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Abstract

Various methods have been used to construct rational points and rational curves on ratio-
nally connected algebraic varieties. We survey recent advances in two of them, the descent
and the fibration method, in a number-theoretical context (rational points over number
fields) and in an algebro-geometric one (rational curves on real varieties), and discuss the
question of rational points over function fields of p-adic curves.
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1. Introduction

Let X be an algebraic variety over a field k and X.k/ the set of its rational points.
The search for explicit descriptions of the set X.k/ when k is a number field is one

of the oldest themes of number theory. A modern point of view on this problem consists
in embedding X.k/ diagonally into the topological space X.Ak/ of adelic points of X and
attempting to identify its topological closure. By general principles that were formulated
by Lang after the works of Mordell, Weil, and Siegel, the answer is expected to depend
in a crucial manner on the geometry of X . For instance, assuming that X is smooth and
projective and that an embedding k ,! C is given, the set X.k/ is conjectured to be finite if
the complex variety XC is hyperbolic (see [71]). One may then seek to count, list, or bound its
elements. At the other end of the spectrum, if XC is a rationally connected smooth projective
variety in the sense of Campana [12] and Kollár–Miyaoka–Mori [69], then one expects that
the set X.k/ is Zariski dense in X whenever it is nonempty; more precisely, by a conjecture of
Colliot-Thélène, the closure of X.k/ in X.Ak/ should coincide in this case with the Brauer–
Manin set X.Ak/Br.X/ defined by Manin [76]. This far-reaching conjecture encompasses in
particular the inverse Galois problem, and its refinement the Grunwald problem (see [28,33,

36], [95, §3.5]).
Criteria for the existence of rational points on X are also of relevance outside of

number theory, when k is no longer assumed to be a number field. For instance, the Graber–
Harris–Starr theorem [34], a central result in the theory of rational curves on complex alge-
braic varieties, is equivalent to the statement that X.k/ ¤ ¿ if k is the function field of a
complex curve and X is a rationally connected variety. (We say that X is rationally con-
nected to mean that for any algebraically closed field extension K of k, the variety XK

over K is rationally connected in the sense of [12, 69].) As another example, if X is a real
algebraic variety with no real point and k denotes the function field of the real conic given by
x2 C y2 D �1, the existence of a geometrically rational curve on X—a property conjectured
by Kollár to hold whenever X is a positive-dimensional rationally connected variety—is
equivalent to the statement that X.k/ ¤ ¿.

The results we discuss in this expository article concern the existence of rational
points in two very distinct contexts, leading to the following two concrete theorems, obtained
in collaboration with Yonatan Harpaz and with Olivier Benoist, respectively. As we shall see,
their proofs roughly follow, perhaps somewhat surprisingly, a common general strategy.

Theorem A (see [50]). Let G be a finite nilpotent group. Let k be a number field.

(1) There exist Galois extensions K=k with Galois group G.

(2) If v1; : : : ; vn are pairwise distinct places of k none of which is a finite place
dividing the order of G, and w1; : : : ; wn are places of K above v1; : : : ; vn,
then in (1), one can require that the extensions Kwi

=kvi
be isomorphic to any

prescribed collection of Galois extensions of kv1 ; : : : ; kvn whose Galois groups
are subgroups of G.
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Theorem B (see [6]). Let X be a smooth, proper variety over R. Let " W S1 ! X.R/ be
a continuous map. Assume that X is birationally equivalent to a homogeneous space of a
linear algebraic group over R. Then there exist morphisms of algebraic varieties P1

R ! X

that induce maps P1.R/ D S1 ! X.R/ arbitrarily close to " in the compact-open topology.

Theorem A (1) was first proved by Shafarevich in his seminal work on the inverse
Galois problem for solvable groups (see [82, Chapter IX, § 6]; it should be noted that nilpotent
groups form the most difficult case in his proof); the proof given in [50] is independent from
his and has a geometric flavour. Theorem A (2), on the other hand, was new in [50] and was
not accessible with Shafarevich’s methods.

As far as we know, Theorem B might hold under the sole assumption that X is
rationally connected. This is a question we raise in [6]. Theorem B provides the first examples
of a positive answer to it for varieties that are not R-rational (indeed, not even C-rational).
For R-rational varieties, the conclusion of Theorem B was previously shown, by Bochnak
and Kucharz [8], to follow from the Stone–Weierstrass theorem.

The first step in the proofs of Theorems A and B consists in strengthening and
reformulating the desired conclusion in terms of the existence of suitable rational points
on suitable varieties over suitable fields. In the case of Theorem A, the varieties in ques-
tion are homogeneous spaces of SLn over number fields; for the proof, though not for the
statement, it is crucial to not restrict to homogeneous spaces that have rational points (i.e., to
homogeneous spaces of the form SLn=G). In the case of Theorem B, the varieties in question
are homogeneous spaces of linear algebraic groups, over the rational function field R.t/; for
the proof, though not for the statement, it is crucial to not restrict to homogeneous spaces
or algebraic groups that are defined over R. In the remainder of the proofs of Theorems A
and B, one establishes the validity of these strengthened formulations by combining geo-
metric dévissages of the underlying algebraic varieties with two general tools: the descent
method and the fibration method. The fibration method, whose first instance can be found in
the work of Hasse on the local–global principle for quadratic forms, consists in reducing the
desired property for a variety V endowed with a morphism p W V ! B with geometrically
irreducible generic fibre to the same property for B and for a collection of smooth fibres of p.
The descent method, which goes back to Fermat, attempts to reduce the desired property for
a variety V endowed with a torsor p W W ! V under a (possibly disconnected) linear alge-
braic group over k to the same property for W and for all of its twists. It was developed in the
context of elliptic curves, for torsors under finite abelian groups, by Mordell, Cassels, and
Tate, and the setup was later extended to torsors under positive-dimensional linear algebraic
groups by Colliot-Thélène and Sansuc, Skorobogatov, Harari.

We take Theorems A and B as excuses leading us to the general study of rational
points on rationally connected varieties defined over number fields or over function fields of
real curves. We discuss recent advances in the fibration and descent methods in these two
contexts in Sections 2 and 3, stating along the way the main open questions that surround
Theorems A and B and their proofs. We then turn, in Section 4, to function fields of p-adic
curves, and speculate about the existence of a p-adic analogue of the “tight approximation”
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property discussed in Section 3 that would enable one to exploit fibration and descent meth-
ods in the study of rational curves over p-adic fields and more generally of rational points
over function fields of p-adic curves.

2. Solvable groups and the Grunwald problem in inverse

Galois theory

2.1. Homogeneous spaces
It is the following general theorem about the arithmetic of homogeneous spaces of

linear algebraic groups that underlies Theorem A.

Theorem 2.1. Let V be a homogeneous space of a connected linear algebraic group L over
a number field k. Let X be a smooth compactification of V . Let Nv 2 V. Nk/. Assume that the
group of connected components G of the stabiliser of Nv is supersolvable, in the sense that it
possesses a normal series 1 D G0 C � � � C Gm D G such that the quotients GiC1=Gi are
cyclic while the subgroups Gi are normal in G and are stable under the natural outer action
of Gal. Nk=k/ on G. Then the subset X.k/ is dense in X.Ak/Br.X/.

Here and elsewhere, by “compactification of V ,” we mean a proper variety over k

that contains V as a dense open subset; we do not require that the algebraic group L act
on the compactification. Examples of supersolvable groups with respect to the trivial outer
action of Gal. Nk=k/ include finite nilpotent groups and dihedral groups. With a nontrivial
outer action of Gal. Nk=k/, however, even abelian groups need not be supersolvable. Previous
work of Borovoi [10] nevertheless establishes the conclusion of Theorem 2.1 in many cases
where the stabiliser of Nv is abelian but not necessarily supersolvable.

Theorem 2.1 can be found in [50, Théorème B] in the particular case where L is
semi-simple simply connected and the stabiliser of Nv is finite, and in [51, Corollary 4.5] in
general. To deduce Theorem A from it, embed G into SLn.k/ for some n, take L D SLn

and V D SLn=G and let H denote the set of points of V above which the fibre of the étale
cover � W L ! V is irreducible. The function field of the fibre of � above any rational
point contained in H is a Galois extension of k with Galois group G. On the other hand,
by a theorem of Ekedahl [33], the density of X.k/ in X.Ak/Br.X/ implies that of X.k/ \ H

in X.Ak/Br.X/. Thus, Theorem 2.1 ensures the existence of Galois extensions K=k with
Galois group G having a local behaviour prescribed by any element of the Brauer–Manin set
X.Ak/Br.X/; that is, one may freely prescribe the completions of K at any finite set of places
of k, as long as these prescriptions satisfy a certain global reciprocity condition determined
by Br.X/. By a theorem of Lucchini Arteche [75, § 6], this reciprocity condition imposes, in
fact, no restriction at the places indicated in Theorem A (2).

2.2. Geometry
In the special case where L D SLn and the stabiliser of Nv is a finite group G, the

geometry behind the proof of Theorem 2.1 can be summarised with the following assertion:
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there exist an algebraic torus T over k and a torsor NY ! X Nk under T Nk whose isomorphism
class is invariant under Gal. Nk=k/, such that for any torsor Y ! X under T whose base
change to X Nk is isomorphic to NY , there exist a dense open subset W � Y and a smooth
morphism p W W ! Q to a quasitrivial torus Q (i.e., a torus of the form RE=kGm for a
nonzero étale k-algebra E) whose fibres are homogeneous spaces of SLn with geometric
stabiliser isomorphic to Gm�1. In addition, the morphism p admits a rational section over Nk.

This geometry is the key to a proof of Theorem 2.1 by an induction on m, at each
step of which one applies the descent method and the fibration method, in the form of The-
orems 2.2 and 2.3 below. It should be noted that even if G is embedded into SLn.k/ and
V D SLn=G, the homogeneous spaces of SLn that arise as fibres of p need not possess
rational points. Thus, for the induction to be possible, one cannot restrict the statement of
Theorem 2.1 to homogeneous spaces of the form SLn=G, even though only homogeneous
spaces of this form are relevant for Theorem A.

2.3. Descent
The following theorem, which was established in [50] and can also be deduced

from [13], is the definitive statement of descent theory in the case of smooth and proper
rationally connected varieties over number fields. For geometrically rational X , this theo-
rem is due to Colliot-Thélène and Sansuc [25]. The homogeneous spaces of Theorem 2.1 are
not geometrically rational in general (Saltman, Bogomolov; see [26]).

Theorem 2.2. Let X be a smooth and proper rationally connected variety over a number
field k. Let T be a torus over k and NY ! X Nk a torsor under T Nk whose isomorphism class is
invariant under Gal. Nk=k/. Then

X.Ak/Br.X/
D

[
f WY !X

f 0
�
Y 0.Ak/Br.Y 0/

�
;

where the union ranges over the torsors f W Y ! X under T whose base change to X Nk is
isomorphic to NY , and Y 0 denotes a smooth compactification of Y such that f extends to a
morphism f 0 W Y 0 ! X . In particular, if Y 0.k/ is dense in Y 0.Ak/Br.Y 0/ for every such f ,
then X.k/ is dense in X.Ak/Br.X/.

(To bridge the gap between Theorem 2.2 and [50, Théorème 2.1], one needs to know
that X.Ak/Br.X/ ¤ ¿ implies the existence of at least one f . This goes back to [25] and
follows from [102, Theorem 3.3.1], [25, Proposition 2.2.5], [103, (3.3)].)

2.4. Fibration
The following fibration theorem suffices for the proof of Theorem 2.1. It results from

combining a descent with the work of Harari [35] on the fibration method.

Theorem 2.3. Let p W Z ! B be a dominant morphism between irreducible, smooth, and
proper varieties over a number field k, with rationally connected generic fibre. Assume that
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(1) there exist dense open subsets W � Z and Q � B such that Q is a quasitrivial
torus over k and p induces a smooth morphism W ! Q with geometrically
irreducible fibres;

(2) the morphism p admits a rational section over Nk;

(3) for all b 2 B.k/ in a dense open subset of B , the set Zb.k/ is dense in
Zb.Ak/Br.Zb/.

Then Z.k/ is dense in Z.Ak/Br.Z/.

The assumptions of Theorem 2.3 imply that B is k-rational. Under the condition
that B is k-rational, the first two assumptions of Theorem 2.3 are expected to be superfluous
(even under weaker hypotheses on the generic fibre of p than rational connectedness, see [48,

Corollary 9.23 (1)–(2)]), but removing them altogether is a wide-open problem, well connected
with analytic number theory (see [48, § 9], [47]). Removing (2) while keeping (1) might be
within reach, though:

Question 2.4. In the statement of Theorem 2.3, can one dispense with the assumption that p

admit a rational section over Nk?

This would allow one to replace “supersolvable” with “solvable” in the statement
of Theorem 2.1. Indeed, in Section 2.2, the cyclicity of the quotient Gm=Gm�1 plays a rôle
only to ensure the existence of a rational section of p over Nk (see [50, Proposition 3.3 (ii)]).

2.5. An application to Massey products
Theorem 2.1 has concrete applications, over number fields, beyond the inverse

Galois problem: for the homogeneous spaces that appear in its statement, it turns the prob-
lem of deciding the existence of a rational point into the much more approachable question
of deciding the non-vacuity of the Brauer–Manin set. In this way, Theorem 2.1 can be
used to confirm, in the case of number fields, the conjecture of Mináč and Tân on the
vanishing of Massey products in Galois cohomology (see [49]). Indeed, this conjecture—
which posits that for any field k, any prime number p, any integer m � 3 and any classes
a1; : : : ; am 2 H 1.k; Z=pZ/, the m-fold Massey product of a1; : : : ; am vanishes if it is
defined (see [78, 79])—can be reinterpreted, according to Pál and Schlank [83], in terms of
the existence of rational points on appropriate homogeneous spaces of SLn over k (with
n � 0), and it so happens that the geometric stabilisers of these homogeneous spaces are
finite and supersolvable.

3. Rational curves on real algebraic varieties

3.1. A few questions
Let X be a smooth variety over R. The interplay between the topology of the C 1

manifold X.R/ and the geometry of the algebraic variety X lies at the core of classical

2351 Some aspects of rational points and rational curves



real algebraic geometry. One of the fundamental problems in this area consists in investi-
gating which submanifolds of X.R/ can be approximated, in the Euclidean topology, by
Zariski closed submanifolds. Even for 1-dimensional submanifolds, i.e., disjoint unions
of C 1 loops, various phenomena—of a topological, Hodge-theoretic, or yet more subtle
nature—can obstruct the existence of algebraic approximations (see [4, § 4]). In the case
of 1-dimensional submanifolds, however, all known obstructions vanish when X is ratio-
nally connected. One can thus raise the following questions, in which H

alg
1 .X.R/; Z=2Z/

denotes the image of the cycle class map CH1.X/ ! H1.X.R/; Z=2Z/ defined by Borel
and Haefliger [9].

Questions 3.1. Let X be a smooth, proper, rationally connected variety, over R.

(1) Can all C 1 loops in X.R/ be approximated, in the Euclidean topology, by real
loci of algebraic curves? or even by real loci of rational algebraic curves?

(2) Is H1.X.R/; Z=2Z/ D H
alg
1 .X.R/; Z=2Z/? Is H1.X.R/; Z=2Z/ generated by

classes of rational algebraic curves on X?

The first parts of Questions 3.1 (1) and (2) are in fact equivalent to each other, by
the work of Akbulut and King (see [5, Theorem 6.8]), and were studied in a systematic fash-
ion in [4, 5]. The second part of Question 3.1 (1) is, however, as far as we know, genuinely
stronger than the second part of Question 3.1 (2). We note that in order to formulate the
second part of Question 3.1 (1) precisely, it is better to work with possibly noninjective C 1

maps P1.R/ ! X.R/ rather than with submanifolds of X.R/. Indeed, there are examples
of R-rational surfaces X and of C 1 loops in X.R/ such that the desired rational algebraic
curves necessarily have singular real points (see [68, Theorem 3]).

A specific motivation for Question 3.1 (2) is its analogy with the following questions
in complex geometry raised by Voisin [101] and by Kollár [67]:

Questions 3.2. Let X be a smooth, proper, rationally connected variety, over C. Is the group
H2.X.C/; Z/ generated by homology classes of algebraic curves? Is it generated by homol-
ogy classes of rational algebraic curves?

The two parts of Questions 3.2 are in fact equivalent: Tian and Zong [100] have
shown that the homology class of any algebraic curve on a rationally connected variety over C
is a linear combination of homology classes of rational curves. The real analogue of their
result remains unknown in general. Its validity is an interesting open problem.

The first parts of Questions 3.1 (2) and of Questions 3.2 are in fact related by more
than an analogy: if X is a smooth, proper, rationally connected variety over R such that
X.R/ ¤ ¿ and such that Questions 3.2 admit a positive answer for XC, then the equality
H1.X.R/; Z=2Z/ D H

alg
1 .X.R/; Z=2Z/ is equivalent to the real integral Hodge conjecture

for 1-cycles on X , a property formulated and studied in [4,5].
In a different line of investigation around the abundance of rational curves on ratio-

nally connected varieties, many authors have considered the problem of finding rational
curves through a prescribed set of points, or more generally through a prescribed curvilinear
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0-dimensional subscheme, on any smooth, proper, rationally connected variety X . Over the
complex numbers, such curves exist unconditionally (Kollár, Miyaoka, Mori, see [63, Chap-

ter IV.3]). Over the real numbers, such curves exist under the necessary condition that all the
prescribed points that are real belong to the same connected component of X.R/ (Kollár,
see [64,66]). This problem can be generalised to one-parameter families: given a morphism
f W X ! B with rationally connected generic fibre between smooth and proper varieties,
where B is a curve, one looks for sections of f whose restriction to a given 0-dimensional
subscheme of B is prescribed, thus leading to Questions 3.3 below. For simplicity of nota-
tion, in the statement of Question 3.3 (2), this 0-dimensional subscheme of B is assumed to
be reduced; there is, however, no loss of generality in doing this, since jets of sections can
be prescribed at any higher order by replacing X with a suitable iterated blow-up (see [52,

Proposition 1.4]).

Questions 3.3. Let B be a smooth, proper, connected curve over a field k0. Let X be a
smooth, proper variety over k0, endowed with a flat morphism f W X ! B with rationally
connected generic fibre. Let P � B be a reduced 0-dimensional subscheme. Let s W P ! X

be a section of f over P .

(1) If k0 D C, can s be extended to a section of f ?

(2) If k0 D R and the map sjP.R/ W P.R/ ! X .R/ can be extended to a C 1 section
of f jX .R/ W X .R/ ! B.R/, can then s be extended to a section of f ?

Let X be the generic fibre of f and k the function field of B . The existence of
sections extending any given s as above is equivalent to the density of X.k/ in the topological
space X.Ak/ D

Q
b X.kb/ of adelic points of X , where the product runs over the closed

points b of B and kb denotes the completion of k at b. This is the weak approximation
property.

The Graber–Harris–Starr theorem [34] provides a positive answer to Question 3.3 (1)
when P D ¿ and it is a conjecture of Hassett and Tschinkel that the answer to this ques-
tion is in the affirmative in general (see [17,52,53,99] for known results). Particular cases of
Question 3.3 (2) were first studied by Colliot-Thélène [14], who conjectured the validity of
weak approximation (i.e., a positive answer to Question 3.3 (2) even without assuming that
sjP.R/ can be extended to a C 1 section of f jX .R/) when X is birationally equivalent to a
homogeneous space of a connected linear algebraic group over k, and proved his conjecture
when the geometric stabilisers are trivial. Scheiderer [94] then proved the same conjecture
when the geometric stabilisers are connected. Ducros [30,31] stated Question 3.3 (2) in these
exact terms, and gave a positive answer when X is a conic bundle surface, or more generally
when there exists a dominant map X ! P1

k
whose generic fibre is a Severi–Brauer variety.

3.2. Tight approximation
The main insight behind the proof of Theorem B is the observation that formulat-

ing a suitable common strengthening of Questions 3.1 and 3.3, through the notion of tight
approximation, can render all of these questions fully amenable to both the descent method
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and the fibration method. We note that Questions 3.1 and Questions 3.3 are somewhat orthog-
onal in spirit, insofar as the former consider global constraints on curves lying on X , while
the latter are aimed at local constraints.

The idea of establishing a descent method (resp. fibration method) for Question 3.3
(2) already appeared in [31] (resp. [84]), though in [31] and [84] the implementations are sub-
ject to miscellaneous restrictions. The possibility of a descent method and a fibration method
for studying Questions 3.1, however, is new and turns out to require a shift in perspective
from single rationally connected varieties to one-parameter families of such.

Let us illustrate how Questions 3.1 need to be strengthened for a fibration argument
to go through. We start with a dominant morphism p W X ! Y with rationally connected
generic fibre between smooth, proper, rationally connected varieties, over R, and a C 1 loop
 W S1 ! X.R/ that we want to approximate, in the Euclidean topology, by a Zariski closed
submanifold of X , assuming that we can solve the same problem on Y as well as on the fibres
of p. By assumption, we can approximate p ı  W S1 ! Y.R/ by a C 1 map � W S1 ! Y.R/

with Zariski closed image. The best we can hope to find, then, is a C 1 loop Q W S1 ! X.R/

arbitrarily close to  and such that p ı Q D �. We draw two conclusions:

(1) If such a Q exists, the next and final step is not finding an algebraic approxima-
tion for a C 1 loop in a fibre of p, but, rather, considering the algebraic curve B

underlying �.S1/, viewing Q as a C 1 section of the projection

.X �Y B/.R/ ! B.R/;

and looking for an algebraic section of X �Y B ! B approximating Q . Thus,
even when we start with just two real varieties X and Y , we need to consider
one-parameter algebraic families of fibres of p, rather than single fibres.

(2) Consider the example where p is the blow-up of a surface Y at a real point b

and  meets p�1.b/.R/, transversally. Then for any Q sufficiently close to 

in the Euclidean topology, the loop p ı Q has to go through b. Hence � has to
be required to go through b for a loop Q as above to exist. Thus, a condition of
weak approximation type must be considered in conjunction with Questions 3.1
(as was already noted by Bochnak and Kucharz [8]).

Let us now similarly contemplate a fibration argument in the context of Question 3.3 (2).
We assume that X

f
�! B can be factored as X

p
�! Y

g
�! B , where the variety Y is smooth

and proper over R, the morphism p is dominant with rationally connected generic fibre,
and g is flat. Starting from a section s W P ! X of f over P such that sjP.R/ can be
extended to a C 1 section s0 of f jX .R/, a positive answer to Question 3.3 (2) for g pro-
duces for us a section � of g that extends p ı s. Let Z D p�1.�.B// and let h W Z ! B

denote the restriction of f . At this point, one would like to apply a positive answer to Ques-
tion 3.3 (2) for h to obtain a section of h extending s, thus completing the argument, as
Z � X . In order to do so, one needs to know that sjP.R/ W P.R/ ! Z .R/ can be extended
to a C 1 section of hjZ .R/ W Z .R/ ! B.R/. However, the map hjZ .R/ in general even fails

2354 O. Wittenberg



to be surjective. To correct this problem, one should require, at the very least, that �.B.R//

approximate, in the Euclidean topology, the image of p ı s0 W B.R/ ! Y .R/. Thus, all in all,
an approximation condition in the Euclidean topology has to be considered in conjunction
with Question 3.3 (2).

The above discussion leads to the following definition. (This definition slightly dif-
fers from that given in [6], which considers the more general question of approximating
holomorphic maps by algebraic ones, à la Runge, and which, as a consequence, is useful
also for studying complex curves on complex varieties, without reference to the reals; how-
ever, all of the statements we make below are true with respect to either of the definitions.)

Definition 3.4. Let B be a smooth, proper, connected curve over R. A variety X over
k D R.B/ satisfies the tight approximation property if for any proper model f W X ! B

of X over B with X smooth over R, any reduced 0-dimensional subscheme P � B , any
section s0 W P ! X of f over P and any C 1 section s W B.R/ ! X .R/ of f jX .R/ such
that sjP.R/ D s0jP.R/, there exists a section � W B ! X of f such that � jP D s0jP and such
that � jB.R/ lies arbitrarily close to s in the compact-open topology.

Given a smooth, proper, rationally connected variety X over R, the validity of the
tight approximation property for the variety obtained from X by extension of scalars from R
to R.t/ implies positive answers to Questions 3.1 for X .

The tight approximation property is (tautologically) a birational invariant, and it
holds for Pn

k
by a theorem of Bochnak and Kucharz [8]. (In [8], weak approximation condi-

tions at complex points are ignored, but they create no additional difficulty.) The next two
results provide more examples of varieties satisfying tight approximation.

3.3. Descent
The following theorem implements the descent method for the tight approximation

property, in full generality (including non-abelian descent, as formalised by Harari and Sko-
robogatov). Its proof, given in [6], builds on the work of Scheiderer [94] and, in the case
where G is finite, on an argument of Colliot-Thélène and Gille [17].

Theorem 3.5. Let k be the function field of a real curve. Let X be a smooth variety over k.
Let G be a linear algebraic group over k. Let f W Y ! X be a left torsor under G. Consider
twists f 0 W Y 0 ! X of f by right torsors under G, over k. If every such Y 0 satisfies the tight
approximation property, then so does X .

3.4. Fibration
The next theorem implements the fibration method for the tight approximation prop-

erty, in full generality. Its proof, contained in [6], makes essential use of the weak toroidal-
isation theorem of Abramovich, Denef, and Karu [1] to establish a version of the Néron
smoothening process (as in [11, 3.1/3]) for higher-dimensional bases—the point being that
in the discussion at the beginning of Section 3.2, the loop Q is easily seen to exist once the
morphism p is smooth along  (see [5, Lemma 6.11]).

2355 Some aspects of rational points and rational curves



Theorem 3.6. Let k be the function field of a real curve. Let p W Z ! B be a dominant
morphism between smooth varieties over k. If B and the fibres of p above the rational points
of a dense open subset of B satisfy the tight approximation property, then so does Z.

3.5. Homogeneous spaces
We are now in a position to sketch the proof of the following theorem, which in the

“constant case,” i.e., when the algebraic group and the homogeneous space are both defined
over R, immediately implies Theorem B.

Theorem 3.7. Homogeneous spaces of connected linear algebraic groups over the function
field of a real curve satisfy the tight approximation property.

The proof of Theorem 3.7 starts by noting that quasitrivial tori over k are k-rational,
hence satisfy the tight approximation property (since so does Pn

k
). Any torus T can be

inserted into an exact sequence 1 ! S ! Q ! T ! 1 where S is a torus and Q is a
quasitrivial torus. As any twist of Q as a torsor remains isomorphic to Q (Hilbert’s The-
orem 90) and hence satisfies the tight approximation property, we deduce, by the descent
method (Theorem 3.5), that all tori over k satisfy the tight approximation property. Next, as
every connected linear algebraic group over k is birationally equivalent to a relative torus
over a k-rational variety (namely over the variety of maximal tori, when the algebraic group
is reductive), we deduce, by the fibration method (Theorem 3.6), that connected linear alge-
braic groups over k satisfy the tight approximation property. By descent (Theorem 3.5 again),
it follows that homogeneous spaces of connected linear algebraic groups over k satisfy the
tight approximation property when they have a rational point. Finally, it is a theorem of
Scheiderer that homogeneous spaces of connected linear algebraic groups over k satisfy the
Hasse principle with respect to the real closures of k, so that if X denotes such a homoge-
neous space, then X.k/ ¤ ¿ whenever a C 1 section s W B.R/ ! X .R/ as in Definition 3.4
exists. This completes the proof of Theorem 3.7.

3.6. Further comments
Theorem 3.7 implies that homogeneous spaces of connected linear algebraic groups

over the function field of a real curve satisfy weak approximation, as conjectured by Colliot-
Thélène. Indeed, in the notation of Definition 3.4, if X is such a homogeneous space and P

contains the locus of singular fibres of f , Scheiderer’s work implies that f �1.b/.R/ is
nonempty and connected for all b 2 B.R/ n P.R/, so that a C 1 section s W B.R/ ! X .R/

with sjP.R/ D s0jP.R/ always exists.
The main open problem surrounding the notion of tight approximation is the fol-

lowing.

Question 3.8. Let k be the function field of a real curve. Do all rationally connected varieties
over k satisfy the tight approximation property?

Building on Theorems 3.5 and 3.6, the tight approximation property is shown in [6]

to hold for various classes of rationally connected varieties beyond homogeneous spaces
of connected linear algebraic groups. For instance, it holds for smooth cubic hypersurfaces
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of dimension � 2 that are defined over R, thus yielding, for such hypersurfaces, a positive
answer to (the second part of) Question 3.1 (1).

Question 3.8 is open for cubic surfaces over k. Even Question 3.3 (2) is open when X

is a cubic surface, although Question 3.3 (1) has an affirmative answer in this case, by a
theorem of Tian [99].

In another direction, Question 3.8 is open for surfaces defined over R, and so is (the
second part of) Question 3.1 (1). By inspecting the birational classification of geometrically
rational surfaces and using the fibration method (Theorem 3.6), one can see that a positive
answer to these questions for surfaces defined over R would follow from a positive answer
for del Pezzo surfaces of degree 1 or 2 defined over R. In these cases, it would suffice, by
an application of the descent method (Theorem 3.5), to know that for any real del Pezzo
surface X of degree 1 or 2, the universal torsors of X , in the sense of Colliot-Thélène and
Sansuc [25], are R-rational whenever they have a real point. This last question, unfortunately,
is very much open—even the unirationality of real del Pezzo surfaces of degree 1 is unknown.
In fact, not a single example of a minimal real del Pezzo surface of degree 1 is known to be
unirational. For a description of these surfaces, see [93, § 5].

Naturally, one hopes for the answer to Question 3.8 to be in the affirmative in gen-
eral. This conjecture would have a host of interesting consequences, among which: a version
of the Graber–Harris–Starr theorem over the reals (i.e., a positive answer to Question 3.3 (2)
when P D ¿); Lang’s widely open conjecture from [70] that the function field of a real curve
with no real point is C1 (see [55, Corollary 1.5] for the implication); and the existence of a
geometrically rational curve on any smooth, proper, rationally connected variety of dimen-
sion � 1 over R.

This last consequence is a conjecture of Kollár, who showed the existence of ratio-
nal curves on those real rationally connected varieties of dimension � 1 that have real points
(see [2, Remarks 20]). For real rationally connected varieties with no real point, it is interest-
ing to consider a weaker property: the existence of a geometrically irreducible curve of even
geometric genus. The latter can be reinterpreted in terms of the real integral Hodge conjec-
ture (see [4]). Using Hodge theory and a real adaptation of Green’s infinitesimal criterion for
the density of Noether–Lefschetz loci, such curves of even genus can be shown to exist on
all real Fano threefolds (see [5]). However, even on smooth quartic hypersurfaces in P4

R, the
existence of geometrically rational curves remains a challenge, as well as the mere existence
of an absolute bound, independent of the chosen quartic hypersurface, on the minimal geo-
metric genus of a geometrically irreducible curve of even geometric genus lying on such a
hypersurface.

4. Function fields of curves over p-adic fields

4.1. Some motivation: rational curves over number fields
Even though the main questions about rational points of rationally connected vari-

eties over number fields and over function fields of real curves are still wide open, the
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Brauer–Manin obstruction and the tight approximation property at least provide rather sat-
isfactory conjectural answers. It would be highly desirable to obtain a similar conjectural
picture for rational points over other fields, for significant classes of varieties—including, at
a minimum, concrete criteria for the existence of rational points.

Over the field Q.t/, this would encompass questions about rational curves on ratio-
nally connected varieties over Q, about which very little is known. For example, it is unknown
whether any rationally connected variety of dimension � 1 over Q that possesses a rational
point also contains a rational curve defined over Q. Much more ambitiously, it is unknown
whether any such variety contains enough rational curves to imply the finiteness of the set
of R-equivalence classes of rational points, a question asked in [16, Question 10.12]. (Known
results on this problem are listed after Question 10.12 in [16].) As another example, the reg-
ular inverse Galois problem over Q, which asks for the construction of a regular Galois
extension of Q.t/ with specified Galois group, and which can be reinterpreted as a problem
about the existence of appropriate rational curves on the homogeneous space SLn=G over Q,
is open even for finite nilpotent groups G. All of these problems are currently out of reach.

As a first step towards these questions, let us replace Q with its completions and
turn to rational points over the field Qp.t/ or over its finite extensions.

4.2. Rational curves on varieties over p-adic fields
In the constant case (that is, for varieties obtained by scalar extension from varieties

defined over a p-adic field, i.e., a finite extension of Qp), various existence results are known:

(1) the regular inverse Galois problem over Qp has a positive solution (first proved
by Harbater [39], by “formal patching”; reproved and generalised in different
directions by Pop [91] and by Colliot-Thélène [15]; see also [65,74,80]);

(2) for any smooth, proper, rationally connected variety X over a p-adic field k,
Kollár [64, 66] has shown that the rational points of X fall into finitely many
R-equivalence classes, and that there exist rational curves on X , defined over k,
passing through any finite set of rational points of X that belong to the same
R-equivalence class (with prescribed jets of any given order at these points).

This last statement concerns conditions of weak approximation type that can be imposed on
rational curves on rationally connected varieties over p-adic fields. It would be interesting
to formulate an analogue, in this p-adic context, of the surjectivity of the Borel–Haefliger
cycle class map CH1.X/ ! H1.X.R/; Z=2Z/ (i.e., of Questions 3.1 (2)).

We saw in Section 3 that in order to answer questions about homology classes of
rational curves on real varieties, it can be useful to consider more generally the tight approxi-
mation property, for nonconstant varieties over the function field of a real curve. By analogy,
this gives incentive to investigate the possibility of a p-adic analogue of the tight approx-
imation property for nonconstant varieties over the function field of a curve over a p-adic
field, the validity of which would have consequences for a likely easier to formulate p-adic
integral Hodge conjecture for 1-cycles on varieties over p-adic fields.
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4.3. Quadrics and other homogeneous spaces
In the nonconstant case, even the simplest varieties over Qp.t/ lead to difficult prob-

lems when it comes to their rational points. For instance, it is only a relatively recent theorem
of Parimala and Suresh [86], for p ¤ 2, and of Leep [72], based on work of Heath-Brown [54],
for arbitrary p, that every projective quadric of dimension � 7 over Qp.t/ possesses a ratio-
nal point. (In the language of quadratic forms, “the u-invariant of Qp.t/ is equal to 8.”) Many
other articles have been devoted to local–global principles for varieties over function fields
of curves over p-adic fields (e.g., [19–21,23,24,37,38,40–46,56–58,77,85,87,88,92,98]).

A patching technique was developed by Harbater, Hartmann and Krashen (“patch-
ing over fields,” a successor to formal patching), and was applied to study rational points
of homogeneous spaces over such fields. It was used, in [42], to give another proof of the
aforementioned theorem of Parimala and Suresh, and, in [23], to establish, more generally,
the local–global principle for the existence of rational points on smooth projective quadrics
of dimension � 1 over Qp.t/ (or over a finite extension of Qp.t/), with respect to all discrete
valuations on this field, when p is odd.

4.4. Reciprocity obstructions
Let k be a finite extension of Qp.t/. Let � denote the set of equivalence classes of

discrete valuations (of rank 1) on k and, for v 2 �, let kv denote the completion of k at v.
Let X be an irreducible, smooth and proper variety over k. We embed X.k/ diagonally into
the product topological space

Q
v2� X.kv/, which we shall also denote X.Ak/ (recall that X

is proper).
We now explain how, building on the work of Bloch–Ogus and of Kato, an analogue

of the Brauer–Manin obstruction can be set up in this context. These ideas, which are due
to Colliot-Thélène, appear in print, and are put to use, in [24, § 2.3], in a very slightly dif-
ferent (equicharacteristic) situation. We refer the reader to [24, § 2.3] for more details. (The
“reciprocity obstructions” of [37, § 4] are weaker than those we discuss here.)

Our goal is thus to define, in complete generality, a closed subset X.Ak/rec � X.Ak/

containing X.k/, using on the one hand a reciprocity law coming from k and on the other
hand an analogue of the Brauer group of X .

Grothendieck’s purity theorem for the Brauer group equates Br.X/ with the unram-
ified cohomology group H 2

nr.X=k; Q=Z.1//. We recall the definition of unramified coho-
mology: for any irreducible smooth variety V over a field K of characteristic 0 and any
torsion Galois module M over K, the group H

q
nr.V=K; M/ is the subgroup of the Galois

cohomology group H q.K.V /;M/ consisting of those classes whose residues along all codi-
mension 1 points of V vanish. It is the unramified cohomology group H 3

nr.X=k; Q=Z.2//

that will serve as a substitute for Br.X/ here. (The shift in degree is explained by the fact that
the field k has cohomological dimension 3 while number fields have virtual cohomological
dimension 2.) For any field extension K=k, Bloch–Ogus theory provides an evaluation map
H 3

nr.X=k; Q=Z.2// ! H 3.K; Q=Z.2//, ˛ 7! ˛.x/ along any K-point x of X (see [7]).
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Let B denote an irreducible normal proper scheme over Zp with function field k.
In contrast with what happens over number fields, here it is not one reciprocity law that will
play a rôle, but infinitely many of them: one for each closed point of B, for each such B.
Namely, given any closed point b 2 B, Kato [61, § 1] has constructed a complex

H 3.k; Q=Z.2// !

M
�2B1;b

Br.�.�// ! Q=Z; (4.1)

where � ranges over the set B1;b of 1-dimensional irreducible closed subsets of B that
contain b, and where �.�/ denotes the function field of � (which is either a global field of
characteristic p or a local field of characteristic 0). The second arrow in (4.1) is the sum of
the invariant maps from local class field theory at the finitely many places of �.�/ that lie
over b. The first arrow of (4.1) is induced by residue maps @v W H 3.kv;Q=Z.2// ! Br.�.�//

constructed by Kato in [61], where v denotes the discrete valuation of k defined by �.
For any ˛ 2 H 3

nr.X=k; Q=Z.2//, there are only finitely many 1-dimensional irre-
ducible closed subsets � of B such that the map X.kv/ ! Br.�.�//, x 7! @v.˛.x// does not
identically vanish, if we denote by v the discrete valuation of k defined by � (see [24, Propo-

sition 2.7 (ii)] and note that for the proof given there, it is enough to assume that a dense open
subset of B, rather than B itself, is a scheme over a field—an assumption satisfied here).
As a consequence, it makes sense to define X.Ak/rec to be the set of .xv/v2� 2 X.Ak/

such that for any irreducible normal proper scheme B over Zp with function field k, for any
closed point b 2 B, and for any ˛ 2 H 3

nr.X=k; Q=Z.2//, the family .@v.˛.xv///�2B1;b
2L

�2B1;b
Br.�.�// belongs to the kernel of the second arrow of (4.1). The fact that (4.1) is a

complex immediately implies that X.k/ � X.Ak/rec.

4.5. Sufficiency of the reciprocity obstruction
Although evidence is scarce, the answer to the following question might always be

in the affirmative, as far as one knows:

Question 4.1. Let k be a finite extension of Qp.t/. Let X be a smooth, proper, rationally
connected variety over k. If X.Ak/rec ¤ ¿, does it follow that X.k/ ¤ ¿?

Question 4.1 has a positive answer when X is a quadric and p ¤ 2. Indeed, we recall
from Section 4.3 that even X.Ak/ ¤ ¿ then implies X.k/ ¤ ¿ (see [23]). It also has a pos-
itive answer when X is birationally equivalent to a torsor under a torus over k. This follows
from the work of Harari, Scheiderer, Szamuely, Tian [38, Theorem 5.1], [97, § 0.3.1] (modulo
the comparison between the reciprocity obstruction defined here and the reciprocity obstruc-
tion considered in these articles; the latter is weaker, but turns out to suffice to detect rational
points on torsors under tori). We note that there are examples of torsors under tori over k

whose smooth compactifications X satisfy X.Ak/rec D ¿ while X.Ak/ ¤ ¿ (see [24, Remar-

que 5.10]). Positive answers to Question 4.1 are known in various other cases in which X is
birationally equivalent to a homogeneous space of a connected linear algebraic group over k.
For specific statements, we refer the reader to the articles quoted in Section 4.3. Question 4.1
remains open in general for smooth compactifications of torsors under connected linear alge-
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braic groups over k, for smooth compactifications of homogeneous spaces of SLn with finite
stabilisers, and for conic bundle surfaces over P1

k
.

Question 4.1 focuses on the existence of rational points rather than on the density
of X.k/ in X.Ak/rec as the latter property is only known for projective space (see [3, Theo-

rem 1]) and hence for varieties that are rational as soon as they possess a rational point, such
as quadrics. For smooth compactifications of tori, the density of X.k/ in X.Ak/rec is known
to hold off the set of discrete valuations of k whose residue field has characteristic p (see [37,

Theorem 5.2]; for the meaning of “off” here, see [103, Definition 2.9]).
To obtain more positive answers to Question 4.1, it is natural to wish for flexible tools

such as general descent theorems and fibration theorems. In the same way that introducing
the tight approximation property and replacing Question 3.3 (2) with Question 3.8 was a key
step to obtain a problem that behaves well with respect to fibrations into rationally connected
varieties (see the discussion in Section 3.2), it is likely that in order to obtain compatibility
with descent and fibrations, one will have to strengthen Question 4.1 by incorporating into
it a p-adic analogue of the approximation condition in the Euclidean topology that appears
in Definition 3.4. The main challenge, here, is to provide the correct formulation for such a
p-adic tight approximation property.

We note that in any case, a general fibration theorem has to lie deep, as it would pre-
sumably give a direct route to the local–global principle for the existence of rational points
on smooth projective quadrics over k (so far unknown when p D 2) and hence to the com-
putation of the u-invariant of k (equal to 8; see Section 4.3). Indeed, in the case of conics
over k, this local–global principle follows from Tate–Lichtenbaum duality [73]; applying a
fibration theorem to a general pencil of hyperplane sections of a fixed smooth projective
quadric of dimension n � 2 would allow one to deduce the general case by induction on n.

4.6. Further questions
A good understanding of rational points of rationally connected varieties over func-

tion fields of curves over p-adic fields, be it via Question 4.1 or otherwise, should shed light
on concrete test questions such as the following:

Questions 4.2. Let p be a prime number and k be a finite extension of Qp.t/.

(1) Does the conjecture of Mináč and Tân on the vanishing of Massey products in
Galois cohomology hold for k? (See Section 2.5 and [78,79].)

(2) Is there an algorithm that takes as input a smooth, projective, rationally con-
nected variety X over k and decides whether X has a rational point?

One might approach the first of these questions by trying to mimic [49] over k, which
would require making progress on the arithmetic, over k, of homogeneous spaces of SLn with
finite supersolvable geometric stabilisers.

To put the second question in perspective, let us recall what is known about algo-
rithms for deciding the existence of rational points on arbitrary varieties (“Hilbert’s tenth
problem”) over various fields of interest. Over Q or C.t/, the existence of such an algorithm
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is an outstanding open problem. Denef [29] showed that over R.t/, such an algorithm does not
exist. His method was extended to prove that there is no such algorithm over Qp.t/ (Kim and
Roush [62], completed by Degroote and Demeyer [27]), over any finite extension of R.t/ that
possesses a real place (Moret-Bailly [81]), or, when p ¤ 2, over any finite extension of Qp.t/

(Eisenträger [32], Moret-Bailly [81]). In addition, over number fields, it is known that restrict-
ing from arbitrary varieties to smooth projective varieties makes no difference (see [96, § II.7],
[90, Theorem 1.1 (i)]). Restricting to smooth, projective, rationally connected varieties, how-
ever, does make a drastic difference: Question 4.2 (2) might well have an affirmative answer
for all of the fields just mentioned. Over C.t/, this is trivially so, by the Graber–Harris–Starr
theorem. Over R.t/, a positive answer to Question 4.2 (2) would follow from a positive
answer to Question 3.8. Indeed, in the notation of Definition 3.4, if X satisfies the tight
approximation property, then X has a rational point if and only if f jX .R/ admits a C 1 sec-
tion, a property that can be decided algorithmically. Over number fields, as was observed
by Poonen [89, Remark 5.3], a positive answer to Question 4.2 (2) would follow from the
conjecture that rational points are always dense in the Brauer–Manin set. It seems likely
that a positive answer to Question 4.1 would similarly imply a positive answer to Ques-
tion 4.2 (2). To mimic Poonen’s argument, one runs into the difficulty that the elements of
H 3

nr.X=k;Q=Z.2// are harder to describe than those of H 2
nr.X=k;Q=Z.1// D Br.X/, whose

interpretation in terms of Azumaya algebras is a key point in [89, Remark 5.3]; however, this
can be remedied by viewing H 3

nr.X=k; Q=Z.2//, using Bloch–Ogus theory, as the group of
global sections of the Zariski sheaf associated with the presheaf U 7! H 3

ét.U; Q=Z.2//, and
describing H 3

ét.U; Q=Z.2// via Čech cohomology.

4.7. Other fields
There are a number of other fields over which a better understanding of rational

points of rationally connected varieties would be valuable. One of the simplest example is
the fraction field k D C..x;y// of the ring of formal power series CŒŒx;y��, which can be seen
as a first step before considering function fields of complex surfaces. This field presents both
local and global features, and a reciprocity obstruction can again be defined (in terms of the
unramified Brauer group—recall that k has cohomological dimension 2). This obstruction
was used in [24] to produce the first example of a torsor Y under a torus, over k, such that
Y.k/ D ¿ but Y.kv/ ¤ ¿ for every discrete valuation v on k. The analogues of Question 4.1
and of Questions 4.2 can be asked over this field, too. It is not known, however, whether the
reciprocity obstruction explains the absence of rational points on smooth proper varieties
that are birationally equivalent to torsors under tori over k (though see [59, Corollaire 4.4]

for a closely related result involving possibly ramified Brauer classes). We refer the interested
reader to [18,22,59,60] for the state of the art.
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