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Abstract

This note discusses the role of Lagrange multiplier functionals in mathematics and physics.
The main focus is on Rabinowitz’ action functional and its usage in symplectic geometry,
as well as recent applications in string topology and the study of closed geodesics.
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1. Introduction

The purpose of this note is to tell the story of how an old and simple idea—Lagrange
multipliers—has led to new insights in symplectic geometry and loop space topology.

The beginning of our story is the observation by Joseph-Louis Lagrange in 1804 [58]

that critical points of a functional f .x/ subject to a constraint h.x/D 0 correspond to uncon-
strained critical points of the function F.x; �/ D f .x/ � �h.x/ depending on a Lagrange
multiplier �. In modern terms, f W X ! R and h W X ! V should be sufficiently smooth
maps, where X is a Banach manifold and V a Banach space. Denoting by h�; �i the canon-
ical pairing between V and its topological dual V �, we consider the Lagrange multiplier
functional

F W X � V �
! R; F .x; �/ D f .x/ �

˝
�; h.x/

˛
:

Then .x; �/ is a critical point of F if and only if

df .x/ D
˝
�; dh.x/

˛
and h.x/ D 0:

Assuming that 0 is a regular value of h, so that Z D h�1.0/ � X is a Banach submanifold,
this is equivalent to x being a critical point of the restriction f jZ . The Lagrange multiplier �
at x is uniquely determined by the first equation. Although it was introduced as an auxiliary
parameter, the Lagrange multiplier often has mathematical or physical meaning.

Example 1.1 (Eigenvalues). LetX be a complex Hilbert space andA WX!X a self-adjoint
bounded linear operator. Consider the functions

f; h W X ! R; f .x/ D hx;Axi; h.x/ D kxk2 � 1:

Then the critical points of the restriction of f to the unit sphere S D h�1.0/ correspond to
solutions .x;�/ 2X �R of the equations kxk D 1 andAx D �x, so the Lagrange multiplier
� 2 R is an eigenvalue of A with eigenvector x. If A is compact (e.g., if X is finite dimen-
sional), then f attains its maximum and minimum on S and it follows that kAk or �kAk is
an eigenvalue.

The Hessian of F at a critical point .x; �/ is given by

HessF.x; �/ D

 
Hessf .x/ dh.x/�

dh.x/ 0

!
:

IfX and V are finite dimensional, it follows that the Hessians HessF.x;�/ and Hessf jZ.x/
have the same nullity and signature (the number of positive minus the number of negative
eigenvalues). These relations also hold in some infinite-dimensional cases where nullity and
signature can be defined; one such case arises for Hamiltonian systems where the role of the
signature is played by the Conley–Zehnder index, see Section 2.

We see in particular that the Hessian of F is never positive or negative definite,
so its critical points cannot be detected by direct maximization or minimization methods
and one needs to resort to indirect variational methods. Of particular relevance for this note
will be Morse homology (see, e.g., [70, 77]). This is the homology of the chain complex
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whose generators are critical points of F and whose differential counts gradient trajecto-
ries .x; �/ W R! X � V � between critical points. Based on the preceding discussion, we
expect that the Morse homology of F equals the Morse homology of f jZ if both are graded
by the signature rather than the Morse index. However, even in finite dimensions it is not
obvious that both Morse homologies are defined, and in addition equal, due to the possible
escape of gradient trajectories to infinity. This issue will be a recurring theme in this note,
which is structured as follows.

Section 2 focuses on a specific Lagrange multiplier functional, the Rabinowitz
action functional, and its applications in symplectic geometry. Section 3 presents some
recent applications of the ideas from Section 2 in string topology. Section 4 discusses some
further occurrences of Lagrange multiplier functionals in mathematics and physics. Besides
established results, I will also discuss some work in progress, as well as open questions.

2. Rabinowitz Floer homology

In this section we will focus on one particular Lagrange multiplier functional, the
Rabinowitz action functional, and discuss properties and applications of the corresponding
Floer homology. For more details and background, see the original references or the survey
by P. Albers and U. Frauenfelder [9].

2.1. Definition and basic properties
Let .W;�/ be a Liouville manifold of dimension 2n, i.e., a connected manifold with

a 1-form such that ! D d� is symplectic and W is exhausted by compact sets Wk with
smooth boundary such that �j@Wk

is a positive contact form. Examples of Liouville manifolds
include Cn, cotangent bundles, and, more generally, Stein and Weinstein manifolds (see [18]).

To a 1-periodic time-dependent Hamilton functionH W S1 �W ! R, we associate
its Hamiltonian vector fieldXHt by dHt D !.�;XHt /, whereHt DH.t; �/. Then 1-periodic
solutions x W S1 ! W of the Hamiltonian system Px D XHt .x/ are the critical points of the
Hamiltonian action

AH W C
1.S1;W /! R; AH .x/ D

Z
x

� �

Z 1

0

H.t; x/dt:

Assume now that H W W ! R is time-independent. Then we have conservation of energy
and it is natural to look for solutions of prescribed energy rather than prescribed period. For
this, suppose that 0 is a regular value of H and consider the Rabinowitz action functional

AH
W C1.S1;W / �R! R; AH .x; �/ D

Z
x

� � �

Z 1

0

H.x/dt:

Its critical points satisfy the equations

Px D �XH .x/;

Z 1

0

H.x/dt D 0:

By the first equation, H.x.t// is constant and, by the second equation, this constant equals
zero, so the critical point equations become

Px D �XH .x/; H
�
x.t/

�
� 0:
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Critical points of AH thus correspond to orbits t 7! x.t=�/ of XH of period � and energy
0 (if � > 0), such orbits run backwards (if � < 0), or to constant loops on H�1.0/ (if � D
0). As we will see in Section 3, the appearance of solutions with negative � is responsible
for an additional symmetry of the corresponding Floer homology.1 In 1978, P. Rabinowitz
used this functional to prove existence of periodic orbits on star-shaped energy hypersurfaces
in Cn [66].2

To define the Floer homology of AH , we pick an !-compatible almost complex
structure J on W and equip C1.S1;W / �R with the metric

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

!. Ox1; J Ox2/dt C O�1 O�2:

Then gradient flow lines of AH are maps .u; �/ W R! C1.S1;W / �R, satisfying

@suC J.u/
�
@tu � �XH .u/

�
D 0; @s�C

Z 1

0

H.u/dt D 0; (2.1)

where .s; t/ are the coordinates on R � S1. This is a coupled system of an elliptic PDE and
a nonlocal ODE. Its solutions exhibit three potential sources of noncompactness: explosion
of the gradient of u, which is excluded by exactness of !; escape of u to infinity, which can
be prevented by suitable conditions on J ; and escape of the Lagrange multiplier � to ˙1.
To prevent the latter, we need to impose some geometric condition on the hypersurface†D
H�1.0/.

A hypersurface † � W is of restricted contact type if it admits a contact form ˛

such that ˛ � �j† is exact (for H 1.†IR/ D 0 this agrees with A. Weinstein’s contact type
condition [78]). We also assume that † is connected and bounds a compact subset. Then it
admits a (nonunique) defining Hamiltonian, i.e., a smooth function H W W ! R which is
constant outside a compact set such that H�1.0/ D † and XH D R along †, where R is
the Reeb vector field of ˛.

Theorem 2.1 ([19]). (a) Given a hypersurface † � W of restricted contact type
and a defining Hamiltonian H , the Floer homology FH�.A

H / is well defined;
it is independent of the defining Hamiltonian and called the Rabinowitz Floer
homology RFH�.†/.

(b) For a smooth family of hypersurfaces †s , s 2 Œ0; 1�, of restricted contact type
there is a canonical isomorphism RFH�.†0/ Š RFH�.†1/.

(c) If a hypersurface † � W of restricted contact type is displaceable from itself
by a Hamiltonian isotopy, then RFH�.†/ D 0.

1 Though of course unrelated, this phenomenon is reminiscent of the appearance of negative
energy solutions in Dirac’s equation.

2 As H. Hofer pointed out, the functional appeared already in a 1976 article by J. Moser [61],
where he concluded that the corresponding variational principle “is certainly not suitable for
an existence proof.”
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Remark 2.2 (Grading and coefficients). (i) For simplicity, we will assume
throughout this note that the first Chern class of T W vanishes and we have made
choices so that RFH�.†/ and all other Floer homologies below are Z-graded
by their Conley–Zehnder indices.

(ii) Coefficients are in a principal ideal domain R, which will sometimes be spe-
cialized to Z or a field or generalized to twisted coefficients.

(iii) The notation RFH�.†/ is chosen to emphasize the dependence on †, but it a
priori depends also on the ambient Liouville manifold .W; �/; we will return to
this question below.

If† carries no periodic orbits, then the only generators of RFH�.†/ are the constant
loops on † with Lagrange multiplier � D 0 and it follows that RFH�.†/ Š H

n��.†/. In
view of Theorem 2.1(c), such a hypersurface cannot be displaceable. This implies the Wein-
stein conjecture for hypersurfaces of restricted contact type in Liouville manifolds where
all compact sets are displaceable such as Cn, subcritical Stein manifolds, or products of a
Liouville manifold with C (see [76,78]).

2.2. Stability and Mañé’s critical values
One may wonder whether Theorem 2.1 can be extended to a larger class of hypersur-

faces†. The preceding discussion shows that some condition on† is needed: for example, it
cannot apply to closed hypersurfaces in Cn without periodic orbits as constructed in [44,46].

In [21], Theorem 2.1 is generalized to the case that .W;!/ is a geometrically bounded
symplectic manifold with !j�2.W / D 0, and the hypersurface† � W and homotopy†s are
tame and stable. Here stability was introduced by Hofer and Zehnder [53] as a condition,
generalizing contact type, under which existence results for periodic orbits continue to hold;
it appeared again in [14,29] as the hypothesis for compactness in symplectic field theory.

An intriguing class of Hamiltonian systems is given by Hamiltonians H.q; p/ D
1
2
jpj2 C U.q/ on a cotangent bundle W D T �M with a twisted symplectic form

! D dp ^ dq C ���;

where � W T �M ! M is the projection and � is a closed 2-form on M whose physical
significance is that of a magnetic field. It has long been known that the dynamics on a level
set †k D H

�1.k/ can change drastically with the level k, even in the case U D 0 where all
level sets are diffeomorphic (see [45] and the references therein). A famous example is that of
a hyperbolic surfaceM with its area form � and U D 0: Here †k is foliated by contractible
periodic orbits for k < 1=2, all periodic orbits on †k are noncontractible for k > 1=2, and
†1=2 (the horocycle flow) does not possess any periodic orbits. The value 1=2 at which the
dynamics changes is the Mañé critical value, and at this value also the geometric type of the
hypersurfaces†k changes: above 1=2 they are of contact type, below 1=2 they are stable and
tame but not of contact type, and †1=2 is unstable. The Rabinowitz Floer homology of †k

is well defined and zero for k < 1=2, it is well defined and nonzero for k > 1=2, and it is
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Figure 1

Three shapes of Hamiltonans.

undefined for k D 1=2. Using the generalization of Theorem 2.1, it is shown in [21] that this
picture persists for large classes of magnetic systems in arbitrary dimension.

2.3. Relation to symplectic homology
Let us return to the setup in Section 2.1, so† is a hypersurface of restricted contact

type in a Liouville manifold .W; �/. Recall that, by assumption, † D @V for a compact
subdomain V � W . After modifying � near †, we may assume that �j@V is a contact form,
so that .V; �/ is a Liouville domain. It is shown in [20] that RFH�.@V / depends only on the
completion OV D V [ Œ1;1/ � @V of V (which is a Liouville manifold with the 1-formb�
that equals � on V and r�j@V on Œ1;1/ � @V , with r the coordinate on Œ1;1/). Moreover,
RFH�.@V / is closely related to another invariant of V that we now recall.

Symplectic homology was introduced in 1994 by A. Floer and H. Hofer [43]. We will
use the version defined by C. Viterbo [76] as the direct limit

SH�.V / D lim
�!

FH�.H/

over HamiltoniansH W OV !R that are zero on V and linearly increasing in r outside a com-
pact set, as shown (up to smoothing) on the left of Figure 1. Dualizing, we obtain symplectic
cohomology as the inverse limit

SH�.V / D lim
 �

FH�.H/ D lim
 �

FH��.�H/:

These groups have refinements where the action is restricted to some interval .a; b/,

SH.a;b/
� .V / D lim

�!
FH.a;b/

� .H/; SH�
.a;b/.V / D lim

 �
FH�

.a;b/.H/ D lim
 �

FH.�b;�a/
�� .�H/:

In [20], a new V-shaped symplectic homology was introduced as the direct–inverse limit

S LH�.V / D lim
�!

b

lim
 �

a

S LH.a;b/
� .V /; S LH.a;b/

� .V / D lim
�!
H

FH.a;b/
� .H/;

where the second direct limit is taken over “V-shaped” HamiltoniansH W OV ! R as shown
(up to smoothing) in the middle of Figure 1. For any given�1< a < b <1 and sufficiently
largeH , the orbits in group I have action outside .a; b/, so S LH�.V / is generated by the orbits
in group II, which are in one-to-one correspondence with generators of RFH�.@V /. This
observation combined with a technical tour de force leads to
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Theorem 2.3 ([20]). For each Liouville domain, we have

S LH�.V / D RFH�.@V /:

Moreover, this group fits into a commuting diagram with exact row

: : : SH��.V /
" //

��

SH�.V /
� // RFH�.@V /

� // SH1��.V / : : :

Hn��.V; @V /
e // Hn��.V /:

OO

(2.2)

In this diagram, e is the canonical map in the long exact sequence of the pair .V;@V /
and the vertical arrows correspond to the action zero (constant loop) part. It allows the
computation of Rabinowitz Floer homology in terms of symplectic homology and singu-
lar cohomology. The following example will play a fundamental role in Section 3.

Example 2.4 (Cotangent bundles). Let T �M be the cotangent bundle of a closed mani-
foldM with its canonical Liouville form � D p dq. Its unit disk bundleD�M D ¹.q; p/ 2

T �M j jpj � 1º with respect to some Riemannian metric is a Liouville domain with bound-
ary S�M D ¹.q; p/ 2 T �M j jpj D 1º. Viterbo’s isomorphism (proved by a joint effort of
many people, see [2,4,55,68,75])

SH�.D
�M/ Š H�.ƒ/ (2.3)

expresses its symplectic homology in terms of the singular homology (with suitably twisted
coefficients) of the loop space ƒ D C1.S1;M/. Hence diagram (2.2) becomes

: : :H��.ƒ/
" //

��

H�.ƒ/
� // RFH�.S

�M/
� // H 1��.ƒ/ : : :

H��.M/
e // Hn��.M/;

OO

(2.4)

where e is the canonical map in the Gysin sequence of the sphere bundle S�M ! M . We
see that the map e (and therefore ") lives only in degree zero and multiplies the class of a
basepoint q0 2M by the Euler characteristic � of M . So

RFH�.S
�M/ Š H�.ƒ; �q0/˚H

1��.ƒ; �q0/

is the direct sum of “reduced” loop space homologyH�.ƒ;�q0/D coker " (in degrees� 0)
and cohomology H 1��.ƒ; �q0/ D ker " (in degrees � 1).

2.4. Applications in symplectic topology
Over the past ten years, Rabinowitz Floer homology has found numerous appli-

cations in symplectic topology and Hamiltonian dynamics. One circle of applications was
touched in Section 2.2, and three more are discussed in this subsection. I apologize for the
omission, due to space constraints, of many other beautiful applications, such as [7,10], that
would also have deserved to be included.
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Leafwise intersections. The proof of Theorem 2.1(c) is based on more general action func-
tionals

A
�H
F .x; �/ D

Z
x

� � �

Z 1

0

�.t/H.x/dt �

Z 1

0

F.t; x/dt;

where H W W ! R is a defining Hamiltonian for a hypersurface † D H�1.0/ of restricted
contact type, � 2 C1.S1;R/ has support in .0; 1=2/ and integral 1, and F W S1 �W ! R

has compact support and vanishes for t 2 Œ0; 1=2�. Critical points of A
�H
F correspond to

leafwise intersections, i.e., points on † whose image under the time-one-map of XF lands
on the same XH -orbit on †. P. Albers and U. Frauenfelder [8] have proved that the Floer
homology of any such functional equals RFH�.†/. Applied to a Hamiltonian F whose time-
one-map displaces † from itself, and which therefore has no leafwise intersections, this
implies Theorem 2.1(c). Conversely, it proves the existence of leafwise intersections for any
F if RFH�.†/ ¤ 0. See [8,9] for further results in this direction.

Exact contact embeddings. We now return to the question of dependence of
RFH�.†/ on the ambient Liouville manifold W . Using neck-stretching from symplectic
field theory, independence of W is proved in [20] if �1.†/ D 0 and all periodic orbits on
† have Conley–Zehnder index > 3 � n. For example, this holds if † is the unit cotangent
bundle S�M of a closed simply connected manifold with dimM > 3 with its standard con-
tact structure. Since RFH�.S

�M/¤ 0 by Example 2.4, it follows that the image of an exact
contact embedding S�M ,! .W; �/ (i.e., an embedding such that the pullback of � defines
the standard contact structure) cannot be displaceable. Thus no such embedding exists if all
compact sets are displaceable inW (e.g., for Cn, subcritical Stein manifolds, or products of a
Liouville manifold with C), and ifW is a cotangent bundle the image of such an embedding
must intersect each fiber. Since an exact Lagrangian embedding M ,! W gives rise to an
exact contact embedding S�M ,! W , these results generalize Gromov’s theorem [49] that
there are no closed exact Lagrangian submanifolds M � Cn, under the assumptions that
M is simply connected of dimension > 3. The nonexistence of exact contact embeddings
S�M ,! Cn without these assumptions on M appears to be unknown.

Periodic Reeb flows. In many examples for which symplectic homology has been explicitly
computed, such as Brieskorn manifolds (see, e.g., [42, 56]), it exhibits some kind of peri-
odicity. P. Uebele [74] has found a beautiful explanation of this phenomenon in terms of
Rabinowitz Floer homology. It uses the graded commutative associative products on sym-
plectic homology and Rabinowitz Floer homology that will be discussed in the next section.

Theorem 2.5 (P. Uebele [74]). Let V be a Liouville domain such that @V is simply connected
and all periodic orbits on @V have Conley–Zehnder index > 3 � n. Assume that the Reeb
flow on @V is periodic with minimal common period T > 0. Let s 2RFH�.@V / be the class of
a principal orbit (corresponding to the maximum on the Bott manifold of orbits of period T ).
Its Conley–Zehnder index has the form nC 2b for some b 2 Z. If b ¤ 0, then multiplication
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with s makes RFH�Cn.@V / with coefficients in a field K a free and finitely generated module
over the ring of Laurent polynomials KŒs; s�1�.3

Besides establishing periodicity, this theorem allows the computation of the ring
structure on RFH�.@V / for many such Liouville domains. It also implies that the sym-
plectic homology of such a Liouville domain with K-coefficients is finitely generated as
a K-algebra. This finiteness result does not hold for all Liouville domains, counterexamples
arising, e.g., from unit disk cotangent bundles of closed hyperbolic manifolds of dimension
� 3. It would be interesting to understand for which Liouville domains the finiteness result
holds.

3. Poincaré duality for loop spaces

Let M be a closed connected manifold of dimension n and ƒ D C1.S1; M/ its
free loop space. Let us assume for simplicity thatM is oriented, although everything in this
section remains true in the unoriented case with suitable twisted coefficients. In their 1999
article [17] and its sequels, M. Chas and D. Sullivan introduced a wealth of operations on the
homology of ƒ that gave rise to a whole new research area named string topology. We will
focus on the following two operations:

• the loop product � D � on H�ƒ, which is graded commutative, associative, and
unital of degree �n [17], and

• the loop coproduct � on the homology H�.ƒ; ƒ0/ relative to the subspace
ƒ0 � ƒ of constant loops, which is graded cocommutative and coassociative
of degree 1 � n [73].

The loop coproduct is dual to a product ~ of degree n � 1 on cohomologyH�.ƒ;ƒ0/ that
was extensively studied in [48] and is often referred to as the Goresky–Hingston product.
Subsequent studies of these products led to a number of puzzles, including the following
two (see [25] for more details):

(a) Sullivan [73] has conjectured the following relation which we will refer to as
Sullivan’s relation:

�� D .1˝ �/.�˝ 1/C .�˝ 1/.1˝ �/: (3.1)

How and on which space is this relation to be interpreted and proved?

(b) Many results concerning � and ~ arise in dual pairs. For example, the critical
levels Cr.X/ forX 2H�ƒ and cr.x/ for x 2H�.ƒ;ƒ0/ defined in [48] satisfy

3 In [74], the result is stated with Z2-coefficients, but the extension to an arbitrary field K is
straightforward. The restriction to field coefficients is essential because the proof uses the
fact that KŒs; s�1� is a principal ideal domain.
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the dual inequalities

Cr.X � Y / � Cr.X/C Cr.Y /; cr.x ~ y/ � cr.x/C cr.y/:

Can these phenomena be explained by some kind of “Poincaré duality”?

We will see in this section that these puzzles get naturally resolved in terms of the Rabinowitz
Floer homology of the unit sphere cotangent bundle S�M , which we will call the Rabinowitz
loop homology and denote by

LH�ƒ D RFH�.S
�M/ D S LH�.D

�M/:

3.1. Product and coproduct on symplectic homology
We begin by describing the analogues of � and � on symplectic homology of a

Liouville domain V . They are based on topological quantum field theory (TQFT) operations
that were introduced by M. Schwarz [71] on Floer homology over closed symplectic mani-
folds, and extended by P. Seidel [72] to symplectic homology. Let us recall the construction,
following the exposition of A. Ritter [67]. It takes the following inputs: a nonnegative asymp-
totically linear Hamiltonian H W OV ! R�0; a Riemann surface .S; j / with q positive ends
modeled over RC � S

1 and p negative ends modeled over R� � S
1; and a 1-form ˇ on S

with dˇ � 0 which equals Akdt in canonical coordinates s C i t on the negative ends and
B`dt on the positive ends, for some positive weights Ak ; B`. By Stokes’ theorem, such a ˇ
exists if and only if the weights satisfy

pX
kD1

Ak �

qX
`D1

B`: (3.2)

The algebraic count of maps u W S ! OV satisfying .du � ˇ ˝XH /
0;1 D 0 gives a map

 S W

qO
`D1

FH�.B`H/!

pO
kD1

FH�.AkH/:

(Here we need to use field coefficients in order to have a Künneth formula). Applied to
Hamiltonians as on the left of Figure 1, these maps induce maps on symplectic homology

 S W SH�.V /
˝q
! SH�.V /

˝p

which depend only on the topological type of S and satisfy the usual TQFT composition
rules. Note, however, that (3.2) forces p � 1, so we only get a noncompact TQFT structure.
As part of this structure, we get on SH�.V / the unital, graded commutative and associative
pair-of-pants product � of degree �n.

The TQFT structure on SH�.V / also includes a coproduct of degree �n, which is,
however, not very interesting. Namely, by deforming the weight at one of the outputs to 0, we
can force the corresponding output to land in the action zero (constant loop) part SHD0

� .V /,
hence to vanish in the quotient SH>0

� .V /. Since the coproduct vanishes in two different ways,
interpolating the weights at the two outputs gives rise to a secondary pair-of-pants coproduct
� on SH>0

� .V / of degree 1 � n (this was first pointed out by P. Seidel and further explored
by T. Ekholm and A. Oancea [38]).
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The following theorem relates the operations on symplectic homology to those in
string topology. Here the assertion concerning the products is due to A. Abbondandolo and
M. Schwarz [3], and that concerning the coproduct is proved in [24].

Theorem 3.1 (Relation to string topology operations [3, 24]). Viterbo’s isomorphism (2.3)
intertwines the pair-of-pants product with the loop product (both denoted �). It descends to
an isomorphism SH>0

� .D�M/ŠH�.ƒ;ƒ0/ which intertwines the secondary pair-of-pants
coproduct with the loop coproduct (both denoted �).

3.2. Product and coproduct on Rabinowitz Floer homology
It was observed in [30] that applying the arguments of the previous subsection to

Hamiltonians as in the middle of Figure 1 also equips Rabinowitz Floer homology RFH�.V /

with a noncompact TQFT structure. In particular, it carries a unital, graded commutative
and associative product of degree �n which we will denote by �. Moreover, the map � in
diagram (2.2) is a ring homomorphism.

It turns out that Rabinowitz Floer homology also carries a canonical coproduct. To
describe the resulting algebraic structure, let us introduce the degree shifted (co)homology
groups4

SH�.V / D SH�Cn.V /; SH�.V / D SH�Cn.V /; RFH�.@V / D RFH�Cn.@V /:

With respect to the shifted gradings, the products � and � have degree 0. Let us call invo-
lutive infinitesimal bialgebra5 the structure consisting of a graded commutative associative
product and a graded cocommutative coassociative coproduct satisfying �� D 0 and

�� D .1˝ �/.�˝ 1/C .�˝ 1/.1˝ �/ � .�˝ �/.1˝ �.1/˝ 1/: (3.3)

Theorem 3.2 (Involutive infinitesimal bialgebra structure on Rabinowitz Floer homol-
ogy [25]). There exists a degree 1� 2n coproduct � on RFH�.@V /making .RFH�.@V /;�;�/

an involutive infinitesimal bialgebra.

To define �, we modify the construction of the secondary pair-of-pants coproduct �
described above by deforming the weights at the outputs to negative weights�1 rather than 0.
This has the effect of splitting off the chain-level continuation map " W SC��.V /! SC�.V /

at the corresponding output. Since the continuation map is induced by monotone homotopies
from �H to H as on the left of Figure 1, which factor through the zero Hamiltonian which
has only constant orbits, this shows again that � induces an operation on positive symplectic
homology SH>0

� .V /. Applying the same reasoning on the Rabinowitz Floer complex we are
in for a pleasant surprise: the chain-level continuation map is now induced by monotone
homotopies from �H to H with H as in the middle of Figure 1, which factor through
the Hamiltonian on the right of Figure 1 which has no 1-periodic orbits at all in a given

4 This degree shift is also common in string topology, see [17].
5 The structure has further properties which will not be discussed here. Similar structures

have appeared in the work of Aguiar [6], Joni-Rota [54], Ehrenborg-Readdy [36], and
Loday-Ronco [60].
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action interval! Thus the secondary pair-of-pants coproduct induces an operation � on all of
RFH�.@V /.

Remark 3.3. The operations �;� are defined using the interpretation of Rabinowitz Floer
homology as V-shaped symplectic homology. It would be interesting to find a definition in
terms of the original definition of Rabinowitz Floer homology.

The next result relates the operations on Rabinowitz Floer homology to those on
symplectic homology. Here we denote by �_ the coproduct on SH�.V / dual to �, and by
�_ the product on SH�

>0.V / dual to �.

Theorem 3.4 (Almost splitting [25]). The long exact sequence (2.2) fits into the canonical
commuting diagram

.SH1�2n��
>0 .V /; �_/

i

uu
j

��
" // .SH�.V /; �/

� //

q

��

.RF H�.@V /;�;�/
� //

p

vv

.SH1�2n��.V /; �_/
" //

.SH>0
� .V /; �/

in which the maps � and i intertwine the products �, �, and �_, and the maps p and �
intertwine the coproducts �, �, and �_.

We can interpret this as saying that the long exact sequence (2.2) “almost splits” in
the sense that it splits up to some discrepancy in the action zero part. Note that, while the
map � preserves the products, the corresponding splitting map p preserves the coproducts,
and similarly for � and i .

To apply the preceding discussion to string topology, we introduce the correspond-
ing degree shifted (co)homology groups

H�ƒ D H�Cnƒ; H�ƒ D H�Cnƒ; LH�ƒ D LH�Cnƒ:

Then Theorems 3.2 and 3.4 yield

Corollary 3.5 (Involutive infinitesimal bialgebra structure on Rabinowitz loop homol-
ogy [25]). There exists a degree 1 � 2n coproduct � on LH�ƒ making . LH�ƒ; �; �/ an
involutive infinitesimal bialgebra. Moreover, the long exact sequence (2.4) fits into the canon-
ical commuting diagram

.H1�2n��.ƒ;ƒ0/; �
_ D ~/

i

uu
j

��
" // .H�ƒ;� D �/

� //

q

��

. LH�ƒ;�;�/
� //

p

vv

.H1�2n��ƒ;�_/
" //

.H�.ƒ;ƒ0/; �/
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in which the maps � and i intertwine the products � D �, � and �_ D ~, and the maps p
and � intertwine the coproducts �, � and �_.

In this case the maps i; j are injective and the maps p; q are surjective. The map
� becomes injective after replacing H�ƒ by its “reduced” version H�.ƒ; �q0/ from Exam-
ple 2.4, and the map � becomes surjective after replacing H�ƒ by H�.ƒ; �q0/.

This provides the full solution to puzzle (a): By the left triangle, � and � extend
to operations � and � on the common domain LH�ƒ satisfying the generalized form (3.3)
of Sullivan’s relation. Note that the right triangle gives the same conclusion for the dual
operations �_ D ~ and �_.

On the other hand, the products � and ~ both appear as components of the product
� on LH�ƒ. This provides an unexpected alternative interpretation of Sullivan’s relation for
� and �, as part of associativity for the product � on LH�ƒ! See [27] for further discussion
of this topic.

3.3. Poincaré duality for Rabinowitz Floer homology
The main motivation for introducing Rabinowitz Floer homology into string topol-

ogy was that it satisfies a form of Poincaré duality. This was proved in [30] on the level of
vector spaces, and in [25] with the additional algebraic structure. To formulate it, note that
the operations �_;�_ dual to �;� define again the structure of an involutive infinitesimal
bialgebra on the degree shifted Rabinowitz Floer cohomology RFH�.@V / D RFH�Cn.@V /

(the notion of an involutive infinitesimal bialgebra is “self-dual”).

Theorem 3.6 (Poincaré duality for Rabinowitz Floer homology [25]). With field coefficients,
there exists for each Liouville domain V a canonical isomorphism of involutive infinitesimal
bialgebras

PD W
�
RFH�.@V /;�;�

� '
!
�
RF H1�2n��.@V /;�_;�_

�
:

In the zero action range, the left-hand side isH��.@V /with � the cup product, and
the right-hand side is H2n�1C�.@V / with �_ the intersection product. These are related by
Poincaré duality on @V , and the other two operations are their algebraic duals. Theorem 3.6
thus extends classical Poincaré duality on @V to Rabinowitz Floer homology.

On the level of vector spaces, Poincaré duality is most transparent in the original
definition of Rabinowitz Floer homology via a Lagrange multiplier functional: it arises from
the simple observation that, under the canonical involution

.x; �/ 7! . Nx; N�/; Nx.t/ D x.�t /; N� D ��;

the Rabinowitz action functional changes sign,

AH . Nx; N�/ D �AH .x; �/:

It follows that the involution maps positive gradient lines of AH to negative gradient lines
of AH , and thus induces an isomorphism from Floer homology to Floer cohomology which
implies Poincaré duality on the level of vector spaces. To show compatibility with the invo-
lutive infinitesimal bialgebra structures, one needs to reprove Poincaré duality using the
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description of Rabinowitz Floer homology as V-shaped symplectic homology (which is less
intuitive).

3.4. Applications in Riemannian geometry
Applied to degree shifted Rabinowitz loop homology and cohomology LH�ƒ D

LH�Cnƒ D RFH�Cn.S�M/, Theorem 3.6 becomes

Corollary 3.7 (Poincaré duality for free loop spaces [25]). With field coefficients, there exists
a canonical isomorphism of involutive infinitesimal bialgebras

PD W . LH�ƒ;�;�/
'
!
�
LH1�2n��ƒ;�_;�_

�
:

It is shown in [25] that Corollary 3.7 resolves puzzle (b): each classical pair of the-
orems for the products � and ~ on loop (co)homology extends to a pair of theorems for the
products � and �_ on Rabinowitz loop (co)homology which are related via Poincaré dual-
ity. This leads to unified proofs for each classical pair of theorems. While the original proofs
were topological, the unified proofs are always symplectic. More specifically, the following
applications are discussed in [25,26,28]:

• the behavior of critical levels of the length and action functionals with respect to
products;

• the computation of the Rabinowitz loop homology ring of manifolds all of whose
geodesics are closed using Uebele’s theorem [74], with applications to the question
of string point invertibility of constant rank one symmetric spaces, resonances,
and a conjecture of Viterbo concerning spectral norms;

• a duality between index and indexC nullity for closed geodesics as a consequence
of an iteration formula due to Liu and Long;

• the characterization of level-potent (co)homology classes in terms of symplecti-
cally degenerate maxima and minima, with dynamical implications for the exis-
tence of infinitely many closed geodesics and the Conley conjecture.

The question of homotopy invariance of Rabinowitz loop homology will be addressed
in upcoming work. This question has become particularly interesting due to the recent dis-
covery by Naef [63] that, in contrast to the loop product, the loop coproduct is not homotopy
invariant.

3.5. Topological descriptions of Rabinowitz loop homology
Rabinowitz loop homology LH�ƒwas defined above as Rabinowitz Floer homology

RFH�.S
�M/ and the operations �; � were constructed Floer theoretically. This subsec-

tion outlines four purely topological constructions of LH�ƒ and its operations which are the
subject of joint work in progress with A. Oancea, N. Hingston, M. Abouzaid, and T. Kragh.

Construction via cones. In [31], Rabinowitz Floer homology RFH�.@V / of a Liouville
domainV is described in terms of the cones of chain-level continuation maps " WFC�.�H/!
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FC�.H/ for Hamiltonians H as on the left of Figure 1. Moreover, the operations �;� are
derived from an AC

2 -structure on the Floer chain complex FC�.H/, which consists of a
chain-level product and coproduct satisfying suitable compatibility conditions with the con-
tinuation map. This description carries over to the Morse chain complex MC�.S/ of a
Lagrangian action functional of the form S.
/ D

R 1

0
.j P
 j2 � V.t; 
//dt on H 1.S1; M/.

In view of the discussion in Example 2.4, we define the chain-level continuation map
" W MC��.S/ ! MC�.S/ to live only in degree 0 and send the basepoint q0 to �q0. It
is proved in [24] that suitable chain-level versions of the loop product and coproduct give
rise to an AC

2 -structure on MC�.S/, and the homology of the cone of " is isomorphic to
LH�ƒ as an infinitesimal bialgebra.

Construction via spectra. Since Rabinowitz loop homology generally lives in arbitrarily
positive and negative degrees, it cannot be the homology of a topological space. It can, how-
ever, be obtained as the homology of a spectrum (see, e.g., [5] for background on spectra).
The construction uses the Spanier–Whitehead dual and a cone construction on the level of
spectra.

Construction via constant speed loops. It was suggested by N. Hingston that the cohomol-
ogy product ~ should correspond to a “Chas–Sullivan product on cochains of constant speed
loops.” This leads to the following conjectural description of LH�ƒ. Let C� � H 1.S1;M/

be the subspace of constant speed loops, i.e., loops parametrized with constant speed. For
an action functional S W C� ! R as above, we consider the chain complex generated by the
stable and unstable manifolds of its critical points, viewed as chains of finite dimension
resp. finite codimension, with a differential such that its homology equals LH�ƒ. Chas–
Sullivan-type products and coproducts between these chains should then recover its infinites-
imal bialgebra structure. One difficulty in making this approach rigorous is that C� does not
appear to be a Hilbert manifold, but only (away from constant loops) an sc-manifold in the
sense of [52] (see [64]).

Construction via a Lagrange multiplier functional. The space of constant speed loops
is defined by the constraint j P
.t/j D const. Morse homology with such a constraint can
be described by a Lagrange multiplier functional with an infinite-dimensional space of
Lagrange multipliers. Imitating the construction of Rabinowitz Floer homology, we can
replace this by an integrated constraint with a 1-dimensional Lagrange multiplier. More
precisely, we fix an � > 0 and define the Rabinowitz energy functional

LE W ƒ �R! R; LE.
; �/ D �

Z 1

0

j P
 j2 �
�3

3
C ��2:

Its critical points are pairs .
; ˙�
 / with 
 a (possibly constant) closed geodesic and
�
 D .

R 1

0
j P
 j2 C �2/1=2, so they are in one-to-one correspondence with the generators of

the complex computing LH�ƒ. It should not be too hard to prove that the Morse homology
of LE equals Rabinowitz loop homology, but it remains unclear how to recover its product
and coproduct from this description.
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4. Other Lagrange multiplier functionals

This section is devoted to some further examples of Lagrange multiplier functionals.

Example 4.1 (Constrained Lagrangian systems). LetM be a Riemannian manifold and L W
TM ! R a smooth Lagrange function. For a < b and A;B 2M , consider the path space

X D
®
x 2 C1

�
Œa; b�;M

�
j x.a/ D A; x.b/ D B

¯
and the Lagrangian action

SL W X ! R; SL.x/ D

Z b

a

L
�
x.t/; Px.t/

�
dt:

Given a smooth function k WM !W to a vector spaceW with 0 as a regular value, consider
the Lagrange multiplier functional

OSL W X � C
1
�
Œa; b�;W �

�
! R; OSL.x; �/ D SL.x/ �

Z b

a

˝
�.t/; k

�
x.t/

�˛
dt:

Its critical points are solutions of the equations

k
�
x.t/

�
� 0;

@L

@x
� rt

@L

@ Px
D
˝
�;rk.x/

˛
:

and correspond to critical points of SL subject to the pointwise constraint k.x.t//� 0. Here
@L
@x
�rt

@L
@ Px

is the familiar term from the Euler–Lagrange equation of L and �h�;rk.x/i is
the constraint force.

Example 4.2 (Euler’s equation for rigid bodies). Let us now specialize Example 4.1 to
the case that M is a Lie group G, and H D k�1.0/ is a subgroup defined by a function
k W G!W satisfying k.gh/D k.g/ for all g 2 G, h 2H . We also specialize the Lagrange
function to L.g; Pg/D 1

2
j Pgj2g for a right-invariant Riemannian metric onG. Then the critical

point equation for .g; �/ 2 C1.Œa; b�; G/ � C1.Œa; b�;W �/ is equivalent to the first-order
equations

v.t/ 2 h; Pv C B.v; v/C
˝
�;rk.e/

˛
D 0 (4.1)

on the Lie algebra g D TeG (see [12, 13]). Here v.t/ D Pg.t/g.t/�1 is the “body angular
velocity,” e 2 G is the unit, h is the Lie algebra ofH , and B W g� g! g is the bilinear form
defined by hB.c; a/; bi D hŒa; b�; ci. In the case G D H D SO.3/, this becomes Euler’s
equation for the motion of a free rigid body [41].

Example 4.3 (Euler’s equations of hydrodynamics). We also owe L. Euler the equations of
motion for the velocity field v and the pressure p of an inviscous incompressible fluid [40],
namely

div v D 0; Pv Crvv Crp D 0: (4.2)

The general setup for these equations is a closed Riemannian manifold M equipped with a
volume form vol, so that v is a vector field and p a function on M (both time dependent).
In 1966, V. I. Arnold [11] derived these equations by formally applying Example 4.2 to the

2519 Lagrange multiplier functionals



diffeomorphism groupG DDiff.M/ and its subgroupH DDiff.M;vol/ of volume preserv-
ing diffeomorphisms. Here the right-invariant metric on Diff.M/ is defined for g 2Diff.M/

and vector fields v;w 2 g D X.M/ by

hv ı g;w ı gi D

Z
M

hv;wi vol;

and the subgroup Diff.M; vol/ is the zero set of the function

k W Diff.M/! �n.M/; k.g/ D .g�1/� vol� vol :

The Lagrange multiplier �, now denoted by p, is a function from Œa; b� to �n.M/� D

C1.M;R/. Short computations (see [13]) yield B.v; v/ D rvv and hp;rk.e/i D rp, so
that equation (4.1) becomes equation (4.2).

A famous open problem (unfortunately not worth a million dollars) concerns the
existence for all times of smooth solutions of (4.2) with smooth initial conditions. This is
only known in dimension 2 where it was first proved by O. Ladyzhenskaya [57]. In 1970,
D. Ebin and J. Marsden [34] reproved this result using Arnold’s geometric interpretation
of (4.2) as rigid body motion on the group Diff.M;vol/. This interpretation also allows us to
consider Euler equations on other subgroups of Diff.M/. For example, long-time existence
has been proved for the Euler equations on groups of symplectomorphisms (Ebin [33]) and
contactomorphisms (Ebin and Preston [35]). See also [50] for results on the group of diffeo-
morphisms preserving a stable Hamiltonian structure. It would be interesting to investigate
the interaction of the Euler equations with other geometric structures on these groups such
as Hofer’s metric on symplectomorphisms, or partial orders on contactomorphisms.

Example 4.4 (Gauge theories). One often encounters the situation that a function
f W X ! R is invariant under the action of a Lie group G on X , and we are interested
in its critical G-orbits. Suppose there exists a function h W X ! g such that Z D h�1.0/

meets all G-orbits and for each x 2 Z the map

g! g; � 7! dh.x/ �X�.x/

is an isomorphism, where � 7! X�.x/ D
d
dt
jtD0 exp.t�/x denotes the infinitesimal action

of the Lie algebra. Then Z is a slice for the G-action and the critical G-orbits correspond
to critical points of the Lagrange multiplier functional F.x; �/ D f .x/ � h�; h.x/i with
� 2 g�. While such a slice Z usually does not exist globally, it often exists at least locally
near a given G-orbit.

For example, let G be a compact connected simple Lie group and consider the
Chern–Simons action

S.A/ D
1

4�

Z
M

Tr
�
A ^ dAC

2

3
A ^ A ^ A

�
on connections r D d C A, A 2 �1.M; g/ on the trivial principal G-bundle over a closed
3-manifold M . Its critical points are the flat connections, and it is invariant up to integer
multiples of 2� under the action of the gauge group G D C1.M; G/ (see [69, 79]). Let us
fix a flat connection A and consider the complex

�0.M;g/
dA
! �1.M;g/

dA
! �2.M;g/:

2520 K. Cieliebak



Here the first map is the infinitesimal action of the Lie algebra Lie G D �0.M; g/ and the
second map is the linearization of S atA. Let hD d�

A W�
1.M;g/!�0.M;g/ be the adjoint

of dA with respect to some Riemannian metric on M . This function satisfies the condition
above and thus defines a sliceZ D h�1.0/ for the G -action iff the dA-cohomologyH 0

A.M;g/

vanishes, and the restriction S jZ has a nondegenerate critical point at A iff H 1
A.M; g/ van-

ishes. Writing a general connection as AC ˇ, ˇ 2 �1.M;g/, the Lagrange multiplier func-
tional

F.ˇ; �/ D S.AC ˇ/ �
˝
�; d�

Aˇ
˛
D

1

4�

Z
M

Tr
�
ˇ ^ dAˇ C

2

3
ˇ ^ ˇ ^ ˇ C d�

Aˇ ^ ��

�
corresponds to the first three terms of the Fadeev–Popov action, where � 2 ��.M;g/ is the
gauge fixing boson. With an additional fermionic term, this becomes the relevant functional
for the perturbative expansion of the Chern–Simons partition function at the flat connec-
tion A (see [69,79]).

Example 4.5 (Symplectic vortex equations). This example follows [23]; it was the original
motivation leading to Rabinowitz Floer homology. Consider a Hamiltonian action of a com-
pact connected Lie group G on a symplectic manifold .M; !/ with an equivariant moment
map � WM ! g�. Let ƒ D C1.S1;M/, where S1 D R=Z, and denote by ƒcontr � ƒ the
subspace of contractible loops. Consider the action

A W ƒcontr
! R; A.x/ D

Z
Nx

!;

where Nx W D ! M is an extension of x to the closed unit disk. This is independent of the
choice of Nx if ! vanishes on �2.M/, which we will assume for simplicity. Suppose that 0 is
a regular value of � and consider the Lagrange multiplier functional

A�
W ƒcontr

� C1.S1;g/! R; A�.x; �/ D A.x/ �

Z 1

0

˝
�.x/; �

˛
dt

with a Lagrange multiplier � 2 C1.S1; g/. To describe its gradient flow, we pick a com-
patible almost complex structure J on .M; !/ and an Ad-invariant inner product on g, and
define a metric m on ƒcontr � C1.S1;g/ by

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

�
!
�
Ox1; J.x/ Ox2

�
C hO�1; O�2i

�
dt:

Then gradient flow lines of A� are maps .u; �/ W R � S1 !M � g, satisfying
@u

@s
C J.u/

�
@u

@t
CX�.u/

�
D 0;

@�

@s
C �.u/ D 0;

where .s; t/ are the coordinates on R� S1 andX�.x/D
d
dt
jtD0 exp.t�/x. To interpret these

equations more geometrically, we view the Lagrange multiplier as a connection

A D �.s; t/dt 2 �1.Z;g/

on the cylinder Z D R � S1. Its curvature is FA D
@�
@s
ds ^ dt , which can be converted to

a function Z ! R using the Hodge � operator �.ds ^ dt/ D 1. Moreover, the connection
induces a covariant derivative

dAu D duCXA.u/ D duCX�.u/dt W TZ ! TM
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and its complex antilinear part

N@J;A.u/ D
1

2

�
dAuC J.u/ ı dAu ı j

�
with respect to the standard complex structure j on R� S1 sending @s to @t . Then the above
equations for gradient flow lines of A� become the symplectic vortex equations

N@J;A.u/ D 0; �FA C �.u/ D 0:

These equations were discovered independently by D. Salamon and I. Mundet i Riera [23,62]

for an arbitrary Riemann surface in place of the cylinder Z. They give rise to invariants of
Hamiltonian group actions and a quantum Kirwan map, with applications to the quantum
cohomology of symplectic quotients [22,32,47,65]. Applied to suitable infinite-dimensional
symplectic manifolds, the symplectic vortex equations comprise other well-known equations
of mathematical physics such as the anti-self-dual Yang–Mills equations and the Seiberg–
Witten equations [23].

The functional A� is still invariant under the action of the gauge group
G D C1.S1; G/. If this action has a global slice, we can remove the gauge symmetry as in
Example 4.4 by introducing another Lagrange multiplier in the dual Lie algebraC1.S1;g�/.
One situation where such a slice exists is an R-action generated by a single Hamiltonian
� D H such that † D H�1.0/ is of contact type, in which case the functional A� restricts
on the slice to the Rabinowitz action functional [9]. On the other hand, considering the action
A on the loop space C1.S1;†/ and removing the gauge symmetry leads to the equations in
Example 4.6 below. It would be interesting to further explore the various Lagrange multiplier
functionals and their Floer homologies in this situation.

Example 4.6 (Symplectic field theory). Let .!; �/ be a stable Hamiltonian structure on a
closed .2n� 1/-manifoldM with Reeb vector fieldR (see [14]).6 Assume for simplicity that
! D d� is exact, so that we have a well-defined action functional

A W ƒ D C1.S1;M/! R; x 7!

Z
x

�:

This functional is invariant under the group G D DiffC.S
1/ of orientation-preserving dif-

feomorphisms of the circle. One can break this symmetry by imposing the gauge fixing
condition �. Px/ D const. (The constant should not be fixed because we cannot expect closed
Reeb orbits of prescribed period). Critical points of A subject to this constraint are critical
points of the Lagrange multiplier functional

OA W ƒ � g0 ! R; OA.x; �/ D A.x/C

Z 1

0

�.t/�
�
Px.t/

�
dt;

with the codimension-one subspace g0 of the Lie algebra of G given by

g0 D

´
� 2 C1.S1;R/ j

Z 1

0

�.t/dt D 0

µ
:

6 Even in the contact case ! D d�, separating the roles of ! and � clarifies the discussion.
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The derivative of OA is given by

d OA.x; �/. Ox; O�/ D

Z 1

0

�
!. Ox; Px/C � d�. Ox; Px/ � P��. Ox/C O��. Px/

�
dt;

so its critical points are solutions of the equations

�. Px/ D T D const; i Px.! C � d�/C P�� D 0;

Z 1

0

� D 0:

Inserting R in the second equation yields P� D 0 and thus � � 0, so critical points are pairs
.x; 0/ where Px D TR.x/ for some T 2 R. Now consider, for an !-compatible complex
structure J on � D ker�, the “metric” on ƒcontr � g0 defined by

m.x;�/

�
. Ox1; O�1/; . Ox2; O�2/

�
D

Z 1

0

�
.! C � d�/.� Ox1; J� Ox2/C �. Ox1/�. Ox2/C O�1 O�2

�
dt;

where � W TM ! � is the projection alongR. Note that in the contact case! D d�, the bilin-
ear formm.x;�/ is symmetric, but it is only positive definite as long as � > �1. Nevertheless,
OA has a well-defined “gradient” with respect to m given by

rm
OA.x; �/ D

�
�J.x/� Px � P�R.x/; �. Px/ �

Z
x

�

�
;

where the term �
R

x
� comes from projecting �. Px/ onto g0. So a gradient flow line

u D .�; f / W R � S1 ! R �M of OA satisfies the equations8̂̂<̂
:̂
@s� � �.@tf /C

R 1

0
f .s; �/�� D 0;

�.@sf /C @t� D 0;

�@sf C J.f /�@tf D 0:

(4.3)

Replacing � by a.s; t/ D �.s; t/C ˛.s/ for a function ˛ W R! R (unique up to a constant)
satisfying ˛0.s/ D

R 1

0
f .s; �/��, we obtain the familiar equations8̂̂<̂

:̂
@sa � �.@tf / D 0;

�.@sf /C @ta D 0;

�@sf C J.f /�@tf D 0;

(4.4)

for OJ -holomorphic curves uD .a;f / WR�S1!R�M with respect to the almost complex
structure OJ restricting to J on � and mapping the unit vector in R toR. On the plane C instead
of the cylinder R� S1, these equations were introduced by H. Hofer in his 1993 paper [51] on
the Weinstein conjecture in dimension three. They make sense for a domain being any punc-
tured Riemann surface, giving rise to symplectic field theory (SFT) [39], a general theory of
punctured holomorphic curves in symplectic cobordisms which has found numerous appli-
cations in contact and symplectic topology.

The description via Lagrange multipliers raises some interesting questions concern-
ing symplectic field theory. Let us begin with a brief comparison of equations (4.3) and (4.4).
Note first that �! 0 as s!˙1, whereas a grows linearly with slope the asymptotic peri-
ods as s!˙1. Moreover, shifting a by a constant yields again a solution, which is not the
case for �. The Floer energy of .�; f / equals the !-energy

R
R�S1 f

�! DA.xC/�A.x�/,
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which in the contact case equals the difference TC � T� of the asymptotic periods. Moreover,
in the contact case the action A.xC/ atC1 is equivalent to the Hofer energy (see [29]).

It would be interesting to give a direct proof of compactness modulo breaking of
solutions of (4.3) (say, in the absence of finite energy planes) without appealing to the SFT
compactness theorem [14,29]. Generalizing this proof to � being replaced by a loop of contact
forms �t may lead to a description of nonequivariant contact homology (see [15,38]) in terms
of such loops, analogous to the definition of Hamiltonian Floer homology in terms of loops
of Hamiltonians. In a different direction, this may also shed some light on the variant of (4.4)
introduced in [1] where the first two equations are replaced by a harmonic 1-form .f ��/ ı j ,
for which the compactness question is still wide open.

Another interesting feature of (4.3) is the fact that the asymptotic periodsT˙ can also
be negative or zero. This parallels the corresponding feature in Rabinowitz Floer homology
(see Section 2) and suggests that suitable counts of solutions of (4.3) (or equivalently (4.4))
compute the equivariant Rabinowitz Floer homology of the symplectization R �M when-
ever the latter is defined. This should lead to an interpretation of algebraic structures on Rabi-
nowitz Floer homology such as its involutive infinitesimal bialgebra structure and Poincaré
duality in terms of symplectic field theory. In the Lagrangian setting, N. Legout has con-
structed an A1-structure on the corresponding SFT-type complex ([59], see also [16, 37]),
whose relation to Rabinowitz Floer homology is still conjectural.
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