
Real Gromov–Witten
theory
Penka Georgieva

Abstract

In this note we survey some of the recent developments in real Gromov–Witten theory.
In particular, we discuss the main difficulties of the construction and important structural
results.
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1. Introduction

The Gromov–Witten invariants can be viewed as a modern counterpart of the classi-
cal enumeration of curves in projective varieties. They arise from integration over the moduli
spaces of pseudoholomorphic maps into a symplectic manifold introduced in the seminal
work of Gromov [21]. An influential perspective proposed by Witten interprets them as the
coefficients of a partition function of a topological string theory. As such they play a cen-
tral role in striking dualities relating them to mathematical objects of completely different
nature. Understanding these relations has and continues to generate substantial amount of
high-level research.

The real Gromov–Witten invariants arise in a similar way from integration over
moduli spaces of pseudoholomorphic maps. In the real case these maps are required to be
equivariant with respect to an antisymplectic involution on the target and one on the domain.
The antisymplectic involution corresponds to an intrinsic symmetry of the theory and is pre-
served under dualities thus providing conjectures relating the real Gromov–Witten invariants
with the dual equivariant objects. In particular, relations with SO/Sp gauge theory and the
Gaussian orthogonal/symplectic ensembles are expected.

In this note we present an overview of the construction of the real Gromov–Witten
invariants, based on a joint work [18] with Aleksey Zinger, and discuss structural results for
the local real Gromov–Witten theory, based on a joint work [16] with Eleny Ionel.

2. Real Gromov–Witten invariants

The foundations of (complex) Gromov–Witten theory, i.e., of counts of J -holo-
morphic curves in symplectic manifolds, were established in the 1990s and have been spec-
tacularly applied ever since. On the other hand, the progress in establishing the foundations of
real GW theory, i.e., of counts of J -holomorphic curves in symplectic manifolds preserved
by antisymplectic involutions, has been much slower. The two main difficulties in develop-
ing real GW theory are the potential nonorientability of the moduli space Mg;l .X;BIJ /�;� ,
defined in (2.2), and the fact that its virtual boundary strata have real codimension 1. This is
in contrast with the complex GW theory, where the moduli spaces have canonical orienta-
tions and the “boundary” strata have real codimension of at least 2. These two ingredients are
crucial for the construction of a (virtual) fundamental class, integration upon which defines
the invariants.

The difficulty arising from the existence of a real codimension 1 boundary strata can
be resolved by considering the larger moduli space (2.3) that is a union over all topological
types of involutions on the domain. As explained in Section 2.1, inside this space all codi-
mension 1 strata form a hypersurface rather than boundary and the definition of the invariants
becomes a question about the orientability of this moduli space. We introduce the notion of
real orientation on a symplectic manifold in Section 2.2 – these are topological conditions on
the symplectic manifold which ensure the orientability of the real moduli space (2.3). We
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define the primary and descendant real GW invariants in Section 2.3 and give examples of
large collections of real-orientable symplectic manifolds.

Invariant counts of real curves were first constructed by Welschinger [38,39] follow-
ing a different approach. They are defined in genus 0, for real symplectic 4- and 6-folds,
and under certain topological conditions ruling out maps from type (E) nodal symmetric
surfaces (later removed in [13]). In the Gromov–Witten-style approach to these counts devel-
oped in [11, 35], the invariance corresponds to the relevant moduli spaces being orientable
outside of (virtual) hypersurfaces which are shown not to be crossed by the paths of stable
maps induced by paths between two generic almost complex structures and two generic col-
lections of constraints.

Many methods have been developed for the computation of the real invariants,
notably by employing methods from tropical geometry [5–8, 23, 24, 29, 34], establishing
WDVV-type formulas [10, 17, 36], and through localization techniques [19, 30, 33]. In par-
ticular, the result of [33] provides the first instance of a real mirror symmetry phenomenon
and that of [30] the first real enumerative bounds in higher genus.

2.1. Moduli spaces of real maps
A real symplectic manifold is a triple .X; !; �/ consisting of a symplectic mani-

fold .X;!/ and an antisymplectic involution �. For such a triple, denote by J
�
! the space of

!-compatible almost complex structures J on X such that ��J D �J . The fixed locus X�

of � is then a Lagrangian submanifold of .X; !/ which is totally real with respect to any
J 2 J

�
! .

Example 2.1. An example of a real Kähler manifold .X;!; �; J / is the complex projective
space P n�1. The maps

�n W P n�1
! P n�1; Œz1; : : : ; zn� ! Œ Nz1; : : : ; Nzn�;

�2m W P 2m�1
! P 2m�1; Œz1; z2; : : : ; z2m�1; z2m� ! Œ�Nz2; Nz1; : : : ;�Nz2m; Nz2m�1�;

are antisymplectic involutions with respect to the standard Fubini–Study symplectic form!n

on P n�1. Another important example is a real quintic threefoldX5, i.e., a smooth hypersurface
in P 4 cut out by a real equation.

A symmetric surface .†; �/ is a connected oriented, possibly nodal, surface † with
an orientation-reversing involution � . There are b

3gC4
2

c topological types of smooth sym-
metric genus g surfaces; the type is determined by the number of fixed components and the
orientability of the quotient. A symmetric Riemann surface .†; �; j/ is a symmetric surface
.†; �/ with an almost complex structure j on † such that ��j D �j. We denote by J�

† the
space of such complex structures.

A continuous map
u W .†; �/ ! .X; �/

is called real if u ı � D � ı u; see Figure 1. It is said to be of degree B 2 H2.X I Z/ if
u�Œ†� D B . We denote the space of such maps by Bg.X/

�;� , with g denoting the genus of
the domain † of � .
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Figure 1

Here the domain † has 1 fixed circle and 1 cross-cap circle; the quotient †=� is a nonorientable surface with 1
boundary and 1 cross-cap.

For J 2 J
�
! , j 2 J�

†, and u 2 Bg.X/
�;� , let

N@J;ju D
1

2
.duC J ı du ı j/

be the N@J -operator on Bg.X/
�;� .

Let g; l 2 Z�0, .†; �/ be a genus g symmetric surface, B 2 H2.X I Z/ � 0, and
J 2 J

�
! . Let �2l � †2l be the big diagonal, i.e., the subset of 2l-tuples with at least two

coordinates equal. Denote by

Mg;l .X;BIJ /�;�
D
®�
u;
�
zC

1 ; z
�
1

�
; : : : ;

�
zC

l
; z�

l

�
; j
�

2 Bg.X/
�;�

� .†2l
��2l / � J�

† W

z�
i D �

�
zC

i

�
8 i D 1; : : : ; l; u�Œ†�Z D B; N@J;ju D 0

¯
= � (2.1)

the (uncompactified) moduli space of equivalence classes of degree B real J -holomorphic
maps from .†; �/ to .X; �/ with l conjugate pairs of marked points. Two marked J -holo-
morphic .�; �/-real maps determine the same element of this moduli space if they differ by
an orientation-preserving diffeomorphism of † commuting with � . We denote by

Mg;l .X;BIJ /�;�
� Mg;l .X;BIJ /�;� (2.2)

Gromov’s convergence compactification of Mg;l .X; BI J /�;� obtained by including sta-
ble real maps from nodal symmetric surfaces. The (virtually) codimension-one boundary
strata of

Mg;l .X;BIJ /�;�
� Mg;l .X;BIJ /�;�

� Mg;l .X;BIJ /�;�

consist of real J -holomorphic maps from one-nodal symmetric surfaces to .X; �/. Each
stratum is either a (virtual) hypersurface in Mg;l .X; BI J /�;� or a (virtual) boundary. The
existence of boundary is what prevents us from defining invariants for each topological type
of involutions � . However, one-nodal symmetric surfaces can always be smoothed out in
(real) one-parameter family to symmetric surfaces. Thus, each boundary stratum appears in
the compactification of precisely two of the moduli spaces Mg;l .X;BIJ /�;� corresponding
to two different topological types of orientation-reversing involutions � on †. This means
that the union over all topological types of involutions on† forms a space without boundary.
Let

Mg;l .X;BIJ /� D

[
�

Mg;l .X;BIJ /�;� (2.3)
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denote the union of the compactified real moduli spaces taken over all topological types of
orientation-reversing involutions � on †. Furthermore, denote by

RMg;l � Mg;l .pt; 0/id

the Deligne–Mumford moduli space of marked real curves. If g C l � 2, there is a natural
forgetful morphism

f W Mg;l .X;BIJ /� ! RMg;l � Mg;l .pt; 0/id: (2.4)

In order to study the orientability of these spaces, it is crucial to understand their
codimension one strata which consist of maps from one-nodal domains. As described in [27,

Section 3], there are four types of nodes a one-nodal symmetric surfaces .†; �/ may have:

(E) the node is an isolated point of the fixed locus †� � †;

(H) the node is a nonisolated point of the fixed locus †� and

(H1) the topological component of †� containing the node is algebraically
irreducible (its normalization is connected);

(H2) the topological component of †� containing the node is algebraically
reducible, but † is algebraically irreducible;

(H3) † is algebraically reducible.

In the genus 0 case, the degenerations (E) and (H3) are known as the codimension 1
sphere bubbling and disk bubbling, respectively; the degenerations (H1) and (H2) cannot occur
in the genus 0 case.

As a one-nodal symmetric surface is smoothed out in one-parameter family of sym-
metric surfaces, we observe the transition of a smooth symmetric surface through one-nodal
degeneration. A transition through a degeneration (H3) does not change the topological type
of the involution. Thus, each stratum of morphisms from a one-nodal symmetric surface of
type (H3) to .X; �/ is a hypersurface inside of Mg;l .X; BI J /�;� for some genus g involu-
tion � .

A transition through a degeneration (H2) also does not change the number of fixed
components. The transformation of the real locus is the same as in the (H3) case, but an (H2)
transition also inserts or removes two cross-caps. This transition may or may not change the
topological type of the involution. The former occurs when the fixed locus is separating
in which case the transition changes the topological type of the involution and thus each
stratum of morphisms from such one-nodal surfaces to .X; �/ is a boundary of the spaces
Mg;l .X;BI J /�;� for precisely two topological types of genus g involutions � . If the fixed
locus is nonseparating, then the transition does not change the topological type of the involu-
tion and each stratum of morphisms from such one-nodal surfaces to .X;�/ is a hypersurface
inside of Mg;l .X;BIJ /�;� for some genus g involution � . A degeneration (H2) cannot occur
in genus 0 or 1, but does occur in genus 2 and higher.
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A transition through a degeneration (E) or (H1) changes the number of fixed compo-
nents by one. In particular, each stratum of morphisms from a one-nodal symmetric surface
of type (E) or (H1) to .X;�/ is a boundary of the spaces Mg;l .X;BIJ /�;� for precisely two
topological types of genus g involutions � . A degeneration (H1) cannot occur in genus 0,
but does occur in genus 1 and higher.

2.2. Real orientations
Let .X; �/ be a topological space with an involution. A conjugation on a complex

vector bundle V ! X lifting an involution � is a vector bundle homomorphism ' W V ! V

covering � (or equivalently a vector bundle homomorphism ' W V ! ��V covering idX )
such that the restriction of ' to each fiber is anticomplex linear and ' ı ' D idV .

A real bundle .V; '/ ! .X; �/ consists of a complex vector bundle V ! X and a
conjugation ' on V lifting �.

Example 2.2. (1) If X is a smooth manifold with a smooth involution �, then
.TX; d�/ is a real bundle over .X; �/.

(2) IfL!X is a complex vector bundle thenL˚ �� NL!X with the conjugatione� W .x; v; w/ 7! .�.x/; w; v/ is also a real bundle over .X; �/.

For any real bundle .V; '/ over .X; �/, the fixed locus

V '
! X�

of ' is a real vector bundle over X� . We denote by

ƒ
top
C .V; '/ D

�
ƒ

top
C V;ƒ

top
C '

�
the top exterior power of V over C with the induced conjugation. Direct sums, duals, and
tensor products over C of real bundles over .X; �/ are again real bundles over .X; �/.

Definition 2.3 ([15,18]). Let .X; �/ be a topological space with an involution and .V; '/ be
a real bundle over .X; �/. A real orientation on .V; '/ consists of

(RO1) a complex line bundle L ! X such that

w2

�
V '

˚ L�

jX�

�
D 0 and ƒ

top
C .V; '/ � ƒ

top
C .L˚ �� NL;e�/; (2.5)

(RO2) a homotopy class of isomorphisms of real bundles in (2.5), and

(RO3) a spin structure on the real vector bundle V ' ˚L� overX� compatible with
the orientation induced by (RO2).

An isomorphism in (2.5) restricts to an isomorphism ƒ
top
R V ' � ƒ

top
R L of real

line bundles over X� . Since L is a complex vector bundle it is canonically oriented, and
thus (RO2) determines orientations on V ' and V ' ˚ L�. By the first assumption in (2.5),
the real vector bundle V ' ˚ L� over X� admits a spin structure.

A real orientation on a real symplectic manifold .X; !; �/ is a real orientation on the
real bundle .TX;d�/. We call a real symplectic manifold .X;!;�/ real-orientable if it admits
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a real orientation. As established in [18] a real orientation on .X; �/ determines a canoni-
cal orientation of the uncompactified moduli spaces when X is of odd complex dimension.
This orientation extends across the codimension 1 boundary strata of types (H2) and (H3)
and changes across the codimension 1 boundary strata of types (E) and (H1). The parity of
j�0.†

� /j behaves in the same way. This allows us to readjust this canonical orientation by
the parity of the number of fixed components of the domain and thus obtain an orientation
on the compactified moduli space.

Theorem 2.4 ([18, Theorem 1.3]). Let .X;!;�/ be a real-orientable 2n-manifold, g; l 2 Z�0,
B 2 H2.X I Z/, and J 2 J

�
! .

(1) If n 62 2Z, a real orientation on .X; !; �/ orients Mg;l .X;BIJ /� .

(2) If n 2 2Z and g C l � 2, a real orientation on .X; !; �/ orients the real
line bundle

ƒ
top
R

�
TMg;l .X;BIJ /�

�
˝ f�ƒ

top
R .TRMg;l / ! Mg;l .X;BIJ /� :

Examples of real-orientable manifolds include P 2n�1, X5, many other projective
complete intersections, and simply-connected real symplectic Calabi–Yau and real Kähler
Calabi–Yau manifolds with spin fixed locus as described by the following propositions.

Proposition 2.5 ([19, Proposition 1.2]). Let .X; !; �/ be a real symplectic manifold with
w2.X

�/ D 0. If

(1) H1.X I Q/ D 0 and c1.X/ D 2.� � ���/ for some � 2 H 2.X I Z/ or

(2) X is compact Kähler, � is antiholomorphic, and KX D 2.ŒD� C Œ��D�/ for
some divisor D on X ,

then .X; !; �/ is a real-orientable symplectic manifold.

Corollary 2.6 ([19, Corollary 1.3]). Let n 2 ZC and a � .a1; : : : ; an�4/ 2 .ZC/n�4 be
such that

a1 C � � � C an�4 � n mod 4:

IfXnIa � P n�1 is a complete intersection of multidegree a preserved by �n, then .XnIa;!nIa;

�nIa/ is a real-orientable symplectic manifold.

Proposition 2.7 ([19, Proposition 1.4]). Let m; n 2 ZC, k 2 Z�0, and a � .a1; : : : ; ak/ 2

.ZC/k .

(1) If XnIa � P n�1 is a complete intersection of multidegree a preserved by �n,

a1 C � � � C ak � n mod 2; and a2
1 C � � � C a2

k � a1 C � � � C ak mod 4;
(2.6)

then .XnIa; !nIa; �nIa/ is a real-orientable symplectic manifold.
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(2) IfX2mIa � P 2m�1 is a complete intersection of multidegree a preserved by �2m

and
a1 C � � � C ak � 2m mod 4;

then .X2mIa; !2mIa; �2mIa/ is a real-orientable symplectic manifold.

2.3. Real Gromov–Witten theory
The moduli space Mg;l .X; BI J /� is not smooth in general and its tangent bundle

in Theorem 2.4 should be viewed in the usual moduli-theoretic (or virtual) sense. Since the
(virtual) boundary of Mg;l .X; BI J /� is empty, Theorem 2.4(1) implies that this moduli
space carries a virtual fundamental class over Q (determined by the choice of orientation)
and thus gives rise to real GW-invariants in arbitrary genus.

Theorem 2.8 ([18, Theorem 1.4]). Let .X; !; �/ be a compact real-orientable 2n-manifold
with n 62 2Z, g; l 2 Z�0, B 2 H2.X I Z/, and J 2 J

�
! . Then a real orientation on .X;!; �/

endows the moduli space Mg;l .X; BI J /� with a virtual fundamental class and thus gives
rise to genus g real GW-invariants of .X;!;�/ that are independent of the choice of J 2 J

�
! .

If n 2 2Z and g C l � 2, Theorem 2.4 implies that a real orientation on .X; !; �/
induces an orientation on the real line bundle

ƒ
top
R

�
TMg;l .X;BIJ /�

�
˝ f�

�
ƒ

top
R .TRMg;l /

�
! Mg;l .X;BIJ /� ; (2.7)

where f is the forgetful morphism (2.4). This orientation can be used to construct GW invari-
ants of .X; !; �/ with classes twisted by the orientation system of RMg;l .

For each i D 1; : : : ; l , let

evi W Mg;l .X;BIJ /� ! X;
�
u;
�
zC

1 ; z
�
1

�
; : : : ;

�
zC

l
; z�

l

��
! u

�
zC

i

�
;

be the evaluation at the first point in the i th pair of conjugate points. For�1; : : : ;�l 2H�.X/,
the numbers

h�1; : : : ; �li
�
g;B �

Z
ŒMg;l .X;BIJ /� �

ev�
1�1 � � � ev�

l �l 2 Q

are virtual counts of real J -holomorphic curves in X passing through generic cycle rep-
resentatives for the Poincaré duals of �1; : : : ; �l , i.e., real GW invariants of .X; !; �/ with
conjugate pairs of insertions. They are independent of the choices of cycles representatives
and of J .

Moreover, for each i D 1; : : : ; l , let

 i 2 H 2
�
Mg;l .X;BIJ /� I Q

�
be the Chern class of the universal cotangent line bundle for the marked point zC

i . For
a1; : : : ; al 2 Z�0 and �1; : : : ; �l 2 H�.X I Q/, let˝

�a1.�1/; : : : ; �al
.�l /

˛�
g;B

D

Z
ŒMg;l .X;BIJ /� �vir

 
a1

1

�
ev�

1�1

�
� � � 

al

l

�
ev�

l �l

�
(2.8)

be the associated real descendant GW invariant. This number is again independent of the
choices of cycle representatives and of J 2 J

�
! .
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Given the existence of a full descendant theory, there are many natural questions
that arise and that are not well understood at the moment. In particular, they are related to
finding structures governing the invariants. One expects to find a real cohomological field
theory behind them and a Givental–Teleman-type classification result would be very valuable
for reconstruction results, mirror symmetry, and connections to Dubrovin–Zhang-type inte-
grable hierarchies. Further connections to integrable systems that parallel those established
in the classical case for KdV, KP, and Toda [25,31,32,40] are also expected.

3. Structural results

Here we consider the real Gromov–Witten theory of real 3-folds which are the total
space of real bundles over curves with an antisymplectic involution. The motivation for con-
sidering 3-folds of this type comes from the virtual contribution to the real GW invariants
of a real elementary curve in a compact real Calabi–Yau 3-fold, sometimes referred to as
multiple-covers contribution, and the real Gopakumar–Vafa conjecture [37] expressing the
connected real Gromov–Witten invariants in terms of integer invariants.

The invariants associated with this setup are called local real Gromov–Witten
(RGW) invariants and are discussed in Section 3.1. They give rise to a semisimple 2D
Klein TQFT defined on an extension of the category of unorientable surfaces. This structure
allows us to completely solve the theory by providing a closed formula for the local RGW
invariants in terms of representation-theoretic data, extending earlier results of Bryan and
Pandharipande [9]. The local version of the real Gopakumar–Vafa formula is obtained as
a consequence of the structural results. Furthermore, in the case of the resolved conifold,
we find that the partition function of the RGW invariants agrees with that of the SO/Sp
Chern–Simons theory [3].

3.1. Local real Gromov–Witten invariants
Let .†; c/ be a symmetric Riemann surface andL!† a holomorphic line bundle.

Then the total space of

L˚ c� NL ! †; ctw.zIu; v/ D
�
c.z/I v; u

�
(3.1)

is a real manifold with an antiholomorphic involution ctw . AnU.1/-action on the line bundle
L ! † induces an action on the 3-fold (3.1) compatible with the real structure. We define
local (relative) RGW invariants associated to the real 3-fold (3.1) as pairings between theU.1/-
equivariant Euler class of the index bundle Ind N@L (regarded as an element inK-theory) and
the virtual fundamental class of the (relative) real moduli space M

c;�

d;�.†/ discussed below.

Definition 3.1. Let .†; c/ be a marked symmetric surface, with r pairs of conjugate marked
points .xC

1 ; c.x
C
1 //; : : : ; .x

C
r ; c.x

C
r //, and E� D .�1; : : : ; �r / be a collection of r partitions

of d . Denote by

M
�;c

d;�.†/�1;:::;�r (3.2)

the relative real moduli space of degree d stable real maps f W .C; �/ ! .†; c/ such that
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• f has ramification pattern �i over xC

i (and thus also over x�
i D c.xC

i /), for all
i D 1; : : : ; r ;

• the domain C is possibly disconnected and has total Euler characteristic �;

• f is nontrivial on each connected component of C .

The moduli space M
�;c

d;�.†/�1;:::;�r has virtual dimension b, where

b D d�.†/ � � � 2ı.E�/ and ı.E�/ D

rX
iD1

�
d � `.�i /

�
: (3.3)

Here `.�i / is the length of the partition �i , i.e., the cardinality of f �1.xC

i /.
These real moduli spaces are orientable, but a priori the local RGW invariants

depend on the choice of real orientation (cf. Definition 2.3) and on the topological type
of the real structure c on †. We show in [15] that there is a canonical choice of orientation
for the local RGW invariants, compatible with the splitting formula (3.21), and, moreover,
that they do not depend on the real structure c. We therefore omit these choices from the
notation below.

IfL!† is a holomorphic bundle, the operator N@L determines a family of complex
operators over the moduli spaces of maps to †; the fiber at a stable map f W C ! † is
the pullback operator N@f �L. Denote by Ind N@L the index bundle associated to this family of
operators, regarded as an element in K-theory.

Let N@.L˚c� NL;ctw / denote the restriction of N@L˚c� NL to the invariant part of its domain
and target, cf. [18, Section 4.3]. Via the projection onto the first factor, the kernel and cokernel
of N@.L˚c� NL;ctw / are canonically identified with the kernel and cokernel of N@L and

Ind N@.L˚c� NL;ctw / Š Ind N@L: (3.4)

The right-hand side carries a natural complex structure, which pulls back to one on the left-
hand side. An U.1/-action on L induces one on .L˚ c� NL; ctw/, compatible with the real
structure. In turn, these induce U.1/-actions on Ind N@L and Ind N@.L˚c� NL;ctw / and the isomor-
phism (3.4) identifies their equivariant Euler classes.

Definition 3.2. Assume .†; c/ is a symmetric surface with r pairs of marked points. Let
L! † be a holomorphic line bundle and E�D .�1; : : : ; �r / a collection of r partitions of d .
The local real relative GW invariants associated with the real 3-fold .L˚ c� NL; ctw/! .†; c/

are the equivariant pairings

RZc
d;�.†;L/E� D

Z
ŒM

c;�

d;�.†/E�
�vir
eU.1/.�Ind N@L/: (3.5)

We further consider the shifted generating function

RGWd .†;L/E� D

X
�

ud.
�.†/

2 Cc1.L/Œ†�/�
�
2 �ı.E�/RZc

d;�.†;L/E� 2 Q.t/
�
.u/
�
; (3.6)

where ı.E�/ is as in (3.3). It takes values in the localized equivariant cohomology ring of
U.1/ generated by t .
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3.2. TQFT and Klein TQFT
Let 2Cob be the usual (oriented, closed) 2-dimensional cobordism category. It is the

symmetric monoidal category with objects given by compact oriented 1-manifolds (without
boundary) and morphisms given by (diffeomorphism classes of) oriented cobordisms. A 2-
dimensional topological quantum field theory (2D TQFT) with values in a commutative ring R
is a symmetric monoidal functor

F W 2Cob ! Rmod;

where Rmod is the category of R-modules. This is equivalent to a commutative Frobenius
algebra over R; the product and coproduct correspond to the pair of pants while the unit and
counit to the cap and cup, respectively. In [9], Bryan and Pandharipande enlarge the category
2Cob to a category 2CobL1;L2 with the same objects, but with morphisms decorated by
a pair of complex line bundles .L1; L2/ trivialized over the boundary; the Euler numbers
.k1; k2/ of these bundles determine the level of the theory. Restricting the morphisms to
k1 D k2 D 0 defines an embedding

2Cob � 2CobL1;L2 :

Bryan and Pandharipande use the local GW invariants to define a symmetric
monoidal functor

GW W 2CobL1;L2 ! Rmod (3.7)

on this larger category. The functor (3.7) extends the classical 2D TQFT that appeared in
the work of Dijkgraaf–Witten [12] and Freed–Quinn [14], and whose Frobenius algebra is the
center QŒSd �

Sd of the group algebra of the symmetric group Sd . It is used to completely
solve the local Gromov–Witten theory.

A different extension of 2Cob is obtained by allowing unoriented and possibly
unorientable surfaces as cobordisms; see [2,4]. We refer to this category as 2KCob, where K
stands for Klein (surface). The objects are closed unoriented 1-manifolds and the morphisms
are diffeomorphism classes of unoriented (and possibly unorientable) cobordisms. An equiv-
alent point of view is to consider the orientation double covers of both the objects and the
morphisms: the objects are then closed oriented 1-manifolds with an orientation-reversing
involution (deck transformation) exchanging the sheets of the cover and the morphisms are
compact oriented 2-dimensional manifolds with a fixed-point free orientation-reversing invo-
lution extending the one on the boundary. Such 2-dimensional manifolds are called symmetric
surfaces, and we denote this category by 2SymCob. Moreover,

2KCob � 2SymCob;

where the identification is obtained by passing to the orientation double cover in one direc-
tion and taking the quotient by the involution in the other. Working from the perspective of
2SymCob allows us to construct an extension 2SymCobL of this category related to that of
[9] and completely solve the local real Gromov–Witten theory.
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The category 2Cob can be regarded as a subcategory of 2KCob with the same
objects, but fewer morphisms

2Cob � 2KCob:

Note that even if a cobordism in 2KCob is orientable, there may not be way to orient it in a
way compatible with the boundary identifications.

The generators of 2Cob � 2KCob are the usual cap, cup, tube, twist, and pair of
pants cobordisms, and the corresponding elements of 2SymCob are their orientation double
covers. The category 2KCob has two extra generators, the cross-cap (a Möbius band) and
the involution

(3.8)

respectively. In 2SymCob these correspond to their orientation double covers

(3.9)

Note that in 2SymCob the involution swaps the two outgoing circles – this distinguishes it
from the tube which acts as the identity.

The extra generators satisfy certain relations in 2KCob (see [4, pp. 1840–1841]). For
example, moving a puncture once around the Möbius band changes the orientation of the
puncture, cf. Figure 2; equivalently, the involution acts trivially on the product of the cross-
cap with another element, cf. (3.13). Another relation comes from decomposing the product
of two cross-caps as in Figure 3, cf. (3.14).

Figure 2

Relation in 2KCob: involution acts trivially on products with a cross-cap.

Figure 3

Relation in 2KCob: decomposing the punctured Klein bottle.
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3.2.1. Semisimple Klein TQFT
Definition 3.3. A (closed) 2D Klein TQFT is a symmetric monoidal functor

F W 2KCob ! Rmod : (3.10)

When (3.10) is regarded as a morphism on 2SymCob � 2KCob via the orientation
double cover construction, we denote it by

QF W 2SymCob ! Rmod : (3.11)

In fact, cf. [4, Proposition 1.11], a (closed) 2D Klein TQFT is equivalent to a com-
mutative Frobenius algebra H D F.S1/ together with two extra structures:

(a) an involutive (anti)automorphism � of the Frobenius algebra H , denoted
x 7! x�. This means

.x�/� D x; .xy/� D y�x� and
˝
x�; y�

˛
D hx; yi for all x; y 2 H:

(3.12)

(b) an element U 2 H such that

.aU /� D aU for all a 2 H and (3.13)

U 2
D m.id ˝�/

�
�.1/

�
D

X
˛iˇ

�
i : (3.14)

Here the coproduct is �.1/ D
P
˛i ˝ ˇi . The involution � and the element U

correspond to the cobordisms (3.8). The relations (b) correspond to Figures 2 and 3.

Definition 3.4. A semisimple Klein TQFT is a Klein TQFT whose associated Frobenius
algebra is semisimple.

A semisimple TQFT is determined by the structure constants ¹��º, i.e., the coeffi-
cients of the comultiplication �.v�/ D ��v� ˝ v� in the idempotent basis ¹v�º. Moreover,

Proposition 3.5 ([15, Proposition 7.4]). Assume (3.10) is a semisimple KTQFT with idem-
potent basis ¹v�º and structure constants ¹��º, and assume that the ground ring R has no
zero divisors. Then

(i) � defines an involution on the idempotent basis �.v�/ D v�� .

(ii) If U D
P

� U�v� then U 2
� D �� if � D ��, and U� D 0 if � ¤ ��.

Assume † is a closed symmetric surface, considered as a morphism in 2SymCob
from the ground ring to the ground ring.

Corollary 3.6 ([15, Corollary 7.5]). With the notation of Proposition 3.5, the morphism (3.11)
is given by:

QF .†/ D

X
�D��

U g�1
� ; when † is a connected genus g surface, and

QF .† t†/ D

X
�

�g�1
� ; when † t† is a g-doublet.
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3.2.2. The category 2SymCobL

Consider the category 2SymCobL whose objects are disjoint unions of copies of
� D .S1 t S1; "/, where " swaps the two components, and morphisms correspond to iso-
morphism classes relative boundary of decorated cobordismsW D .†; c;L/, where† is an
oriented cobordism with a fixed-point free orientation-reversing involution c, extending ",
and L is a complex line bundle over †, trivialized along the boundary of †.

The level 0 theory corresponds to a trivial bundle L, and defines embeddings

2Cob � 2KCob � 2SymCob � 2SymCobL: (3.15)

The doubling procedure defines an embedding

2CobL1;L2 � 2SymCobL; .†;L1; L2/ 7! .† t†;L1 t NL2/: (3.16)

The category 2CobL1;L2 has 4 extra generators, the level .˙1;0/; .0;˙1/-caps, besides those
of 2Cob, cf. [9, Section 4.3]. Similarly, the generators of the category 2SymCobL are those
of 2SymCob together with the images of the .˙1; 0/; .0;˙1/-caps under (3.16).

Proposition 3.7 ([15, Proposition 7.6]). A symmetric monoidal functor

F W 2SymCobL
! Rmod (3.17)

is uniquely determined by the level 0 theory and the images � and N� of the level .�1; 0/ and
.0;�1/-caps.

If the restriction of (3.17) to the level 0 theory defines a semisimple KTQFT with
idempotent basis ¹v�º let

� D

X
�

��v� and N� D

X
�

N��v�: (3.18)

As in Corollary 3.6, then the value of F on a closed connected genus g symmetric surface
† at level k D c1.L/Œ†� is equal to

F.†jL/ D

X
�D��

U g�1
� ��k

� : (3.19)

The value of F on a g-doublet † t† with a line bundle L1 t L2 is similarly equal to

F.† t† jL1; L2/ D

X
�

�g�1
� ��k1

� N��k2
� ;

where k1 D c1.L1/Œ†� and k2 D c1.L2/Œ†�.

3.3. Splitting formulas
Let .†0; c0/ be a nodal symmetric surface with a pair of conjugate nodes and r

pairs of conjugate marked points. It has a normalization .e†; Qc/ which has r C 2 pairs of
conjugate marked points. Similarly, .†0; c0/ has a family of smooth deformations .F ; cF /DS

s.†s; cs/, simultaneously smoothing out the conjugate nodes using complex conjugate
gluing parameters. The generic fiber .†s; cs/ of the family is a symmetric surface with r
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pairs of conjugate marked points, and a pair of “splitting circles” (disjoint vanishing cycles)
swapped by the involution; as the gluing parameters converge to 0, these circles pinch to
produce the two complex conjugate nodes of †0; see Figure 4. Any complex line bundle L
over †s can be deformed to the nodal surface and then lifted to its normalization to give a
line bundle QL over e†.

Figure 4

Splitting † along a pair of conjugate circles .
C; 
�/.

In order to state the splitting theorem in a more compact form, we define the raising
of the indices by the formula

RGW.†;L/�
1:::�s

�1:::�r D RGW.†;L/�1:::�r ;�1:::�s

 
sY

iD1

�.�i /t2`.�i /

!
; (3.20)

where �.�/ D
Q
mkŠk

mk for a partition � D .1m1 ; 2m2 ; : : : /.

Theorem 3.8 (RGW splitting theorem, [16]). Assume .†; c/ is a marked symmetric surface
with r pairs of conjugate points and L is a complex line bundle over †. Let .e†; Qc/ denote
the symmetric surface obtained as described above from .†; c/ by splitting it along two
conjugate circles, and let QL be the corresponding line bundle over e†.

Then for any collection E� D .�1; : : : ; �r / of r partitions of d , the RGW invari-
ants (3.6) satisfy

RGWd .†;L/ E� D

X
�`d

RGWd .e†; QL/�
E�;�
: (3.21)

This result is used to show that the local RGW theory gives rise to (an extension of)
a KTQFT; it corresponds to compatibility of cobordism decompositions.

3.4. The RGW Klein TQFT
In this section we use the local RGW invariants (3.6) to define an extension of a

Klein TQFT, i.e., a functor RGW from the category 2SymCobL described in Section 3.2.2.
This extends the Bryan–Pandharipande TQFT constructed from the GW theory for the anti-
diagonal action.
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LetR D C.t/..u// be the ring of Laurent series in uwhose coefficients are rational
functions of t and d be a positive integer. Denote by � D .S1 t S1; "/ the disjoint union of
two copies of a circle with opposite orientations and with the involution " swapping them.
To the object � we associate

RGWd .�/ D H D

M
˛`d

Re˛; (3.22)

the free module with basis ¹e˛º˛`d indexed by partitions ˛ of d . Let

RGWd .� t � � � t �/ D H ˝ � � � ˝H:

To each cobordism W D .†; c; L/ in 2SymCobL from n copies of � to m copies of � ,
associate the R-module homomorphism

RGWd .W / W H˝n
! H˝m (3.23)

defined by

e�1 ˝ � � � ˝ e�n 7!

X
�i `d

RGWd .†W jLW /
�1::�m

�1::�n e�1 ˝ � � � ˝ e�m :

Here †W is a closed marked symmetric Riemann surface whose topological type is that
of † after removing small disks around the pairs of marked points and LW ! †W is a
holomorphic line bundle whose first Chern class corresponds to the Euler class of L ! †.

Theorem 3.9 ([15, Theorem 8.1]). The assignment (3.23) defines a symmetric monoidal func-
tor

RGWd W 2SymCobL
! Rmod : (3.24)

Its restriction to 2KCob under (3.15) is a Klein TQFT, while its restriction to 2CobL1;L2

under (3.16) is

RGWd .† t†jL1 t NL2/.u; t/ D .�1/dk2GWd .†jL1; L2/.iu; i t/: (3.25)

Here ki is the total degree of Li and GWd is the TQFT (3.7) considered by Bryan–
Pandharipande (for the antidiagonal action).

The KTQFT determined by the level 0 local RGW invariants is semisimple, cf [15].
It corresponds in fact to signed counts of degree d real Hurwitz covers. The idempotent basis
is indexed by irreducible representations of the symmetric group Sd and�.v�/D v�0 where
�0 is the conjugate representation. In order to calculate the coefficients ofU in the idempotent
basis, we introduced in [15] the signed Frobenius–Schur indicator (SFS). The SFS takes values
0, ˙1 on irreducible real representations, unlike the standard FS indicator which is C1 on
them. The SFS is 0 if and only if the representation is not self-conjugate and the sign of a self-
conjugate representation is given as a function of its characters. While these considerations
are valid for real representations of any finite group, in the case of the symmetric group we
find a simpler expression for the latter function using the Weyl formula for Bn. In particular,
for an irreducible self-conjugate representation � of Sd ,

SFS.�/ D .�1/.d�r.�//=2;
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where r.�/ is the rank of �, i.e., the length of the main diagonal of the Young diagram
associated to �. This is precisely the sign that appears in the partition function of the SO/Sp
Chern–Simons theory [3, (6.1)]; in the case of the resolved conifold, Theorems 3.12 and 3.13
below recover the partition function [3, (6.3)] and the free energy [3, (3.2)], respectively.

The idempotent basis for the theory is given by

v� D
dim �
dŠ

X
˛

.�t /`.˛/�d��.˛/e˛; (3.26)

indexed by the irreducible representations � of Sd . We then have the following results.

Lemma 3.10 ([15, Lemma 9.2]). In the idempotent basis ¹v�º, the structure constants ¹��º and
the coefficients ¹��º, ¹ N��º of the .�1; 0/ and .0;�1/-caps are given by

�� D t2d

�
dŠ

dim �

�2

; �� D tdQc�=2

�
dimhQ�

dim �

�
; N�� D tdQ�c�=2

�
dimhQ�

dim �

�
:

(3.27)

Here Q D eu, c� is the total content of the Young diagram associated to �, and

dimhQ� D dŠ
Y
�2�

�
2 sinh

h.�/u
2

��1

D dŠ
Y
�2�

�
Q

h.�/
2 �Q�

h.�/
2
��1

; (3.28)

where h.�/ denotes the hooklength of the square � in the Young diagram associated to �.

Proposition 3.11 ([15, Corollary 9.7]). In the idempotent basis, the level 0 cross-cap U is
given by

U D

X
�`d

�D�0

.�1/.d�r.�//=2 td
dŠ

dim �
v�; (3.29)

where r.�/ is the length of the main diagonal of the Young diagram of �.

Combining these results with the results of Section 3.2 we obtain a closed expression
for the local RGW theory of the 3-folds (3.1) in terms of representation theoretic data. The
Calabi–Yau case is given in the following theorem.

Theorem 3.12 ([15, Lemma 9.14] (Local CY)). Let † be a connected genus g symmetric sur-
face and L ! † a holomorphic line bundle with Chern number g � 1. Then the generating
function of the degree d local RGW invariants is equal to

RGWd .†;L/ D

X
�D�0

�
.�1/

d�r.�/
2

Y
�2�

2 sinh
h.�/u
2

�g�1

:

Here the sum is over all self-conjugate partitions � of d , the product is over all boxes � in
the Young diagram of �, h.�/ is the hooklength of �, and r.�/ is the length of the main
diagonal of the Young diagram of �.
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3.5. Real Gopakumar–Vafa formula
The local RGW invariants correspond to possibly disconnected counts. As usual

they can be expressed in terms of more basic invariants. In the real GW theory, these basic
counts come in two flavors, CRGWd .†; L/ and DRGWd .†; L/, corresponding to maps
from connected real domains and respectively from doublet domains, i.e., domains con-
sisting of two copies of a connected surface with opposite complex structures and the real
structure exchanging the two copies. In fact,

1C

1X
dD1

RGWd .†;L/q
d

D exp

 
1X

dD1

CRGWd .†;L/q
d

C

1X
dD1

DRGW2d .†;L/q
2d

!
:

Furthermore, the doublet invariants are related to half of the complex GW invariants when-
ever the target † is connected,

DRGW2d .†;L/.u; t/ D .�1/d.kC1�g/ 1

2
GWconn

d .gjk; k/.iu; i t/;

where g is the genus of †, k D c1.L/Œ†� is the degree of L, and GWconn
d .gjk; k/ are the

connected invariants defined in [9] for the anti-diagonal action.
As a consequence of the structure result provided by Theorem 3.12, we obtain the

local real Gopakumar–Vafa formula (cf. [37, Section 5]). The local GV conjecture in the
classical setting, proved in [22, Proposition 3.4], states that the connected GW invariants
defined in [9] have the following structure:

1X
dD1

GWconn
d .gjg � 1; g � 1/.u/qd

D

1X
dD1

X
h

nC
d;h.g/

1X
kD1

1

k

�
2 sin

�
ku

2

��2h�2

qkd ;

(3.30)

where the coefficients nC
d;h
.g/, called the local BPS states, satisfy (i) nC

d;h
.g/ 2 Z and (ii)

for each d , nC
d;h
.g/ D 0 for large h.

In the real setting, the local real GV formula takes the following form.

Theorem 3.13 ([15, Theorem 10.1] (Local real GV formula)). Fix a genus g symmetric surface
† and consider the local real Calabi–Yau 3-fold .L˚ c� NL; ctw/! †. Then the generating
function for the connected local RGW invariants has the following structure:

1X
dD1

CRGWd .†jL/.u/qd
D

1X
dD1

1X
hD0

nR
d;h.g/

X
k odd
k>0

1

k

�
2 sinh

�
ku

2

��h�1

qkd ; (3.31)

where the coefficients nR
d;h
.g/ satisfy (i) (integrality) nR

d;h
.g/ 2 Z, (ii) (finiteness) for each

d , nR
d;h
.g/ D 0 for large h, and (iii) (parity) nR

d;h
.g/ D nC

d;h
.g/ mod 2. Moreover,

(a) for g D 0, nR
d;h
.0/ D 1 when d D 1 and h D 0 and vanish otherwise.

(b) for g D 1, nR
d;h
.1/ D .�1/d�1 when h D 1 and vanish otherwise.

(c) for any g � 0, nR
1;h
.g/ D 1 when h D g and vanish otherwise.

The g D 0 case of Theorems 3.12, 3.13 give the real Gromov–Witten invariants
of the resolved conifold and coincide with the SO/Sp Chern–Simons theory on S3. This is
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an instance of the real analogue of the large N -duality [20, 28]. Developing a mathematical
theory of the real topological vertex [1,26] would allow establishing this correspondence for
any toric real Calabi–Yau 3-fold. Furthermore, a relation between Kauffman polynomials and
real GW invariants is also expected based on this duality and it would be very interesting to
investigate the potential implications of such a relation.
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