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Abstract

This is a double exposure of the probabilistic construction of Kähler–Einstein metrics on
a complex projective algebraic variety X – where the Kähler–Einstein metric emerges
from a canonical random point process on X – and the variational approach to the Yau–
Tian–Donaldson conjecture, highlighting their connections. The final section is a report
on joint work in progress with Sébastien Boucksom and Mattias Jonsson on how the non-
Archimedean geometry of X (with respect to the trivial absolute value) also emerges from
the probabilistic framework.
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1. Introduction

A recurrent theme in geometry is the quest for canonical metrics on a given mani-
fold X . The prototypical case is when X is a compact orientable two-dimensional surface,
which can be endowed with a metric of constant scalar curvature, essentially uniquely deter-
mined by a complex structure J on X . On the other hand, from a physical point of view,
geometrical shapes – as we know them from everyday experience – are, of course, not fun-
damental physical entities. They merely arise as macroscopic emergent features of ensembles
of microscopic point particles in the limit as the number N of particles tends to infinity. In
mathematical terms such microscopical ensembles are random point processes, i.e., they
are represented by a probability measure on the configuration space of N points on X

or, equivalently, a symmetric probability measure �.N / on the N -fold product XN . One
is thus led to ask whether a given manifold X may be endowed with a canonical random
point process – defined without reference to any metric – from which a canonical metric
g emerges as N ! 1? Here we shall focus on Kähler metrics with constant Ricci curva-
ture. From the physics perspective, these arise as solutions to Einstein’s equations in vacuum
(with Euclidean signature). The Kähler condition means that X is compatible with an inte-
grable complex structure J on X (in that parallel translation preserves the complex structure
J /. Such metrics – known as Kähler–Einstein metrics – play a central role in current com-
plex geometry and the study of complex algebraic varieties, in particular in the context of
the Yau–Tian–Donaldson conjecture [38] and the Minimal Model Program in birational alge-
braic geometry [45]. When a projective algebraic variety X admits a Kähler–Einstein metric,
it is essentially unique, i.e., canonically attached to X and can thus be leveraged to probe
X using differential-geometric techniques (as, for example, in the construction of moduli
spaces [61]).

One virtue of the probabilistic approach is that it leads to essentially explicit period
type integral formulas for canonical Kähler metrics converging towards the Kähler–Einstein
metric as N ! 1 (see formula (2.7)). These formulas are reminiscent of the few explicit
formulas for Kähler–Einstein metrics that are available on special complex curves, involving
hypergeometric integrals (notably the modular curve, the Klein curve, and Fermat curves; see
[6, Section 2.1]). The probabilistic approach also generates new connections between Kähler
geometry and algebraic geometry in the context of the Yau–Tian–Donaldson conjecture on
Fano varieties, through the concept of Gibbs stability and the related stability threshold .ı-
invariant) [19,41]. The present contribution to the 2022 ICM proceedings attempts a double
exposure of the probabilistic approach in [2, 4, 5] and the variational approach to the Yau–
Tian–Donaldson conjecture in [14], highlighting their connections. For more details and
background, the reader is referred to the survey [6]. See also [15] for connections between
the present probabilistic approach to Kähler geometry and quantum gravity in the context
of the AdS/CFT correspondence, and [7, 39] for connections to polynomial approximation
theory and pluripotential theory in Cn.
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2. Emergent Kähler geometry

Let X be a compact complex manifold, whose dimension over C will be denoted
by n. The existence of a Kähler–Einstein metric !KE on X , i.e., a Kähler metric with constant
Ricci curvature,

Ric ! D �ˇ!; (2.1)

implies that the canonical line bundle KX of X (the top exterior power of the cotangent
bundle of X ) has a definite sign, when ˇ ¤ 0,

sign.KX / D sign.ˇ/: (2.2)

We will be using the standard terminology of positivity in complex geometry: a line bundle is
said to be positive, L > 0, if L carries some Hermitian metric with strictly positive curvature
(or, equivalently, L is ample in the algebro-geometric sense). The standard additive notation
for tensor products of line bundles will be adopted. Accordingly, the dual of L is expressed
as �L, and L is thus said be negative, L < 0, if �L > 0. In general, when ˇ ¤ 0, the
manifold X is automatically a complex projective algebraic manifold, and after a rescaling
of the Kähler–Einstein metric we may as well assume that ˇ D ˙1. For example, in the
case when X is a hypersurface in P nC1

C , cut out by a homogeneous polynomial of degree d ,
KX > 0 when d > n C 2, and �KX > 0 when d < n C 2.

Remark 2.1. In the more general “logarithmic” setup, X is replaced by a log pair .X; �/

consisting of a Q-divisor � on a normal variety X and KX is replaced by KX C �, assumed
to be a Q-line bundle. The corresponding log Kähler–Einstein equation (2.1) is obtained by
replacing Ric! with Ric! � Œ��, where Œ�� denotes the current of integration corresponding
to �. For simplicity we will stick to the case when X is nonsingular and � is trivial (but all
the results surveyed in this and the following section generalize to the logarithmic setting,
assuming that .X; �/ is klt (Kawamata log terminal) [5,8,13]).

Coming back to the question of emergence of geometry, discussed in the introduc-
tion, a Kähler–Einstein metric gKE has the crucial property that it can be readily recovered
from its volume form dVKE, in the case ˇ ¤ 0. Indeed, in local terms gKE is proportional to
the complex Hessian of the logarithm of the local density of dVKE (see formula (3.4)). Thus
in order to probalistically construct the Kähler–Einstein metric, one just needs to construct
a random point process on X with N particles such that the empirical measure

ıN WD
1

N

NX
iD1

ıxi
; (2.3)

viewed as a random discrete probability measure on X , converges in probability to dVKE,
as N ! 1.

2.1. The case KX > 0 .ˇ D 1/

The starting point for the probabilistic approach is the observation that there is a
canonical symmetric probability measure �.N / on the N -fold product XN of X . More pre-
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cisely, the integers N are taken to be of the special form

N D Nk WD dimC H 0.X; kKX /;

where H 0.X; kKX / denotes the complex vector space of all holomorphic section of the
kth tensor power of the canonical line bundle KX ! X . Recall that the elements s.k/ of
H 0.X; kKX / are called pluricanonical forms and may be represented by local holomorphic
functions transforming as dz˝k , in terms of local holomorphic coordinates z 2 Cn on X .
As a consequence, js.k/.z/j2=k transforms as a local density on X and thus defines a global
measure on X . Replacing X with XNk , the canonical symmetric probability measure �.Nk/

on XNk is now defined by

�.Nk/
D

1

ZNk

ˇ̌
det S .k/

ˇ̌2=k
; ZNk

WD

Z
XNk

ˇ̌
det S .k/

ˇ̌2=k
; (2.4)

where det S .k/ is the holomorphic section of the line bundle .kKXNk / ! XNk , expressed as
the Slater determinant �

det S .k/
�
.x1; x2; : : : ; xN / WD det

�
s

.k/
i .xj /

�
; (2.5)

in terms of a given basis s
.k/
i in H 0.X; kKX /. Under a change of bases, the section det S .k/

only changes by a multiplicative complex constant (the determinant of the change of bases
matrix on H 0.X; kKX /). As a consequence, �.Nk/ is independent of the choice of bases
in H 0.X; kKX / and, since det S .k/ is antisymmetric, this means that the probability mea-
sure �.Nk/ indeed defines a canonical symmetric probability measure on XNk . Moreover,
it is completely encoded by algebro-geometric data in the following sense: realizing X as a
projective algebraic subvariety, the section det S .k/ can be identified with a homogeneous
polynomial, determined by the coordinate ring of X .

The assumption that KX > 0 ensures that Nk ! 1 as k ! 1. To simplify the nota-
tion, we will often drop the subindex k on Nk and consider the large-N limit. The following
convergence result was shown in [4]:

Theorem 2.2. Let X be a compact complex manifold with positive canonical line bundle KX .
Then the empirical measures ıN of the corresponding canonical random point processes on
X (formula (2.3)) converge in probability, as N ! 1, towards the normalized volume form
dVKE of the unique Kähler–Einstein metric !KE on X .

In fact, the proof shows that the convergence holds at an exponential rate, in the
sense of large deviation theory: for any given " > 0, there exists a positive constant C" such
that

Prob

 
d

 
1

N

NX
iD1

ıxi
; dVKE

!
> "

!
� C"e�N"; (2.6)

where d denotes any metric on the space P .X/ of probability measures on X compatible
with the weak topology. The convergence in probability in the previous theorem implies, in
particular, that the measures dVk on X , defined by the expectations E.ıNk

/ of the empirical
measure ıNk

, converge to dVKE in the weak topology of measures on X . Concretely, dVk
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is obtained by integrating �.Nk/ over the fibers of the projection from XNk onto the first
factor X , that is,

dVk WD

Z
XNk �1

�.Nk/
! dVKE; k ! 1:

For k sufficiently large (ensuring that kKX is very ample), the measures dVk are, in fact,
volume forms on X and induce a sequence of canonical Kähler metrics !k on X [5, Prop. 5.3]:

!k WD
i

2�
@N@ log dVk D

i

2�
@N@ log

Z
XNk �1

ˇ̌
det S .k/

ˇ̌2=k
: (2.7)

The convergence above also implies that the canonical Kähler metrics !k converge, as
k ! 1, towards the Kähler–Einstein metric !KE on X , in the weak topology. More gener-
ally, as shown in [5], the convergence holds on any variety X of positive Kodaira dimension
(i.e., such that Nk ! 1, as k ! 1) if dVKE and !KE are replaced by the canonical measure
and current on X , respectively, introduced by Song-Tian and Tsuji in different geometric
contexts [5] (in the case when X is singular it is assumed that X is klt and k is assumed to
be sufficently divisible to ensure that kKX is a bona fide line bundle).

2.2. The Fano case, KX < 0 (ˇ D �1)
When �KX is positive, which means that X is a Fano manifold, any Kähler–Einstein

metric on X has positive Ricci curvature. However, not all Fano manifolds X carry Kähler–
Einstein metrics; according to the Yau–Tian–Donaldson conjecture (discussed in Section 4)
a Fano manifold admits a Kähler–Einstein-metric if and only if X is K-polystable. In the
probabilistic approach, a new type of stability assumption naturally appears, as is explained
next. First note that when �KX > 0 the spaces dim H 0.X; kKX / are trivial for all positive
integers k. On the other hand, the dimensions tend to infinity as k ! �1. Thus it is natural
to replace k with �k in the previous constructions. In particular, given a positive integer k,
we set

Nk WD dim H 0.X; �kKX /

and attempt to define a probability measure on XNk as

�.Nk/
WD

j det S .k/j�2=k

ZNk

; ZNk
WD

Z
XNk

ˇ̌
det S .k/

ˇ̌�2=k
;

where the numerator defines a measure on the complement in XNk of the zero-locus of
det S .k/. However, it may happen that the normalizing constant ZNk

diverges, since the
integrand of ZNk

blows-up along the zero-locus in XNk of det S .k/. Accordingly, a Fano
manifold X is called Gibbs stable at level k if ZNk

< 1 and Gibbs stable if it is Gibbs
stable at level k for k sufficiently large. We thus arrive at the following probabilistic analog
of the Yau–Tian–Donaldson conjecture posed in [5]:

Conjecture 2.3. Let X be Fano manifold. Then

• X admits a unique Kähler–Einstein metric !KE if and only if X is Gibbs stable.

• If X is Gibbs stable, the empirical measures ıN of the corresponding canonical
point processes converge in probability to the normalized volume form of !KE.
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It should be stressed that the Gibbs stability of X implies that the group Aut.X/

of automorphisms of X is finite [5, Prop. 6.5]. Accordingly, when comparing Conjecture 2.3
with the Yau–Tian–Donaldson conjecture, one should view Gibbs stability as the analog
of K-stability. There is also a natural analog of the stronger notion of uniform K-stability
[24, 36]. To see this, first note that Gibbs stability can be given a purely algebro-geometric
formulation, saying that the Q-divisor DNk

in XNk cut out by the (multivalued) holomorphic
section .det S .k//1=k of �KXNk has mild singularities in the sense of the Minimal Model
Program [44]. More precisely, X is Gibbs stable at level k iff DNk

is klt (Kawamata log
terminal). This means that the log canonical threshold (lct) of DNk

satisfies lct.DNk
/ > 1,

as follows directly from the standard analytic representation of the log canonical threshold
of a Q-divisor as an integrability threshold [44]. Accordingly, X is called uniformly Gibbs
stable if the there exists " > 0 such that, for k sufficiently large, lct.DNk

/ > 1 C ". One is
thus led to pose the following purely algebro-geometric conjecture:

Conjecture 2.4. Let X be a Fano manifold. Then X is (uniformly) K-stable iff X is (uni-
formly) Gibbs stable.

One direction of the uniform version of the previous conjecture was established in
[40,41], using techniques from the Minimal Model Program:

Theorem 2.5 ([41]). Uniform Gibbs stability implies uniform K-stability.

Let us briefly recall the elegant argument in [41], introducing the invariant ı.X/,
which has come to play a key role in recent developments around the Yau–Tian–Donaldson
conjecture. First, by [41, Thm. 2.5],

lct.DNk
/ � ık.X/ WD inf

�k

lct.�k/; (2.8)

where the inf is taken over all anticanonical Q-divisors �k on X of k-basis type, i.e., �k is
the normalized sum of the Nk zero-divisors on X defined by the members of a given basis
in H 0.X; �kKX /. Finally, by [41, Thm. 0.3], if the invariant ı.X/ defined as

ı.X/ WD lim sup
k!1

ık.X/ (2.9)

satisfies ı.X/ > 1, then X is uniformly K-stable [40] and thus admits a unique Kähler–
Einstein metric by the solution of the (uniform) Yau–Tian–Donaldson conjecture recalled
in Section 4.2. In particular, this means that uniform Gibbs stability implies the existence of
a Kähler–Einstein metrics (in line with Conjecture 2.3). For a direct analytic proof of this
implication see [9]. However, the converse implication, that we shall come back to in Sec-
tion 5, is still open. Anyhow, even if confirmed, it is a separate analytic problem to prove the
convergence in Conjecture 2.3. “Tropicalized” analogs of Conjecture 2.3 are established on
toric varieties in [18] and on tori in [43].

In [6] a variational approach to the convergence problem was introduced, further
developed in [8], where the convergence was settled on log Fano curves. In the general case
the approach yields, in particular, the following conditional convergence result:
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Theorem 2.6 ([6,8]). Let X be a Fano manifold and assume that X admits a Kähler–Einstein
metric !KE. Take the basis s

.k/
i in formula (2.5) to be orthonormal with respect to the Her-

mitian metric on H 0.X; �kKX / induced by !KE and assume that

lim
N !1

1

N
log ZN D 0: (2.10)

Then Aut.X/ is finite and the empirical measures ıN converge in probability to the normal-
ized volume form dVKE of the unique Kähler–Einstein-metric !KE on X .

In [6] two different types of hypotheses were put forth, ensuring that the conver-
gence (2.10) holds, one of which will be recalled in Section 2.3.1. The other assumes, in
particular, that the partition function ZN .ˇ/, discussed in the following section, is zero-
free in some N -independent neighborhood � of ��1; 0� in C (when ZN .ˇ/ is analytically
continued to a holomorphic function on �). This allows one to “analytically continue” the
convergence when ˇ > 0 to ˇ < 0. This is discussed in detail in [8], where some intrigu-
ing connections between this zero-free hypothesis and the zero-free property of the local
L-functions appearing in the Langlands program are also pointed out.

2.3. The statistical mechanical formalism and outlines of the proofs
Theorem 2.2 (or more precisely, the exponential convergence in formula (2.6)) is

deduced from a large deviation principle (LDP), which may be symbolically expressed as

Prob

 
1

N

NX
iD1

ıxi
2 B".�/

!
� e�NR.�/; N ! 1; " ! 0; (2.11)

where B".�/ denotes the ball of radius " centered at a given � in the space P .X/ of all
probability measures on X , endowed with a metric d compatible with the weak topology.
In probabilistic terminology, the functional R.�/ is called the rate functional. By general
principles, any rate functional of an LDP is lower-semicontinuous and its infimum vanishes.
In the present setup, the volume form dVKE of the Kähler–Einstein metric is the unique
minimizer of R.�/, which yields the exponential convergence in formula (2.6).

As next explained, the proof of the LDP is inspired by statistical mechanics. Fix a
Kähler metric on X . It induces a volume form dV on X and a Hermitian metric k � k on KX .
The canonical probability measure (2.4) may then be decomposed as

�.N /
D

1

ZNk

det S .k/
2=k

dV ˝N ;

where the basis s
.k/
i in formula (2.5) is taken to be orthonormal with respect to the Hermitian

metric on H 0.X; kKX / induced by dV and k � k. Introducing the energy per particle as

E.N /.x1; : : : ; xN / WD �
1

kN
log
det S .k/.x1; : : : ; xNk

/
2

; (2.12)

we can thus express �.N / as the following Gibbs measure, at inverse temperature ˇ D 1:

�
.N /

ˇ
D

e�ˇNE .N /

ZN .ˇ/
dV ˝N ; ZN .ˇ/ WD

Z
WXN

e�ˇNE .N /

dV ˝N : (2.13)
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In statistical mechanical terms, the Gibbs measures represent the microscopic thermal equi-
librium state of N interacting identical particles on X . The normalizing constant ZN .ˇ/ is
called the partition function.

The starting point of the proof of the LDP (2.11) is a classical result of Sanov in
probability, going back to Boltzmann, saying that in the “noninteracting case” ˇ D 0 (where
the positions xi define independent random variables on X ) the LDP holds with rate func-
tional given by the entropy Ent.�/ of � relative to dV , i.e., the functional on P .X/ defined
by

Ent.�/ WD

Z
X

log
�

�

dV

�
�;

if � is absolutely continuous with respect to dV , and otherwise Ent.�/ WD C1.1 The strat-
egy to handle the “interacting case” ˇ ¤ 0 is to first show that there exists a functional E.�/

on P .X/ such that the energy per particle, E.N /.x1; : : : ; xN /, may be approximated as

E.N /.x1; : : : ; xN / ! E.�/; (2.14)

when 1
N

PN
iD1 ıxi

! �, in an appropriate sense, as N ! 1. Formally combining this result
with Sanov’s LDP suggests that, for any ˇ > 0, the corresponding rate functional is given by

Rˇ .�/ D Fˇ .�/ � inf
P .X/

Fˇ ; Fˇ .�/ D ˇE.�/ C Ent.�/ 2 �0; 1�; (2.15)

In thermodynamical terms, the functional Fˇ .�/ is the free energy, at inverse tem-
perature ˇ (strictly speaking, it is ˇ�1Fˇ which is the free energy, i.e., the energy that is free
to do work once the disordered thermal energy has been subtracted). In the present setting
the role of the “macroscopic” energy E.�/ is played by the pluricomplex energy of the mea-
sure � (introduced in [12] and discussed in Section 3). Briefly, it is first shown in [4] that the
convergence (2.14) holds in the sense of Gamma-convergence. This means that

1

Nj

NjX
iD1

ıxi
! � H) lim inf

Nj !1
E.Nj /.x1; : : : ; xNj

/ � E.�/ (2.16)

and, for any �, there exists some sequence of configurations in XN saturating the previous
inequality. The Gamma-convergence is deduced from the convergence of weighted transfinite
diameters established in [11] using a duality argument (where E.�/ arises as a Legendre–
Fenchel transform; compare formula (3.12)). The combination with Sanov’s theorem is then
made rigorous using an effective submean inequality on small balls in the Riemannian orb-
ifold XN =SN , established using geometric analysis.

The free energy functional Fˇ has a unique minimizer �ˇ in P .X/ for any ˇ > 0

(as discussed in Section 3.3). As a consequence, the empirical measures ıN converge in
probability to �ˇ , as N ! 1. The LDP proved in [4] also implies that for ˇ > 0,

lim
N !1

�
1

N
log ZN .ˇ/ D inf

P .X/
Fˇ : (2.17)

Incidentally, the free energy functional Fˇ on P .X/ may be identified with the (twisted)
Mabuchi functional in Kähler geometry, as explained in Section 3.4.

1 In the physics literature, the opposite sign convention for Ent.�/ is used.
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2.3.1. The case ˇ < 0

The Gibbs measure �
.N /

ˇ
can, alternatively, be viewed as a Gibbs measure at unit

temperature, if E.N / is replaced with with the rescaled energy ˇE.N / (thus treating ˇ as a
coupling constant). For ˇ > 0, this energy is repulsive, since it tends to 1 as any two particle
positions merge (due to the vanishing of the determinant det S .k/.x1; : : : ; xNk

/). However,
when ˇ changes sign, the rescaled energy ˇE.N / becomes attractive; it tends to �1 as any
two points merge, which leads to subtle concentration phenomena and various new technical
difficulties. For example, one reason that the proof of the LDP does not generalize to ˇ < 0

is that the Gamma-convergence in formula (2.14) is not preserved when E.N / is replaced by
�E.N /. In order to bypass this difficulty, a variational approach was introduced in [6]. The
starting point is the classical Gibbs variational principle, which yields

�
1

N
log ZN .ˇ/ D inf

P .XN /
F

.N /

ˇ
; F

.N /

ˇ
.�/ WD ˇ

˝
E.N /; �

˛
C N �1Ent.�/; (2.18)

where the functional F
.N /

ˇ
on P .XN / is called the N -particle mean free energy and Ent.�/

denotes the entropy relative to dV ˝N . When its infimum is finite, it is uniquely attained at
the corresponding Gibbs measure �

.N /

ˇ
. In [6,8] this variational formulation is leveraged to

show that, if X admits a Kähler–Einstein metric dVKE, then ıN converge in probability to
dVKE, under the assumption that the convergence of the partition functions (2.17) holds at
ˇ D �1. In particular, when the fixed metric on X is taken to be a Kähler–Einstein metric,
this proves Theorem 2.6, since F�1.dVKE/ D 0. Moreover, the convergence (2.17) of the
partition functions at ˇ D �1 is shown to be implied by the following hypothesis:

lim
Nj !1

.ıNj
/��

.Nj /

�1 D � 2 P
�
P .X/

�
H) lim sup

Nj !1

˝
E.Nj /; �

.Nj /

�1

˛
� hE; �i; (2.19)

where .ıN /��
.N /
�1 is the probability measure on the infinite-dimensional P .X/, defined as

the pushforward of the canonical probability measure �
.N /
�1 on XN to P .X/ under the

map ıN (the reversed inequality holds for any sequence �N in P .XN /, as follows from
the inequality (2.16)). If the hypothesis holds, then it follows that � is the Dirac mass at
dVKE, which is equivalent to the convergence in Theorem 2.6. In fact, as shown in [8], the
previous hypothesis is “almost” equivalent to the convergence in Conjecture 2.3.

Finally, we note that the conjectural extension of formula (2.17) to any ˇ < 0 also
suggests the following conjecture posed in [4] (the definition of the log canonical threshold
lct.DN / was discussed after Conjecture 2.3):

Conjecture 2.7. For any Fano manifold X ,

lim
N !1

lct.DN / D �.X/; �.X/ WD sup
ˇ<0

°
�ˇ W inf

P .X/
Fˇ > �1

±
: (2.20)

3. The thermodynamical formalism and pluripotential

theory

The pluricomplex energy E.�/, appearing as the “energy part” of the free energy
functional Fˇ .�/ in formula (2.15), may be defined as the greatest lower semicontinuous
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extension to the space P .X/ of the functional whose first variation on the subspace of volume
forms is given by

dE.�/ D �u�; (3.1)

with u� 2 C 1.X/ denoting the solution to the following complex Monge–Ampère equation
(known as the Calabi–Yau equation)

MA.u/ D �; (3.2)

expressed in terms of the complex Monge–Ampère measure MA.u/, whose definition we
next recall.

3.1. Kähler geometry recap
Assume that we are given a line bundle L endowed with a Hermitian metric k � k

(in the present setup, L D ˙KX and k � k is the metric on L induced by a fixed Kähler
metric on X ). Then any smooth function u on X induces a metric k � ke�u=2 on L, whose
curvature form, multiplied by i=2� , will be denoted by !u; it is a real closed two-form on X ,
representing the first Chern class c1.L/ 2 H 2.X; Z/ of L. Concretely,

!u D !0 C
i

2�
@N@uˇ ; @N@u WD

X
i;j �n

@2u

@zi @ Nzi

dzi ^ d Nzj ; (3.3)

in terms of local holomorphic coordinates, where !0 is the normalized curvature form of
the fixed metric k � k on L. The complex Monge–Ampère measure MA.u/ is the normalized
volume form on X defined by

MA.u/ WD !n
u=V; V WD

Z
X

!n
u D

Z
X

!n
0 :

By the Calabi–Yau theorem, there exists a smooth solution u� to the Calabi–Yau equa-
tion (3.2), uniquely determined up to an additive constant. It has the property that !u� is
a Kähler form. Recall that a J -invariant closed real form ! on X is said to be Kähler if
! > 0 in the sense that the corresponding symmetric two-tensor

g WD !.�; J �/

is positive definite, i.e., defines a Riemannian metric (where J denotes the complex structure
on X ). In practice, one then identifies the Kähler form ! with the corresponding Kähler
metric g. Likewise, the Ricci curvature of a Kähler metric ! may be identified with the
two-form

Ric ! D �
i

2�
@N@ log dV ; (3.4)

where dV denotes the volume form of !. In other words, Ric! is the curvature of the metric
on �KX induced by !. If the Kähler form ! is of the form !u (as in formula (3.3)), then u

is said to be a Kähler potential for ! (relative to !0). We will denote by H .X; !0/ the space
of all Kähler potentials relative to !0, and by H .X; !0/0 the subspace of all sup-normalized
u, supX u D 0. The map

u 7! !u; H .X; !0/0 ,! c1.L/
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yields a one-to-one correspondence between H .X;!0/0 and the space of all Kähler forms in
the first Chern class c1.L/ of L. Similarly, the Calabi–Yau theorem yields the “Calabi–Yau
correspondence”

u 7! MA.u/; H .X; !0/0 ,! P .X/ (3.5)

between H .X; !0/0 and the space of all volume forms in P .X/, where u corresponds to the
normalized volume form of the Kähler metric !u. The one-form on H .X; !0/ induced by
MA is exact, i.e., there exists a functional E on H .X; !0/ such that

dE D MA; i.e.,
dE.u C t Pu/

dt

ˇ̌̌̌
tD0

D
˝
MA.u/; Pu

˛
:

(this functional is often denoted by E in the literature [22], but here we shall reserve capital
letters for functionals defined on P .X/). The functional E.u/ is uniquely determined up to
an additive a constant and may be explicitly defined by

E.u/ WD
1

V.n C 1/

nX
j D0

Z
X

u!j
u ^ !

n�j
0 : (3.6)

3.2. Pluripotential theory recap
The analysis of the minimizers of Fˇ involves some pluripotential theory that we

briefly recall. The space PSH.X; !/ of all !0-psh functions on X may be defined as the
closure of H .X; !0/ in L1.X/ (more precisely, any u 2 PSH.X; !/ is the decreasing limit
of elements uk 2 H .X; !0/). The corresponding sup-normalized subspace PSH.X; !0/0 is
compact in L1.X; !0/. By [12], the “Calabi–Yau correspondence” (3.5) extends to a corre-
spondence between the subspace of probability measures � with finite energy and a subspace
of PSH.X; !0/ denoted by E1.X; !0/, that is,

MA W E1.X; !0/0 $ ¹� 2 P .X/ W E.�/ < 1º; (3.7)

where MA.u/ is defined on E1.X;!0/ using the notion of nonpluripolar products introduced
in [22]. The space E1.X; !0/ was originally introduced in [42], but, as shown in [12], it may
also be defined as the space of all u 2 PSH.X; !0/ such that E.u/ > �1, where E denotes
the smallest upper semicontinuous extension of E to PSH.X; !0/.

3.3. Back to the free energy functional Fˇ

The free energy functional Fˇ , defined in formula (2.15), Fˇ D ˇE C Ent, is lsc and
convex on P .X/ when ˇ > 0 (since both terms are). In the case when ˇ < 0, we define Fˇ .�/

by the same expression when E!0.�/ < 1 and otherwise we set Fˇ .�/ D 1. The definition
is made so that we still have F�.�/ 2 ��1; 1� with F�.�/ < 1 iff both E.�/ < 1 and
Ent.�/ < 1.

The following lemma follows readily from the first variation (3.1) and formula (3.4)
for Ricci curvature of a Kähler metric.

Lemma 3.1. A volume form � on X is a critical point of the functional Fˇ on P .X/ iff the
function

uˇ WD
1

ˇ
log

�

dV
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solves the complex Monge–Ampère equation

MA.u/ D eˇudV (3.8)

iff !ˇ WD !uˇ
is a Kähler form solving the twisted Kähler–Einstein equation

Ric ! C ˇ! D �; � WD .ˇ � 1/!0: (3.9)

In the Fano case, the previous equation coincides with Aubin’s continuity equation
with “time-parameter” t WD �ˇ. When ˇ > 0, it follows directly from the lower semiconti-
nuity of Fˇ on the compact space P .X/ that Fˇ admits a minimizer.

Theorem 3.2 ([2]). The following are true:

(regularity) Any minimizer �ˇ of the functional Fˇ on P .X/ is a volume form and
thus of the form in Lemma 3.1.

(existence) If Fˇ0
is bounded from below for some ˇ0 < 0, then for any ˇ > ˇ0 the

functional Fˇ on P .X/ admits a minimizer. In other words, if Fˇ is coercive
(with respect to E) in the sense that there exists " > 0 and C > 0 such that

Fˇ � "E C C; (3.10)

then Fˇ admits a minimizer.

Moreover, by the Bando–Mabuchi theorem, if ˇ > �1, the minimizer is uniquely
determined and, if ˇ D �1, it is uniquely determined iff the automorphism group Aut.X/

of X is finite (see [10] for generalizations). The proof of the previous theorem employs a
duality argument, which fits naturally into the thermodynamical formalism, when combined
with pluripotential theory and the variational approach to complex Monge–Ampère equation
developed in [12]. The strategy is to show that any minimizer satisfies the Monge–Ampère
equation (3.8) in the weak sense of pluripotential theory, so that the regularity theory for
Monge–Ampère equations (going back to Aubin and Yau) can be invoked. In the case when
ˇ > 0, the proof of Theorem 3.2 follows from the strict convexity of Fˇ , resulting from the
convexity of E.�/ and the strict convexity of Ent.�/ on P .X/, combined with the Aubin–
Yau theorem [1, 69] (showing that there exists a unique smooth solution to equation (3.8)).
The proof in the case when ˇ < 0 exploits the Legendre–Fenchel transform. Recall that, in
general, this transform yields a correspondence between lsc convex functions on a locally
convex topological vector space V and its dual V �. In order to facilitate the comparison
to the standard functionals in Kähler geometry (discussed in the following section), it will,
however, be convenient to use a slightly nonstandard sign convention where an lsc convex
function f on V corresponds to the usc concave function f � on V � defined by

f �.w/ WD inf
v2V

�
hv; wi C f .v/

�
: (3.11)

Conversely, if ƒ is a functional on V �, we define ƒ�.v/ as the lsc convex function

ƒ�.v/ D sup
w2V �

�
�hv; wi C f .w/

�
:

2467 Emergent complex geometry



We take V to be the space of all signed measures � on X , so that V � D C 0.X/. We can then
view E and Ent as convex lsc functions on V , which, by definition, are equal to 1 on the
complement of P .X/ in V . Under the Legendre–Fenchel transform, these correspond to the
usc convex functions E� and Ent�, respectively, on C 0.X/, which turn out to be Gateaux
differentiable. Indeed, by a classical result (which follows from Jensen’s inequality),

Ent�.u/ D � log
Z

e�udV:

Moreover, as shown in [11,12], the functional E� on C 0.X/ is Gateaux differentiable and

E�.u/ D E.u/; dE�
ju D MA.u/; for u 2 H .X; !0/. (3.12)

Now consider, for simplicity, the case ˇ D �1 (the general case is obtained by a
simple scaling). It follows directly from the fact that the Legendre–Fenchel transform is
increasing and involutive that

inf
P .X/

F�1 WD inf
P .X/

.�E C Ent/ D inf
C 0.X/

.�E�
C Ent�/: (3.13)

Moreover, it readily from the definitions that

F�1

�
MA.u/

�
D .�E C Ent/

�
dE�

ju

�
� .�E�

C Ent�/.u/:

Hence, if � minimizes F�1 and we express � D MA.u�/, then u� minimizes the functional
�E� C Ent� on C 0.X/. However, in the present setup u� is not, a priori, in C 0.X/, but
only in E1.X; !0/. This problem is circumvented using a simple approximation argument
to deduce that u� minimizes the extension of the functional .�E� C Ent�/ to E1.X; !0/.
Finally, by the Gateaux differentiability of the functional �E� C Ent� on C 0.X/ (or more
precisely, on ¹uº C C 0.X/ for any given u 2 E1.X; !0/), it then follows that u� is a critical
point of the functional �E� C Ent�. Thus, after perhaps adding a constant to u�, it satisfies
the complex Monge–Ampère equation (3.8) in the weak sense of pluripotential theory.

The proof of the first point in Theorem 3.2 can now be concluded by invoking the
regularity results for pluripotential solutions to Monge–Ampère equations (which, by [13,

Appendix B], hold in the general setup of log Fano varieties). As for the second point, it is
shown in [2] by proving that any minimizing sequence �j in P .X/ (i.e., a sequence �j

such that Fˇ .�j / converges to the infimum of Fˇ ) converges (after perhaps passing to a
subsequence) to a minimizer of Fˇ . This is shown using a duality argument, as above. Alter-
natively, as shown in [13] in a more general singular context (including singular log Fano
varieties), the existence of a minimizer for Fˇ .�/ follows from the following result in [13]:

Theorem 3.3 (energy/entropy compactness). The functional E.�/ is continuous on any sub-
level set ¹Ent � C º � P .X/. As a consequence, if Fˇ is coercive on P .X/, then it is lower
semicontinuous and thus admits a minimizer.

This result has come to play a prominent role in recent developments in Kähler
geometry, as discussed in Section 4.1.1.
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3.4. The Mabuchi and Ding functionals
Under the “Calabi–Yau correspondence” (3.5), the free energy functional Fˇ on

P .X/ corresponds to a functional Mˇ .u/ on E1.X; !0/ defined by

Mˇ .u/ WD Fˇ

�
MA.u/

�
: (3.14)

Also, the functional E.�/ on P .X/ corresponds to the functional E.MA.u// on PSH.X;!0/

which induces an exhaustion function on E1.X; !0/0, comparable to �E.u/, defining a
notion of coercivity on E1.X; !0/ (in terms of the standard functionals I and J in Kähler
geometry E.MA.u// D .I � J /.u/).

As is turns out, when restricted to H .X; !0/ the functional Mˇ .u/ coincides with
the (twisted) Mabuchi functional. The Mabuchi functional M associated to a general polar-
ized manifold .X; L/ was originally defined (up to normalization) by the property that its
first variation is proportional to the scalar curvature of the Kähler metric !u minus the aver-
age scalar curvature [53]. An “energy+entropy” formula for M, similar to formula (3.14),
holds for a general polarized manifold, as first discovered in [29,64]. Likewise, the functional
on E1.X; !0/ induced by �E� C Ent� coincides with the Ding functional D.u/ in Kähler
geometry, extended to E1.X; !0/ in [12]. For a general ˇ, the corresponding twisted Ding
functional Dˇ on E1.X; !0/ is given by

Dˇ .u/ WD �E.u/ C
1

ˇ
log

Z
eˇudV:

An extension of the argument used to prove formula (3.13) (concerning the boundedness
statement) now gives

Theorem 3.4 ([2]). The functional Mˇ is bounded from below (coercive) on E1.X; !0/0

iff Dˇ is bounded from below (coercive) on E1.X; !0/0. Moreover, by the regularization
result in [16], these properties are equivalent to the corresponding boundedness/coercivity
properties on the dense subspace H .X; !0/0 of E1.X; !0/0.

For ˇ D �1, the first statement was first established in [46, 57]. The proof in [46]

shows that the difference Mˇ � Dˇ is bounded along the Kähler–Ricci flow, thanks to Perel-
man’s estimates, while the proof in [57] utilizes the Ricci iteration. In the case ˇ D �1, the
coercivity of Mˇ is, in fact, equivalent to the existence of unique Kähler–Einstein metric,
as first shown in [65], using Aubin’s method of continuity (discussed above in connection
to Lemma 3.1). More recently, this result has been given a new proof using the notion of
geodesics in E1.X/ and extended in various directions, as discussed in Section 4.1.1.

4. The Yau–Tian–Donaldson conjecture

4.1. The Yau–Tian–Donaldson conjecture for polarized manifolds .X; L/

Let .X; L/ be a polarized projective algebraic manifold, i.e., L is a holomorphic
line bundle over X whose first Chern class c1.L/ contains some Kähler form.

Conjecture 4.1 (Yau–Tian–Donaldson, YTD). There exists a Kähler metric in c1.L/ with
constant scalar curvature iff .X; L/ is K-polystable.
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We will briefly recall the notion of K-polystability (see the survey [38] for more
background on the Yau–Tian–Donaldson conjecture and its relation to geometric invariant
theory (GIT)). The notion of K-polystability can be viewed as a “large-Nk limit” of the
classical notion of Chow polystability in GIT with respect to the action of complex reduc-
tive group GL.Nk ; C/ on the Chow variety, induced from the action of GL.Nk ; C/ on the
Nk-dimensional complex vector space H 0.X; kL/. Recall that in GIT the stability in ques-
tion is equivalent to the positivity of the GIT-weight of all one-parameter subgroups (by the
Mumford–Hilbert criterion). In the definition of K-polystability, the role of a one-parameter
subgroup �k of GL.Nk ; C/ is played by a test configuration � for .X; L/. In a nutshell, this
is a C�-equivariant embedding

� W .X � C�; L/ ,! .X; L/

of the polarized trivial fibration .X � C�; L/ over C� into a normal variety X fibered over
C endowed with a relatively ample Q-line bundle L. To any test configuration � is attached
an invariant, called the Donaldson–Futaki invariant DF.�/ 2 R, and .X; L/ is said to be K-
semistable if DF.�/ � 0 for any test configuration, K-polystable if, moreover, equality only
holds when X is biholomorphic to X � C, and K-stable if the equality only holds when X is
equivariantly biholomorphic to X � C. The Donaldson–Futaki invariant of � may be defined
as a limit of the GIT-weights of a sequence of one-parameter subgroups �k of GL.Nk ; C/

induced by �. But it may also be expressed directly as an intersection number [54,66]:

DF.�/ D
1

Ln.n C 1/

�
aLnC1

C .n C 1/KX=P1 � Ln
�
; a WD �nKX � Ln�1=Ln;

where we have identified a test configuration .X; L/ with its C�-equivariant compactifica-
tion over P 1 (obtained by replacing the base C of X with P 1) and the intersection numbers
are computed on the compactification X of the total space X.

4.1.1. The uniform YTD and geodesic stability
The “only if” direction of the YTD conjecture was established in [60] in the case

when the group Aut.X; L/ of all automorphisms of X that lift to L is finite and in [16], in
general. However, for the converse implication, there are indications that the notion of K-
polystability needs to be strengthened, in general. Here we will, for simplicity, focus on the
case when Aut.X; L/ is finite. Then K-polystability is equivalent to K-stability and, more-
over, if c1.L/ contains a Kähler metric with constant curvature then it is uniquely determined
[10,37]. Following [24,36], .X; L/ is said to be uniformly K-stable (in the L1-sense) if there
exists " > 0 such that

DF.�/ � "k�kL1 ; (4.1)

where the L1-norm k�kL1 is defined as the normalized limit of the l1-norms of the weights
of the C�-action on the central fiber of .X; L/. The “only if” direction of the “uniform YTD
conjecture” – where K-stability is replaced by uniform K-stability (in the L1-sense) – was
established in [24], by leveraging the connection to the “metric space analog” of the uniform
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YTD conjecture, to which we next turn. Denote by d1 the metric on H .X; !0/ induced by
the intrinsic L1-Finsler metricZ

X

j Puj
1!n

u0
; Pu WD

du

dt

ˇ̌̌̌
tD0

; u0 2 H :

As shown in [32], the metric space completion .H .X; !0/0; d1/ may be identified with the
space E1.X; !0/0 (discussed in Section 3.2) and d1.u; 0/ is comparable to �E.u/, which,
equivalently, means that there exists a constant c such that

� c C c�1d1.u; 0/ � E
�
MA.u/

�
� cd1.u; 0/ C c: (4.2)

The relevant constant speed geodesics ut in the metric space .E1.X; !0/0; d1/ have the
property that

U.x; �/ WD u� log j� j.x/ 2 PSH.X � D�; !0/; (4.3)

where we are using the same notation !0 for the pullback of !0 to the product X � D� of
X with the punctured unit-disc D� in C. In fact, ut may be characterized by a maximality
property of the corresponding !0-psh function U [14]. Any test configuration � induces a
geodesic ray ut in E1.X; !0/0, emanating from 0 2 H .X; !0/ (such that U extends, after
removing divisorial singularities, to a bounded function on X) [32,55]. Moreover,

k�kL1 D
d

dt
d1.ut ; 0/ D t�1d.ut ; 0/

for any t > 0. As conjectured in [29], and confirmed in [10], the Mabuchi functional M (Sec-
tion 3.4) is convex along geodesic ut such that !U 2 L1

loc. More generally, the extension of
M to E1.X; !0/ is also convex along geodesics ut [16]. In particular, its (asymptotic) slope

PM.ut / WD lim
t!1

t�1M.t/ 2 ��1; 1�

is well defined. In the case when ut is the geodesic ray attached to a test configuration �

the slope PM.ut / is closely related to DF.�/ (the two invariants coincide after a base change
[49,59]).

Theorem 4.2 ([17,30,33]). Let .X;L/ be a polarized manifold. The following are equivalent:

(1) .X; L/ admits a unique Kähler metric with constant scalar curvature.

(2) .X; L/ is geodesically stable, i.e., PM.ut / > 0 for any nontrivial geodesic ray
ut in E1.X; !0/0.

(3) M is coercive on E1.X; !0/0 (or, equivalently, on H .X; !0/0 � E1.X; !0/0).

The equivalence “2 ” 3” is implicit in [33] (see [14, Thm. 2.16] for a generaliza-
tion). It can be seen as an analog of the classical fact that a convex function on Euclidean
Rn is comparable to the distance to the origin iff all its slopes are positive. In the proof of
“2 ” 3” a substitute for the compactness of the unit-sphere in Rn (parametrizing all
unit speed geodesics) is provided by the energy–entropy compactness in Theorem 3.3. The
implication “1 H) 3” follows directly from the convexity of M combined with the weak-
strong uniqueness result in [17], showing, in particular, that if .X; L/ admits a unique Kähler
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metric with constant scalar curvature !, then any minimizer of M in E1 coincides with the
Kähler potential of !. The final implication “3 H) 1” was recently settled in [30], using a
new a priori estimate for a generalization of Aubin’s continuity method for constant scalar
curvature metrics (bounding the C 0-norm of the solutions by the entropy of the correspond-
ing Monge–Ampère measures, which, in turn, is uniformly bounded under the coercivity
assumption).

4.2. The variational approach to the uniform YTD conjecture in the “Fano
case”
The “Fano case” of the YTD conjecture, i.e., the case when X is Fano and L D �KX ,

was settled in [31], by establishing Tian’s partial C 0-estimate [63] along a singular version of
Aubin’s continuity method. Here we will focus on the variational proof of the uniform YTD
conjecture on Fano manifolds in [14], which, in particular, exploits the notion of Ding stability
originating in [3] (as further developed in [14,24]; see the survey [20] for more background).

Theorem 4.3 ([14]). Let X be a Fano manifold. The following are equivalent:

(1) X admits a unique Kähler–Einstein metric.

(2) X is uniformly Ding stable.

(3) X is uniformly K-stable.

The implication “1 H) 2” follows from the convexity of the Ding functional along
geodesics, as in [3] – here we shall focus on the converse implication. By Theorem 4.2, it
is enough to show that if X is uniformly Ding stable, then X it geodesically stable. This is
achieved in [14], using a valuative (non-Archimedean) language. For simplicity, it may be
helpful to briefly first describe the argument with the non-Archimedean language stripped
away. The starting point is the observation that the function U on X � D� corresponding to
a geodesic ut in E1.X; !0/0 (formula (4.3)) extends to a sup-normalized !0-psh function U

on X � D, which, however, is highly singular on X � ¹0º, unless ut is trivial. But employ-
ing Demailly’s approximation procedure [35] (involving the multiplier ideal sheaves J .kU /,
whose definition is recalled in the following section) the function U may be expressed as a
decreasing limit of S1-invariant !0-psh functions Uk with analytic (algebraic) singularities,
which define C�-invariant ideals Jk supported in X � ¹0º. Accordingly, by the standard
resolution of singularities, there exists a C�-equivariant holomorphic surjection �k from a
nonsingular variety Xk to X � C such that Ek WD ��

k
Jk is a principal ideal, i.e., defines a

divisor on Xk . This procedure yields a sequence of test configurations �k D .Xk ;Lk/ where
Lk is the pullback to Xk of L ! X with an appropriate multiple of O.Ek/ subtracted. To
show that “3 H) 1,” it would, essentially, be enough show that the slope M.ut / dominates
the Donaldson–Futaki invariants DF.�k/. However, this leads to technical problems that are
bypassed by exploiting that M � D , where D is the Ding functional on H0 (discussed in
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Section 3.4) which behaves better under the approximation procedure above, giving

PD.ut / � lim inf
k!1

D.�k/; (4.4)

where D.�k/ is the “Ding invariant” originating in [3] (that we shall come back to in Sec-
tion 4.3.2). Assuming that X is uniformly Ding stable this shows that “2 H) 1” (after a
twist of the argument which amounts to replacing D with Dˇ for ˇ D �.1 C "/).

Finally, the equivalence “2 ” 3” is shown in the first preprint version of [14],
using techniques from the Minimal Model Program, inspired by [51] (the proof can, loosely
speaking, be interpreted as a non-Archimedean analog of the Kähler–Ricci flow argument in
[46] mentioned in connection to Theorem 3.4). The equivalence “2 ” 3” in the general
setup of log Fano varieties is established in [40].

4.2.1. Twisted Kähler–Einstein metrics
The results in [14] apply more generally to Kähler–Einstein metrics twisted by a

positive klt current � , showing that such a metric exists iff ı� .X/ > 1, where ı� .X/ is a
twisted generalization of the invariant ı.X/ appearing in formula (2.9). This part of the proof
does not need any results from the Minimal Model Program (as discussed in the following
section). As a corollary, it is also shown that

min
®
1; ı.X/

¯
D min

®
1; �.X/

¯
D R.X/; (4.5)

where �.X/ is the invariant appearing in Conjecture 2.7 and R.X/ denotes the greatest lower
bound on the Ricci curvature (independently shown in [28]).

4.3. Non-Archimedean pluripotential theory and the variational formula
for ı.X/

The only properties of the geodesic ut that actually entered into the proof outlined
above concerned the multiplier ideal sheaves J .kU / of the !0-psh function U on X � D,
whose stalks consist of all germs of holomorphic functions f such that jf j2e�2kU is locally
integrable. In turn, the multiplier ideal sheaves J .kU / only depend on the Lelong numbers of
U on all modifications (blow-ups) of X � C (see [23, Thm. A] and [14, Thm. B.5]). The Lelong
numbers in question can be packaged into a function U.v/ on the space ŒX � C�div of all
divisorial valuations v on X � C, as follows. First recall that, by definition, a divisorial
valuation v on variety Y is encoded by a positive number c and a prime divisor Ev over Y ,
i.e., a prime divisor on some blow-up of Y (which may be assumed to be a nonsingular
hypersurface). Such a valuation v acts on rational (meromorphic) function f 2 C.Y / by
v.f / WD c ordEv .f / 2 R, where ordEv .f / denotes the order of vanishing at a generic point
of Ev of the pullback of f . Now, if U is, locally, of the form U D log jf j C O.1/ for a
holomorphic function, one defines

U.v/ WD �v.f / WD �c ordEv .f /:

In the general definition of U.v/, one replaces ordEv .f / with the Lelong number of U at
a generic point p of Ev (i.e., the sup of all � 2 Œ0; 1Œ such that f � � log jzj C O.1/
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with respect to local holomorphic coordinates z centered at p). In this context, Demailly’s
approximation procedure yields

Uk.v/ WD k�1 max
i

�
�ordEv

�
f

.k/
i

��
! U.v/; (4.6)

where f
.k/

i denote local generators of the multiplier ideal sheaf J .kU /. In fact, after pass-
ing to a subsequence (replacing k with 2k), the sequence Uk is decreasing in k (by the
subaditivity of multiplier ideals).

4.3.1. Pluripotential theory on the Berkovich space XNA

In the present setup, the valuative procedure above is initially applied to Y D X � C.
However, exploiting that we are only interested in the value U.w/ at a divisorial valuation w

on X � C which is C�-invariant, we can identify ŒU �.w/ with the function on u.v/ on Xdiv,
defined by

u.v/ WD U.w/; v 2 Xdiv; w 2 .X � C/div;

where w is the Gauss extension of v, defining a C�-equivariant valuation over X � C nor-
malized by w.�/ D 1 (where � denotes the coordinate on the factor C) [24, Section 4.1].
Next, by identifying a valuation v on X with the corresponding non-Archimedean absolute
value on C.X/, i.e., with j � jv WD e�v.�/, the space Xdiv injects as a dense subspace of the
Berkovich analytification XNA of the projective variety X over the field C, induced by the
trivially valued absolute value on the ground field C (locally consisting of all multiplica-
tive seminorms extending the trivially valued absolute value, j � jv � 1, on the field C). The
notation XNA (with NA a shorthand for non-Archimedean) is used here to distinguish XNA

from X which is the Berkovich analytification in the “Archimedean case,” i.e., the case of
the standard absolute value j � j on the ground field C.

The topological space XNA has the virtue of being both compact and connected.
Moreover, the function u.v/ on Xdiv extends to a plurisubharmonic (psh) function on XNA

in the sense of [25], denoted by uNA. Indeed, in analogy to the Archimedean case, one can first
define H .XNA/0 to be the space of all functions uNA on XNA induced by test configurations
� as above, and then define PSH.XNA/ as the space of all functions that can be written as
decreasing nets of functions in H .XNA/0 plus constants (functions in PSH.XNA/ are called
L-psh in [25] to emphasize their global dependence on L). There is a Monge–Ampère oper-
ator MA on H .XNA/ taking values in the space of probability measures on XNA [24, 25]

(which, in a very general setup can be defined in terms of the non-Archimedean general-
ization of exterior products of curvature forms introduced in [27]). Concretely, MA.uNA/

is a discrete probability measure supported on the valuations vi 2 Xdiv induced by irre-
ducible components of the central fiber of the test configuration corresponding to uNA [24,

Section 6.7]. Anyhow, in the present setup, one may directly define MA on H .XNA/ as the
differential of the functional

ENA.uNA/ WD
LnC1

.n C 1/Ln
;
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whose definition mimics formula (3.6) (with !0 D 0); this analogy becomes more clear
when both E and ENA are expressed in terms of Deligne pairings [21]. As in the usual
Archimedean setup (Section 3.2), the function ENA on H .XNA/ has a unique smallest usc
extension to PSH.XNA/; the subspace ¹ENA > �1º of PSH.XNA/ is denoted by E1.XNA/

and MA extends to E1.XNA/, as the differential of the functional E1
NA.

Remark 4.4. The map ut 7! uNA from geodesic rays in E1.X;!0/0 to the space E1.XNA/0,
described above, has the property that PE.ut / � E.uNA/ and is, in general, not injective. The
geodesic rays satisfying PE.ut / D E.uNA/ are precise those called maximal in [14, Section 6.4]

and they are in one-to-one correspondence with E1.XNA/.

4.3.2. The thermodynamical formalism
The non-Archimedean formalism naturally ties in with the thermodynamical for-

malism (discussed in Section 3). For example, as shown in [24–26], up to a base change
of �,2

DF.�/ D MNA.UNA/ WD FNA
�
MA.UNA/

�
; (4.7)

where FNA is the non-Archimedean analog on P .XNA/ of the free energy functional F on
P .X/ defined by

FNA.�/ D �ENA.�/ C EntNA.�/;

where the non-Archimedean energy ENA.�/ may be defined as a Legendre–Fenchel trans-
form of the functional ENA and the non-Archimedean entropy EntNA.�/ is defined by

EntNA.�/ WD

Z
XNA

A.v/�; A.v/ WD c
�
1 C ordEv .KYv=X /

�
v 2 Xdiv

where A.v/ is the log discrepancy, defined as the greatest lsc extension to XNA of the function
on Xdiv defined above. Thus, in contrast to the usual entropy functional on P .X/, the non-
Archimedean entropy is a linear functional. Likewise, the “Ding invariant” appearing in
formula (4.4) may be expressed as follows in terms of the Legendre–Fenchel transform

D.�/ D DNA.uNA/ WD �E�
NA.uNA/ C Ent�NA.uNA/

in analogy with the usual Archimedean setup in Section 3.4. Inequality (4.4) is then obtained
by showing that the slope PD.ut / is bounded from below by D.uNA/, which, in turn, equals
the limit of D.�k/ (where �k is the test configuration corresponding to Uk defined by for-
mula (4.6)).

As shown in [26] (and [14] in the general twisted setting) the thermodynamical for-
malism can be leveraged to prove the following theorem (“1 ” 3” is shown in [40] using
the Minimal Model Program):

2 The base change is needed as the righ-hand side in formula (4.7) is one-homogeneous under
the natural action of R>0 on XNA, corresponding to a base change of �.
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Theorem 4.5 ([26]). Let X be a Fano manifold. The following are equivalent:

(1) ı.X/ > 1.

(2) X is uniformly K-stable on E1.XNA/ (i.e., inequality (4.1) extends from H .XNA/

to E1.XNA/).

(3) X is uniformly Ding stable.

The starting point of the proof of ``1 ” 2” is the following variational formula
for ı.X/ established in [19, 26], realizing ı.X/ as a “stability threshold” (where ıv denotes
the Dirac measure at a point v in XNA):

ı.X/ D inf
v2Xdiv

EntNA.ıv/

ENA.ıv/
D inf

v2XNA

EntNA.ıv/

ENA.ıv/
D inf

�2P .XNA/

EntNA.�/

ENA.�/
(4.8)

using, in the second equality, that Xdiv is dense in XNA (together with a semicontinuity argu-
ment) and in the last equality (shown in [26]) that EntNA.�/ and ENA.�/ are linear and
convex, respectively, on P .XNA/. The function v 7! ENA.ıv/ is usually denoted by S.v/ and
can be shown to coincide with the “expected order of vanishing along v” [19]. In terms of the
non-Archimedean version of the free energy functional at inverse temperature ˇ, denoted by
FNA;ˇ .�/, formula (4.8) yields

ı.X/ � 1 C " ” inf
�2P .XNA/

FNA;�1�".�/ � 0 ” inf
�2P .XNA/

FNA.�/

ENA.�/
� ":

Finally, expressing � D MA.UNA/ for UNA 2 E1.XNA/, using the non-Archimedean version
of the “Calabi–Yau correspondence” (3.5), and invoking the non-Archimedean version of
inequalities (4.2) (established in [24]) proves the equivalence ``1 ” 2”. Next, using the
Legendre–Fenchel transform, just as in the proof of Theorem 3.4, one sees that uniform K-
stability on E1.XNA/ is equivalent to uniform Ding stability on E1.XNA/. Finally, ``2 ”

3” follows from the fact that DNA is continuous under approximation of UNA 2 E1.XNA/ by
a decreasing sequence in H .XNA/ (e.g., using multiplier ideal sheaves as in formula (4.6)).

In order to deduce the equivalence ``2 ” 3” in Theorem 4.3 from the previ-
ous theorem, it would be enough to prove the following non-Archimedean analog of the
regularization property shown in [16, Section 3].

Conjecture 4.6 ([26]). Given any u 2 E1.XNA/, there exists a sequence of uj 2 H .XNA/

converging weakly to u such that ENA.MA.uj // and EntNA.MA.uj // converge to
ENA.MA.u// and EntNA.MA.u//, respectively.

Remark 4.7. Combining Theorem 4.3 and Theorem 4.5 reveals that a Fano manifold X is
uniformly K-stable iff ı.X/ > 1, as first shown in [19,40,41]. More precisely, the “if statement”
was shown in [41], where the “only if” statement was also conjectured. The conjecture was
then settled in [19]. It should also be pointed out that if one defines ı(X) as a stability threshold
(see the first equality in formula (4.8)), then the equivalence between the uniform K-stability
of X and the criterion ı.X/ > 1 is essentially equivalent to the valuative criterion for uniform
K-stability established in [40]. A closely related valuative criterion for K-semistability was
established in [47].
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4.4. Recent developments
Recently there has been an explosion of exciting further developments. In [48, 50],

Theorem 4.3 and its variational proof were extended to general singular (log) Fano vari-
eties using, in particular, the singular version of Theorem 3.2 established in [13]. Moreover,
very recently it was shown in [52], using techniques from the Minimal Model Program, that
the infimum over Xdiv in formula (4.8) is (when ı.X/ � 1) attained at some v 2 Xdiv. More-
over, any such minimizing divisorial valuation v has the property that associated graded ring
is finitely generated and defines a special test configuration � for .X; �KX /. In particular,
the central fiber of � is irreducible (the relation between test configurations, filtrations, and
finitely graded rings originates in [62,67]). In non-Archimedean terms, the result in [52] can
be formulated as a regularity result for the minimizer in question, saying that ıv D MA.UNA/

for some UNA 2 H .XNA/ (in analogy to the regularity result in Theorem 3.2; cf. the appendix
in [40]). As a corollary it is shown in [52] that uniform K-stability is equivalent to K-stability.
In fact, these results are shown to hold in the general setup of (log) Fano varieties. When
combined with the aforementioned results in [48, 50] this settles the YTD conjecture in the
general setting of (log) Fano varieties (the “only if” implication was previously shown in [3]).
In another direction, a new variational proof of the uniform YTD conjecture in the nonsin-
gular Fano case is given in [70], using the quantized Ding-functional (leveraging the result
in [58] saying that the algebro-geometric invariant ık.X/ in formula (2.8) coincides with
coercivity threshold of the quantized Ding-functional). More generally, the results in [70]

imply that the first equality in formula (4.5) holds without taking the minimum with 1 (by
combining [70] with Theorem 3.4)

The variational/non-Archimedean approach is extended to polarized manifolds
.X; L/ in [49] to show that, if X is uniformly K-stable on E1.XNA/ (as in Theorem 4.5), then
X is geodesically stable and thus by Theorem 4.2 (i.e., by [30]) .X;L/ admits a Kähler metric
with constant scalar curvature. The converse statement is, however, still open. The complete
solution of the uniform YTD conjecture for .X; L/ is thus reduced to Conjecture 4.6. An
important ingredient in [49] is the notion of maximal geodesic rays ut introduced in [14]

(see Remark 4.4). The theory of maximal geodesic rays is further developed in in [34] and
related to singularity types of quasi-psh functions and the Legendre transform construc-
tion of geodesic rays introduced in [56]. In [68], analytic variants of stability thresholds are
introduced, expressed in terms of singularity types of quasi-psh functions.

5. A non-Archimedean approach to Gibbs stability

This final section is a report on joint work in progress with Sébastien Boucksom
and Mattias Jonsson to prove the converse of Theorem 2.5 or, more generally, to prove that

lim
N !1

lct.DN / D ı.X/ (5.1)

(which, when combined with results in [70], would also settle Conjecture 2.7). The strat-
egy is to adapt the variational approach to the convergence in Conjecture 2.3, discussed
in Section 2.3.1, to the non-Archimedean setup. The starting point is the standard valua-
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tive expression for the log canonical threshold of a divisor that yields (using the notation in
Section 4.3)

lct .DN / D inf
v.N /2ŒXN �div

A.v.N //

k�1.v.N /.det S .k///
WD

N �1A.v.N //

E
.N /
NA .v.N //

; (5.2)

where we have introduced the non-Archimedean energy per particle as the following function
on ŒXN �div:

E
.N /
NA .v.N // WD N �1k�1

�
v.N /.det S .k//

�
DW �N �1k�1 log

ˇ̌
det S .k/

ˇ̌
v.N /

(which is proportional to the negative of the psh function on ŒXN �NA induced by the quasi-
psh function log k det S .k/k2 on XN ). In this notation, formula (5.2) can be viewed as a non-
Archimedean analog of Gibbs variational principle (2.18) (since lct .DN / � 1 is equal to the
one-homogeneous non-Archimedean “N -particle free energy” �E

.N /
NA C N �1A, normalized

by E
.N /
NA ). There are standard inclusions iN and surjections �N ,

iN W .XNA/N ,!
�
XN

�
NA; �N W

�
XN

�
NA � .XNA/N :

(the map iN is, however, not surjective). The non-Archimedean version of the empirical mea-
sure ıN mapping .XNA/N to P .XNA/ (obtained by replacing X with XNA in formula (2.3))
thus induces a map

��
N ıN W

�
XN

�
div ! P .XNA/; v.N /

7! N �1

NX
iD1

ı.�N .v.N ///i
:

It follows from the results in [70] (which are non-Archimedean versions of results in [11]) that
the restriction of E

.N /
NA to .XNA/N Gamma-converges towards ENA.�/ (in analogy with the

convergence (2.14)). In particular,

lim
N !1

ıN .v1; : : : ; vN / D � 2 P
�
ŒX�NA

�
H) lim inf

N !1
E

.N /
NA

�
iN .v1; : : : ; vN /

�
� ENA.�/:

(5.3)
Moreover, N �1A.iN .v1; : : : ; vN // D

R
XNA

A.v/ıN .v1; : : : ; vN /, as follows readily from the
definitions. Hence, restricting the inf in formula (5.2) to vN of the form vN D iN .v; : : : ; v/

for c 2 Xdiv reveals that the lim sup of lct .DN / is bounded from above by A.v/=E.ıv/,
proving the upper bound in formula (5.1). This proof essentially amounts to a reformulation
of the proof of Theorem 2.5 in [41] into a non-Archimedean language. But the main point of
the non-Archimedean formulation is that it opens the door for a non-Archimedean approach
to the missing lower bound. Indeed, it can be shown that

lim
Nj !1

�
��

Nj
ıNj

��
v.Nj /

�
D � 2 P

�
ŒX�NA

�
H) lim inf

Nj !1
N �1

j A.vNj
/ � EntNA.�/:

Hence, all that remains is to establish the following hypothesis for any valuation v
.N /
� realiz-

ing the infimum in formula (5.2) (which is a non-Archimedean analog of hypothesis (2.19)):

lim
Nj !1

�
��

Nj
ıNj

��
v

.Nj /
�

�
D �� 2 P .XNA/ H) lim sup

Nj !1

E
.Nj /

NA
�
v

.Nj /
�

�
� ENA.��/; (5.4)
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(by (5.3) the opposite inequality holds). Indeed, if the hypothesis holds then we get

inf
�2P .ŒX�NA/

EntNA.�/

ENA.�/
� lim inf

N !1
lct .DN / � lim sup

N !1

lct .DN / � inf
v2ŒX�div

EntNA.ıv/

ENA.ıv/
; (5.5)

which, when combined with identity (4.8), yields the desired formula (5.1).
It remains to verify the inequality in the hypothesis above. It would be enough to

establish the following “restriction hypothesis”: the minimizer v
.N /
� can, asymptotically, be

taken to be of the form iN .v�; v�; : : : ; v�/ for a fixed divisorial valuation v� on X :

9v� 2 Xdiv such that lim inf
N !1

lct .DN / D lim inf
N !1

N �1A.iN .v�; v�; : : : ; v�//

E
.N /
NA .iN .v�; v�; : : : ; v�//

:

Indeed, it follows from the convergence of Fekete points on XNA in [21] that

lim
N !1

E
.N /
NA

�
iN .v; v; : : : ; v/

�
D E.ıv/ (5.6)

for any divisorial valuation v on X (or, more generally, for any nonpluripolar point v in
XNA). In particular, it then follows that any v� satisfying the “restriction hypothesis” above
computes ı.X/. For instance, it can be verified that the “restriction hypothesis” does hold for
log Fano curves .X; �/. Anyhow, for any given divisorial valuation v on X , formula (5.6)
yields a “microscopic” formula for the non-Archimedean free-energy FNA.ıv/ (coinciding
with the invariant ˇ.v/ introduced in [40]) of independent interest:

FNA.ıv/ WD �E.ıv/ C A.ıv/ D lim
N !1

�
�E

.N /
NA

�
iN .v;v; : : : ; v/

�
C N �1A

�
iN .v;v; : : : ; v/

��
:

In particular, if � is a given test configuration, whose central fiber X0 is irreducible, this
gives a new formula for the Donaldson–Futaki invariant DF.�/, using that DF.�/ D FNA.ıv/,
where v is the divisorial valuation on X corresponding to X0. Comparing with the formula
for DF.�/ in terms of Chow weights thus suggests that the divisorial valuation iN .v;v; : : : ;v/

on XN , attached to v, plays the role of the one-parameter subgroup of GL.N; C/ attached
to �. Accordingly, the “restriction hypothesis” is an analog of the Hilbert–Mumford criterion
for stability in Geometric Invariant Theory.

Finally, coming back to the statistical mechanical point of view discussed in Sec-
tion 2.3, it may be illuminating to point out that the “restriction hypothesis” essentially
amounts to a concentration phenomenon which may be pictured as follows. Let us decrease
the inverse temperature ˇ from a given positive value towards the critical negative inverse
temperature ˇN where ZN .ˇ/ D 1. As ˇ changes sign from positive to negative, all the
particles start to mutually attract each other and, as ˇ ! ˇN , a large number of particles
concentrate along the subvariety of X defined by the center of the valuation v�.
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