
Sausages
Danny Calegari

Abstract

The shift locus is the space of normalized polynomials in one complex variable for which
every critical point is in the attracting basin of infinity. The method of sausages gives a
(canonical) decomposition of the shift locus in each degree into (countably many) codi-
mension 0 submanifolds, each of which is homeomorphic to a complex algebraic variety.
In this paper we explain the method of sausages, and some of its consequences.
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1. Sausages

For each integer q � 2, the shift locus Sq is the set of degree q polynomials f in
one complex variable of the form

f .z/ WD zq
C a2zq�2

C a3zq�3
C � � � C aq;

for which every critical point of f is in the attracting basin of 1. One can think of Sq

as a open submanifold of Cq�1; understanding its topology is a fundamental problem in
complex dynamics. For example, when q D 2, the complement of S2 in C is the Mandelbrot
set. Knowing that S2 is homeomorphic to a cylinder implies the famous theorem of Douady–
Hubbard that the Mandelbrot set is connected.

Although the Sq are highly transcendental spaces, the method of sausages (which we
explain in this section) shows that each Sq has a canonical decomposition into codimension
0 submanifolds whose interiors are homeomorphic to certain explicit algebraic varieties.
From this one can deduce a considerable amount about the topology of Sq , especially in low
degree.

The construction of sausages has several steps, and goes via an intermediate con-
struction that associates, to each polynomial f in Sq , a certain combinatorial object called
a dynamical elamination.

1.1. Green’s function
Let K be a compact subset of C with connected complement �K WD C � K. If K

has positive logarithmic capacity (for example, if the Hausdorff dimension is positive) then
there is a canonical Green’s function g W �K ! RC satisfying

(1) g is harmonic;

(2) g extends continuously to 0 on K; and

(3) g is asymptotic to log jzj near infinity (in the sense that g.z/ � log jzj is har-
monic near infinity).

There is a unique germ near infinity of a holomorphic function �, tangent to the
identity at 1, for which g D log j�.z/j.

1.2. Filled Julia set
Let f be a degree q complex polynomial. After conjugacy by a complex affine

transformation z ! ˛z C ˇ, we may assume that f is normalized; i.e., of the form

f .z/ WD zq
C a2zq�2

C a3zq�3
C � � � C aq :

The filled Julia set K.f / is the set of complex numbers z for which the iterates f n.z/ are
(uniformly) bounded. It is a fact that K.f / is compact, and its complement �f WD C � K.f /

is connected. The union b�f WD �f [ 1 is the attracting basin of 1.
Böttcher’s Theorem (see, e.g., [20, Thm. 9.1]) says that f is holomorphically conjugate

near infinity to the map z ! zq . For normalized f , the germ of the conjugating map � (i.e.,
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� so that �.f .z// D �.z/q) is uniquely determined by requiring that � is tangent to the
identity at infinity. The (real-valued) function g.z/ WD log j�.z/j is harmonic, and satisfies
the functional equation g.f .z// D q � g.z/. We may extend g via this functional equation
to all of �f and observe that g so defined is the Green’s function of K.f /.

1.3. Maximal domain of ��1

Let D � C denote the closed unit disk, and E WD C � D the exterior. We will use
logarithmic coordinates h D log.jzj/ and � D arg.z/ on E and on Riemann surfaces obtained
from E by cut and paste. Note that g D h� where g and � are as in Section 1.1.

For any K with Green’s function g and associated �, we can analytically continue
��1 from infinity along radial lines of E. The image of these radial lines under ��1 are
the descending gradient flowlines of g (i.e., the integral curves of �grad.g/), and we can
analytically continue ��1 until the gradient flowlines run into critical points of g. Figure 1
shows some gradient flowlines of g for a Cantor set K.

Figure 1

Gradient flowlines of g for a Cantor set K.

Note that some critical points of g might have multiplicity greater than one; however,
because g is harmonic, the multiplicity of every critical point is finite, and the critical points
of g are isolated and can accumulate (in bC) only on K. With this proviso about multiplicity,
we want to do a sort of “Morse theory” for the function g.

Let L0 be the union of the segments of the gradient flowlines of g descending from
all the critical points of g; in Figure 1 these are in red (gray, for black and white reproduction).
Then �K � L0 is the image of the maximal (radial) analytic extension of ��1. The domain
of this maximal extension ��1 may be described as follows. For w 2 E, define the radial
segment �.w/ � E to be the set of points z with arg.z/ D arg.w/ and jzj � jwj. The height
of � , denoted h.�/, is log.jwj/. The domain of ��1 is E � L where L is the union of a
countable proper (in E) collection of radial segments.
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If K D K.f / for a polynomial f , the critical points of g are the critical points and
critical preimages of f , i.e., points z for which .f n/0.z/ D 0 for some positive n. Thus
L0 is nearly f -invariant: the image f .L0/ is equal to L0 [ `0 where `0 is the (finite!) set of
descending flowlines from the critical values of f in �f (which are themselves not typically
critical).

Likewise, the map z ! zq on E takes L to L [ ` where ` is a finite set of radial
segments mapped by ��1 to `0.

1.4. Cut and paste
Let c be a critical point of g and let L0

c be the union of the gradient flowlines of g

descending from c (and, for simplicity, here and in the sequel let us suppose these flowlines
do not run into another critical point). Then L0

c is the union of n C 1 proper embedded rays
from c to K where n is the multiplicity of c as a critical point (these rays extend continuously
to K when the components of K are locally connected; otherwise they may “limit to” a prime
end of a component of K). There is a corresponding collection Lc of n C 1 radial segments
�j WD �.wj / all of the same height, where indices are circularly ordered according to the
arguments of the wj . The map ��1 extends continuously along radial lines from infinity
all the way to the wj : the wj all map to c. But any “extension” of ��1 over Lc will be
multivalued. We can repair this multivaluedness by cut and paste: cut open E along the
segments Lc to create two copies �C

j (resp. ��
j ) for each �j on the “left” (resp. “right”)

in the circular order. Then glue each segment ��
j to �C

j C1 by a homeomorphism respecting
absolute value. Under this operation the collection of segments Lc are reassembled into an
“asterisk” which resembles the cone on n C 1 points; see Figure 2.

Figure 2

Cut and paste over Lc of multiplicity 4.

The result is a new Riemann surface for which the map ��1 now extends (analyt-
ically and single-valuedly) over the (cut-open and reglued) image of Lc , whose image is
exactly L0

c .
If we perform this cut and paste operation simultaneously for all the different Lc

making up L, the Riemann surface E is reassembled into a new Riemann surface � so that
��1 extends to an isomorphism ��1 W � ! �K .
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If K D K.f / for a polynomial f , then the map z ! zq on E descends to a well-
defined degree q holomorphic self-map F W � ! � and ��1 conjugates F j� to f j�f .

1.5. Elaminations
It is useful to keep track of the partition of L0 and L into finite collections L0

c and
Lc associated to the critical points c of g.

For each critical point c of multiplicity n we span the n C 1 segments of Lc by an
ideal hyperbolic .n C 1/-gon in D. The segments of Lc become the tips and the ideal polygon
becomes the vein of a leaf of multiplicity n in an object called an extended lamination—or
elamination for short. When every critical point has multiplicity 1, we say the elamination
is simple. See Figures 3 and 7 for examples of simple elaminations. The key topological
property of elaminations is that the veins associated to different leaves do not cross. This is
equivalent to the fact that the result � of cut and paste along L is a planar surface (because
it is isomorphic to �X � C).

Elaminations are introduced and studied in [11]. The setEL of elaminations becomes
a space with respect to a certain topology (the collision topology), and can be given the
structure of a disjoint union of (countable dimensional) complex manifolds. For example, the
space of elaminations with n � 1 leaves (counted with multiplicity) is homeomorphic (but
not biholomorphic) to the space of degree n normalized polynomials with no multiple roots.

1.6. Dynamical elaminations
Figure 3 depicts the elamination associated to K.f / for a degree 3 polynomial f .

The critical leaves, i.e., the leaves with tips Lc associated to c a critical point of f , are in
red. Every other leaf corresponds to a precritical point of f (which are critical points of the
Green’s function). This elamination is simple: every leaf has exactly two tips.

Figure 3

Simple dynamical elamination of degree 3; critical leaves are in red.
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Let ƒ denote the elamination associated to L. Note that ƒ depends not just on L as
a set of segments, but also on their partition into subsets Lc .

The map z ! zq on E acts on segments and therefore also on leaves, with the
following exception. If ` is a leaf whose tips have arguments that all differ by integer multiples
of 2�=q then these segments will have the same image under z ! zq . Since leaves should
have at least two tips (by convention), if ` is a leaf all of whose tips have arguments that
differ by integer multiples of 2�=q then the image of ` under z ! zq is undefined.

Suppose K D K.f / for a degree q polynomial. Let C denote the critical leaves of
L (those associated to critical points of f ). The map z ! zq takes leaves to leaves in the
obvious sense, and takes ƒ � C to ƒ.

We say an elamination ƒ is a degree q dynamical elamination if

(1) it has finitely many leaves C each of whose arguments differ by integer multiples
of 2�=q (the critical leaves);

(2) the map z ! zq takes ƒ � C to ƒ; and

(3) every leaf has exactly q preimages.

A degree q dynamical elamination is maximal if there are q � 1 critical leaves, counted with
multiplicity.

The elamination ƒ associated to a degree q polynomial f is a degree q dynamical
elamination. It is maximal if and only if all the critical points of f are in �f .

A set of (noncrossing) leaves C , each with arguments that differ by integer multi-
ples of 2�=q is called a degree q critical set. A critical set is maximal if there are q � 1

leaves counted with multiplicity. It turns out that every maximal degree q critical set C is
exactly the set of critical leaves of a unique (maximal) degree q dynamical elamination ƒ;
see [11, Prop. 5.3]. The set of maximal degree q dynamical elaminations is denoted DLq . As
a subset of EL, it has the structure of an open complex manifold of dimension q � 1 with
local coordinates coming from the (endpoints of) segments of C (at least at a generic ƒ).

1.7. The shift locus
For each degree q, the shift locus Sq is the space of degree q normalized polynomials

f .z/ WD zq C a2zq�2 C a3zq�3 C � � � C aq for which every critical point is in the basin of
infinity �f . The coefficients a2; : : : ; aq are coordinates on Sq realizing it as an open subset
of Cq�1.

A polynomial f is in Sq if and only if the Julia set of f is a Cantor set on which
f is uniformly expanding (for some metric). Thus for such polynomials, J.f / D K.f / and
�f is the entire Fatou set (i.e., the maximal domain of normality of f and its iterates; see,
e.g., [20]).

Suppose f 2 Sq with associated dynamical elamination ƒ. Since all critical points
of f are in �f , it follows that ƒ is maximal; thus there is a map Sq ! DLq called the
Böttcher map. Conversely, if ƒ is any maximal degree q dynamical elamination, and � is
obtained from E by cut and paste along ƒ, then F j� extends (topologically) over the space
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of ends of � to define a degree q self-map NF of a topological sphere � Š S2. It turns out that
there is a canonical conformal structure on � extending that on � so that NF is holomorphic.
After choosing suitable coordinates on � near 1, the map NF becomes a degree q normalized
polynomial, which is contained in Sq . The analytic content of this theorem is essentially due
to de Marco–McMullen; see, e.g., [16, Thm. 7.1] or [11, Thm. 5.4] for a different proof.

Thus the Böttcher map Sq ! DLq is a homeomorphism (and, in fact, an isomor-
phism of complex manifolds).

1.8. Stretching and spinning
There is a (multiplicative) RC action on EL called stretching where t 2 RC acts

on ƒ by multiplying the h coordinate of every leaf by t . This action is free and proper. It
preserves DLq for each q, and shows that DLq (and therefore also Sq) is homeomorphic
to the product of R with a manifold of (real) dimension 2q � 3. It is convenient for what
follows to define DL0

q to be the open subspace of DLq for which the highest critical leaf has
logq.h/ 2 .�1=2; 1=2/. By suitably “compressing” orbits of the RC action, we see there is
a homeomorphism DLq ! DL0

q .
There is also an R action on EL called spinning where t 2 R simultaneously rotates

the arguments of leaves of height h by th. This makes literal sense for the (finitely many)
leaves of greatest height. When leaves of lesser height are collided by those of greater height
the shorter leaf is “pushed over” the taller one; the precise details are explained in [11, § 3.2].
This R action also preserves each DLq . The closure of the R-orbits in each DLq are real
tori, and the R-orbits sit in these tori as parallel lines of constant slope. A typical R-orbit has
closure which is a torus of real dimension q � 1, but if some critical leaves have multiplicity
> 1 or if distinct critical leaves have rationally related heights, the closure will be a torus of
lower dimension.

Stretching and spinning combine to give an action of the (oriented) affine group
R Ì RC of the line on EL and on each individual DLq .

1.9. Sausages
Suppose K D K.f / for a degree q polynomial. The map f is algebraic, but the

domain �f is transcendental. When we move to the elamination side, the map z ! zq and
the domain E are (semi)algebraic, but the combinatorics of L is hard to understand. Sausages
are a way to find a substitute for .f; �f / for which both the map and domain are algebraic
and more comprehensible.

The idea of sausages is to find a dynamically-invariant way to cut up the domain �

into a tree of Riemann spheres, so that F induces polynomial maps between these spheres.
The sausage map is not holomorphic, but it induces homeomorphisms between certain codi-
mension 0 submanifolds of DL0

q and certain explicit algebraic varieties whose topology is
in some ways much easier to understand.

Now let us discuss the details of the construction. First, consider the map z ! zq on
E alone. Let h WD log.jzj/ and � D arg.z/ be cylindrical coordinates on E, so that E becomes
the half-open cylinder S1 � RC in .�; h/-coordinates, and z ! zq becomes the map which
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is multiplication by q which we denote �q. For each integer n, let In denote the open interval
.qn�1=2; qnC1=2/ and let An be the annulus in E where h 2 In and let A D

S
n An � E; the

complement of A is the countable set of circles with logq.h/ 2 1=2 C Z. Then �q takes An

to AnC1.
This data is holomorphic but not algebraic. So let us choose (rather arbitrarily) an

orientation-preserving diffeomorphism �0 W I0 ! R and for each n define �n W In ! R by
�n.h/ D qn�0.q�nh/ (so that by induction the �n satisfy �nC1.qh/ D q�n.h/ for all n and
h 2 In), and define � W A ! S1 � R to be the map that sends .�;h/ to .�;�n.h// if .�;h/ 2 An.
By construction, � commutes with multiplication by q:

�.q�; qh/ D
�
q�; �nC1.qh/

�
D
�
q�; q�n.h/

�
D q�.�; h/:

In other words, � semiconjugates �q on A to �q on S1 � R, which (by exponentiating)
becomes the map z ! zq on C�, an algebraic map on an algebraic domain. Actually, it is
better to keep a separate copy C�

n WD �.An/ of C� for each n, so that � conjugates �q on
A to the self-map of

S
n C�

n which sends each C�
n to C�

nC1 by z ! zq .

1.10. Sausages and dynamics
Now suppose we have a dynamical elamination ƒ with critical leaves C invariant

under z ! zq . For each An, the tips of ƒ intersect An in a finite collection of vertical seg-
ments Ln (some of which will pass all the way through An) and we can perform cut-and-paste
separately on each An to produce a (typically disconnected) surface Bn. Furthermore, we can
perform cut-and-paste on C�

n along the image �.Ln/ which, by construction, is compatible
with the Riemann surface structure. The result is to cut and paste C�

n into a finite collection
of algebraic Riemann surfaces, each individually isomorphic to C minus a finite set of points
and which can be canonically completed to Riemann spheres in such a way that the map F

on � descends to a map f from this union of Riemann spheres to itself; see Figure 4.

Figure 4

An is cut and paste into Bn which in turn maps to a disjoint union of Riemann spheres.

Denote the individual Riemann spheres by Xv and, by abuse of notation, write fv W

Xv ! Xf.v/ for the restriction of f to the component Xv . By the previous discussion, each
map fv is holomorphic, so that if we choose suitable coordinates on Xv and Xf.v/, the map fv

becomes a polynomial. There is almost a canonical choice of coordinates, which we explain
in the next two sections.
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Each Xv corresponds to a component Bv of some Bn, and gets a canonical finite
set of marked points Z0

v which correspond to the “boundary circles” of Bv . The unique
boundary circle with the greatest h coordinate picks out a point that we can identify with
1 2 Xv; we denote by Zv the set consisting of the rest of the marked points. The collection
of individual Riemann spheres Xv can be glued up along their marked points into an infinite
genus-zero nodal Riemann surface so that the indices v are parameterized by the vertices v

of the tree of gluings T . This tree is oriented, so that an edge v goes to w if Xv is glued along
1 to one of the (finite) marked points of Xw . We call w the parent of v and v one of the
children of w. If we make the assumption that no boundary component of any Bv contains
a critical point (this is the generic case) then each � 2 Zw � Xw is attached to a unique Xv

for v some child of w. If v is a child of w, and Xv is glued to Xw at the point � 2 Zw , then if
� is a critical point of fw of multiplicity m, the degree of fv is m C 1. By abuse of notation,
we denote the induced (simplicial, orientation-preserving) map on T also by f .

If ƒ is empty, then T is just a line, and each vertex has a unique child. If ƒ is
nonempty, then since there are only finitely many leaves of greatest height, there is a unique
highest vertex v of T with more than one child. Let w be the parent of v. The uppermost
boundary components of Bv and Bw are canonically identified with the unit circle S1 WD

R=2�Z. By identifying these circles with the unit tangent circles at 1 in Xv and Xw , we
can choose coordinates on these Riemann spheres so that the tangent to the positive real axis
corresponds to the angle 0 2 S1. In these coordinates Xv and Xw are identified with copiesbCv and bCw of the Riemann sphere bC, and after precomposing with a suitable complex affine
translation, fv becomes a normalized degree q polynomial map fv W z ! zq C b2zq�2 C

� � � C bq , and the (finite) marked points of Xv become the roots of fv in bCv .
Vertices of T above v and the maps between their respective Riemann surfaces do

not carry any information. Let w1 WD w denote the parent of v, and inductively let wn be the
parent of wn�1. Then each Xwn has exactly two marked points, which we can canonically
identify with 1 and 0, and the map fwn�1 W bCwn�1 ! bCwn is canonically normalized as
z ! zq .

Since these vertices carry no information, we discard them. Thus we make the con-
vention that T is the rooted tree consisting of v together with its (iterated) children, and we
let X denote the nodal Riemann surface corresponding to the union of Xw with w in T . We
record the data of the polynomial fv associated to the root v, though we do not interpret this
any more as a map between Riemann spheres, so that f is now a map from X � Xv to X and
fv is a polynomial function on Xv Š bC.

1.11. Tags and sausage polynomials
The choice of a distinguished point on a boundary S1 component of some Bu is

called a tag. Tags are the data we need to choose coordinates on X so that every fu becomes
a polynomial. We may identify this boundary circle with the unit tangent circle at a marked
point on Xu, and think of the tag as data on Xu. By induction, we can choose tags on Xu

in the preimage of the tags of Xf.u/ under the map fu W Xu ! Xf.u/ and inductively define
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coordinates bCu on Xu for which fu is represented by a normalized polynomial map (in
general of degree � q).

Suppose u has parent u0, and 1 in bCu is attached at some point � 2 Zu0 2 bCu0 .
Suppose � is a critical point of fu0 with multiplicity m. Then fu has degree m C 1. There
are m C 1 different choices of tag at � that map to the tag at fu0.�/, and the different choices
affect the normalization of fu by precomposing with multiplication by an .m C 1/st root of
unity.

The endpoint of this discussion is that we can recover X; f from the data of a rooted
tree T , and a set of equivalence classes of pair .tag; normalized polynomial fu/. Call this
data a (degree q) sausage polynomial.

A dynamical elamination ƒ is generic if the critical points of F are all contained
in A, i.e., if no critical (or by induction, precritical) point has h coordinate with log.h/ 2

1=2 C Z. The sausage map is the map that associates a sausage polynomial to a degree q

dynamical elamination. A sausage polynomial is generic (resp. maximal) if it is in the image
of a generic (resp. maximal) dynamical elamination.

A polynomial fw associated to a (generic) sausage polynomial has two kinds of
critical points. The genuine critical points are those inbCw � Z0

w (recall that Z0
w is Zw [ 1).

The fake critical points are those in Z0
w (D 1 [ Zw ) which correspond to circle components

of Bw mapping with degree > 1. For a generic dynamical elamination, the genuine critical
points of the associated sausage polynomial are exactly the images of the critical points of
the elamination (i.e., the endpoints of the critical leaves) under the sausage map. Thus for
a generic maximal sausage polynomial of degree q, there are exactly q � 1 genuine critical
points, counted with multiplicity.

For a generic, maximal sausage polynomial, all but finitely many fv have degree one.
A degree-one map uniquely pulls back tags, and has only one possible normalized poly-
nomial representative, namely the identity map z ! z. Thus a generic, maximal sausage
polynomial is described by a finite amount of combinatorial data, together with a finite col-
lection of normalized polynomials. The reader who wants to see some examples should look
ahead to Sections 2.1 and 2.3.

Let Xq denote the space of generic maximal degree q sausage polynomials. Then
Xq is the disjoint union of countably infinitely many components, indexed by the combina-
torics of T and the degrees of the normalized polynomials between the associated Riemann
spheres. Each component of Xq is a quasiprojective complex variety of complex dimension
q � 1. In fact, each component is an iterated fiber bundle whose base and fibers are certain
affine (complex) varieties called Hurwitz varieties, which we shall describe in more detail
in Section 2.6.

1.12. Sausage space
Recall that DL0

q � DLq denotes the set of maximal degree q dynamical elamina-
tions for which the highest critical point has logq.h/ 2 .�1=2;1=2/. LetDL00

q � DL0
q denote

the subspace of generic maximal degree q dynamical elaminations. Then the construction
of the previous few sections defines a map DL00

q ! Xq .
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In fact, this map is invertible. Given a sausage polynomial X; f over a tree T with
root v, we can inductively construct (singular) vertical (resp. horizontal) foliations on eachbCw as follows. On bCv we pull back the foliations of C� by lines (resp. circles) of con-
stant argument (resp. absolute value) under the polynomial fv . Then on every other w, we
inductively pull back these foliations under fw W bCw ! bCf.w/. These foliations all carry
coordinates pulled back from C�, and bCw minus infinity and its marked points become
isomorphic to a branched Euclidean Riemann surface with ends isomorphic to the ends of
(infinite) Euclidean cylinders. We can reparameterize the vertical coordinates on each of
these Riemann surfaces by the inverses of the maps �n, and then glue together the result by
matching up boundary circles using tags. This defines an inverse to the map DL00

q ! Xq and
shows that this map is a homeomorphism; see [11, Thm. 9.20] for details.

1.13. Decomposition of the shift locus
Putting together the various constructions we have discussed so far, we obtain the

following summary:

(1) Section 1.7 describes the map that associates to f 2 Sq a maximal degree q

dynamical elamination ƒ gives an isomorphism of complex manifolds
Sq ! DLq .

(2) Section 1.8 elaborates on how, by compressing orbits of the free RC action on
DLq , we obtain a homeomorphismDLq ! DL0

q to the subspace whose largest
critical leaf has log-height logq.h/ 2 .�1=2; 1=2/.

(3) Section 1.12 discusses how the open dense subset DL00
q � DL0

q of generic
dynamical elaminations maps homeomorphically by the sausage map
DL00

q ! Xq .

(4) Section 1.11 tells that the space Xq is the disjoint union of countably many
quasiprojective complex varieties, each of which has the structure of an iterated
bundle of affine (Hurwitz) varieties.

In words, the shift locus Sq of degree q has a canonical decomposition into codimen-
sion 0 submanifolds whose interiors are homeomorphic to certain explicit algebraic varieties.
It is a fact that we do not explain here (see [11, § 8 especially Thm. 8.11]) that the abstract cell
complex which combinatorially parameterizes the decomposition of Sq into these pieces is
contractible, so that all the interesting topology of Sq is localized in the components of Xq .

In the remainder of the paper we give examples, and explore some of the conse-
quences of this structure.

2. Sausage moduli

Each component Y of Xq parameterizes sausages of a fixed combinatorial type. The
combinatorial type determines finitely many vertices u for which the (normalized) poly-
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nomial fu has degree > 1. The combinatorics constrains these polynomials by imposing
conditions on their critical values, for instance, that the critical values are required to lie
outside a certain (finite) set. Thus, each component has the structure of an algebraic variety
which is an iterated fiber bundle, and so that the base and each fiber is something called a
Hurwitz variety.

For this and other reasons, the spaces Sq and the components Y of which they are
built bear a close family resemblance to the kinds of discriminant complements that arise in
the study of classical braid groups. The full extent of this resemblance is an open question,
partially summarized in Table 2.

2.1. Degree 2
Let X; f be a generic maximal sausage polynomial of degree 2. The root polynomial

fv is quadratic and normalized. It has one critical point, necessarily genuine. Thus fv.z/ WD

z2 C c for some c ¤ 0. Every other vertex w has a polynomial fw of degree one; since
polynomials are normalized, fw.z/ WD z. Thus all the information is contained in the choice
of the (nonzero) constant coefficient c of fv , so thatX2 D C�. The tree T is an infinite dyadic
rooted tree, where every vertex is attached to its parent at the points ˙

p
�c; see Figure 5.

Figure 5

A degree 2 sausage; each vertex is attached to its parent at the points ˙
p

�c.

Furthermore, in this case DL0
2 D DL00

2 so that S2 is homeomorphic (but not holo-
morphically isomorphic) to C�. As a corollary, one deduces the famous theorem of Douady–
Hubbard [17] that the Mandelbrot set M (i.e., C � S2) is connected.

2.2. Discriminant locus
In any degree q, there is a unique component of Xq for which all the (genuine)

critical points are in the root vertex. Thus fv is a degree q normalized polynomial with no
fake critical points. Since the marked points Zv of the root vertex are exactly the roots of fv ,
this means that fv is a normalized polynomial with no critical roots. Equivalently, fv has q

distinct roots, so that fv is in Yq WD Cq�1 � �q where �q is the discriminant locus. As is
well known, Yq is a K.Bq; 1/ where Bq denotes the braid group on q strands.
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2.3. Degree 3
Let X; f be a generic maximal sausage polynomial of degree 3. If the root polyno-

mial fv has two genuine critical points, we are in the case discussed in Section 2.2 and the
corresponding component of X3 is a K.B3; 1/. Otherwise, since the root polynomial must
have at least one genuine critical point, if it does not have two, it must have exactly one and
fv is of the form z ! .z � c/2.z C 2c/ for some c 2 C�.

The (finite) marked points Zv of bCv are c and �2c, and the root vertex corre-
spondingly has two children w1; w2 where bCw1 is attached at c and bCw2 is attached at �2c.
Because c is a double root, the polynomial fw1 has degree 2; because �2c is a simple root,
the polynomial fw2 has degree 1.

Write fw1 W z ! z2 C d . If d ¤ c; �2c then Zw1 has four (noncritical) points (the
distinct square roots of c � d and �2c � d ) and every other fu is degree 1. See Figure 6.
Thus c and d are moduli parameterizing a single component of X3, and topologically this
component is a bundle over C� whose fiber is homeomorphic to C � ¹c; �2cº.

Figure 6

A degree 3 sausage; the root v has Zv WD ¹c; �2cº. The child w1 has Zw1 WD ¹˙
p

c � d; ˙
p

�2c � dº.

If d D c or d D �2c then 0 is a fake critical point for fw1 , and if u is the child of
w1 for which bCu is attached at 0 then fu has degree 2. Since f is maximal, there is always
some vertex u0 at finite combinatorial distance from the root for which fu0 has degree 2 and
for which the critical point 0 of fu0 is genuine. Thus each component of X3 is a bundle over
C� with fiber homeomorphic to C minus finitely many points.

2.4. The tautological elamination
The combinatorics of the components of X3 is quite complicated. Each component

of X3 (other than the discriminant complement, cf. Section 2.2) is a punctured plane bundle
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over the curve C� with parameter c, and these components glue together in S3 to form a
bundle over C� whose fiber �T is homeomorphic to a plane minus a Cantor set.

Actually, there is another description of �T in terms of elaminations. For each
degree 3 critical leaf C , there is a certain elamination ƒT .C / called the tautological elam-
ination which can be defined as follows. Let us suppose that we have a maximal degree 3

dynamical elamination with two critical leaves C and C 0, and that C has the greater height.
If we fix C , then �T parameterizes the space of configurations of C 0.

The elamination ƒT .C / is defined as follows. With C fixed, each choice of (non-
crossing) C 0 determines a dynamical elamination ƒ. By hypothesis, h.C 0/ < h.C / and there
are only finitely many (perhaps zero) precritical leaves P of C with h.P / > h.C 0/. As we
vary C 0, the laminations ƒ also vary (in rather a complicated way), but while h.P / > h.C 0/

the leaves P stay fixed under continuous variations of C 0. It might happen that, as we vary
the leaf C 0, it collides with a leaf P with h.P / > h.C 0/; the elamination ƒT .C / consists
of the cubes P 3 of all such P (there is a similar, though more complicated construction in
higher degrees). The fact that ƒT .C / is an elamination is not obvious from this definition.

The result of cut and paste (as in Section 1.4) on the annulus 1 < jzj < jC j (thought
of as a subset of E) along ƒT .C / is a Riemann surface �T .C / holomorphically isomorphic
to the moduli space of degree 3 maximal dynamical elaminations for which C is the unique
critical leaf of greatest height. Figure 7 depicts the elamination ƒT .C / for a particular value
of C whose tips have angles ˙�=3.

Figure 7

The tautological elamination ƒT .C / for arg.C / D ˙�=6.

These �T .C / are the leaves of a (singular) one complex dimensional holomorphic
foliation of S3.

Although it is not a dynamical elamination, the tautological elamination ƒT .C / is
in a natural way the increasing union of finite elaminations ƒn, namely the leaves of the form
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P 3 as above where P is a depth n preimage of C . Let E denote the closure of E in C so that
E D E [ S1, the union of E with the unit circle. The result �n of cut and pasting E along
ƒn is partially compactified by a finite set of circles, obtained from S1. By abuse of notation,
we denote this finite set of circles by S1 mod ƒn. It turns out that the the components of
X3 \ �T corresponding to sausage polynomials with fixed c 2 C� and for which the second
genuine critical point is in a vertex at depth n C 1 are in bijection with the set of components
of S1 mod ƒn. In fact, more is true.

For each combinatorial type X; f , let u be the vertex containing the second genuine
critical point (the first, by hypothesis, is contained in the root). We define the depth n of
X; f to be the combinatorial distance of u to the root. There is another invariant of X; f: the
`-value, defined as follows. Under iteration of f (acting on the tree), the vertex u has a length
n orbit terminating in the root (note that f.u/ is not typically equal to the parent of u, but
it does have the same depth as the parent). The point 1 in bCu is mapped to 1 in bCf.u/

and so on. The product of the degrees of the polynomials ff i .u/ up to but not including the
root is some power of 2; by definition, ` is this number divided by 2. The invariants n and
`, taking discrete values, are really invariants of the components of X3 and ipso facto of the
components of X3 \ �T .

Here is the relation to ƒT .C /. Components of X3 \ �T of depth n C 1 are in
bijective correspondence with components of S1 mod ƒn, and a component of X3 \ �T

with `-value ` corresponds to a component of S1 mod ƒn of length 2�` � 3�n.

2.5. Combinatorics
Let N3.n; m/ denote the number of components of S1 mod ƒn with depth n C 1

and ` D 2m. We do not know a simple closed form for N3.n; m/ and perhaps none exists—
one subtle issue is that there are several combinatorially different ways that a component can
have a particular `-value. However, an `-value of 1 is special, since it corresponds to an f

for which ff i .u/ has degree 1 for all positive i . Correspondingly, there is an explicit formula
for N3.n; 0/ that we now give; see [10, Thm. 3.6] for a proof.

First of all, N3.n; 0/ satisfies the recursion N3.0; 0/ D 1, N3.1; 0/ D 1, and

N3.2n; 0/ D 3N3.2n � 1; 0/ and N3.2n C 1; 0/ D 3N3.2n; 0/ � 2N3.n; 0/:

Knowing this, one can write down an explicit generating function for N3.n;0/; the generating
function is .ˇ.t/ � 1/=3t where

ˇ.t/ D

 
1X

nD0

h.n/tn

!
1Y

j D0

1

.1 � 3t2j
/

and where the numbers h.n/ are defined by

h.0/ D 1 and h.n/ D .�3/s.n/
�
1 � .�2/k.n/

�
with 2k.n/ being the biggest power of 2 dividing n, and s.n/ the sum of the binary digits of n.

Table 1 gives values of N3.n; m/ for 0 � n; m � 12. Note that N3.n; m/ D 0 for
n=2 < m < n; see [10, Thm 5.9].

2498 D. Calegari



n `

1 2 22 23 24 25 26 27 28 29 210 211 212

0 1
1 1 1
2 3 1 1
3 7 6 0 1
4 21 16 3 0 1
5 57 51 13 0 0 1
6 171 149 39 5 0 0 1
7 499 454 117 23 0 0 0 1
8 1497 1348 360 66 9 0 0 0 1
9 4449 4083 1061 207 41 0 0 0 0 1

10 13347 12191 3252 591 126 17 0 0 0 0 1
11 39927 36658 9738 1799 370 81 0 0 0 0 0 1
12 119781 109898 29292 5351 1125 240 33 0 0 0 0 0 1

Table 1

Number of components of length `=3n at depth n.

2.6. Hurwitz varieties
Let X be a component of Xq parameterizing sausage polynomials of a fixed combi-

natorial type. Then X is an iterated bundle whose base and fibers Y are all of the following
sort. There are specific vertices u; w with f.u/ D w. The set Zw � bCw is fixed, as is the
degree p of fu W bCu ! bCw . Furthermore, for each � 2 Zw the ramification data of fu at � is
specified, i.e., the monodromy of f�1

u in a small loop around each �, thought of as a conju-
gacy class in the symmetric group on p letters. Then Y is the space of normalized degree p

polynomials with the specified ramification data. We call Y a Hurwitz variety, and observe
that each X is an iterated bundle with total (complex) dimension q � 1 whose base and fibers
are all Hurwitz varieties.

The generic case is that the monodromy of f�1
u in a small loop around each � 2 Zw

is trivial, i.e., each � is a regular value. In that case, Y is a Zariski open subset of Cp�1.
In fact, we can say something more precise. Let �p � Cp�1 be the discriminant variety,
i.e., the set of normalized degree p polynomials with a multiple root. For each � 2 Zw , let
�p;� WD �p C � be the translate of �p which parameterizes the set of normalized degree p

polynomials f for which � is a critical value. Then

Y D Cp�1
�

[
�2Zw

�p;� :

It turns out that the topology of Y depends only on the cardinality of Zw ; see [11, Prop. 9.14].
This is not obvious, since the �p;� are singular, and they do not intersect in general position.
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2.7. K.�; 1/s
For a finite set Z � C and degree p, let Yp.Z/ denote the Hurwitz variety of nor-

malized degree p polynomials for which no element of Z is a critical value.
As we remarked already in Section 2.2, when jZj D 1 the space Yp.Z/ is a K.Bp; 1/

where Bp denotes the braid group on p strands. Furthermore, when p D 2 the space Y2.Z/

may be identified with C � Z in the obvious way, so that Y2.Z/ is a K.Fn; 1/ where Fn is
the free group on n elements, and n D jZj.

It turns out (see [11, Thm. 9.17]) that Y3.Z/ is a K.�; 1/ for any finite set Z. This is
proved by exhibiting an explicit CAT.0/ 2-complex with the homotopy type of each Y3.Z/.
One component of X4 is a K.B4; 1/ and all the others are nontrivial iterated fibrations where
the fibers are Y2.Z/ or Y3.Z/s. It follows that every component of X4 is a K.�; 1/, and, in
fact, so is the shift locus S4 itself (the same is true for simpler reasons of S3 and S2).

One knows few examples of algebraic varieties which are K.�;1/s, and fewer meth-
ods to construct or certify them (one of the few general methods, which applies to certain
complements of hyperplane arrangements, is due to Deligne [15]). Is Yp.Z/ a K.�; 1/ for all
p and all Z?

2.8. Monodromy
For each p and jZj, there is a natural representation (well defined up to conjugacy)

�1.Yp.Z// ! BpjZj defined by the braiding of the pjZj points f �1.Z/ in C as f varies in
Yp.Z/. This map is evidently injective when p D 2 or when jZj D 1. Is it injective in any
other case? I do not know the answer even when p D 3 and jZj D 2.

Here is one reason to be interested. There is a monodromy representation of �1.Sq/

into the “Cantor braid group”, i.e., the mapping class group of a disk minus a Cantor set,
defined by the braiding of the (Cantor) Julia set Jf in C as f varies in Sq . A priori this
representation lands in the mapping class group of the plane minus a Cantor set, but it lifts
canonically to the Cantor braid group (which is a central extension) because every f 2 Sq

acts in a standard way at infinity. If one forgets the braiding and only considers the permu-
tation action on the Cantor set itself, the image in Aut.Cantor set/ is known to be precisely
equal to the automorphism group of the full (one-sided) shift on a q element alphabet, by a
celebrated theorem of Blanchard–Devaney–Keen [5]. However, this action of �1.Sq/ on the
Cantor set alone is very far from faithful.

The automorphism group of the Cantor set is to the Cantor braid group as a finite
symmetric group is to a (finite) braid group. It is natural to ask: Is the monodromy repre-
sentation from �1.Sq/ to the Cantor braid group injective? It turns out that the restriction
of the monodromy representation to the image of �1.Yp.Z// in �1.Sq/ factors through the
representation to BpjZj. So a precondition for the monodromy representation to the Cantor
braid group to be injective is that each �1.Yp.Z// ! BpjZj should be injective.

When q D 2, we have �1.S2/ D Z and the monodromy representation is evidently
injective, since the Cantor braid group is torsion-free. With Yan Mary He and Juliette Bavard,
we have shown that the monodromy representation is injective in degree 3 (work in progress).
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2.9. Big mapping class groups
The Cantor braid group and the (closely related) mapping class group of the plane

minus a Cantor set are quintessential examples of what are colloquially known as big map-
ping class groups. The study of these groups is an extremely active area of current research;
for an excellent recent survey, see Aramayona–Vlamis [1]. There are connections to the theory
of finite-type mapping class groups (particularly to stability and uniformity phenomena in
such groups); to taut foliations of 3-manifolds; to pruning theory and the de-Carvalho–Hall
theory of endomorphisms of planar trees; to Artinizations of Thompson-like groups and
universal algebra, etc. (see [1] for references).

One major goal of this theory – largely unrealized as of yet – is to develop new
tools for applications to dynamics in 2 real and 1 complex dimension. Cantor sets appear
in surfaces as attractors of hyperbolic systems (e.g., in Katok–Pesin theory [18]), and big
mapping class groups (and some closely related objects) are relevant to the study of their
moduli. The paper [11] and the theory of sausages is an explicit attempt to work out some of
these connections in a particular case.

2.10. Rays
Let � denote the mapping class group of the plane (which we identify with C) minus

a Cantor set K. The Cantor braid groupb� is the universal central extension of � . Some of the
tools discussed in this paper may be used to study b� and its subgroups in some generality;
for instance, components of EL are classifying spaces for subgroups of b� .

The group � acts in a natural way on the set R of isotopy classes of proper simple
rays in C � K from 1 to a point in K. Associated to this action are two natural geometric
actions of �:

(1) there is a natural circular order onR, so that � acts faithfully by order-preserving
homeomorphisms on a certain completion of R, the simple circle; see [3,7,12];
and

(2) the elements of R are the vertices of a (connected) graph (the ray graph) whose
edges correspond to pairs of rays that may be realized disjointly; this graph is
connected, has infinite diameter, and is Gromov-hyperbolic; see [2,9].

(Landing) Rays are also a critical tool in complex dynamics, and in the picture devel-
oped in the previous two sections. For K a Cantor Julia set, nonsingular gradient flowlines of
the Green’s function extend continuously to K; the set of distinct isotopy classes of nonsin-
gular flowlines associated to single K form a clique in the ray graph. Because the ray graph
is Gromov-hyperbolic, there is (up to bounded ambiguity) a canonical path in the ray graph
between any two such cliques; one can ask whether such paths are coarsely realized by paths
in Sq , and if so what geometric properties such paths have, and how this geometry manifests
itself in algebraic properties of �1.Sq/. For example, does �1.Sq/ admit a (bi)automatic
structure? (To make sense of this, one should work with a locally finite groupoid presenta-
tion for �1.Sq/.) One piece of evidence in favor of this is that S3 (and, for trivial reasons, S2)
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is homotopy equivalent to a locally CAT.0/ complex, and it is plausible that the same holds
for all Sq . Although there are known examples of groups which are locally CAT.0/ but not
biautomatic [19], nevertheless in practice these two properties often go hand in hand.

2.11. Left orderability
A group is left-orderable if it admits a total order that is preserved under left multi-

plication. The left-orderability of braid groups (see [14]) is key to some of their most impor-
tant properties (e.g., faithfulness of the Lawrence–Kraamer–Bigelow representations [4]).
Left-orderability of 3-manifold groups is also conjecturally ([6]) related to both symplectic
topology (via Heegaard Floer homology) and to big mapping class groups via the theory of
taut foliations and universal circles; see, e.g., [8,13]. The Cantor braid group is left-orderable
(via the faithful action of � on the simple circle) so, to show that �1.Sq/ is left-orderable, it
would suffice to prove injectivity of the monodromy representation as in Section 2.8.

2.12. Comparison with finite braids
Define Yq WD Cq�1 � �q , the space of normalized degree q polynomials without

multiple roots. Our study of Sq has been guided by a heuristic that one should think of Sq

as a sort of “dynamical cousin” to Yq , and that they ought to share many key algebraic and
geometric properties. Table 2 compares some of what is known about the topology of Yq

and Sq .

Yq S2; S3 S4 Sq; q > 4

locally CAT.0/ yes for q � 6 yes unknown unknown
K.�; 1/ yes yes yes unknown
H� vanishes below middle dimension yes yes yes yes
�1 is mapping class group yes yes unknown unknown
�1 is left-orderable yes yes unknown unknown
�1 is biautomatic yes yes yes unknown

Table 2

Comparison of Sq with discriminant complements Yq .
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