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Abstract

This is a report on progress in 3D Ricci flow since Perelman’s work 20 years ago.
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1. Introduction

A smooth family of Riemannian metrics .g.t//t2Œ0;T / is a Ricci flow if it satisfies
the equation

@t g.t/ D �2 Ric
�
g.t/

�
for every t 2 Œ0; T /, where Ric.g.t// denotes the Ricci tensor of g.t/ [34]. The Ricci flow
equation is a fundamental partial differential equation in mathematics—it is the natural
analog of the heat equation for Riemannian metrics, just as mean curvature flow and har-
monic map heat flow are the heat equation analogs for submanifolds and mappings, and
the (elliptic) Einstein equation, minimal surface equation, and harmonic map equation are
the respective analogs of Laplace’s equation. Ricci flow may be used to canonically smooth
a metric, and, in favorable situations, deform it into an optimal shape. For this reason, it
has had a profound impact on geometry and topology as a powerful tool for solving many
problems, including many longstanding conjectures which had resisted all other techniques.
Singularity formation has been a great challenge central to the topic, one which has required
a wide range of ingredients from PDE, differential geometry, metric geometry, and topology.
While Ricci flow is fascinating from many points of view, it is especially interesting from
the PDE viewpoint because it has some features in common with other geometric evolution
equations (e.g., mean curvature flow and harmonic map heat flow); in particular, for the last
40 years the treatment of singularities has been a common theme, and has led to important
cross-fertilization.

In his preprints from 2002–2003, Perelman made a series of landmark contributions
to Ricci flow, some specific to flow on 3-manifolds, and some applicable in any dimension.
He introduced a number of new ingredients which opened the way to subsequent progress in
many directions, including (in particular) flow on 3-manifolds, Kähler–Ricci flow, and Ricci
flow under certain curvature assumptions. The aim of this article is to present the advances
in 3D Ricci flow from a bird’s-eye view, for a general mathematical audience. The technical
nature of the subject forces some compromises in the exposition, both in the precision of
statements and in the coverage of accompanying history and conceptual background. Also,
in writing for a broad audience it was unavoidable to make some choices of material and
emphasis which may be unsatisfactory to the experts; I hope that any such readers will be
understanding.

By convention, all 3-manifolds will be orientable.

2. Perelman’s work on 3D Ricci flow

In this section, we briefly review what was known about 3D Ricci flow up through
2003, when Perelman posted his preprints. We refer the interested reader to the introductions
in [21,28,39,50,51] for more detailed overviews.

Hamilton showed that if h is a smooth Riemannian metric on a compact n-mani-
fold M , then there exists a unique solution .g.t//t2Œ0;T / to the Ricci flow equation

@t g D �2 Ric
�
g.t/

�
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with initial condition g.0/ D h, and which is defined on a maximal time interval Œ0;T /; more-
over, if the time T is finite, then the norm of the curvature tensor Rm becomes unbounded
as t approaches T [34]. When M is a 2-sphere, the behavior of the Ricci flow .g.t//Œ0;T /

is very simple: it blows up in finite time, and as t ! T the volume-renormalized metric
Og.t/ WD .vol.g.t///� 2

n g.t/ converges smoothly as t ! T to a metric of constant curvature
4� [29, 35]. Ricci flow in 3D is more complicated. Consider, for instance, the case when
.M; g.0// is obtained from two compact Riemannian 3-manifolds .M; hM /, .N; hN / by
performing a geometric connected sum, i.e., by choosing r > 0 small, removing r-balls,
and attaching a round cylindrical “neck” (interpolating appropriately near the gluing locus).
Heuristically, one expects that when r is small, the Ricci flow .g.t//t2Œ0;T / will blow up
after a short time due to the large positive Ricci curvature in the neck region, and that away
from the neck region g.t/ will have a smooth limit as t ! T . The occurrence of such local-
ized “neck pinch” singularities leads to the idea of prolonging the evolution by performing
“surgery”, i.e., by removing an open set U diffeomorphic to .0; 1/ � S2 which contains
the set where the metric goes singular as t ! T , gluing approximate hemispherical caps
onto the two 2-sphere boundary components, and restarting the Ricci flow from the result-
ing compact smooth Riemannian manifold. By iterating this procedure, one might hope to
obtain a Ricci flow with surgery defined for all time, allowing for the possibility that the
manifold may be empty from some time onward. Noting that the surgery has the potential to
simplify topology by undoing connected sums, around the time of Hamilton’s original paper
Yau suggested that Ricci flow with surgery might be used to address fundamental questions
in three-dimensional topology—the Poincaré Conjecture and, more generally, Thurston’s
Geometrization Conjecture. Pursuing this idea, Hamilton developed many tools for analyz-
ing singularities, and implemented a version of Ricci flow with surgery in an analogous
4-dimensional setting.

In 2003, Perelman completed the program in a breakthrough result:

Theorem 2.1 (Informal statement). For any compact smooth Riemannian 3-manifold .M;h/,
there exists a Ricci flow with surgery with initial condition .M; h/ which is defined for all
time.

In addition to many fresh insights, the proof involved numerous ingredients, includ-
ing most of Hamilton’s prior results on Ricci flow, as well as a variety of other tools from
geometric analysis. We will only touch on a few key points here, treating some aspects dif-
ferently from Perelman.

Perelman’s Ricci flow with surgery consists of a sequence of Ricci flows�
M1;

�
g1.t/

�
t2ŒT0;T1/

�
;

�
M2;

�
g2.t/

��
t2ŒT1;T2/

/;
�
M3;

�
g3.t/

�
t2ŒT2;T3/

�
; : : :

where the time intervals ŒTi�1; Ti / are consecutive and
S

i ŒTi�1; Ti / D Œ0; 1/. For every
0 < Ti < 1, the Ricci flow .gi .t//t2ŒTi�1;Ti / goes singular as t ! Ti and has a smooth limit
Ngi on an open (possibly empty) subset �i � Mi . The initial condition .MiC1; giC1.Ti //

for the next flow is obtained from .�i ; Ngi / by a geometric surgery procedure—cutting
along 2-spheres, capping off boundary components, and throwing away some connected

2378 B. Kleiner



components—which generalizes the simple neck removal described above. The cumulative
effect of the surgery process on the topology is easy to describe: for every i > 1, the original
manifold M1 is diffeomorphic to a connected sum

M
diff
' Mi #.#j Nj / (2.2)

where for every j the summand Nj is either a copy of S2 � S1 or a spherical space form;
recall that a spherical space form is a manifold of the form S3=� where � � O.4/ is a finite
subgroup acting freely on S3.

A central issue in Perelman’s argument is controlling the structure of the flow near
singularities. This control is implemented as a set of conditions collectively referred to as the
Canonical Neighborhood Assumption. Informally speaking, the Canonical Neighborhood
Assumption asserts that near points with large curvature the flow has a restricted form, i.e.,
it is well approximated by a flow belonging to a family of model Ricci flows Perelman called
�-solutions; examples include:

(A) A shrinking round metric on S3 or a spherical space form;

(B) A shrinking round cylindrical metric on S2 � R or the quotient .S2 � R/=Z2;

(C) A special Ricci flow solution .gBry.t//t2R on R3 called the Bryant soliton.

In the schematic diagram shown in Figure 1, these provide models near the points A, B,
and C, respectively.

After proving the existence of a Ricci flow with surgery, Perelman analyzed the
behavior as t ! 1, and used the geometry of the flow to deduce a topological conclusion:

Theorem 2.3 ([54]). For every t sufficiently large, if t 2 ŒTi�1; Ti /, there is a finite disjoint
collection ¹Nj º of embedded incompressible tori in Mi such that each connected component
of Mi n

S
j Nj is diffeomorphic to either a complete, finite-volume hyperbolic manifold or

a graph manifold.

A hyperbolic manifold is a Riemannian manifold with universal cover isometric
to hyperbolic 3-space H3. A connected embedded surface N in a 3-manifold X is incom-
pressible if the inclusion map N ! X induces an injective homomorphism of fundamental
groups. A 3-manifold X is a graph manifold if there is a finite disjoint collection ¹Nkº of
embedded tori such that every connected component of X n

S
k Nk is diffeomorphic to (the

total space of) a circle bundle over a surface.
A few years prior to the appearance of Perelman’s preprints, Hamilton proved an

assertion roughly similar to Theorem 2.3, assuming an additional bound on the curvature
tensor [36]. The proof of Theorem 2.3 uses several key contributions from [36] in identifying
the hyperbolic piece, as well as several fundamental new ideas.

The results on Ricci flow with surgery have many applications to problems in geom-
etry and topology. Combining Theorem 2.3 with well-known results from 3-manifold topol-
ogy, Perelman proved Thurston’s Geometrization Conjecture:
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Figure 1

A Ricci flow with surgery with a neckpinch.
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Theorem 2.4. Every closed 3-manifold is a connected sum of manifolds that can be cut
along embedded, incompressible copies of T 2 into geometrizable pieces.

A connected 3-manifold is geometrizable if it admits a finite-volume Riemannian
metric with universal cover isometric to one of the eight Thurston geometries S3; H 3; R3;

H2 � R; S2 � R; Nil; Solv; CSL.2; R/ [61].
The Poincaré Conjecture is an immediate corollary:

Theorem 2.5. Any closed, simply connected 3-manifold is diffeomorphic to S3.

Perelman and Colding–Minicozzi showed that if the initial manifold M1 of a Ricci
flow with surgery has no aspherical summands in its prime decomposition, then the flow
eventually becomes extinct, i.e., for some i , we have ŒTi�1; Ti / D ŒTi�1; 1/ and Mi D ;

[30,53]; it then follows from (2.2) that M1 is a connected sum of spherical space forms and
copies of S2 � S1. This gives an alternative approach to the Poincaré Conjecture avoiding
Theorem 2.3.

In addition to settling central conjectures in topology, Perelman solved longstanding
problems in geometry:

Theorem 2.6. Let M be a closed 3-manifold, and �.M/ denote the Yamabe invariant of M

[43,55].

• Manifold M admits a Riemannian metric with positive scalar curvature if and
only if it is a connected sum of spherical space forms and copies of S2 � S1

[33,56].

• If M is irreducible and �.M/ � 0, then .� 1
6
�.M//

3
2 is total volume of the hyper-

bolic pieces appearing in the geometric decomposition of M , as in Theorem 2.4
[2,39].

3. Developments based on questions raised by Perelman’s

work

In this section we review the progress on some fundamental questions arising in
Perelman’s papers [52,54].

3.1. Large-time behavior
Let ¹.Mi ; ..gi .t//t2ŒTi�1;Ti /º be a Ricci flow with surgery as constructed by Perel-

man.
One basic question concerns the set of surgery times ¹Ti j 0 < Ti < 1º; in the state-

ment of Theorem 2.1, this set could potentially be infinite. Although Perelman discussed
finiteness of surgeries in his preprints, he did not settle the issue or give any indication
how it might be addressed, because he was able to find an approach to Theorem 2.3 (and
the Geometrization Conjecture) which circumvented the matter altogether. The problem of
finiteness of surgeries was also noted earlier: Hamilton had expressed the hope that it would
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be possible to define a Ricci flow with surgery such that only finitely many surgeries would
be necessary and that the curvature would then remain bounded for large t , after appropriate
normalization [36]. In a tour de force, Bamler was able to confirm this:

Theorem 3.1 ([8–12]). In any Ricci flow with surgery as constructed by Perelman, there are
only finitely many surgery times, and there exist C;T 2 .0;1/ such that the curvature tensor
satisfies the bound jRmg.t/j < C t�1 for all t > T .

In the theorem and in what follows, we let g.t/ WD gi .t/ for t 2 ŒTi�1; Ti /.
It is natural to ask: beyond the assertions in Theorem 3.1, how much more can be said

about the asymptotic behavior of the Ricci flow at t ! 1? First, the results of [30,53] imply
that each connected component of Mi is prime and aspherical when Ti > T . On general
principles, one might expect that Ricci flow improves the geometry, and therefore as t ! 1

the asymptotic behavior should be very simple. For instance, when M is geometrizable,
then one might expect that as t ! 1 the Ricci flow would converge (in some appropriate
sense) to the geometric structure, and when M is not geometrizable, then the Ricci flow
would construct the JSJ decomposition—a system of embedded incompressible tori which
are canonical up to isotopy—as well the geometric structure on the pieces. This speculation
has been confirmed only when M admits a hyperbolic metric, in which case Perelman’s
proof of Theorem 2.3 implies that 1

4
t�1g.t/ converges to a hyperbolic metric as t ! 1. In

other cases there has been progress in this direction. For instance, Lott has shown:

Theorem 3.2 ([48]). Let N be a connected component of Mi , where ŒTi�1; Ti / D ŒTi�1;1/.
If the quantity t� 1

2 diam.N; g.t// remains bounded as t ! 1, then the pullback of the
rescaled metric t�1g.t/ to the universal cover QN converges to a homogeneous expanding
soliton.

Bamler has a number of results covering both geometrizable and nongeometrizable
cases. The simplest case is the torus:

Theorem 3.3 ([12]). If M is diffeomorphic to T 3, then either g.t/ converges to a flat metric
as t ! 1, or the quantity t� 1

2 diam.g.t// is unbounded and for large t the metric g.t/ is well
approximated by another metric g0.t/ with T 2-symmetry and T 2-orbits of diameter � t

1
2 .

A similar alternative holds for 3-manifolds modeled on Thurston’s Nil or Solv
geometries. We refer the reader to [12] for these and other results, as well as a discussion of
open questions.

3.2. Classification of singularity models
As described in Section 2, Perelman’s treatment of Ricci flow with surgery involved

a family of Ricci flows called �-solutions, which model the formation of singularities. Build-
ing on Hamilton’s work on singularity formation, in his first preprint Perelman established
many properties of �-solutions, including:
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(a) (Topological classification) Every �-solution is diffeomorphic to a spherical
space form S3=� , the cylinder S2 � R, the Z2-quotient .S2 � R/=Z2, or R3.

(b) Any �-solution not diffeomorphic to R3, S3, or RP 3 is isometrically covered
by a shrinking round sphere or shrinking round cylinder.

(c) In a quantitative sense, �-solutions are “mostly necklike.” For instance, any
�-solution diffeomorphic to R3 is asymptotically cylindrical near infinity.

In the exceptional cases in (b), Perelman’s work provided both qualitative and quantitative
information, but not a complete classification. In the R3 case, he made the following con-
jecture:

Conjecture 3.4 ([52]). Any �-solution diffeomorphic to R3 is isometric to a Bryant soliton,
up to rescaling.

He also constructed a �-solution on S3 which is O.3/-symmetric, and becomes
more and more elongated as t ! �1; this descends to a �-solution on RP 3.

Recently, in the culmination of a long development in the theory of ancient solutions,
Brendle, Daskalopoulos, and Sesum have completed the classification of �-solutions:

Theorem 3.5 ([25]). Conjecture 3.4 holds.

Theorem 3.6 ([26]). Any compact �-solution is isometrically covered by a shrinking round
metric or a rescaling of the nonround �-solution constructed by Perelman.

3.3. Ricci flow through singularities
Although the construction of Ricci flow with surgery had a spectacular impact on

mathematics, in both of his preprints Perelman indicated that he had a further objective in
mind:

“It is likely that by passing to the limit in this construction [of Ricci flow with
surgery] one would get a canonically defined Ricci flow through singularities,
but at the moment I don’t have a proof of that.” [52, p. 37]

“Our approach …is aimed at eventually constructing a canonical Ricci flow,
defined on a largest possible subset of space-time,—a goal, that has not been
achieved yet in the present work.” [54, p. 1]

From the PDE perspective, one may interpret Perelman’s notion of a “Ricci flow through
singularities” as a kind of generalized solution to the Ricci flow equation; his stated goal
then fits into a long-established theme in PDE—the existence and uniqueness of weak or
generalized solutions. A further motivation for pursuing such a program comes from appli-
cations in geometry and topology involving families of Ricci flows depending continuously
on a parameter, which necessitate well-behaved unique solutions.
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In recent years Perelman’s goal was attained in the papers [16,41]. The first step was a
definition Ricci flow through singularities, which was given in [41]. This is uses the following
spacetime version of Ricci flow:

Definition 3.7 ([41]). A Ricci flow spacetime is a tuple .M; t; @t ; g/, where:

• M is a smooth 4-manifold with boundary.

• t W M ! Œ0; 1/ is a smooth function called the time function; its level sets
Mt WD t�1.t/ are called time-slices.

• @t is a smooth vector field satisfying @t t � 1; it is called the time vector field, and
its trajectories are called worldlines.

• g is a Riemannian metric on the subbundle of the tangent bundle T M defined by
ker d t, and hence induces a Riemannian metric gt on the time slice Mt .

• g satisfies the Ricci flow equation

L@t
g D �2 Ric.g/:

• The time slice M0 is the boundary of M.

For brevity, we typically denote the entire spacetime by M.

An ordinary Ricci flow .g.t//t2Œ0;T / on a manifold M gives rise to a Ricci flow
spacetime .M; t; @t ; g/ where M D M � Œ0; T /, the time function t is projection onto the
second factor, the time vector field @t projects to the unit vector field @x on the second factor,
and g induces the metric g.t/ on the time slice Mt D M � ¹tº corresponding to g.t/. Up to
diffeomorphism, a general Ricci flow spacetime looks locally like such a product Ricci flow
spacetime.

A Ricci flow spacetime by itself is too general to be useful; one obtains a good
notion of Ricci flow through singularities by imposing some extra conditions on a Ricci flow
spacetime:

Definition 3.8 ([41]). A singular Ricci flow is a Ricci flow spacetime .M; t; @t; g/ where:

(1) The initial time slice M0 is compact.

(2) M satisfies the Canonical Neighborhood Assumption.

(3) M is 0-complete.

Here condition (2) is similar to the Canonical Neighborhood Assumption in Perel-
man’s Ricci flow with surgery, and asserts that around a point x 2 Mt with large curvature,
the time slice Mt is well approximated by a �-solution. The 0-completeness requirement
in condition (3) is a replacement for the conventional notion of completeness. A generic
neck pinch gives rise to a Ricci flow spacetime exhibiting both spatial and temporal incom-
pleteness: if T is the time at which the pinch occurs, then the time slice MT will be an

2384 B. Kleiner



incomplete Riemannian manifold, and the trajectories of the time vector field @t which go
into the singularity are incomplete.

Definition 3.9. A Ricci flow spacetime M is 0-complete if the following holds. Suppose
 W Œ0; s0/ ! M is either an integral curve of ˙@t, or a unit speed curve in some time slice
of M. If sup j Rm j..s// < 1, then lims!s0 .s/ exists.

Ricci flow in dimension 3 is globally well posed in the setting of singular Ricci flows
[16,41]:

Theorem 3.10. (1) If .N;h/ is a compact Riemannian 3-manifold, then there exists
a singular Ricci flow M with initial time slice M0 isometric to .N; h/.

(2) A singular Ricci flow is determined uniquely by its initial condition: if M, M0

are singular Ricci flows then any isometry M0 ! M0
0 extends to an isometry of

M ! M0 of Ricci flow spacetimes (i.e., a diffeomorphism respecting the tuples).

The methods of [16] also imply that singular Ricci flows depend continuously on
their initial condition. Perelman’s assertion about convergence of Ricci flow with surgery
also holds:

Theorem 3.11 ([16]). Let .N; h/ be a compact Riemannian 3-manifold, which by Theo-
rem 3.10(1) we may identify with the time 0 slice M0 of some singular Ricci flow M. Then the
family of Ricci flows with surgery with initial condition M0 converges to M as the surgery
parameter ı tends to zero.

Here ı is a parameter appearing in Perelman’s construction of Ricci flow with
surgery; when ı is small then in particular the surgery process involves cutting along necks
with small cross-section.

The results above show that there is a well-behaved notion of Ricci flow through
singularities in dimension three, for arbitrary smooth initial conditions. It is natural to ask:

Question 3.12. Is there a good notion of Ricci flow through singularities in higher dimen-
sions, for arbitrary initial conditions?

This currently seems to be a significant challenge already in dimension 4; see, how-
ever, [4–6] and the references therein for recent progress in this direction. Note that the
answer to Question 3.12 is “yes” if one imposes restrictions the initial condition (see, for
instance, [37,60]); also, starting in dimension 5 there are examples of Angenent–Knopf show-
ing that one should not expect uniqueness [3]. We remark that the problem of constructing
a well-behaved generalized solutions to a closely related PDE—the mean curvature flow
equation—has been a major topic of research in geometric analysis for more than 40 years
[24].

We now state a few results concerning the structure of singular Ricci flows.

Theorem 3.13 ([15,41,42]). Let M be a singular Ricci flow.
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• If C is a connected component of some time slice, then C is diffeomorphic to a
compact manifold punctured at finitely many points.

• Let OMt be the manifold obtained from some time slice Mt by filling in punctures
and throwing away components diffeomorphic to S3. Then OMt is compact and its
prime decomposition is part of the prime decomposition of M0.

• The set of times t 2 Œ0; 1/ such that the time slice Mt is noncompact has
Minkowski dimension �

1
2
.

At present it is unknown if time slices could have infinitely many connected com-
ponents, or if there could be uncountably many noncompact time slices. In this direction we
have the following conjecture:

Conjecture 3.14. If M is a singular Ricci flow, then the set of times t for which Mt is
noncompact is finite. Moreover, if Mt is noncompact, then as Nt % t each connected compo-
nent of MNt either goes extinct, or experiences finitely many (possibly degenerate) neckpinch
singularities.

4. Further results

We conclude by listing a number of other directions which have seen progress
involving 3D Ricci flow.

• Ricci flow with surgery and/or singular Ricci flow can be extended, or partially
extended, to noncompact manifolds [19,20,22,47].

• There is a large literature on various types of special Ricci flow solutions, includ-
ing shrinking, expanding, and steady solitons, ancient solutions, and eternal solu-
tions. Many of these solutions arise as potential singularity models for finite time
singularities or as blow-up limits of type I, II, or III [36]. There does not seem to be
a good single source covering these developments, so we recommend searching
the internet for “Ricci soliton.”

• Perelman’s results on Ricci flow with surgery (Theorems 2.1 and 2.3) extend to
orbifolds, giving a Ricci flow proof of the Orbifold Theorem, see [23,40].

• Singular Ricci flow may be used to understand the topology of the space Diff.M/

of diffeomorphisms M ! M with the smooth topology, in particular, settling the
Generalized Smale Conjecture, and completing the determination of the topology
of Diff.M/ when M is a prime 3-manifold. See [13, 15, 17, 18], and also [38] for
history and background.

• Ricci flow with surgery and singular Ricci flow may be used to study the topology
of the space MetPSC.M/ of Riemannian metrics of positive scalar curvature on a
3-manifold M , and the moduli space MetPSC.M/= Diff.M/. It was shown in [49]
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that the moduli space MetPSC.M/= Diff.M/ is empty or path-connected, and [17]

extended this, proving that MetPSC.M/ is empty or contractible. See [17, 49] for
more background and references.

• In [1] Ricci flow with surgery was used to give sharp volume estimates for hyper-
bolic 3-manifolds with minimal surface boundary.

• Although the topics are not specific to dimension 3, we mention that there are a
number of papers studying Ricci flow starting from rough initial conditions [14,31,

44–46,57–59], and papers using Ricci flow to study scalar curvature lower bounds
in a C 0-setting [7,27,32].
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