .y;�x;
p

�1t/:

Then the quotient
X D .P 1

� P 1
� C/=�4 �! Z D C=�4

is the germ of a Q-del Pezzo fibration with central fiber of multiplicity 4.

Another type of Q-del Pezzo fibrations which are investigated relatively well are
those whose central fiber F WD f �1.o/ is reduced, normal, and has “good” singularities.
ThenX can be viewed as a one-parameter smoothing of F . The total space of this smoothing
must be Q-Gorenstein and F can be viewed as a degeneration of a general fiber (smooth del
Pezzo surface) in a Q-Gorenstein family. The most studied class of singularities admitting
Q-Gorenstein smoothings is the class of singularities of type T.
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Definition (Kollár, Shepherd-Barron [40]). A two-dimensional quotient singularity is said
to be of type T if it admits a smoothing in a one-parameter Q-Gorenstein family X ! B .

In this case, by the inversion of adjunction [70], the pair .X; F / is plt and the total
family X is terminal. Conversely, if X 3 P is a Q-Gorenstein point and F is an effective
Cartier divisor at P such that the pair .X; F / is plt, then F 3 P is a T-singularity and the
point X 3 P is terminal. Singularities of type T and their deformations were studied by
Kollár and Shepherd-Barron [40]. In particular, they proved that any T-singularity is either a
Du Val point or a cyclic quotient of type 1

m
.q1; q2/ with

gcd.m; q1/ D gcd.m; q2/ D 1; .q1 C q2/
2

� 0 mod m:

Minimal resolutions of these singularities are also described [40, § 3].
Thus to study Q-del Pezzo fibrations whose central fiber has only quotient singular-

ities, one has to consider Q-Gorenstein smoothings of del Pezzo surfaces with singularities
of type T. The important auxiliary fact here is the unobstructedness of deformations:

Proposition 5.2 ([13, 41]). Let F be a projective surface with log canonical singularities
such that �KF is big. Then there are no local-to-global obstructions to deformations of F .
In particular, if F has T-singularities, then F admits a Q-Gorenstein smoothing.

Theorem 5.3 (Hacking–Prokhorov [13]). Let F be a projective surface with quotient singu-
larities such that �KF is ample, ¡.F / D 1, and F admits a Q-Gorenstein smoothing. Then
F belongs to one of the following:

• 14 infinite sequences of toric surfaces (see below);

• partial smoothing of a toric surface as above;

• 18 sporadic families of surfaces of index � 2 [2].

Toric surfaces appearing in the above theorem are determined by a Markov-type
equation. More precisely, for K2

F � 5 these surfaces are weighted projective spaces given
by the following table:

K2
F F Markov-type equation
9 P .a2; b2; c2/ a2 C b2 C c2 D 3abc

8 P .a2; b2; 2c2/ a2 C b2 C 2c2 D 4abc

6 P .a2; 2b2; 3c2/ a2 C 2b2 C 3c2 D 6abc

5 P .a2; b2; 5c2/ a2 C b2 C 5c2 D 5abc

and forK2 � 4 they are certain abelian quotients of the weighted projective spaces as above.
Note, however, that in general we cannot assert that, for central fiber F of a Q-del Pezzo
fibration, the condition ¡.F / D 1 holds. Some partial results in the case ¡.F / > 1 where
obtained in [60]. In particular, [60] establishes the existence of Du Val general elephant for
Q-del Pezzo fibrations with “good” fibers:
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Theorem 5.4. Let f W X ! .Z 3 o/ be a Q-del Pezzo fibration over a curve germ Z 3 o.
Assume that the fiber f �1.o/ is reduced, normal, and has only log terminal singularities.
Then the general elephant D 2 j�KX j is Du Val.

Theorem 5.3 gives a complete answer to the question posed by M. Manetti [41]:

Corollary 5.5 ([13]). Let X be a projective surface with quotient singularities which admits
a smoothing to P 2. Then X is a Q-Gorenstein deformation of a weighted projective plane
P .a2; b2; c2/, where the triple .a; b; c/ is a solution of the Markov equation

a2
C b2

C c2
D 3abc:

Results similar to Theorem 5.3 were obtained for Q-del Pezzo fibrations whose
central fiber is log canonical [62]. However, in this case the classification is not complete.

6. Extremal curve germs

To study Mori contractions with fibers of dimension � 1, it is convenient to work
with analytic threefolds and to localize to situation near a curve contained in a fiber.

Definition 6.1. Let .X � C/ be the analytic germ of a threefold with terminal singularities
along a reduced connected complete curve. Then .X � C/ is called an extremal curve germ
if there exists a contraction

f W .X � C/ �! .Z 3 o/

such that C D f �1.o/red and �KX is f -ample. The curve C is called the central fiber of
the germ and Z 3 o is called the target variety or the base of .X � C/. An extremal curve
germ is said to be irreducible if such is its central fiber.

In the definition above, we do not assume that X is Q-factorial or ¡.X=Z/ D 1.
This is because Q-factoriality typically is not a local condition in the analytic category (see
[32, § 1]). There are three types of extremal curve germs:

• flipping if f is birational and does not contract divisors;

• divisorial if the exceptional locus is two-dimensional;

• Q-conic bundle germ if the target variety Z is a surface.

If a divisorial curve germ is irreducible, then the exceptional locus of the corresponding
contraction is a Q-Cartier divisor and the target variety Z has terminal singularities [51, §3].
In general, this is not true. It may happen that the exceptional locus is a union of a divisor
and some curves.

As an example, we consider the case where X has singularities of indices 1 and 2.

Theorem 6.2 ([47]). Let .X � C/ be a Q-conic bundle germ over a smooth base. Assume
thatX is not Gorenstein and 2KX is Cartier. ThenX can be embedded to P .1; 1; 1; 2/� C2
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and given there by two quadratic equations. In particular, the point P 2 X of index 2 is
unique, the curve C has at most 4 components, all of them pass through P .

Theorem 6.3 ([38]). Let .X � C/ be a flipping extremal curve germ and let

.X � C/

f

++

// .XC � CC/

f C

rr
.Z 3 o/

be the corresponding flip. Assume that 2KX is Cartier. Then .Z 3 o/ is the quotient of the
isolated hypersurface singularity®

x1x3 C x2�.x
2
2 ; x4/ D 0

¯
3 0

by the �2-action given by the weights .1; 1; 0; 0/. The contraction f (resp. f C) is the quo-
tient of the blowup of the plane ¹x2 D x3 D 0º (resp. ¹x1 D x2 D 0º) by �2. In particular,
X contains a unique point of index 2 and the central fiber C is irreducible. The variety XC

is Gorenstein.

A similar description is known for divisorial extremal curve germs of index 2
[38, § 4].

First properties. Let .X � C/ be an extremal curve germ and let f W .X � C/! .Z 3 o/

be the corresponding contraction. For any connected subcurve C 0 � C , the germ .X � C 0/

is again an extremal curve germ. If, moreover, C 0 ¤ C , then .X � C 0/ is birational. By the
Kawamata–Viehweg vanishing theorem,

R1f�OX D 0 (6.3.1)

(see, e.g., [35]). As a consequence, one has pa.C
0/� 0 for any subcurveC 0�C . In particular,

C D
S
Ci is a “tree” of smooth rational curves. Furthermore,

Pic.X/ ' H 2.X;Z/ ' Z˚n; (6.3.2)

where n is the number of irreducible components of C . For more delicate properties of
extremal curve germs, one needs to know the cohomology of the dualizing sheaf, see [44,47]:

R1f�¨X D

8<: 0; if f is birational;

¨Z ; if f is Q-conic bundle and Z is smooth:
(6.3.3)

Definition. An irreducible extremal curve germ .X � C/ is (locally) imprimitive at a point
P if the inverse image of C under the index-one cover .X] 3 P ]/ ! .X 3 P / splits.

Theorem 6.4 ([44, 47]). Let .X � C/ be an extremal curve germ and let C1; : : : ; Cn be
irreducible components of C .

• Each Ci contains at most 3 singular points of X .

• Each Ci contains at most 2 non-Gorenstein points ofX and at most 1 point which
is imprimitive for .X � Ci /.
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• If X is Gorenstein at the intersection point P D Ci \ Cj , Ci ¤ Cj , then X is
smooth outside P and .X � C/ is a Q-conic bundle germ over a smooth base.

To prove the first assertion, one needs to analyze the conormal sheaf IC =I
2
C and use

the vanishing H 1.OX=J / D 0 for any J � OX with Supp.OX=J / D C (see [44, 55]). For
the second assertion, one can use topological arguments based on (1.2.1) (see [55]). For the
last assertion, we refer to [44, 1.15], [37, 4.2], and [55, 4.7.6]

The techniques applied in the proof of the above proposition allow obtaining much
stronger results. In particular, they alow classifying all the possibilities for the local behavior
of an irreducible germ .X � C/ near a singular point P [44]. Thus, according to [44] and
[47], the triple .X � C 3 P / belongs to one of the following types:

.IA/; .IC/; .IIA/; .IIB/; .IA_/; .II_/; .ID_/; .IE_/; .III/:

Here the symbol _ means that .X � C 3 P / is locally imprimitive, the symbol II means that
.X 3 P / is a terminal point of exceptional type cAx/4 (see Proposition 3.2), and III means
that .X 3 P / is an (isolated) cDV-point.

For example, a triple .X �C 3P / is of type (IC) if there are analytic isomorphisms

.X 3 P / ' C3
y1;y2;y4

=�m.2;m � 2; 1/; C '
®
ym�2

1 � y2
2 D y4 D 0

¯
=�m;

where m is odd and m � 5. For definitions other types, we refer to [44] and [47].

6.1. Construction of germs by deformations
Let .X � C/ be an extremal curve germ and let f W X ! .Z 3 o/ be the corre-

sponding contraction. Denote by jOZ j the infinite-dimensional linear system of hyperplane
sections passing through o and let jOX j WD f �jOZ j. The general hyperplane section of
.X � C/ is the general member H 2 jOX j. The divisor H contains much more informa-
tion on the total space than a general elephantD 2 j�KX j. However, the singularities ofH
typically are more complicated, in particular, H can be nonnormal.

The variety X (resp. Z) can be viewed as the total space of a one-parameter defor-
mation of H (resp. HZ WD f .H/). We are going to reverse this consideration.

Construction (see [38, § 11], [44, § 1b]). Suppose we are given a normal surface germ
.H � C/ along a proper curveC and a contraction fH WH !HZ such that C is a fiber and
�KH is fH -ample. Let P1; : : : ; Pr 2 H be all the singular points. Assume also that near
each Pi there exists a small one-parameter deformation Hi of a neighborhood Hi of Pi in
H such that the total space Hi has a terminal singularity at Pi . The obstruction to globalize
deformations

‰ W Def.H/ �!

Y
Pi2Sing.H/

Def.H;Pi /

lies inR2f�TH , where TH D Hom .�H ;OH / is the tangent sheaf ofH . SinceR2f�TH D 0

due to dimension reasons, the morphism ‰ is smooth, and so there exists a global one-
parameter deformation H of H inducing a local deformation of Hi near Pi .
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Then we have a threefold X WD H � C with H 2 jOX j such that locally near Pi

it has the desired structure and one can extend fH to a contraction f W X ! Z which is
birational (resp. a Q-conic bundle) if HZ is a surface (resp. a curve).

Example. Consider a rational curve fibration f QH W QH ! HZ over a smooth curve germ
HZ 3 o, where QH is a smooth surface such that the fiber over o has the following weighted
dual graph:

�2
�

�1
�

�3
ı

�2
ı

�3
ı

�1
�

ı
�3

�
�1

Contracting the curves corresponding to the white vertices � and ı, we obtain a singular
surface H and a KH -negative contraction fH W H ! HZ whose fiber over o is a curve
C � H having three irreducible components that correspond to the black vertices �. The
singular locus of H consists of a Du Val point P0 2 H of type A1 and a log canonical
singularity P 2 H whose dual graph is formed by the white circle vertices ı. Both P0

and P have 1-parameter Q-Gorenstein smoothings [38, Computation 6.7.1]. Applying the
above construction to H � C , we obtain an example of a Q-conic bundle contraction
f W .X � C/ ! .Z 3 o/ with a unique non-Gorenstein point which is of type cD/3. If
we remove the .�2/-curve corresponding to � on the left-hand side of the graph, we get
a birational contraction of surfaces f 0H W H 0 ! H 0Z . Applying the same construction to
H 0 � C , we obtain an example of a divisorial contraction. Similarly, removing further one
of the .�1/-curves, we get a flip.

7. Extremal curve germs: general elephant

Theorem 7.1 (Mori [44], Kollár–Mori [38], Mori–Prokhorov [50]). Let .X � C/ be an irre-
ducible extremal curve germ. Then the general memberD 2 j�KX j has only Du Val singu-
larities.

The existence of a Du Val elephant for extremal curve germs with reducible central
fiber is not known at the moment. See Theorem 9.2 below for partial results in this direction.

Comment on the proof. Essentially, there are three methods to find a good elephant
D 2 j�KX j. We outline them below.

7.1. Local method
As in Proposition 3.2, near each non-Gorenstein point Pi 2 X take a local general

elephant Di 2 j�K.X3Pi /j. Since Di is general, we have Di \ C D ¹Pi º. Then we can
regardD WD

P
Di as a Weil divisor onX . By the construction,KX CD is a Cartier divisor

near each Pi , hence it is Cartier everywhere. In some cases it is possible to compute the
intersection numbersDi �C and show thatD �C <1. Then we may assume thatKX CD� 0

by (6.3.2) and so D is a Du Val anticanonical divisor. For example, this method works for
extremal curve germs described in Theorems 6.2 and 6.3, as well as in Example 7.3 below.
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7.2. Extension from S 2 j�2KX j

In some cases, the above approach does not work, but it allows showing the existence
of a klt 2-complement S 2 j�2KX j such that dim.D \ C/ D 0. Then one can try to extend
a good element from the surface S . The crucial fact here is that the natural map

� W H 0
�
X;OX .�KX /

�
�! H 0

�
S;OS .�KX /

�
D ¨S

is surjective if .X;C / is birational and surjective modulo�2
S if .X;C / is a Q-conic bundle.

This immediately follows from (6.3.3). Details can be found in [38, § 2] and [50].

7.3. Global method
Finally, in the most complicated cases, none of the above methods work. Then one

needs more subtle techniques which require detailed analysis of singularities and infinitesi-
mal structure ofX alongC [44, §§ 8–9]. Then, roughly speaking, the good sectionD 2 j�KX j

is recovered as the formal Weil divisor lim
 �

Cn of the completion X^ of X along C , where
Cn are subschemes with supportC constructed by using certain inductive procedure [44, § 9].

As a consequence of Theorem 7.1, in the Q-conic bundle case, one obtains the
following fact which proves Iskovskikh’s conjecture [24].

Corollary 7.2. Let .X � C/ be a Q-conic bundle germ over .Z 3 o/, where C can be
reducible. Then .Z 3 o/ is a Du Val singularity of type An (or smooth).

This result is very useful for applications to the rationality problem of three-dimen-
sional varieties having conic bundle structure [24,61] and some problems of biregular geom-
etry [58,59].

It turns out that the structure of Q-conic bundle germs over a singular base .Z 3 o/

is much simpler and shorter than others. In fact, these germs can be exhibited as certain
quotients of Q-conic bundles of index � 2 (see Theorem 6.2). A complete classification of
such germs was obtained in [47,48]. Here is a typical example.

Example 7.3. Let the group �n act on C2
u;v and P 1

x;y � C2
u;v via

.x W yIu; v/ 7�! .x W �ayI �u; ��1v/;

where � D �n D exp.2�i=n/ and gcd.n; a/ D 1. Then the projection

f W X D .P 1
� C2/=�n �! Z D C2=�n

is a Q-conic bundle. The varietyX has exactly two singular points which are terminal cyclic
quotients of type 1

n
.1;�1;˙a/. The surface Z has at 0 a Du Val point of type An�1.

McKernan proposed a natural higher-dimensional analogue of Corollary 7.2:

Conjecture 7.4. Let f W X ! Z be a K-negative contraction such that ¡.X=Z/ D 1 and
X is "-lc, that is, all the coefficients in (1.1.1) satisfy ai � �1C ". Then Z is ı-lc, where ı
depends on " and the dimension.

A deeper version of this conjecture which generalizes Theorem 5.1 and uses the
notion was proposed by Shokurov. He also suggested that the optimal value of ı, in the
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case where singularities of X are canonical and f has one-dimensional fibers, equals 1=2.
Recently, this was proved by J. Han, C. Jiang, and Y. Luo [17].

Once we have a Du Val general elephants, all extremal curve germs can be divided
into two large classes which will be discussed separately in the next two sections.

Definition 7.5. Let .X � C/ be an extremal curve germ and let f W X ! .Z 3 o/ be the
corresponding contraction. Assume that the general memberD 2 j�KX j is Du Val. Consider
the Stein factorization:

fD W D �! D0 �! f .D/ .put D0 D f .D/ if f is birational/:

Then the germ .X � C/ is said to be semistable if D0 has only (Du Val) singularities of
type An. Otherwise, .X � C/ is called exceptional.

8. Semistable germs

Let .X � C/ be an irreducible extremal curve germ. By Theorem 7.1, the general
memberD 2 j�KX j is Du Val. In this section we assume that .X �C/ is semistable. Exclud-
ing simple cases, we assume also thatX is not Gorenstein [12] and .X � C/ is not a Q-conic
bundle germ over a singular base [47,48]. According to Theorem 6.4, the threefold X has at
most two non-Gorenstein points. Thus the following case division is natural:

Case (k1A): the set of non-Gorenstein points consists of a single point P ;

Case (k2A): the set of non-Gorenstein points consists of exactly two points P1, P2.

Proposition 8.1. In the above hypothesis, for the general member H 2 jOX j, the pair
.X; H C D/ is lc. If, moreover, D � C , then H is normal and has only cyclic quotient
singularities. In this case the singularities of H are of type T.

The proof uses the inversion of adjunction [70] to extend a general hyperplane section
from D to X (see [51, Proposition 2.6]).

For an extremal curve germ of type (k2A), any member D 2 j�KX j contains C
[38]. Hence the general hyperplane sectionH 2 jOX j has only T-singularities and X can be
restored as a one-parameter deformation space ofH . In this caseX has no singularities other
than P1, P2. Moreover, .X � C/ cannot be a Q-conic bundle germ [47,50]. The birational
germs of type (k2A) were completely described by Mori [46]. He gave an explicit algorithm
for computing divisorial contractions and flips in this case.

The structure of extremal curve germs of type (k1A) is more complicated. They
were studied in [51]. In particular, the general hyperplane section H 2 jOX j was computed.
However, [51] does not provide a good description of the infinitesimal structure of X along
C or an algorithm similar to [46]. This was done only in a special situation in [14]. Note that
in the case (k1A) a general member H 2 jOX j can be nonnormal.
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Examples. Similar to the example in Section 6.1, consider a surface germ H � C ' P 1

whose dual graph has the following graph of the minimal resolution:

�1
�

�7
ı

�2
ı

�2
ı

�2
ı

where � is a .�1/-curve. The chain formed by white circle vertices ı corresponds to a T-
singularity of type 1

25
.1; 4/. The whole configuration can be contracted to a cyclic quotient

singularityHZ 3 o of type 1
21
.1; 16/. Since this is not a T-singularity, the induced threefold

contraction must be flipping.

9. Exceptional curve germs

In this section we assume that .X � C/ is an exceptional irreducible extremal curve
germ. As in the previous section we also assume that X is not Gorenstein and .X � C/ is
not a Q-conic bundle germ over a singular base. According to the classification [38,44,50],
the germ .X � C/ belongs to one of following types:

• X has a unique non-Gorenstein point P which is of type cD/2, cAx/2, cE/2, or
cD/3 and .X � C/ is of type (IA) at P ;

• X has a unique non-Gorenstein point P which is of exceptional type cAx/4 and
.X � C/ is of type (IIA), .II_/, or (IIB) at P ;

• X has a unique singular point P which is a cyclic quotient singularity of index
m � 5 (odd) and .X � C/ is of type (IC) at P ;

• X has two singular points of indices m � 3 (odd) and 2, then .X � C/ is said to
be of type (kAD);

• X has three singular points of indicesm � 3 (odd), 2 and 1, then .X � C/ is said
to be of type (k3A).

In each case the general elephant is completely described in terms of its minimal resolution:

Theorem 9.1 ([38,50]). In the above hypothesis assume that the general elementD 2 j�KX j

contains C . Then the dual graph of .D � C/ is one of the following, where white vertices
ı denote .�2/-curves on the minimal resolution of D and the black vertex � corresponds to
the proper transform of C :

.IC/ ı � � � � � ı„ ƒ‚ …
m�3�2

ı ı

�

.IIB/ ı

ı ı ı ı �

.kAD/ ı

ı � � � � � ı � ı � � � ı ı

.k3A/ ı

ı � � � � � ı � ı
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Exceptional irreducible extremal curve germs are well studied (see [38,55], and ref-
erences therein). For flipping ones, the general hyperplane section H 2 jOX j is normal and
has only rational singularities. It is computed in [38] and the flip is reconstructed as a one-
parameter deformation space ofH . For divisorial and Q-conic bundle germs, the situation is
more complicated. Then the general hyperplane sectionH can be nonnormal (see, e.g., [54]).
Nevertheless, in almost all cases, except for types (kAD)and (k3A), there is a description of
H 2 jOX j and infinitesimal structure of these germs. For convenience of reference, in the
table below we collect the known information on the exceptional irreducible extremal curve
germs.

Type .X; C / References
index 2 germs divisorial, Q-conic bundle [38, § 4], [47, § 12], [51, § 7]

cD/3 flip, divisorial [38, § 6], [51, § 4]

(IC) flip, Q-conic bundle (only for m D 5) [38, § 8], [52]
(IIA) flip, divisorial, Q-conic bundle [38, § 7], [53,54]
(IIB) divisorial, Q-conic bundle [52]

.II_/ divisorial, Q-conic bundle [38, 4.11.2], [47]
(kAD) flip, divisorial, Q-conic bundle [38, § 9], [45,47,50]
(k3A) divisorial, Q-conic bundle [38, § 5], [47,50]

Detailed analysis of the local structure of exceptional extremal curve germs allows extending
the result of Theorem 7.1 to the case of reducible central fiber containing an exceptional
component:

Theorem 9.2 (Mori–Prokhorov [56]). Let .X � C/ be an extremal curve germ such that C
is reducible and satisfies the following condition:

(*) each component Ci � C contains at most one point of index > 2.

Then the general member D 2 j�KX j has only Du Val singularities. Moreover, for each
irreducible component Ci � C with two non-Gorenstein points or of types (IC) or (IIB), the
dual graph of .D;Ci / has the same form as the irreducible extremal curve germ .X � Ci /.

The proof uses the extension techniques of sections of j�KX j from a good member
S 2 j�2KX j (see Section 7.2).

10. Q-Fano threefolds

In arbitrary dimension, Q-Fano threefolds are bounded, i.e., they are contained in
fibers of a morphism of schemes of finite type. This is a consequence of the much more
general fact [4]. In dimension 3, there are effective results based on the orbifold Riemann–
Roch formula (4.1.1) and Bogomolov–Miyaoka inequality applied to the restriction of the
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reflexive sheaf .�1
X /
__ to a sufficiently general hyperplane section [33]. In particular, com-

bining (4.1.1) with Serre duality, we obtain

�.OX / D
1

24

�
�KX � c2.X/C

X
P

�
mP �

1

mp

��
where mP is the index of a virtual quotient singularity of X [66]. Since X is Q-Fano,
by Kawamata–Viehweg vanishing theorem [35], one has �.OX / D 1. Arguments based on
Bogomolov–Miyaoka inequality show that �KX � c2.X/ is positive (see [33]). This gives an
effective bound of the indices of singularities of X . Similarly, one can get an upper bound
of the anticanonical degree �K3

X . Moreover, analyzing the methods of [33], it is possible to
enumerate Hilbert series of all Q-Fano threefolds. This information is collected in [6] in a
form of a huge computer database of possible “candidates.” It was extensively explored by
many authors, basically to obtain lists of examples representing Q-Fano threefolds as subva-
rieties of small codimension in a weighted projective space (see, e.g., [7, 21] and references
therein).

Examples. • There are 130 (resp. 125) families of Q-Fano threefolds that are
representable as hypersurfaces (resp. codimension 2 complete intersections) in
weighted projective spaces [6,21].

• Toric Q-Fano threefolds are exactly weighted projective spaces P .3; 4; 5; 7/,
P .2; 3; 5; 7/, P .1; 3; 4; 5/, P .1; 2; 3; 5/, P .1; 1; 2; 3/, P .1; 1; 1; 2/, P 3 D P .1; 1;

1;1/, and the quotient of P 3 by �5 that acts diagonally with weights .1;2;3;4/ [6].

Although the classification is very far from completion, there are several systematic
results. For example, the optimal upper bound of the degree �K3

X of Q-Fano threefolds was
obtained in [58]. IfX is singular, it is equal to 125=2 and achieved for the weighted projective
space P .1; 1; 1; 2/. The lower bound of the degree equals 1=330 [8] and is achieved for a
hypersurface of degree 66 in P .1; 5; 6; 22; 33/. It is known that, under certain conditions,
General Elephant Conjecture 3.1 holds for Q-Fano threefolds modulo deformations [67].
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