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Abstract

In this article we survey some of the recent developments in Ricci flow. We present a new
theory of weak, 3-dimensional Ricci flows “through singularities,” which can be viewed as
an improvement of Perelman’s Ricci flow with surgery. We point out two topological appli-
cations: the resolution of the Generalized Smale Conjecture regarding the diffeomorphism
groups of 3-manifolds and the resolution of a conjecture regarding the space of positive
scalar curvature metrics on 3-manifolds. We also describe ongoing research on the forma-
tion of singularities in higher dimensions, which may yield further interesting applications
in the future.
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1. Introduction

The Ricci flow has proven to be a powerful tool, as it was used by Perelman in the
early 2000s to resolve two of the most important conjectures in 3-manifold topology: the
Poincaré Conjecture and the Geometrization Conjecture [46–48]. These applications were
far from coincidental, as they provide a new perspective on 3-manifold topology using the
geometric-analytic language of Ricci flow. Since then there have been further advances in the
study of Ricci flow, which have led to new topological applications in dimension 3. In addi-
tion, more applications in higher dimensions may be forthcoming. The goal of this article is
to survey some of these developments, particularly those relating to questions in (geometric)
topology.

This article1 is structured as follows. We will first provide a brief introduction to
Ricci flow, review some of the earlier results in dimension 2 and Perelman’s work in dimen-
sion 3. Next, we will discuss more recent results in dimension 3 regarding singular “Ricci
flows through singularities,” their uniqueness and continuous dependence on the initial data
and describe their topological applications. Lastly, we present a new approach towards the
study of Ricci flows in higher dimensions and point out potential future directions and appli-
cations.

2. Ricci flow

A Ricci flow (introduced by Hamilton [31]) on a manifold M is given by a smooth
family g.t/, t 2 Œ0; T /, of Riemannian metrics satisfying the evolution equation

@t g.t/ D �2Ricg.t/; (2.1)

where Ricg.t/ denotes the Ricci curvature of themetric g.t/, i.e., the trace of its Riemann cur-
vature tensor Rmg.t/. Equation (2.1) is weakly parabolic and it implies an evolution equation
for the curvature tensor Rmg.t/ of the form

@t Rmg.t/ D �Rmg.t/ CQ.Rmg.t//; (2.2)

where the last term denotes a quadratic term; its exact form will not be important for this
survey. Equation (2.2) suggests that the metric g.t/ becomes “smoother” or “more homoge-
neous” as time moves on, similar to solutions of heat equations. On the other hand, the last
term in (2.2) seems to indicate that – possibly at larger scales or in regions of large curvature
– this diffusion property may be outweighed by some other nonlinear effects, which could
lead to singularities.

If M is compact, then for any initial metric g0 the Ricci flow equation (2.1) has
a unique solution g.t/, t 2 Œ0; T /, with initial condition g.t/ D g0 and for some maximal
T 2 .0; 1� [31]. If T < 1, then the flow g.t/ must develop a singularity at time T and the
curvature must blow up: maxM jRmg.t/j ���!

t%T
1.

1 This article has appeared in a modified form in the Notices of the AMS [8].
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The most basic examples of Ricci flows are those in which g0 is Einstein, i.e.,
Ricg0 D �g0. In this case the flow evolves by rescaling,

g.t/ D .1 � 2�t/g0: (2.3)

So, for example, a round sphere (� > 0) shrinks under the flow, develops a singularity in
finite time, and its diameter goes to 0. On the other hand, if we start with a hyperbolic metric
(� < 0), then the flow is immortal (i.e., T D 1) and the metric expands linearly. In the
following we will consider more general initial metrics g0 and hope that – at least in some
cases – the flow is asymptotic to a solution of the form (2.3). This will then allow us to
understand the topology of the underlying manifold in terms of the limiting geometry.

3. Dimension 2

In dimension 2, Ricci flows are very well understood [24,26,32]:

Theorem 3.1. Any Ricci flow on a compact 2-dimensional manifold converges, modulo
rescaling, to a metric of constant curvature.

In addition, one can show that the flow in dimension 2 preserves the conformal class,
i.e., for all times t we have g.t/ D f .t/g0 for some smooth positive function f .t/ onM . This
observation, combined with Theorem 3.1, can in fact be used to reprove the Uniformization
Theorem:2

Theorem 3.2. Each compact surface M admits a metric of constant curvature in each con-
formal class.

In order to obtain new applications, however, we will need to study the flow in higher
dimensions.

4. Dimension 3

In dimension 3, the behavior of the flow – and its singularity formation – becomes
far more complicated. In the following, we will first review prior work on Ricci flow in
dimension 3, which is mostly due to Hamilton and Perelman and which led to the resolution
of the Poincaré and Geometrization Conjectures. We will keep this part short and only focus
on aspects that will become important later; for a more in-depth discussion see, for example,
[1]. Next, we will focus on more recent work by Kleiner, Lott, and the author on singular
Ricci flows and their uniqueness and continuous dependence, which led to the resolution of
several longstanding topological conjectures.

2 The original proof of Theorem 3.1 relied on the Uniformization Theorem. This dependence
was later removed by Chen, Lu, and Tian.
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4.1. Singularity formation – an example
To get an idea of the possible singularity formation of 3-dimensional Ricci flows,

it is useful to consider the famous dumbbell example [2, 3] (see Figure 1). In this example,
the initial manifold .M; g0/ is the result of connecting two round spheres of radii r1; r3 by
a certain type of rotationally symmetric neck of radius r2 (see Figure 1). So M � S3 and
g0 D f 2.s/gS2 C ds2 is a warped product away from the two endpoints.

Figure 1

Different singularity formations in the rotationally symmetric case, depending on the choice of the radii r1; r2; r3.
The flows depicted on the top are the corresponding singularity models. These turn out to be the only singularity
models, even in the nonrotationally symmetric case (see Section 4.3).

It can be shown that any flow starting from a metric of this form must develop a
singularity in finite time. The singularity type, however, depends on the choice of the radii
r1; r2; r3. More specifically, if the radii r1; r2; r3 are comparable (Figure 1, left), then the
diameter of the manifold converges to zero and, after rescaling, the flow becomes asymptot-
ically round – just as in Theorem 3.1. This case is called extinction. On the other hand, if
r2 � r1; r3 (Figure 1, right), then the flow develops a neck singularity, which looks like a
round cylinder (S2 � R) at small scales. Note that in this case the singularity only occurs in
a certain region of the manifold, while the metric converges to a smooth limit everywhere
else. Lastly, there is also an intermediate case (Figure 1, center), in which the flow develops a
singularity that is modeled on the Bryant soliton – a one-ended paraboloid-like model [16].3

3 We have omitted a less important nongeneric case, called the peanut solution. In this case
the diameter converges to zero in finite time. However, after rescaling, the metric looks like
a long cylinder with a slight indentation that is capped off on each side by regions whose
geometry is close to Bryant soliton. See [2] for more details.
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4.2. Blow-up analysis
Perelman’s work implied that the previous example is in fact prototypical for the sin-

gularity formation of general (not necessarily rotationally symmetric) 3-dimensional Ricci
flow. In order to make this statement more precise, let us first recall a method called blow-up
analysis, which is used frequently to study singularities in geometric analysis.

Suppose that .M; .g.t//t2Œ0;T // is a Ricci flow that develops a singularity at time
T < 1 (see Figure 2). Then we can find a sequence of spacetime points .xi ; ti / 2 M � Œ0;T /

such that �i WD jRmj.xi ; ti / ! 1 and ti % T . Our goal will be to understand the local
geometry at small scales near .xi ; ti /, for large i . For this purpose, we consider the sequence
of pointed, parabolically rescaled flows�

M;
�
g0

i .t/ WD �i g
�
��1

i t C ti
��

t2Œ��i ti ;0�
; .xi ; 0/

�
:

Geometrically, the flows .g0
i .t// are the result of rescaling distances by �

1=2
i , times by �i

and an application of a time-shift such that the points .xi ; 0/ in the new flows corresponds to
the points .xi ; ti / in the old flows. The new flows .g0

i .t// still satisfy the Ricci flow equation
and are defined on larger and larger backwards time-intervals of size �i ti ! 1. Moreover,
we have jRmj.xi ; 0/ D 1 on these new flows. Observe also that the geometry of the original
flows near .xi ; ti / at scale �

�1=2
i � 1 is a rescaling of the geometry of .g0

i .t// near .xi ; 0/

at scale 1.

Figure 2

A Ricci flow M � Œ0; T / that develops a singularity at time T and a sequence of points .xi ; ti / that “run into a
singularity.” The geometry in the parabolic neighborhoods around .xi ; ti / (rectangles) is close to the singularity
model modulo rescaling if i � 1.

Under certain additional assumptions, we may now apply a compactness theorem
(à la Arzela–Ascoli) such that, after passing to a subsequence, we have convergence�

M;
�
g0

i .t/
�

t2Œ��2
i ti ;0�

; .xi ; 0/
�

���!
i!1

�
M1;

�
g1.t/

�
t�0

; .x1; 0/
�
: (4.1)

The limit is called a blow-up or singularity model, as it gives valuable information on the
singularity formation near the points .xi ; ti /. This model is a Ricci flow that is defined for
all times t � 0; it is therefore called ancient. So in summary, a blow-up analysis reduces the
study of singularity formation to the classification of ancient singularity models.

The notion of the convergence in (4.1) is a generalization of Cheeger–Gromov con-
vergence to Ricci flows; it is due to Hamilton [33]. Instead of demanding global convergence
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of the metric tensors, as in Theorem 3.1, we only require convergence up to diffeomorphisms
here. More specifically, we roughly require that we have convergence

��
i g0

i .t/
C 1
loc

���!
i!1

g1 (4.2)

on M1 � .�1; 0� of the pullbacks of g0
i .t/ via (time-independent) diffeomorphisms �i W

Ui ! Vi � M that are defined over larger and larger subsetsUi � M1 and satisfy �i .x1/ D

xi . We will see later (in Section 5) that this notion of convergence is too strong to capture
the more subtle singularity formation of higher dimensional Ricci flows and we will discuss
necessary refinements. Luckily, in dimension 3 the current notion is still sufficient for our
purposes, though.

4.3. Singularity models and canonical neighborhoods
One of key discoveries of Perelman’s work was the classification of singularity

models of 3-dimensional Ricci flows and the resulting structural description of the flow near
a singularity. The following theorem4 summarizes this classification.

Theorem 4.1. Any singularity model .M1; .g1.t//t�0/ obtained as in (4.1) is isometric,
modulo rescaling, to one the following:

(1) a quotient of the round shrinking sphere .S3; .1 � 4t/gS3/,

(2) the Bryant soliton .MBry; .gBry.t///,

(3) the round shrinking cylinder .S2 � R; .1 � 2t/gS2 C gR/ or its quotient .S2 �

R/=Z2.

Note that these three models correspond to the three cases in the rotationally sym-
metric dumbbell example from Section 4.1 (see Figure 1). The Bryant soliton in (2) is a
rotationally symmetric solution to the Ricci flow on R3 with the property that all its time-
slices are isometric to a metric of the form

gBry D f 2.r/gS2 C dr2; f .r/ �
p

r:

The name soliton refers to the fact that all time-slices of the flow are isometric, so the flow
merely evolves by pullbacks of a family of diffeomorphisms.

The next theorem describes the structure of the flow near any point of the flow that
is close to a singularity – not just along a single blow-up sequence. In order to state this
result efficiently, we will need to consider the class of �-solutions. This class consists of
all solutions listed in Theorem 4.1, plus an additional compact, ellipsoidal solution [15] (the
details of this solution won’t be important here5). Then we have:

4 Perelman proved a version of Theorem 4.1 that contained a more qualitative characterization
in Case (2), which was sufficient for most applications. Later, Brendle [14] showed that the
only possibility in Case (2) is the Bryant soliton.

5 This solution does not occur as a singularity of a single flow, but can be observed as a tran-
sitional model in families of flows that interpolate between two different singularity models.
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Theorem 4.2 (Canonical neighborhood theorem). If .M; .g.t//t2Œ0;T //, T < 1, is a 3-
dimensional Ricci flow and " > 0, then there is a constant rcan.g.0/; T; "/ > 0 such that for
any .x; t/ 2 M � Œ0; T / with the property that

r WD jRmj
�1=2.x; t/ � rcan

the geometry of the metric g.t/ restricted to the ball Bg.t/.x; "�1r/ is "-close6 to a time-slice
of a �-solution.

4.4. Ricci flow with surgery
Our understanding of the structure of the flow near a singularity allows us to

carry out a so-called surgery construction. Under this construction, (almost) singularities
of the flow are removed, resulting in a “less singular” geometry, from which the flow can be
restarted. This leads to a new type of flow that is defined beyond its singularities and which
will provide important information on the underlying manifold.

Let us be more precise. A (3-dimensional) Ricci flow with surgery (see Figure 3)
consists of a sequence of Ricci flows�

M1;
�
g1.t/

�
t2Œ0;T1�

�
;

�
M2;

�
g2.t/

�
t2ŒT1;T2�

�
;

�
M3;

�
g3.t/

�
t2ŒT2;T3�

�
; : : : ;

which live on manifolds M1; M2; : : : of possibly different topology and are parameterized
by consecutive time-intervals of the form Œ0; T1�; ŒT1; T2�; : : : whose union equals Œ0; 1/.

Figure 3

A schematic depiction of a Ricci flow with surgery. The almost-singular parts Malmost-sing, i.e., the parts that are
discarded under each surgery construction, are hatched.

6 Similar to the definition of (4.2), this roughly means that there is a diffeomorphism between
an "�1-ball in a �-solution and this ball such that the pullback of r�2g.t/ is "-close in the
C Œ"�1�-sense to the metric on the �-solution.
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The time-slices .Mi ; gi .Ti // and .MiC1; giC1.Ti // are related by a surgery process, which
can be roughly summarized as follows. Consider the set Malmost-sing � Mi of all points of
high enough curvature, such that they have a canonical neighborhood as in Theorem 4.2.
Cut Mi open along approximate cross-sectional 2-spheres of diameter rsurg.Ti / � 1 near
the cylindrical ends of Malmost-sing, discard most of the high-curvature components (includ-
ing the closed, spherical components of Malmost-sing), and glue in cap-shaped 3-disks to the
cutting surfaces. In doing so we have constructed a new, “less singular,” Riemannian man-
ifold .MiC1; giC1.Ti //, from which we can restart the flow. Stop at some time TiC1 > Ti ,
shortly before another singularity occurs and repeat the process.

The precise surgery construction is quite technical and more delicate than presented
here. The main difficulty in this construction is to ensure that the surgery times Ti do not
accumulate, i.e., that the flow can be extended for all times. It was shown by Perelman that
this and other difficulties can, indeed, be overcome:

Theorem 4.3. Let .M; g/ be a closed, 3-dimensional Riemannian manifold. If the surgery
scales rsurg.Ti / > 0 are chosen sufficiently small (depending on .M; g/ and Ti ), then a Ricci
flow with surgery with initial condition .M1; g1.0// D .M; g/ can be constructed.

Note that the topology of the underlying manifold Mi may change in the course of
a surgery, but only in a controlled way. In particular, it is possible to show that for any i the
initial manifold M1 is diffeomorphic to a connected sum of components of Mi and copies of
spherical space forms S3=� and S2 � S1. So if the flow goes extinct in finite time, meaning
that Mi D ; for some large i , then

M1 � #k
j D1.S3=�j /#m.S2

� S1/: (4.3)

Perelman, moreover, showed that if M1 is simply connected, then the flow must go extinct
and therefore M1 must be of the form (4.3). This implies the Poincaré Conjecture:

Theorem 4.4 (Poincaré Conjecture). Any simply connected, closed 3-manifold is diffeomor-
phic to S3.

On the other hand, Perelman showed that if the Ricci flow with surgery does not go
extinct, meaning if it exists for all times, then for large times t � 1 the flow decomposes the
manifold (at time t ) into a thick and a thin part:

Mthick.t/ �[ Mthin.t/; (4.4)

such that the metric on Mthick.t/ is asymptotic to a hyperbolic metric, the metric on Mthin.t/

is locally collapsed and the boundary ofMthick.t/ consists of incompressible 2-tori. A further
topological analysis of this collapse implied the Geometrization Conjecture:

Theorem 4.5 (Geometrization Conjecture). Every closed 3-manifold is a connected sum of
manifolds that can be cut along embedded, incompressible copies of T 2 into pieces which
each admit a locally homogeneous geometry.
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4.5. Ricci flows through singularities
Despite their spectacular applications, Ricci flows with surgery have one major

drawback: their construction is not canonical. In other words, each surgery step depends on
a number of auxiliary parameters, for which there does not seem to be a canonical choice,
such as:

• The surgery scales rsurg.Ti /, i.e., the diameters of the cross-sectional spheres along
which the manifold is cut open. These scales need to be positive and small.

• The precise locations of these surgery spheres.

Different choices of these parameters may influence the future development of the flow sig-
nificantly (as well as the space of future surgery parameters). Hence a Ricci flowwith surgery
is not uniquely determined by its initial metric.

This disadvantagewas already recognized in Perelman’s work, where he conjectured
that there should be another flow, in which surgeries are effectively carried out automatically
at an infinitesimal scale (think “rsurg D 0”), or which, in other words, “flows through singu-
larities.”

Perelman’s conjecture was recently resolved by Kleiner, Lott, and the author (see
[39] for the “Existence” and [10] for the “Uniqueness” part; part (2) of Theorem 4.6 follows
from a combination of both papers):

Theorem 4.6. There is a notion of singular Ricci flow (through singularities) such that:

(1) For any compact, 3-dimensional Riemannian manifold .M;g/, there is a unique
singular Ricci flow M whose initial time-slice .M0; g0/ is .M; g/.

(2) Any Ricci flow with surgery starting from .M; g/ can be viewed as an approx-
imation of M. More specifically, if we consider a sequence of Ricci flows with
surgery starting from .M; g/ with surgery scales maxt rsurg.t/ ! 0, then these
flows converge to M in the local C 1-sense. (More details on this convergence
will be given in the end of this subsection.)

Before continuing, let us compare this result with past work on the mean curvature
flow – a close cousin of the Ricci flow. There are two important weak formulations of the
mean curvature flow, namely Brakke and level set flows. Existence theories [13,25,28,38] rely
heavily on the fact that a mean curvature flow concerns embedded submanifold in an ambi-
ent space. Uniqueness of these flows, on the other hand, is false in general [50], but true in
the mean convex case [51]; so the analogous statement to Part (1) holds in this case. More-
over, under the more restrictive condition of 2-convexity, which guarantees the existence of
a surgery procedure, an equivalent of Part (2) holds as well [35,41].

The concept of a singular Ricci flow is less technical than that of a Ricci flow with
surgery—in fact, we will be able to state its full definition here. To do this, we will first define
the concept of a Ricci flow spacetime. In short, this is a smooth 4-manifold that locally looks
like a Ricci flow, but which may have non-trivial global topology (see Figure 4).
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Figure 4

Illustration of a singular Ricci flow given by a Ricci flow spacetime. The arrows indicate the time-vector field @t.

Definition 4.7. A Ricci flow spacetime consists of:

(1) a smooth 4-dimensional manifold M with boundary, called spacetime;

(2) a time-function t W M ! Œ0;1/; its level setsMt WD t�1.t/ are called time-slices
and we require that M0 D @M;

(3) a time-vector field @t on M with @t � t � 1; trajectories of @t are called world-
lines;

(4) a family g of inner products on ker d t � T M, which induce a Riemannian
metric gt on each time-slice Mt ; we require that the Ricci flow equation holds:

L@t
gt D �2Ricgt :

By abuse of notation, we will often write M instead of .M; t; @t; g/.

A classical, 3-dimensional Ricci flow .M; .g.t//t2Œ0;T // can be converted into a
Ricci flow spacetime by setting M WD M � Œ0; T /, letting t; @t be the projection onto the
second factor and the pullback of the unit vector field on the second factor, respectively,
and letting gt be the metric corresponding to g.t/ on M � ¹tº � M . Hence worldlines
correspond to curves of the form t 7! .x; t/.

Likewise, a Ricci flow with surgery, given by flows�
M1;

�
g1.t/

�
t2Œ0;T1�

�
;

�
M2;

�
g2.t/

�
t2ŒT1;T2�

�
; : : : ;

can be converted into a Ricci flow spacetime as follows. Consider first the Ricci flow space-
times M1 � Œ0; T1�; M2 � ŒT1; T2�; : : : arising from each single flow. We can now glue these
flows together by identifying the set of points U �

i � Mi � ¹Ti º and U C

i � MiC1 � ¹Ti º that
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survive each surgery step via maps �i W U �
i ! U C

i . The resulting space has a boundary that
consists of the time-0-slice M1 � ¹0º and the points

�i D
�
Mi � ¹Ti º n U �

i

�
[

�
MiC1 � ¹Ti º n U C

i

�
;

which were removed and added during each surgery step. After removing these points, we
obtain a Ricci flow spacetime of the form:

M D
�
M1 � Œ0; T1� [�1 M2 � ŒT1; T2� [�2 � � �

�
n .�1 [ �2 [ � � � /: (4.5)

Note that, for any regular time t 2 .Ti�1; Ti /, the time-slice Mt is isometric to .Mi ; gi .t//.
On the other hand, the time-slices MTi

corresponding to surgery times are incomplete; they
have cylindrical open ends of scale � rsurg.Ti /.

The following definition captures this incompleteness:

Definition 4.8. ARicci flow spacetime is r-complete, for some r � 0, if the following holds.
Consider a smooth path  W Œ0; s0/ ! M with the property that

inf
s2Œ0;s0/

jRmj
�1=2

�
.s/

�
> r

and:

(1) .Œ0; l// � Mt is contained in a single time-slice and its length measured with
respect to the metric gt is finite, or

(2)  is a worldline, i.e., a trajectory of ˙@t.

Then the limit lims%s0
.s/ exists.

So M being r-complete roughly means that it has only “holes” of scale . r . For
example, the flow from (4.5) is C maxt rsurg.t/-complete for some universal C < 1.

In addition, Theorem 4.2 motivates the following definition:

Definition 4.9. A Ricci flow spacetime is said to satisfy the "-canonical neighborhood
assumption at scales .r1; r2/ if for any point x 2 Mt with r WD jRmj�1=2.x/ 2 .r1; r2/ the
metric gt restricted to the ball Bgt .x; "�1r/ is "-close, after rescaling by r�2, to a time-slice
of a �-solution.

We can finally define singular Ricci flows (through singularities), as used in Theo-
rem 4.6:

Definition 4.10. A singular Ricci flow is a Ricci flow spacetime M with the following two
properties:

(1) It is 0-complete.

(2) For any " > 0 and T < 1, there is an r.";T / > 0 such that the flowM restricted
to Œ0; T / satisfies the "-canonical neighborhood assumption at scales .0; r/.

See again Figure 4 for a depiction of a singular Ricci flow. The time-slices Mt for
t < Tsing develop a cylindrical region, which collapses to some sort of topological double
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cone singularity in MTsing at time Tsing. This singularity is immediately resolved and the flow
is smooth for some t > Tsing.

Let us digest the definition of a singular Ricci flow a bit more. It is tempting to think
of the time function t as aMorse function and compare critical points with infinitesimal surg-
eries. However, this comparison is flawed: First, by definition t cannot have critical points
since @t t D 1. In fact, a singular Ricci flow is a completely smooth object. The “singular
points” of the flow are not part of M, but can be obtained after metrically completing each
time-slice by adding a discrete set of points. Second, it is currently unknown whether the
set of singular times, i.e., the set of times whose time-slices are incomplete, is discrete. In
addition, the approach taken in the definition of singular Ricci flows is different from that of
weak solutions to the mean curvature flow. While the Brakke and level set flows characterize
the flow equation at singular points via integral or barrier conditions, a singular Ricci flow
only characterizes the flow on its regular part. In lieu of a weak formulation of the Ricci flow
equation on the singular set, we have to impose the canonical neighborhood assumption,
which serves as an asymptotic characterization near the incomplete ends.

Finally, let us briefly explain how singular Ricci flows are constructed and convey
the meaning of Part (2) of Theorem 4.6. Fix an initial time-slice .M; g/ and consider a
sequence of Ricci flow spacetimes Mj that correspond to Ricci flows with surgery starting
from .M; g/, with surgery scale maxt rsurg;j .t/ ! 0. It can be shown that these flows are
C maxt rsurg;j .t/-complete and satisfy the "-canonical neighborhood assumption at scales
.C" maxt rsurg;j .t/; r"/, where C;C"; r" do not depend on j . A compactness theorem implies
that a subsequence of the spacetimes Mj converges to a spacetime M, which is a singular
Ricci flow. This implies the existence of M; the proof of uniqueness uses other techniques,
which are outside the scope of this article.

4.6. Continuous dependence
The proof of the uniqueness property in Theorem 4.6, due to Kleiner and the author,

implies an important continuity property, which leads to further topological applications. To
state this property, let M be a compact 3-manifold and for every Riemannian metric g on M

let Mg be the singular Ricci flow with initial condition .M
g
0 ; g/ D .M; g/.

Theorem 4.11 ([11]). The flow Mg depends continuously on g.

Together with Theorem 4.6, this implies that the Ricci flow equation in dimension 3
is well-posed within the class of singular Ricci flows.

Note that the topology of the flow Mg may change as we vary g and the conti-
nuity holds for the entire flows – past potential singularities. We therefore have to choose
an appropriate sense of continuity in Theorem 4.11 that allows such a topological change.
This is roughly done via a topology and lamination structure on the disjoint union

F
g Mg ,

transverse to which the variation of the flow can be studied locally.
Instead of elaborating on these technicalities, let us discuss the example illustrated

in Figure 5. In this example .gs/s2Œ0;1� denotes a continuous family of metrics on S3 such
that the corresponding flows Ms WD Mgs interpolate between a round and a cylindrical sin-
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Figure 5

A family of singular Ricci flows starting from a continuous family of initial conditions.

gularity. For s 2 Œ0; 1
2
/, the flowMs can be described in terms of a conventional, nonsingular

Ricci flow .gs
t / on M and the continuity statement in Theorem 4.11 is equivalent to contin-

uous dependence of this flow on s. Likewise, the flows Ms restricted to Œ0; Tsing/ can again
be described by a continuous family of conventional Ricci flows. The question is now what
happens at the critical parameter s D

1
2
, where the type of singularity changes. The unique-

ness property guarantees that the flows Ms for s %
1
2
and s &

1
2
must limit to the same

flow M
1
2 . The convergence is locally smooth, but the topology of the spacetime manifold

Ms may still change.

4.7. Topological applications
Theorem 4.11 provides us a tool to deduce the first topological applications of Ricci

flow since Perelman’s work. Before stating these, let us make the following definitions. We
denote by Met.M/ the space of all Riemannian metrics on a manifold M , equipped with
the C 1-topology. Let MetK�k.M/; MetPSC.M/ � Met.M/ be the subsets of metrics of
constant sectional curvature k and of positive scalar curvature, respectively. Furthermore, we
denote by Diff.M/ the group of diffeomorphisms � W M ! M , again equippedwith theC 1-
topology, and for a Riemannian metric g 2 Met.M/ we denote by Isom.M; g/ � Diff.M/

the isometry group of .M; g/.

Theorem 4.12 ([11]). For any closed 3-manifold M , the space MetPSC.M/ is either con-
tractible or empty.

Theorem 4.13 (Generalized Smale Conjecture, [9, 11]). Suppose that .M 3; g/ is a closed
manifold of constant curvature K � ˙1. Then the inclusion map Isom.M; g/ ,! Diff.M/

is a homotopy equivalence.

The study of the spaces MetPSC.M/ was initiated by Hitchin in the 1970s and has
led to many interesting results – based on index theory – which show that these spaces have
nontrivial topology when M is high dimensional. Theorem 4.12 provides the first examples
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of manifolds of dimension � 3 for which the homotopy type of MetPSC.M/ is completely
understood; see also prior work by Marques [42].

The Generalized Smale Conjecture has had a long history and many interesting spe-
cial cases have been established using topological methods, including the case M D S3 by
Hatcher [34] and the hyperbolic case by Gabai [30]. However, the full conjecture remained
open until recently. For more background, see the first chapter of [37]. The proof of Theo-
rem 4.13 is independent of Hatcher’s andGabai’s proof, so it provides an alternative approach
to the S3 and hyperbolic case. In addition, it provides a uniform treatment of all topological
cases and the same method can also be used characterize the homotopy type of other prime
3-manifolds (see, for example, [11] for the case S2 � S1). For many of these manifolds, this
was already accomplished using topological methods; however, the following result is new:

Theorem 4.14 ([12]). Let g be a compact, orientable, non-Haken 3-manifold modeled on the
Thurston geometry Nil and let g be a Nil-metric on M . Then the inclusion Isom.M; g/ ,!

Diff.M/ is a homotopy equivalence.

Combining Theorems 4.13, 4.14 with the previously known characterization of
Diff.M/ in all other cases, this completes the project of understanding the topology of
Diff.M/ when M is a closed 3-manifold.

There are two proofs for Theorem 4.13: a short proof and a long proof. The short
proof [9] requires the additional assumption thatM 6� RP 3 and relies onHatcher’s resolution
of the Smale Conjecture. The long proof [11] establishes both Theorems 4.12, 4.13 in their
full form.

Both proofs rely on two basic observations:

• The positive scalar curvature condition is preserved by the flow.

• Theorem 4.13 is equivalent to the contractibility of the space MetK�˙1.M/ of
constant curvature metrics. This can be seen via a standard argument involving
the long-exact homotopy sequence for the fiber bundle Isom.M/ ! Diff.M/ !

MetK�˙1.M/.

Let us simplify our setting for a moment and suppose that M was the 2-dimensional
sphere. Then by Theorem 3.1, Ricci flow can be seen as a deformation retraction of Met.M/

or MetPSC.M/ to MetK�˙1.M/ – modulo rescaling and reparameterization. This shows that
the spaces Met.M/, MetPSC.M/ and MetK�˙1.M/ are homotopy equivalent, and since the
first space is contractible (it is a convex subset of a vector space), we obtain that all spaces
are contractible.

Unfortunately, the strategy in the 2-dimensional case does not readily generalize to
dimension 3, because singular flows cannot be viewed as trajectories in Met.M/ as they are
defined by metrics on different time-slices – possibly of different topology. Therefore, the
proofs of Theorems 4.12, 4.13 have to follow a different strategy, which we will outline now.
To this end we first observe that, since Met.M/ is contractible, it is enough to show that

�k.Met.M/;MetX .M// is trivial, where X may stand for “PSC” or “K � ˙1.”
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Let us now fix a representative g W DkC1 ! Met.M/ of this relative homotopy group, i.e.,
g.s/ 2 MetX .M/ for all s 2 @DkC1. Our goal will be to construct a null-homotopy Og W

DkC1 � Œ0; 1� ! Met.M/, where Og.�; 0/ D g and Og.s; t/ 2 MetX .M/ if s 2 @DkC1 or
t D 1.

If all the Ricci flows starting from each metric g.s/ were to converge to a round
metric (modulo rescaling), then Og.s; �/ could simply be constructed using these flows (as we
did in dimension 2). In general, however, the family g only induces a continuous family of
singular Ricci flows .Ms WD Mg.s//s2DkC1 . In a second step, this family of flows has to be
converted to the desired null-homotopy Og within Met.M/. In the long proof, this is achieved
via a new notion called partial homotopy. This notion is a hybrid between a null-homotopy
in Met.M/ and a continuous family of Ricci flows, which permits variation of underlying
topology. A partial homotopy allows the construction of a null-homotopy via backwards
induction in time via certain modification moves that roughly correspond to the singularities
of the flows Ms . The short proof, on the other hand, uses the flow of the time-vector field @t

on each Ms to push forward the metrics gs
t to its initial time-slice Ms

0 D M . This flow is not
defined everywhere and thus such a construction only offers a continuous family of metrics
Qgs defined on open subsets U s � M , where M n U s can be covered by pairwise disjoint
3-disks. These metrics then have to be extended onto all of M via an obstruction theoretic
argument, which relies on Hatcher’s resultion of the S3-case.

5. Dimensions n � 4

For a long time, most of the known results of Ricci flows in higher dimensions
concerned special cases, such as Kähler–Ricci flows or flows that satisfy certain preserved
curvature conditions. General flows, on the other hand, were relatively poorly understood.
Recently, however, there has been somemovement on this topic – in part, thanks to a different
geometric perspective on Ricci flows [5–7]. The goal of this section is to convey some of these
new ideas and to provide an outlook on possible geometric and topological applications.

5.1. Gradient shrinking solitons
Gradient shrinking solitons (GSSs) comprise an important class of singularity

models in Ricci flow, especially in higher dimensions. The GSS equation concerns Rie-
mannian manifolds .M; g/ equipped with a potential function f 2 C 1.M/ and reads

RicCr
2f �

1

2
g D 0:

This generalization of the Einstein equation gives rise to an associated self-similar Ricci flow

g.t/ WD jt j��
t g; t < 0;

where .�t W M ! M/t<0 is the flow of the vector field jt jrf .
A basic class of examples for GSSs are the round cylinders Sk�2 � Rn�k , where

g D 2.k � 1/gSk C gRn�k ; f D
1

4

nX
iDkC1

x2
i :
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In this case, jt jrf generates a family of dilations on the Rn�k factor and

g.t/ D 2.k � 1/jt jgSk C gRn�k ;

which is isometric to jt jg. A special case of this is the round shrinking sphere (k D n). In
dimensions n � 3, all nontrivial7 GSSs are quotients of round spheres or cylinders. However,
more complicated GSSs exist in dimensions n � 4 (see, for example, [29]).

By construction, GSSs (or their associated flows, to be precise) are invariant under
parabolic rescaling. So the blow-up singularity model of the singularity at time 0 (taken
along an appropriately chosen sequence of basepoints) is equal to the flow itself. Therefore
every GSS does indeed occur as a singularity model, at least of its own flow.

Vice versa, the following conjecture, which will be kept vague for now, predicts that
the converse should also be true in a certain sense.

Conjecture 5.1. For any Ricci flow, “most” singularity models are gradient shrinking soli-
tons.

This conjecture has been implicit in Hamilton’s work from the 1990s, and a similar
result is known to be true for mean curvature flow. In the remainder of this section, we will
present a resolution of a version of this conjecture.

5.2. Examples of singularity formation
Let us first discuss an example in order to adjust our expectations in regards to

Conjecture 5.1. In [4], Appleton constructs a class of 4-dimensional Ricci flows8 that develop
a singularity in finite time, which can be studied via the blow-up technique from Section 4.2
– this time we even allow the rescaling factors to be any sequence of numbers �i ! 1,
not just �i D jRmj1=2.xi ; ti /. Appleton obtains the following classification of all nontrivial
blow-up singularity models:

(1) the Eguchi–Hansonmetric, which is Ricci flat and asymptotic to the flat orbifold
R4=Z2,

(2) the flat orbifold R4=Z2,

(3) the quotient MBry=Z2 of the Bryant soliton, which has an isolated orbifold sin-
gularity at its tip,

(4) the cylinder RP 3 � R.

Here the models (1) and (2) have to occur as singularity models, and it is unknown whether
themodels (3) and (4) actually do show up. The onlyGSSs in this list are (2) and (4). Note that
the flow on R4=Z2 is constant, but each time-slice is a metric cone, and therefore invariant

7 Euclidean space Rn equipped with f D
1
4 r2 is called a trivial GSS.

8 The flows are defined on noncompact manifolds, but the geometry at infinity is well con-
trolled.

2447 Some recent developments in Ricci flow



under rescaling. So we may also view this model as a (degenerate) gradient shrinking soliton
(in this case f D

1
4
r2).

It is conceivable that there are Ricci flow singularities whose only blow-up models
are of type (1) or (2). In addition, there are further examples in higher dimensions [49]whose
only blow-up models that are GSSs must be singular and possibly degenerate. This motivates
the following revision of Conjecture 5.1.

Conjecture 5.2. For any Ricci flow, “most” singularity models are gradient shrinking soli-
tons. These may be degenerate and may have a singular set of codimension � 4.

5.3. A compactness and partial regularity theory for Ricci flows
The previous example suggests that in higher dimensions we may need to consider

nonsmooth blow-up limits. The usual convergence and compactness theory of Ricci flows due
to Hamilton (see Section 4.2) is too restrictive for such purposes, as it relies on curvature
bounds and only produces smooth limits. Instead, we need a fundamentally new compactness
and partial regularity theory for Ricci flows, which will enable us to take limits of arbitrary
Ricci flows and study their structural properties. This theory was recently found by the author
[5–7] and will lie at the heart of a resolution of Conjecture 5.2.

An important related compactness and partial regularity theory is that for Einstein
metrics due to Cheeger, Colding, Gromov, Naber, and Tian [17–23,27]. This theory roughly
states that any noncollapsed sequence of pointed Einstein metrics subsequentially converges
in the pointed Gromov–Hausdorff sense to a metric space whose singular set has Minkowski
dimension � n � 4. Similar theories also exist for other geometric equations (e.g., minimal
surfaces, harmonic maps, mean curvature flow). What these theories have in common is that
their proofs all rely on only a few basic ingredients (e.g., a monotonicity formula, an almost
cone rigidity theorem, and an "-regularity theorem), which can be verified in each setting.
A similar theory for Ricci flows, however, is more complicated, mainly due to two reasons:

• The basic ingredients mentioned above are – at least a priori – not available for
Ricci flows. This necessitates a different approach for proving partial regularity.

• Parabolic versions of notions like “metric space”, “Gromov–Hausdorff conver-
gence”, etc., did not exist until recently. So these – and a theory surrounding them
– first had to be developed.

Let us now state the main compactness and partial regularity results for Ricci flows.
We will remain somewhat vague on the new terminologies for now and defer a more detailed
discussion to Section 5.5. Consider a sequence of pointed, n-dimensional Ricci flows�

Mi ;
�
gi .t/

�
t2.�Ti ;0�

; .xi ; 0/
�
;

where we imagine the basepoints .xi ; 0/ to live in the final time-slices, and suppose that
T1 WD limi!1 Ti > 0. Then we have:

2448 R. Bamler



Theorem 5.3. After passing to a subsequence, these flows F -converge to a pointed metric
flow �

Mi ;
�
gi .t/

�
; .xi ; 0/

� F
���!
i!1

�
X; .�x1It /

�
:

Here the terms “metric flow” and “F -convergence” can be thought as a parabolic
versions of “metric space” and “Gromov–Hausdorff convergence,” respectively.

Next, we impose the following noncollapsing condition:

Nxi ;0

�
r2

�

�
� �Y�: (5.1)

Here Nx;t .r
2/ is the pointed Nash-entropy, which is a natural quantity in Ricci flow and

related to Perelman’s W -functional and rediscovered by work of Hein and Naber [36]. It and
can be thought of as the parabolic analogue of the normalized volume of a ball.

Theorem 5.4. Assuming (5.1), we have a regular–singular decomposition

X D R �[ �

such that:

(1) The flow on R can be described by a smooth Ricci flow spacetime structure (see
Definition 4.7). The entire flow X is uniquely determined by this structure.

(2) We have the following dimensional estimate on the singular set:

dimM� � � .n C 2/ � 4:

(3) Tangent flows (i.e., blow-ups based at a fixed point of X) are (possibly singular)
gradient shrinking solitons.

(4) There is a filtration �0 � � � � � �n�2 D � such that dimH� �k � k and such
that every x 2 �k n �k�1 has a tangent cone that either splits off an Rk-factor
or it splits off an Rk�2-factor and is static.

Let us make a few remarks. First, note that the fact that X is uniquely determined
by the smooth Ricci flow spacetime structure on R is comparable to what we have observed
in dimension 3 (see Section 4.5), where we did not even consider the entire flow X.

Second, property (2) involves a parabolic version of the Minkowski dimension that
is natural for Ricci flows; a precise definition would be beyond the scope of this article.
Note that the time direction accounts for 2 dimensions, which is natural. In dimension 3, this
implies that the set of singular times has dimension �

1
2
; this what was previously known in

this dimension [40]. In Appleton’s 4-dimensional example, the singular set � may consist of
an isolated orbifold point in every time-slice; so its parabolic dimension is 2 D .4 C 2/ � 4.
On the other hand, a flow on S2 � T 2 develops a singularity at a single time and collapses
to the 2-torus T 2, which again has parabolic dimension 2. This shows that the dimensional
bounds in Theorem 5.4 are optimal.

Lastly, the “tangent flows” in property (3) can be viewed as parabolic versions of
“tangent cones,” as both are invariant under rescaling.
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5.4. Applications
Theorems 5.3 and 5.4 enable us to study the finite-time singularity formation and

long-time behavior of Ricci flows in higher dimensions.
Regarding Conjecture 5.2, we roughly obtain:

Theorem 5.5. Suppose that .M; .g.t//t2Œ0;T // develops a singularity at time T < 1. Then
we can extend this flow by a “singular time-T -slice” .MT ; dT / such that the tangent flows
at any .x; T / 2 MT are (possibly singular) gradient shrinking solitons.

Regarding the long-time asymptotics, we obtain the following picture, which closely
resembles that in dimension 3; compare with (4.4) in Section 4.4:

Theorem 5.6. Suppose that .M;.g.t//t�0/ is immortal. Then for t � 1 we have a thick–thin
decomposition

M D Mthick.t/ �[ Mthin.t/

such that the flow on Mthick.t/ converges, after rescaling, to a singular Einstein metric
.Ricg1

D �g1) and the flow on Mthin.t/ is collapsed in the opposite sense of (5.1).

In dimension 3, these theorems essentially recover Perelman’s results; so they can
be seen as generalizations to higher dimensions.

5.5. Metric flows
The definition of a metric flow and associated concepts require a new perspective

on the geometry of Ricci flows. In the following we will briefly convey some of the rough
ideas behind this perspective.

Let us first imitate the process of passing from a (smooth) Riemannian mani-
fold .M; g/ to its metric length space .M; dg/. So our goal will be to turn a Ricci flow
.M; .g.t//t2I / into a synthetic object, which we call “metric flow.” To do this, we consider
the spacetime X WD X � I and the time-slices Xt WD X � ¹tº equipped with the length
metrics dt WD dg.t/. It may be tempting to retain the product structure X � I on X, i.e., to
record the set of worldlines t 7! .x; t/. However, this turns out to be unnatural. Instead, we
will view the time-slices .Xt ; dt / as separate metric spaces whose points may not even be
in 1–1 correspondence to some given space X .

It remains to record some relation between these metric spaces .Xt ; dt /. This will
be done via the conjugate heat kernel K.x; t Iy; s/ – an important object in the study of Ricci
flows. For fixed .x; t/ 2 M � I and s < t , this kernel satisfies the backwards conjugate9 heat
equation on a Ricci flow background,

.�@s � 4g.s/ C Rg.s//K.x; t I �; s/ D 0; (5.2)

9 Equation (5.2) is the L2-conjugate of the standard (forward) heat equation and K.�; �I y; t/ is
a heat kernel centered at .y; t/.
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centered at .x; t/. This kernel has the property that, for any .x; t/ and s < t ,Z
M

K.x; t I �; s/dg.s/ D 1;

which motivates the definition of the following probability measures:

d�.x;t/Is WD K.x; t I �; s/dg.s/; �.x;t/It D ıx :

This is the additional information that we will record. So we define:

Definition 5.7. A metric flow is (essentially10) given by a pair�
.Xt ; dt /t2I ; .�xIs/x2Xt ;s<t;s2I

�
consisting of a family of metric spaces .Xt ; dt / and probability measures �xIs on Xs , which
satisfy certain (basic) compatibility relations.

So given points x 2 Xt , y 2 Xs at two times s < t , it is not possible to saywhether “y
corresponds to x.” Instead, we only know that “y belongs to the past of x with a probability
density of d�xIs.y/.” This definition is surprisingly fruitful. For example, it is possible to
use the measures �xIs to define a natural topology on X and to understand when and in what
sense the geometry of time-slices Xt depends continuously on t .

The concept of metric flows also allows the definition of a natural notion of geo-
metric convergence – F -convergence – which is similar to Gromov–Hausdorff convergence.
Even better, this notion can be phrased on terms of a certain dF -distance, which is similar
to the Gromov–Hausdorff distance, and the Compactness Theorem 5.3 can be expressed as
a statement on the compactness of a certain subset of metric flow (pairs),11 similar to the
definition of Gromov–Hausdorff compactness.

Lastly, we sketch an example that illustrates why it was so important that we have
divorced ourselves from the concept of worldlines. Consider the Bryant soliton .MBry;

.gBry.t//t�0/ (see Figure 6). Recall that every time-slice .MBry; gBry.t// is isometric to
the same rotationally symmetric model with center xBry. By Theorems 5.3 and 5.4, any
pointed sequence of blow-downs (�i ! 0),�

MBry;
�
�2

i gBry
�
��2

i t
��

t�0
; .xBry; 0/

�
;

F -converges to a pointed metric flow X that is regular on a large set. What is this F -
limit X? For any fixed time t < 0, the sequence of pointed Riemannian manifolds .MBry;

�2
i gBry.�

�2
i t /; xBry/ converges to a pointed ray of the form .Œ0; 1/; 0/. This seems to contra-

dict Theorem 5.4. However, here we have implicitly used the concept of worldlines, because
we have used the point .xBry; t / corresponding to the “official” basepoint .xBry; 0/ at time t .
Instead, we have to focus on the “past” of .xBry; 0/, i.e., the region of .MBry; �2

i gBry.�
�2
i t //

where the conjugate heat kernel �.xBry;0/I��2
i t is concentrated. This region is cylindrical of

10 This is a simplified definition.
11 Strictly speaking, F -convergence and dF -distance concern metric flow pairs, .X; .�xIt //,

where the second entry serves as some kind of substitute of a basedpoint.
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Figure 6

The Bryant soliton (green) and a conjugate (backward) heat kernel (orange) starting at the point xBry at time 0.

scale �
p

jt j, because the conjugate heat kernel “drifts away from the tip” at an approximate
linear rate. In fact, one can show that the blow-down limit X is isometric to a round shrink-
ing cylinder that develops a singularity at time 0. While this may seem slightly less intuitive
at first, it turns out to be a much more natural way of looking at it.

5.6. Outlook
Our new theory of higher-dimensional Ricci flows demonstrates that, at least on an

analytical level, Ricci flows behave similarly in higher dimension as they do in dimension 3.
However, while there are only a handful of possible singularity models in dimension 3, gain-
ing a full understanding of all such models in higher dimensions (e.g., classifying gradient
shrinking solitons) may be impossible. Some past work in dimension 4 (e.g., by Munteanu
and Wang [43–45]) has demonstrated that most noncompact gradient shrinking solitons have
ends that are either cylindrical or conical. This motivates the following conjecture:

Conjecture 5.8. Given a closed Riemannian 4-manifold .M; g/, there is a “Ricci flow
through singularities” in which topological change occurs along cylinders or cones and in
which time-slices are allowed to have isolated orbifold singularities.

The term “Ricci flow through singularities” is still left somewhat vague. Most likely,
it should denote an object that is similar to a metric flow and that has the same partial reg-
ularity properties as described in Theorem 5.4, but with the exception that time-slices may
consist of several components (i.e., we allow distances to be infinite). It may also be useful to
require some sort of topological monotonicity property, meaning that the topology becomes
“simpler” after the resolution of a singularity.

The existence of such a flow may have interesting consequences. For example, it
may be used to decompose 4-manifolds with positive scalar curvature into certain build-
ing blocks. It may also offer an approach to proving the 11

8
-Conjecture. Note here that this
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conjecture holds for both important asymptotic models – gradient shrinking solitons and
Einstein metrics – due to Lichnerowicz’ Theorem and the Hitchin–Thorpe inequality. Lastly,
there also seems to be potential applications in Kähler geometry, for example towards the
Minimal Model Program and the Abundance Conjecture, assuming a similar flow could be
constructed in higher dimensions.
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