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Abstract

The b�-class is a characteristic class for complex manifolds with transcendental coeffi-
cients. It defines an integral structure of quantum cohomology, or more precisely, an inte-
gral lattice in the space of flat sections of the quantum connection. We present several
conjectures (the b�-conjectures) about this structure, particularly focusing on the Riemann–
Hilbert problem it poses. We also discuss a conjectural functoriality of quantum coho-
mology under birational transformations.
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1. Gamma-integral structure in quantum cohomology

We briefly review the definition of theb�-integral structure in quantum cohomology
introduced in [42]. The corresponding rational structure was introduced independently by
Katzarkov, Kontsevich, and Pantev [46] in the framework of nc-Hodge structure.

1.1. Gamma class
Let X be an almost complex manifold and let ı1; : : : ; ın (with n D dimC X ) be

the Chern roots of the tangent bundle, so that c.TX/ D .1C ı1/ � � � .1C ın/. The b�-classb�X 2 H�.X I R/ [42,46,52,53] is the characteristic class defined byb�X D �.1C ı1/ � � ��.1C ın/

where �.1C x/ D
R1

0
e�t txdt is Euler’s �-function. The right-hand side is expanded in

symmetric power series in ı1; : : : ; ın and then expressed in terms of the Chern characters
chk.TX/ as follows:

b�X D exp

 
�
c1.X/C

1X
kD2

.�1/k�.k/.k � 1/Š chk.TX/

!
;

where �.s/D
P1

nD1 n
�s is the Riemann zeta function and 
 D limn!1.1C

1
2

C � � � C
1
n

�

log n/ is the Euler constant. This is a characteristic class with transcendental coefficients.1

The identity �.1� x/�.1C x/ D �x= sin.�x/ shows that theb�-class can be thought of as
a “square root” of the OA-class, i.e.,b�X �b��

X D .2�i/deg =2 OAX ; (1.1)

where b��
X WD .�1/deg =2b�X denotes the dual b�-class. We note that OAX depends only on the

underlying topological manifold whereasb�X depends on an almost complex structure on it.
The identity (1.1) suggests a relationship between the b�-class and the Atiyah–Singer index
theorem. In fact, we can interpretb�X as (a regularization of) the inverseS1-equivariant Euler
class of the positive normal bundle NC of the set X of constant loops in the free loop space
LX (see [53], [26, Appendix A]), i.e.,

1

eS1.NC/
D

1Q
i

Q
k>0.ıi C kz/

� .2�/�n=2z.n�deg/=2zc1.X/b�X ; (1.2)

where z is a generator of the S1-equivariant cohomology of a point. This is reminiscent of
the loop space heuristics of the index theorem by Atiyah and Witten [4], where the OA-class
is interpreted as the inverse Euler class eS1.N /�1 of the normal bundle N itself,

1

eS1.N /
D

1

eS1.N�/eS1.NC/
D

1Q
i

Q
k¤0.ıi C kz/

�

�
z

2�i

�n�.deg =2/

OAX :

Since NC corresponds to infinitesimal (pseudo)holomorphic loops, the b�-class can be
thought of as the localization contribution from constant loops in symplectic Floer theory.

1 It is, however, an algebraic (Hodge) class when X is a smooth projective variety.
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1.2. Quantum cohomology D-modules
Let X be a smooth projective variety (or a compact symplectic manifold) and let

H�.X/ denote the cohomology group with complex coefficients. The quantum cohomology
QH�.X/ D .H�.X/; ?� / of X is a family of supercommutative product structures ?� on
H�.X/ parametrized by � 2 H�.X/. The quantum product ?� is defined by

.˛ ?� ˇ; 
/ D

X
d2H2.X;Z/;k�0

h˛; ˇ; 
; �; : : : ; �i0;kC3;d

Qd

kŠ

for ˛; ˇ; 
 2 H�.X/. Here .˛; ˇ/ D
R
X
˛ [ ˇ is the Poincaré pairing and h˛1; : : : ; ˛ki0;k;d

denotes the genus-zero, k-point, degree d Gromov–Witten invariants. Strictly speaking, we
should treat the odd degree part of � as anticommuting variables and view the parameter
spaceH�.X/ as a supermanifold. For the most part of this paper, we shall restrict the param-
eter � and elements of quantum cohomology to the even part of the cohomology group and
write H�.X/ for the even part (see Remark 1.2 for the odd part).

In the above formula, we introduced the Novikov variable Q to ensure the adic
convergence of ?� . The divisor equation shows that, if we decompose � D � C � 0 with � 2

H 2.X/ and � 0 2 H¤2.X/,

.˛ ?� ˇ; 
/ D

X
d2H2.X;Z/;k�0

˝
˛; ˇ; 
; � 0; : : : ; � 0

˛
0;kC3;d

eh�;diQd

kŠ
:

Thus the quantum product can be expanded in a power series in � 0 and e� and approaches
the cup product in the following large-radius limit:

� 0
! 0; eh�;di

! 0 for all effective classes d ¤ 0: (1.3)

Hereafter we shall always specialize the Novikov variable Q to 1 and assume that ?� jQD1

(which we shall write as ?� ) is convergent in a neighborhood U of the large radius limit.
The quantum cohomology defines the structure of a Frobenius manifold [20] on the

convergence domain U � H�.X/. Specifically, it defines a meromorphic flat connection r

on the trivial bundle F D H�.X/ � .U � C/ ! .U � C/, called the quantum connection
or the Dubrovin connection. It is defined by the formulae

r@=@� i D
@

@� i
C
1

z
.�i?� /;

rz@=@z D z
@

@z
�
1

z
.E?� /C �;

where .�; z/ 2 U � C denotes a point on the base and ¹� i º are linear coordinates dual to a
homogeneous basis ¹�i º ofH�.X/ so that � D

P
i �

i�i . The sectionE 2 O.F / is the Euler
vector field given by

E D c1.X/C

X
i

�
1 �

deg�i

2

�
� i�i

and � 2 End.H�.X// is the grading operator defined by �.�i / D .
deg �i

2
�

n
2
/�i . The con-

nection r has poles of order two along z D 0 and is possibly irregular singular there. On the
other hand, it has logarithmic poles (and is therefore regular singular) along z D 1. The
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connection r is compatible with the Poincaré pairing in the sense that the z-sesquilinear
pairing

.�1/�O.F /˝ O.F / ! O; s1 ˝ s2 7! .s1; s2/ D

Z
X

s1 [ s2 (1.4)

is flat for r, where .�1/WU � C ! U � C is the map sending .�; z/ to .�;�z/.
The quantum (cohomology) D-module is the tuple QDM.X/ D .O.F /; r; .�; �//

consisting of the locally free sheaf O.F / over U � C, the quantum connection r and the
pairing in (1.4). The D-module approach to quantum cohomology has been proposed by
Givental [28] and Guest [34].

1.3. Gamma-integral structure
The b�-integral structure is an integral lattice in the space of flat sections for the

quantum connection r. We have a fundamental solution for r-flat sections of the form
L.�; z/z��zc1.X/ with an End.H�.X//-valued function L.�; z/ uniquely characterized by
the following asymptotic condition at the large radius limit (1.3),

L.�; z/ D
�
id CO.e� ; � 0/

�
e��=z :

Here z��zc1.X/ D exp.�� log z/ exp.c1.X/ log z/ is an End.H�.X//-valued function on
the universal cover of C�. Given a basis ¹�i º ofH�.X/, ¹L.�; z/z��zc1.X/�i º gives a basis
of r-flat sections. Explicitly,L.�;z/ is given in terms of gravitational descendants as follows
(see [19,29]):

L.�; z/�i D e��=z�i �

X
j

X
.d;k/¤.0;0/

�
e��=z�i

z C  
; � 0; : : : ; � 0; �j

�
0;kC2;d

�j

kŠ
eh�;di; (1.5)

where  denotes the universal cotangent class at the first marking, 1=.z C  / should be
expanded as

P
k�0 z

�k�1.� /k , and ¹�j º, ¹�j º are mutually dual bases of H�.X/ such
that

R
X
�i [ �j D ı

j
i .

Let �.X/ denote the C-vector space of multivalued flat sections of .F; r/ over
U � C�, i.e., flat sections over the universal cover U � fC�. Let K.X/ D K0

top.X/ denote
the K-group of topological complex vector bundles and define a map sWK.X/ ! �.X/ as

s.V /.�; z/ D L.�; z/z��zc1.X/
�
.2�/�n=2b�X .2�i/deg =2 ch.V /

�
: (1.6)

The factor .2�/�n=2z��zc1.X/b�X also appears in (1.2) as a regularization of eS1.NC/
�1.

The b�-integral structure is the integral lattice of �.X/ given as the image of the map s.
By the compatibility between r and the Poincaré pairing, we have a nondegenerate

(not necessarily symmetric or antisymmetric) pairing Œ�; �/W �.X/˝ �.X/ ! C defined by

Œs1; s2/ D
�
s1.�; e

��iz/; s2.�; z/
�

(1.7)

for s1; s2 2 �.X/. The property (1.1) of the b�-class and the Atiyah–Singer index theorem
(or Hirzebruch–Riemann–Roch theorem) show that s respects the pairing

Œs.V1/; s.V2// D �.V1; V2/;
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where �.V1; V2/ 2 Z is the K-theoretic push-forward of V _
1 ˝ V2 to a point (the index of a

Dirac operator; it is
P

i�0.�1/
i dim Exti .V1; V2/ if V1, V2 are holomorphic vector bundles).

The b�-integral structure is monodromy-invariant in the sense that

s.V /
�
� � 2�ic1.L/; z

�
D s.V ˝ L/.�; z/;

s.V /.�; e�2�iz/ D s
�
V ˝ !X Œn�

�
.�; z/;

where L is a (topological) line bundle on X and !X Œn� D .�1/n!X is the canonical line
bundle !X shifted by n, corresponding to the Serre functor of the derived category.

Remark 1.1. The b�-integral structure can be defined more generally for orbifolds [42].

Remark 1.2. We can generalize theb�-integral structure including the odd part of the quan-
tum cohomology, using K�.X/ D K0

top.X/˚K1
top.X/ instead of K0

top.X/. We still restrict
the parameter � to lie in the even part, but consider flat sections taking values in the full coho-
mology group. The formula (1.6) makes sense for all V 2 K�.X/ when we choose a square
root

p
2�i and use the Chern character chWK�.X/ ! H�.X/ of Atiyah–Hirzebruch [5].

The resulting map sX WK�.X/=tors ! �.X/ then has the advantage that it is natural with
respect to the Cartesian product, i.e., sX�Y D sX ˝ sY (under the Künneth isomorphism).
Interestingly, we have

Œs.˛1/; s.˛2// D �i�.˛1; ˛2/ 2 iZ for ˛1; ˛2 2 K1.X/,

s.˛/.�; e�2�iz/ D .�1/deg ˛s
�
˛ ˝ !X Œn�

�
.�; z/ for ˛ 2 K�.X/,

where �.˛1; ˛2/ 2 Z is theK-theoretic push-forward of ˛_
1 � ˛2 to a point as before; the dual

element ˛_
1 here is defined via the isomorphism K1.X/ Š K�1.X/ Š QK0.S1 ^XC/ (see

[5]) and the usual duality in K0.

Remark 1.3 (Mirror symmetry). The b�-integral structure had (implicitly) appeared for a
long time in the study of mirror symmetry before it was defined in [42, 46]. Under mirror
symmetry of Calabi–Yau manifolds, the quantum differential equation corresponds to the
Picard–Fuchs differential equations satisfied by periods of the mirror family, and we can
partially see theb�-class in the asymptotics of periods near the large-complex structure limit.
Libgober [52] introduced the (inverse)b�-class based on the observation of Hosono et al. [40]
that certain combinations of Chern numbers and � values appear in solutions of the mirror
Picard–Fuchs equations. Hosono [39] stated a conjecture equating periods of mirrors of com-
plete intersections with explicit hypergeometric series and theb�-class is hidden in the series.
We also refer the reader to [9, 38, 59] for related works. It has been checked in a number of
cases that the b�-integral structure corresponds to a natural integral structure on the mirror
side [42, 44]. Regarding the compatibility with mirror symmetry, an approach based on the
SYZ picture and tropical geometry has been proposed in [1] recently.

2. Gamma conjectures

In this section we review theb�-conjectures I, II discussed by Galkin, Golyshev, and
the author [26], and their generalization by Sanda and Shamoto [58]. The b�-conjectures can
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be understood as the compatibility between the Betti (real, rational, or integral) structure
and the Stokes structure, discussed by Hertling and Sevenheck [37] in the context of TERP
structure and by Katzarkov, Kontevich, and Pantev [46] in the context of nc-Hodge structure.
The Gamma conjecture II also refines Dubrovin’s conjecture [20].

2.1. Gamma conjecture I
The b�-conjecture I is specifically about quantum cohomology of Fano manifolds.

It roughly speaking says that we can know the topology (the b�-class) of a Fano manifold
by counting rational curves on it. In view of (1.1), we may view it as a “square root” of the
index theorem.

Let X be a Fano manifold and let JX .�; z/ be the (small) J -function defined as

JX .�; z/ D e�=z

�
1C

X
i

X
d2H2.X;Z/;d¤0

eh�;di

�
�i

z.z �  /

�
0;1;d

�i

�
where � 2H 2.X/. This is a cohomology-valued function which is convergent for all .�; z/ 2

H 2.X/� C� (this follows from the Fano assumption). We can also write this as JX .�; z/D

L.�; z/�11 using the fundamental solution L in (1.5); hence JX .�; z/ gives a solution of the
quantum D-module along the � -direction.

Conjecture 2.1 (b�-conjecture I). For a Fano manifold X , we have the equality

Œb�X � D lim
t!C1

�
JX

�
c1.X/ log t; 1

��
in the projective space P .H�.X// of cohomology.

This has been proved for the projective spaces, type A Grassmannians [26, 30] and
Fano threefolds of Picard rank one [31]. The b�-conjecture I for Fano toric manifolds or
complete intersections in them follows if these spaces satisfy certain conditions related to
Conjecture O [27]. The b�-conjecture I is also compatible with taking hyperplane sections,
i.e., if a Fano manifold X satisfies the b�-conjecture I and if Y � X is a hypersurface in the
linear system jLj withL proportional to �KX ,Y satisfies theb�-conjecture I [27, Theorem 8.3].

Example 2.2. The J -function of P n is given by

JPn

�
c1.P

n/ log t; z
�

D

1X
dD0

t .nC1/.dCp=z/Qd
kD1.p C kz/nC1

;

wherep is the hyperplane class. Setting zD 1 and fixing t > 0, we find that the d th summand

t .nC1/.dCp/Qd
kD1.p C k/nC1

D

�
td .t=d/p

dŠ

�nC1�
e.log d�.1C 1

2 C���C 1
d

//pQd
kD1..1C

p
k
/e�p=k/

�nC1

has a strong peak approximately when d is close to t . We can guess from this that the limit
of CJPn.c1.P n/ log t; 1/ in the projective space should be the line generated by

lim
d!1

�
e.log d�.1C 1

2 C���C 1
d

//pQd
kD1..1C

p
k
/e�p=k/

�nC1

D �.1C p/nC1
D b�Pn :
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Remark 2.3. In Givental’s heuristic calculation of the J -function [28], the d th summandQd
kD1.p C kz/�n�1 of JPn.�; z/ appears as the localization contribution from constant

loops in the polynomial loop space (quasimaps’ space) of degree d , and hence it can be
viewed as the degree-d truncation of eS1.NC/

�1 appearing in Section 1.1. In view of
the loop space interpretation of the b�-class, this gives a geometric explanation for the b�-
conjecture I in this case. In general, the degree d term of JX .�; z/ arises from a localization
contribution of an integral over the graph space Gd D M 0;0.X � P 1; .d; 1//, the moduli
space of genus-zero stable maps to X � P 1 of degree .d; 1/, equipped with the C�-action
induced by the C�-action on P 1. Let Gı

d
� Gd denote the open subset consisting of stable

maps which are genuine graphs near 1 2 P 1, i.e., do not contain components contained in
X � ¹1º. Then Gı

d
is preserved by the C�-action and has Fd D M 0;1.X; d/ as the fixed

locus. Writing ev1WGı
d

! X for the evaluation map at 1 2 P 1, we haveZ
Gı

d

ev�
1 ˛ D

Z
ŒFd �vir

ev�
1 ˛

z.z �  /
D .degree d term of JX ; ˛/;

where we defined the integral over the improper space Gı
d

using (virtual) equivariant local-
ization. In the case where X D P n, Givental gave a birational morphism from Gı

d
to the

polynomial loop space and justified his heuristic calculation (see [29, Main Lemma]). There-
fore the b�-conjecture I can be viewed as the statement that Gı

d
approximates the (positive)

loop space of X as d ! 1 in a suitable sense.

Remark 2.4. A discrete version of the limit in Conjecture 2.1 had been also studied (before
the formulation of the b�-conjecture) and called Apéry limits, in view of the connection to
Apéry’s proof of the irrationality of �.2/ and �.3/, see Galkin [25] and Golyshev [30].

2.2. Gamma conjecture I in terms of flat sections
We restate b�-conjecture I in terms of r-flat sections over the z-plane, in order to

explain the relationship withb�-conjecture II in the following section. We start with Conjec-
ture O.

Conjecture 2.5 (Conjecture O). Let X be a Fano manifold and let T denote the maximal
norm of the eigenvalues of the quantum multiplication .E?0/ D .c1.X/?0/ at � D 0. Then
T is a simple eigenvalue of .c1.X/?0/, that is, an eigenvalue whose multiplicity in the char-
acteristic polynomial is one.

Here we omitted part (2) of Conjecture O in [26, Definition 3.1.1] since we do not
need it. Conjecture O is a consequence of the Perron–Frobenius theorem if .c1.X/?0/ is
represented by an irreducible nonnegative matrix. Cheong and Li [11] proved Conjecture O

for homogeneous spaces G=P using the Perron–Frobenius theorem.
Eigenvalues of .c1.X/?0/ are closely related to asymptotics of flat sections for

rj�D0 as z ! 0. The flatness equation reads�
z
@

@z
�
1

z
c1.X/ ?0 C�

�
s.z/ D 0:
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For each eigenvector ‰ of .c1.X/?0/ with eigenvalue u, we expect that there should be a
flat section s.z/ with asymptotics � e�u=z‰ as z ! 0. Define a vector space A as

A D

´
sW R>0 ! H�.X/

ˇ̌̌̌
ˇ s.z/ is flat for rz@z

j�D0

eT=zs.z/ is at most of polynomial growth as z ! C0

µ
:

Assuming Conjecture O for X , we can prove that A is one-dimensional and that, for any
s.z/ 2 A, eT=zs.z/ converges to a T -eigenvector of .c1.X/?0/ as z ! C0. The original
formulation of the b�-conjecture I in [26] was as follows.

Conjecture 2.6 (b�-conjecture I: another form). The space A is generated by s.O/j�D0.

It is equivalent to Conjecture 2.1 in Section 2.1 under Conjecture O [26, Corol-

lary 3.6.9] and can be viewed as a dual formulation. We have a gauge equivalence between
the connections rj�D0 and rjzD1;�Dc1.X/ log t , that is, z�.rj�D0/z

�� D rjzD1;�Dc1.X/ log t

under the identification t D z�1. Thus, flat sections over ¹� D 0º � C and the solution
JX .c1.X/ log t; 1/ are dual to each other. While the space A consists of flat sections with
most rapid decay (� e�T=z), the t ! C1 limit of the J -function detects its most rapidly
growing component. In fact, we can show that the J -function has the following asymptotics:

JX

�
c1.X/ log t; 1

�
D Ct�n=2eT t

�b�X CO.t�1/
�

as t ! C1

for some C 2 C, under Conjecture O and b�-conjecture I (see [27, Proposition 3.8]).

2.3. Gamma conjecture II
In this section we assume that the quantum product ?� is semisimple2 at some � D

�0 2 H�.X/, i.e., .H�.X/; ?�0/ is isomorphic to the direct sum of C as a ring. We do
not need to assume that X is Fano. Let  1; : : : ;  N 2 H�.X/ denote an idempotent basis
such that  i ?�  j D ıij i and let u1; : : : ; uN 2 C be the eigenvalues of .E?� / such that
E ?�  i D ui i ; here  i and ui are analytic functions of � defined in a neighborhood
of � D �0. The functions ¹ui º give a local coordinate system near �0 called the canonical
coordinates [19, 21]. We write ‰i D . i ;  i /

�1=2 i for the normalized idempotent basis,
which is unique up to sign. Choose a phase � 2 R such that ei� … R>0.ui;0 � uj;0/ for all
i; j , where ui;0 is the value of ui at �0; such a phase � is said to be admissible. We have a
basis .y�

1 .�; z/; : : : ; y
�
N .�; z// of r-flat sections defined in a neighborhood of � D �0 and

arg z D � with the following property:

eui =zy
�
i .�; z/ ! ‰i as z ! 0 along the angular sector j arg z � �j < � C "

for some " > 0, see [26, Proposition 2.5.1].

Conjecture 2.7 (b�-conjecture II: a topological form). Suppose that the quantum product
?� of X is semisimple at some �0 2 H�.X/ and let � 2 R be an admissible phase for the

2 Under the semisimplicity assumption, X has no odd cohomology classes and, if, more-
over, X is a smooth projective variety, H�.X/ is necessarily of Hodge–Tate type,
i.e., Hp;q.X/ D 0 for p ¤ q, see [36].
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eigenvalues of .E?�0/. There exist K-classes E
�
1 ; : : : ; E

�
N 2 K.X/ such that y�

i .�; z/ D

s.E
�
i /.�; z/ in a neighborhood of � D �0 and arg z D �.

This refines part (3) of Dubrovin’s conjecture [20, Conjecture 4.2.2] concerning the
central connection matrix. It has been proved for type A Grassmannians [26], Fano toric
manifolds [23] and quadric hypersurfaces [41]. Theb�-conjecture I can be viewed as a special
case of the b�-conjecture II when � D 0 and � D 0.

The flat sections y�
i .�; z/ depend on the choice of a phase � (or, more precisely,

on a chamber of admissible phases) whereas their asymptotic expansions as z ! 0 do
not. This is the so-called Stokes phenomena. The Stokes matrix S D .Sij / is a transi-
tion matrix between the flat sections associated with opposite directions: it is given by
y

�
j .�; z/D

PN
iD1 y

�C�
i .�; z/Sij with arg z D � C

�
2

. It can be given in terms of the bilinear
form in (1.7) and then as the Euler matrix of ¹E

�
i º,

Sij D .y
�
i ; y

�
j � D �

�
E

�
i ;E

�
j

�
:

This corresponds to part (2) of Dubrovin’s conjecture saying that the Stokes matrix is integral
and is given by the Euler pairing. If follows from the fact that the asymptotics y�

i � e�ui =z‰i

holds over a sector of angle > � that the Stokes matrix is upper-triangular

Sij D �
�
E

�
i ;E

�
j

�
D

8<: 1 if i D j ;

0 if =.e�i�ui / � =.e�i�uj / and i ¤ j .

Remark 2.8. In [26], theb�-conjecture II was stated for Fano manifolds which have semisim-
ple quantum cohomology and full exceptional collections inDb.X/. It is, moreover, conjec-
tured that ¹E

�
i º should lift to a full exceptional collection. We drop these assumptions/con-

clusions to emphasize a topological nature of the b�-conjecture.

Remark 2.9. Dubrovin [22] also formulated a conjecture similar to theb�-conjecture II. See
Cotti, Dubrovin, and Guzzetti [18] for the formulation.

Example 2.10. For X D P n, the corresponding exceptional collection is ¹O;O.1/; : : : ;

O.n/º at some � [26]. The collection at � D 0 is given explicitly in [18].

Remark 2.11. Suppose thatX is Fano and is mirror to a Landau–Ginzburg model f WY ! C.
It is expected that the idempotent  i corresponds to a nondegenerate critical point ci of f
such that the corresponding eigenvalue ui equals f .ci /. The critical point ci can associate
a Lefschetz thimble L

�
i extending in the direction of ei� , which gives an exceptional object

in the Fukaya–Seidel category of .Y; f /. The object in Db.X/ corresponding to L
�
i under

homological mirror symmetry should give the class E
�
i .

Remark 2.12. The b�-conjecture II concerns the connection problem between flat sections
y

�
i characterized by the asymptotics at the irregular singular point z D 0 and flat sections

s.V / normalized at the regular singular point z D 1. The connection matrix of flat sections
(with respect to a fixed basis) is called the central connection matrix by Dubrovin [20]; in the
formalism of the b�-integral structure, it corresponds to the basis ¹E

�
i º of the K-group. As
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discussed by Dubrovin, when � and � vary, the basis ¹y
�
i º of flat sections (and hence ¹E

�
i º)

changes discontinuously by the action of the braid group in N strands. Suppose that we
ordered flat sections ¹y

�
i º in such a way that =.e�i�u1/ � =.e�i�u2/ � � � � � =.e�i�uN /.

The braid group action is generated by the following right mutations and their inverses (which
are the actions of simple braids):

.E1; : : : ;Ei ;EiC1; : : : ;EN / 7!
�
E1; : : : ;EiC1;Ei � �.Ei ;EiC1/EiC1; : : : ;EN

�
;

where we suppressed� to simplify the notation. This transformation happens when the eigen-
value ui crosses behind uiC1 towards direction ei� . As Dubrovin observed, this is consistent
with mutations of exceptional collections in the derived category [8].

2.4. Conjecture of Sanda and Shamoto
Sanda and Shamoto [58] proposed a generalization of the b�-conjecture II to the

case where quantum cohomology is not necessarily semisimple and called it Dubrovin-type
conjecture. Their formulation involves derived category of coherent sheaves and Hochschild
homology, but here we give a topological formulation that has been proposed by Sergey
Galkin [24]. This formulation makes sense for any compact symplectic manifolds.

We fix a parameter � 2 H�.X/ in the convergence domain of the quantum prod-
uct. We consider the restriction QDM.X/� of the quantum D-module from Section 1.2 to
¹�º � C and write QDM.X/� D QDM.X/�;0 ˝C¹zº CJzK for the restriction to the formal
neighborhood of z D 0, where QDM.X/�;0 denotes the germ of QDM.X/� at z D 0. We
say that the quantum connection at � is of exponential type3 if we have the following formal
decomposition (see [37, Lemma 8.2]):b̂W QDM.X/� Š

M
u2C

.eu=z
˝ Ru/˝C¹zº CJzK; (2.1)

where we disregard the pairing on QDM.X/� momentarily, C denotes the set of distinct
eigenvalues of .E?� /, eu=z denotes the rank-one connection .C¹zº; d C d.u=z// and Ru

is a free C¹zº-module equipped with a regular singular connection (whose pole order at
z D 0 is at most two). In this decomposition, each “regular singular piece” Ru is unique
up to isomorphism. This decomposition is automatically orthogonal with respect to the
Poincaré pairing (1.4) and hence each piece Ru inherits a non-degenerate z-sesquilinear
pairing .�; �/uW .�1/�Ru ˝ Ru ! C¹zº. Hereafter we assume that the quantum connection
is of exponential type: this assumption is natural from a mirror symmetry point of view.

We choose an admissible direction ei� for C, that is, an element ei� 2 S1 satisfying
ei� … R>0.u�u0/ for any u;u0 2 C. By the Hukuhara–Turrittin theorem (see [37, Lemma 8.3]),
the above formal decomposition (2.1) lifts uniquely to an analytic decomposition

ˆI W QDM.X/� jI Š

M
u2C

eu=z
˝ RujI

3 We follow the terminology in [46]; it was called “require no ramification” in [37].
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over a sector of the form I D ¹z 2 C� W j arg z � �j < �
2

C "º for some " > 0. Here we mean
by “lifts” that the map ˆI admits, when expressed in terms of local holomorphic frames of
QDM.X/� and Ru around z D 0, an asymptotic expansion as z ! 0 along the sector I and
that the expansion coincides with b̂.

Let �I denote the space of r-flat sections over the angular sector ¹�º � I : it can be
identified with �.X/ from Section 1.1 once we specify a lift of the sector I to the universal
cover of C�. The analytic decomposition ˆI induces a decomposition of �I ,

�I D

M
u2C

Vu; (2.2)

where Vu can be identified with the space of flat sections of Ru over I . Since the analytic
decomposition ˆI is valid over a sector of angle greater than � , it follows easily that the
decomposition (2.2) is semiorthogonal in the sense that

ŒVu;Vu0/ D 0 if =.e�i�u/ < =.e�i�u0/,

where Œ�; �/ is the pairing on �I Š �.X/ introduced in (1.7). The data of the vector space �I

equipped with the pairing Œ�; �/ and the semiorthogonal decomposition (SOD) (2.2) constitute
a mutation system in the sense of [58, Definition 2.30]. In what follows, we ignore the torsion
part of the K-group and write K.X/ for K.X/=tors.

Conjecture 2.13 ([24, 58]). Suppose that the quantum connection is of exponential type at
� 2 H�.X/. With notation as above, the SOD (2.2) is induced from a decomposition of the
topological K-group lattice, i.e., there exists a decomposition

K.X/ D

M
u2C

V �
u (2.3)

such that Vu D s.V
�

u /˝ C, where we identify �I with �.X/ by choosing a lift � 2 R of the
direction ei� 2 I . (A different choice of the lift � changes V �

u by monodromy, i.e., V �C2�
u D

V
�

u ˝ !X Œn�.)

When this conjecture holds, the lattices ¹V
�

u º are semiorthogonal with respect to the
Euler pairing, i.e.,�.V �

u ;V
�

u0 /D 0 for =.e�i�u/ <=.e�i�u0/ and therefore the Euler pairing
on each V �

u is necessarily unimodular (because the Euler pairing onK.X/ is unimodular by
Poincaré duality). In the semisimple case, we must have V �

u Š Z and a generator E of V �
u

must satisfy �.E; E/ D ˙1; the b�-conjecture II (Conjecture 2.7) additionally asserts that
�.E;E/ D 1 (this point does not follow from Conjecture 2.13).

Remark 2.14. The original formulation in [58] assumes that X is a smooth Fano variety
and claims also that the semiorthogonal decomposition (SOD) (2.3) arises from an SOD
of the derived category of coherent sheaves. We note that an SOD of the derived category
induces an SOD of the topological K-group, since projections to the SOD summands are
given by Fourier–Mukai kernels in Db.X �X/ and these kernels induce projections in the
topological K-group (see the discussion in [33, §4] in the context of algebraic K-theory).
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Example 2.15 ([58]). Sanda and Shamoto proved their conjecture for Fano complete inter-
sections in the projective spaces of Fano index greater than 1. Let X be a degree d Fano
hypersurface in P n, with n � d > 0. The set of eigenvalues of the quantum multiplication
.E?0/ D .c1.X/?0/ is ¹0º [ ¹T � W �nC1�d D 1º where T D .n C 1 � d/ � dd=.nC1�d/.
The multiplicity of T � is one and that of 0 is the dimension of the primitive cohomology
plus d � 1. In this case, the decomposition (2.2) at � D 0 arises from (up to mutation) the
following SOD of the derived category:

Db.X/ D
˝
A;O;O.1/; : : : ;O.n � d/

˛
;

where O; : : : ;O.n� d/ are exceptional objects corresponding to simple eigenvalues T � and
A is the right orthogonal of hO;O.1/; : : : ;O.n � d/i corresponding to the eigenvalue 0.

The following problem naturally arises:

Problem 2.16. Understand a geometric meaning of each regular singular piece Ru and the
corresponding unimodular lattice V �

u predicted in Conjecture 2.13.

In the semisimple case, each regular singular piece is the quantum connection of a
point and theK-class E

�
i in theb�-conjecture II (Conjecture 2.7) corresponds to a generator

ofK0.pt/ Š Z. The subcategory A in Example 2.15 is equivalent to the category of graded
matrix factorizations of a degree d polynomial F.x0; : : : ; xn/ defining the hypersurface [56]:
it is known to be a fractional Calabi–Yau category (in the sense that a power of the Serre
functor equals the shift functor).

2.5. Monodromy data and Riemann–Hilbert problem
Let us assume that X satisfies Conjecture 2.13. In this section we explain how the

SOD (2.3) encodes the irregular monodromy (Stokes) data, following [37, §8] and [58]. We
also formulate a Riemann–Hilbert problem that reconstructs quantum cohomology from the
SOD (2.3), formal data (2.1) and certain additional data.

Monodromy. The monodromy transformation T W s.z/ 7! s.e2�iz/ on �I is determined
from the pairing Œ�; �/ as

ŒT s1; s2/ D
�
s1.e

�iz/; s2.z/
�

D
�
s2.e

��iz/; s1.z/
�

D Œs2; s1/:

The restriction Œ�; �/u of the pairing Œ�; �/ to Vu is nondegenerate and is induced from the
pairing .�; �/u on Ru. The monodromy transformation TuW Vu ! Vu on flat sections of Ru

is likewise determined by ŒTus1; s2/u D Œs2; s1/u.

Stokes data. Let ��I denote the space of r-flat sections over the opposite sector ¹�º �

.�I /. The Poincaré pairing .�; �/W ��I � �I ! C identifies ��I with the dual space of �I

and the decomposition ��I D
L

u2C V 0
u associated with the sector �I is dual to that for I ,

i.e., .V 0
u0 ;Vu/ D 0 for u ¤ u0. The Stokes data are given by the analytic continuation maps

S˙W �I ! ��I , s.z/ 7! s.e˙�iz/. By the very definition of the pairing Œ�; �/, they are deter-
mined from Œ�; �/ as

.SCs1; s2/ D Œs2; s1/; .S�s1; s2/ D Œs1; s2/:
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Figure 1

The angular sectors ˙I and the paths of analytic continuations used to define the Stokes maps S˙.

Then we have T D .S�/�1SC. The Stokes maps S˙ are upper (or lower) triangular in
the sense that SC.Vu/ �

L
=.e�i�u0/�=.e�i�u/ V 0

u0 and S�.Vu/ �
L

=.e�i�u0/�=.e�i�u/ V 0
u0 .

They can be used to glue the connections over the opposite sectorsM
u2C

eu=z
˝ Ruj�I and

M
u2C

eu=z
˝ RujI

along the two overlapping domains D˙ D I \ .�I / \ ¹˙=.ze�i�/ > 0º (see Figure 1).
Hence the Stokes data reconstruct an analytic germ of the quantum connection at z D 0

from the formal data ¹Ruºu2C.

Riemann–Hilbert problem. The global quantum connection over P 1 can be reconstructed
by gluing the germ of the connection at z D 0 with a connection around z D 1 via the b�-
integral structure. The quantum connection around z D 1 is gauge-equivalent, via L.�; z/,
to the connection

r
.1/

z@z
D z

@

@z
�
c1.X/

z
C �

on the trivial bundleF1 DH�.X/� .P 1 n ¹0º/! P 1 n ¹0º. We identify the space of r.1/-
flat sections with theK-group via the framing‰1WK.X/!H�.X/˝ OfC� (cf. (1.6)) given
by

‰1.˛/ WD .2�/�n=2z��zc1.X/b�X .2�i/deg =2 ch.˛/: (2.4)

We glue the bundle .F1;r
.1// with the germ around z D 0 by identifying the flat section

‰1.˛/ with ˛ 2 V
�

u with the flat section in Vu Š �.I;Ru/
r corresponding to ˛ (here

we need an identification V �
u Š Vu). This gives us a global vector bundle OF ! P 1 with a

meromorphic connection br. The glued bundle OF must be trivial (although it is not a priori
clear); the trivialization of F1 at z D 1 induces a trivialization OF Š H�.X/ � P 1. The
pair . OF ;br/ is identified with the quantum connection at � .

More explicitly, this reconstruction procedure can be described as the following
Riemann–Hilbert problem for functions Y˙ D .ˆ˙I /

�1 (over the sectors ˙I ) and Y1 D

L.�; z/ (around z D 1). This is an extension of the Riemann–Hilbert problem described by
Dubrovin [19], [21, Lecture 4] in the semisimple case.
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Problem 2.17. Suppose that we are given the following data C, ¹Ruºu2C, ei� , I , �,
.K.X/; �/, K.X/ D

L
u2C Vu, ‰u, ‰1:

• a subset C of C;

• a finite free C¹zº-module Ru with a regular singular connection for each u 2 C;

• an admissible direction ei� for C and a sector I D ¹z 2 C� W jargz � �j< �
2

C "º

centered around it;

• a unimodular lattice .K.X/; �/ of rank dimH�.X/, a lift � 2 R of ei� and an
SOD K.X/ D

L
u2C Vu;

• a framing ‰uW Vu ! �.I;Ru/
r for each u 2 C such that ‰u induces an iso-

morphism over C and intertwines the transformation Tu 2 End.Vu/ given by
�.Tu˛; ˇ/ D �.ˇ; ˛/ with the monodromy s.z/ 7! s.e2�iz/ on �.I;Ru/

r ;

• the “b�-integral” framing ‰1WK.X/ ! H�.X/ ˝ OfC� given in (2.4), which
satisfies ‰1.e

2�iz/ D ‰1.z/ ı T with T 2 End.K.X// given by �.T˛; ˇ/ D

�.ˇ; ˛/.

We define Stokes maps S˙WK.X/ ! K.X/_ by hSC˛;ˇi D �.ˇ; ˛/, hS�˛;ˇi D �.˛; ˇ/

and a framing ‰�;uWV _
u ! �.�I;Ru/

r over the opposite sector �I by

‰�;u

�
�.˛; �/

�
WD clockwise analytic continuation of ‰u.˛/ through D�

for ˛ 2 Vu. We set

‰ WD

M
u2C

‰uWK.X/ D

M
u2C

Vu !

M
u2C

�.I;Ru/
r ;

‰� WD

M
u2C

‰�;uWK.X/_ D

M
u2C

V _
u !

M
u2C

�.�I;Ru/
r :

The problem is to find (matrix-valued) holomorphic functions

Y1 2 GL
�
H�.X/

�
˝ OP1n¹0º; Y˙W

M
u2C

Ruj˙I ! H�.X/˝ O˙I

such that

Y1jzD1 D id; Y˙ ! Y0 as z ! 0 along the sector ˙I

for an invertible operator Y0W
L

u2C RujzD0 ! H�.X/ and that

YC‰e
�U=z

D Y1‰1 over I ,

Y�‰�e
�U _=zS˙

D YC‰e
�U=z over D˙,

where D˙ is as before, the determination of ‰1 over I is given by j arg z � �j < �
2

C ",
U WD

L
u2C u idVu 2 End.K.X// and U_ WD

L
u2C u idV _

u
2 End.K.X/_/.

A solution .Y˙; Y1/ to this problem is unique if exists. The solution Y1 gives the
fundamental solutionL.�; z/ and hence recovers the quantum connection. It is interesting to
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note that we reconstruct not only the connection but also the fundamental solution L.�; z/
(called calibration in the theory of Frobenius manifolds): this implies that the value of the
parameter � can be reconstructed by the asymptotics L.�; z/�11 D 1C �z�1 CO.z�2/ if
we know the unit class 1.

Remark 2.18. The additional data we need here (other than those we already mentioned)
is the framing ‰u for each regular singular piece. In the semisimple case, we have Ru Š

.C¹zº; d / and Vu Š Z, so there is essentially a unique choice for ‰u. A natural candidate
for ‰u could be given by answering Problem 2.16. See Section 3.3 for the example where
we have a natural candidate for the framing.

Remark 2.19. If we include odd classes, the monodromy transformation T on �I is given
by .�1/deg ˛ŒT ˛; ˇ/ D Œˇ; ˛/; the Stokes maps S˙W �I ! ��I are given by .SC˛; ˇ/ D

.�1/deg ˛Œˇ; ˛/, .S�˛; ˇ/ D Œ˛; ˇ/. Problem 2.17 can be also modified accordingly, using
the fact that the pairing Œ�; �/ on �I corresponds to �i�.�; �/ on K1.X/ (see Remark 1.2).

3. Functoriality of quantum cohomology

In this section, we discuss a conjectural functoriality of quantum cohomology under
birational transformations. Roughly speaking, we expect that the relationship between quan-
tum cohomology is induced from a natural map betweenK-groups via theb�-integral struc-
ture. Let X1, X2 be smooth projective varieties and let 'WX1 Ü X2 be a birational map.
Suppose that ' fits into the following commutative diagram:

OX

p1

~~

p2

  
X1

' // X2;

(3.1)

wherep1;p2 are projective birational morphisms. We say that ' is crepant (orK-equivalent)
if p�

1KX1 D p�
2KX2 and discrepant otherwise. We allowXi to be smooth Deligne–Mumford

stacks (with projective coarse moduli spaces) so that we can include crepant resolutions of
orbifolds in the following discussion.

3.1. Crepant transformation
Suppose that 'WX1 Ü X2 is crepant. In this case it can be shown that H�.X1/ Š

H�.X2/ as graded vector spaces by Kontsevich’s motivic integration (see, e.g., [60]). A
famous conjecture of Yongbin Ruan [57] says that the quantum cohomologies of X1 and
X2 become isomorphic after analytic continuation. This problem has been studied by many
people, see, e.g., [10,48,51,54]. We give a version of the conjecture stated in terms of quantum
D-modules and the b�-integral structure following [16, Conjecture 5.1], [42, §5.5], [17,43].

Conjecture 3.1 (Crepant Transformation Conjecture). Let 'WX1 Ü X2 be a crepant bira-
tional map. There exists a map f from an open subset of H�.X1/ to an open subset of
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H�.X2/ such that, after analytic continuation, we have an isomorphism of quantum D-
modules QDM.X1/ Š f � QDM.X2/. Moreover, via the b�-integral structure, the isomor-
phism is induced by an isomorphism .K.X1/; �/ Š .K.X2/; �/ of topological K-group
lattices.

Recall from Section 1.2 that the quantum D-module QDM.Xi / is the tuple of the
cohomology bundleF , the quantum connection and the Poincaré pairing; the isomorphism in
the conjecture is required to respect these structures. Conjecture 3.1 was proved4 for crepant
transformations between complete intersections in toric Deligne–Mumford stacks, which
are induced from variation of GIT quotients [15]. In that case, it is shown that the map
K.X1/ Š K.X2/ between K-groups is given by a Fourier–Mukai transformation that gives
rise to the equivalence of derived categories of X1 and X2. The calculation needed in this
result is an extension of the work of Borisov–Horja [9] that relates analytic continuation of
hypergeometric solutions to the GKZ system and Fourier–Mukai transformations between
toric orbifolds.

Remark 3.2. (1) We can hope that the isomorphism K.X1/ Š K.X2/ is induced by an
equivalence of derived categories. A different derived equivalence can arise from a different
choice of paths of analytic continuation.

(2) When Conjecture 3.1 holds, the map f is necessarily a local isomorphism and
identifies the F -manifold structure [35] of quantum cohomology. In the case of crepant reso-
lutions of orbifolds, it has been observed in [16] that f is not necessarily affine-linear unless
the orbifold satisfies the hard Lefschetz condition.

3.2. Discrepant transformation
We present a conjectural picture in the discrepant case following [45]. In the dis-

crepant case, the ranks of cohomology are different in general and we expect to have an
orthogonal decomposition of formal quantum D-modules and a semiorthogonal decompo-
sition of theb�-integral structure. As in Section 2.4, we write QDM.X/ WD QDM.X/˝OŒz�

OJzK for the quantum D-module formalized along z D 0. Because of the lack of abundant
evidences, we state our picture as problems rather than conjectures.

Problem 3.3 (Formal decomposition). Let 'WX1 Ü X2 be a birational map fitting into the
diagram (3.1) such that p�

1KX1 � p�
2KX2 is an effective divisor. Show that there exists a

map f from an open subset of H�.X1/ to an open subset of H�.X2/ such that we have an
orthogonal decomposition

QDM.X1/ Š f �QDM.X2/˚ D ;

where D is a locally free OJzK-module equipped with a flat meromorphic connection rD

and a rD -flat pairing .�; �/D W .�/�D ˝ D ! OJzK.

4 For complete intersections, we restrict to the ambient part of quantum cohomology in [15].
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Problem 3.3 has been solved for discrepant birational transformations between toric
Deligne–Mumford stacks which arise from a variation of GIT quotients [45]. The proof is
based on mirror symmetry for toric stacks [12,13].

Suppose that Problem 3.3 is solved for some 'WX1 Ü X2, and also suppose (for
simplicity) that QDM.X1/ is of exponential type (see Section 2.4) at some � 2 H�.X1/ in
the domain of the map f . Then QDM.X2/f .�/ and D j� are also of exponential type. We
further assume the following: there exist a phase � 2 R and real numbers l1 > l2 such that

• every eigenvalue u of �rD
z2@z

2 End.D jzD0;� / satisfies either =.e�i�u/ > l1 or
l2 > =.e�i�u/ and

• every eigenvalue u of .EX2?f .�// 2 End.H�.X2// satisfies l1 > =.e�i�u/ > l2.

Then D j� decomposes as D j� D D1 ˚ D2 so that every eigenvalue of �r
D1

z2@z
on D1jzD0 sat-

isfies =.e�i�u/> l1 and that every eigenvalue of �r
D2

z2@z
on D2jzD0 satisfies =.e�i�u/< l2.

By varying � a little, we may assume that ei� is admissible for the eigenvalues of .EX1?� /.
As discussed in Section 2.4, by the Hukuhara–Turrittin theorem, the formal decomposition
QDM.X1/� Š D1 ˚ QDM.X2/f .�/ ˚ D2 lifts to an analytic decomposition of connections
over a sector of the form I D ¹z 2 C� W j arg z � �j < �

2
C "º for some " > 0

QDM.X1/� jI Š D1;I ˚ QDM.X2/� jI ˚ D2;I (3.2)

where Di;I is an analytic connection over the sector I .

Problem 3.4 (Analytic decomposition). Show that the analytic decomposition (3.2) is
induced, via the b�-integral structures for X1 and X2, by an SOD of topological K-groups:

K.X1/ Š K1 ˚K.X2/˚K2 (3.3)

such that the associated inclusion K.X2/ ! K.X1/ respects the Euler pairing.

Problem 3.4 has been answered affirmatively when X1, X2 are weak-Fano compact
toric Deligne–Mumford stacks (satisfying certain mild technical conditions) and 'WX1 !X2

is a weighted blowup (or a root construction) along a toric substack Z [45]. We also showed
that the decomposition (3.3) at some � and � is given by an Orlov-type SOD [55]. We could
hope that the SOD (3.3) in K-theory arises from an SOD Db.X1/ Š hA1;D

b.X2/;A2i of
the derived category; such an SOD in the derived category has been conjectured in [6].

Remark 3.5. There are closely related works by Bayer [7], Acosta–Shoemaker [2, 3] and
González–Woodward [32]. A formal decomposition of quantum D-modules under flips sim-
ilar to our picture has been also proposed by Lee, Lin, and Wang [49,50].

Remark 3.6. In Problem 3.3,f is necessarily a submersion and theF -manifold of QH�.X1/

locally decomposes into the product of the F -manifold of QH�.X2/ and that correspond-
ing to D . Proof. The map T�H

�.X1/ ! QDM.X1/jzD0;� D H�.X1/ given by v 7! zrv1

is an isomorphism. If the unit section 1 maps to .s; t/ 2 QDM.X2/ ˚ D under the iso-
morphism, it follows that the map df .T�H

�.X1// ! QDM.X2/jzD0;f .�/, w 7! zrws
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is surjective. This can only happen when df W T�H
�.X1/ ! Tf .�/H

�.X2/ is surjective.
The ring homomorphism T�H

�.X1/ ,! End.QDM.X1/jzD0;� /, v 7! zrv factors through
T�H

�.X1/ ! Tf .�/H
�.X2/ ˚ End.D jzD0;� / and this gives a decomposition of the ring

.T�H
�.X1/; ?� /. The flatness of r shows that the decomposition is integrable.

Remark 3.7. For a higher-genus generalization of Conjecture 3.1 and Problem 3.3, we refer
the reader to [14,45].

3.3. Riemann–Hilbert problem for blowups
Let X be a smooth projective variety and let Z � X be a smooth subvariety. Let

'W QX ! X be the blowup of X along Z. The above mentioned results for toric blowups
suggest the following conjectural reconstruction algorithm for quantum cohomology of QX

from quantum cohomology of X and Z. This is similar to the procedure in Section 2.5.

Orlov decomposition. Let c be the codimension ofZ inX . By Orlov [55] we have the SOD
of the K-group:

K. QX/ D '�K.X/˚K.Z/0 ˚ � � � ˚K.Z/c�2 Š K.X/˚K.Z/˚.c�1/;

where K.Z/k D j�.O.k/ ˝ ��K.Z// with j WE ,! X the inclusion of the exceptional
locus and � WE Š P .NZ=X / ! Z a projective bundle. We shall fix this decomposition. The
cohomology of QX is isomorphic to H�.X/ ˚ H��2.Z/ ˚ � � � ˚ H��2cC2.Z/ as graded
vector spaces. The cup product structure onH�. QX/, theb�-class and the Chern character for
QX can be reconstructed from those for X , Z, the push-forward and pull-back maps between
H�.X/, H�.Z/ and the Chern classes ci .NZ=X / 2 H 2i .Z/.

Formal data. We choose parameters � 2 H�.X/ and �0; : : : ; �c�2 2 H�.Z/ and a phase
� 2 R so that =.e�i�v/ > =.e�i�u0/ > � � �> =.e�i�uc�2/ for all eigenvalues v of .EX?� /

and all eigenvalues ui of .EZ?�i
/. We define QDM WD QDM.X/� ˚ QDM.Z/�0 ˚ � � � ˚

QDM.Z/�c�2 . This will be the formal quantum D-module for QX .

Gluing. The given formal decomposition for QDM should lift to analytic decompositions
over the sectors I and �I , with I D ¹z 2 C� W j arg z � �j < �

2
C "º for some " > 0,

ˆ˙I W QDM j˙I Š QDM.X/� ˚ QDM.Z/�0 ˚ � � � ˚ QDM.Z/�c�2 j˙I ;

and the two analytic decompositions should be glued together by the Stokes data induced
from Orlov’s SOD. Finally, we glue it with the connection near z D 1 via the b�-integral
structure to get the quantum D-module for QX .

The reconstruction can be formulated as a Riemann–Hilbert problem for Y˙ D

.ˆ˙I /
�1 and Y1 D L.�; z/ (a fundamental solution for QX , see (1.5)) as follows. Define

S˙WK. QX/ ! K. QX/_ by hSC˛; ˇi D �.ˇ; ˛/, hS�˛; ˇi D �.˛; ˇ/ as before; also define
‰WK. QX/ Š K.X/˚K.Z/˚.c�1/ ! .H�.X/˚H�.Z/˚.c�1//˝ OI as

‰.˛; ˇ0; : : : ; ˇc�2/ D sX .˛/.�; z/˚ sZ.ˇ0/.�0; z/˚ � � � ˚ sZ.ˇc�2/.�c�2; z/;
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where sX , sZ are the maps (1.6) defined forX andZ, respectively, and define‰�WK. QX/_ Š

K.X/_ ˚ .K.Z/_/˚.c�1/ ! .H�.X/˚H�.Z/˚.c�1//˝ O�I as

‰�

�
�.˛; �/; �.ˇ0; �/; : : : ; �.ˇc�2; �/

�
D clockwise analytic continuation of

‰.˛; ˇ0; : : : ; ˇc�2/:

Let ‰1 be the map (2.4) with X there replaced with QX . The problem is to find functions

Y1 2 GL
�
H�. QX/

�
˝ OP1n¹0º; Y˙ 2 Hom

�
H�.X/˚H�.Z/˚.c�1/;H�. QX/

�
˝ O˙I

such that Y1jzD1 D id, Y˙ ! Y0 as z ! 0 along the sector ˙I for an invertible operator
Y0 and that

YC‰ D Y1‰1 over I ,

Y�‰�S
˙

D YC‰ over D˙;

where D˙ is as before. As discussed in Section 2.5, we can reconstruct the value of the
parameter � for the quantum D-module of QX and it becomes a function of �; �0; : : : ; �c�2;
the parameter space locally splits into the product of H�.X/ and .c � 1/ copies of H�.Z/

as an F -manifold.

Remark 3.8. Recently, Katzarkov, Kontsevich, and Pantev [47] formulated a closely related
conjecture for quantum cohomology of blowups and gave a remarkable application to the
problem of rationality.

Acknowledgments

I thank Sergey Galkin for valuable comments on a draft version of the paper and allowing
me to present his formulation in this paper.

Funding

This work was partially supported by JSPS grant 16H06335, 20K03582 and 21H04994.

References

[1] M. Abouzaid, S. Ganatra, H. Iritani, and N. Sheridan, The Gamma and Strominger–
Yau–Zaslow conjectures: a tropical approach to periods. Geom. Topol. 24 (2020),
2547–2602.

[2] P. Acosta and M. Shoemaker, Gromov–Witten theory of toric birational transfor-
mations. 2016, arXiv:1604.03941.

[3] P. Acosta and M. Shoemaker, Quantum cohomology of toric blowups and
Landau–Ginzburg correspondences. Algebr. Geom. 5 (2018), 239–263.

[4] M. F. Atiyah, Circular symmetry and stationary phase approximation. In Colloque
en l’honneur de Laurent Schwartz (École Polytechnique, Palaiseau, 30 May –
3 June 1983), pp. 43–59, Astérisque 131, Société mathématique de France (Paris),
1985.

2570 H. Iritani

https://arxiv.org/abs/1604.03941


[5] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces. In
Proc. Symp. Pure Math. v. III, pp. 7–38, Amer. Math. Soc., Providence, RI, 1961.

[6] M. Ballard, D. Favero, and L. Katzarkov, Variation of geometric invariant theory
quotients and derived categories. J. Reine Angew. Math. 746 (2019), 235–303.

[7] A. Bayer, Semisimple quantum cohomology and blowups. Int. Math. Res. Not.
(2004), 2069–2083.

[8] A. Bondal and A. Polishchuk, Homological properties of associative algebras:
the method of helices (in Russian). Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993),
no. 2, 3–50. English translation in Russian Acad. Sci. Izv. Math. 42 (1994), no. 2,
219–260.

[9] L. Borisov and R. Horja, Mellin–Barnes integrals as Fourier–Mukai transforms.
Adv. Math. 207 (2006), no. 2, 876–927.

[10] J. Bryan and T. Graber, The crepant resolution conjecture. In Algebraic geometry
– Seattle 2005. Part 1, pp. 23–42, Proc. Sympos. Pure Math. 80, Amer. Math.
Soc., Providence, RI, 2009.

[11] D. Cheong and C. Li, On the Conjecture O of GGI for G=P . Adv. Math. 306
(2017), 704–721.

[12] T. Coates, A. Corti, H. Iritani, and H. H. Tseng, A Mirror Theorem for Toric
Stacks. Compos. Math. 151 (2015), 1878–1912.

[13] T. Coates, A. Corti, H. Iritani, and H. H. Tseng, Hodge-theoretic mirror symmetry
for toric stacks. J. Differential Geom. 114 (2020), 41–115.

[14] T. Coates and H. Iritani, A Fock sheaf for Givental quantization. Kyoto J. Math. 58
(2018), 695–864.

[15] T. Coates, H. Iritani, and Y. Jiang, The crepant transformation conjecture for toric
complete intersections. Adv. Math. 329 (2018), 1002–1087.

[16] T. Coates, H. Iritani, and H. H. Tseng, Wall-crossings in toric Gromov–Witten
theory. I. Crepant examples. Geom. Topol. 13 (2009), 2675–2744.

[17] T. Coates and Y. Ruan, Quantum cohomology and crepant resolutions: a conjec-
ture. Ann. Inst. Fourier (Grenoble) 63 (2013), no. 2, 431–478.

[18] G. Cotti, B. Dubrovi, and D. Guzzetti, Helix structures in quantum cohomology of
Fano varieties. 2018, arXiv:1811.09235.

[19] B. Dubrovin, Geometry of 2D topological field theories. In Integrable systems and
quantum groups, edited by M. Francaviglia et al., pp. 120–348, Lecture Notes in
Math. 1620, Springer, Berlin, 1996.

[20] B. Dubrovin, Geometry and analytic theory of Frobenius manifolds. In Proceed-
ings of the International Congress of Mathematicians, Vol. II (Berlin, 1998),
Doc. Math. Extra Vol. II (1998), 315–326.

[21] B. Dubrovin, Painlevé transcendents in two-dimensional topological field theory.
In The Painlevé property, pp. 287–412, CRM Ser. Math. Phys., Springer, New
York, 1999.

2571 Gamma classes and quantum cohomology

https://arxiv.org/abs/1811.09235


[22] B. Dubrovin, Quantum cohomology and isomonodromic deformation, Lecture at
Recent Progress in the Theory of Painlevé Equations: Algebraic, asymptotic and
topological aspects, Strasbourg, November 2013.

[23] B. Fang and P. Zhou, Gamma II for toric varieties from integrals on T -dual branes
and homological mirror symmetry. 2019, arXiv:1903.05300.

[24] S. Galkin, Private communication.
[25] S. Galkin, Apéry constants of homogeneous varieties, preprint SFB45. 2008,

arXiv:1604.04652.
[26] S. Galkin, V. Golyshev, and H. Iritani, Gamma classes and quantum coho-

mology of Fano manifolds: Gamma conjectures. Duke Math. J. 165 (2016),
no. 11, 2005–2077.

[27] S. Galkin and H. Iritani, Gamma conjecture via mirror symmetry. In Primitive
forms and related subjects – Kavli IPMU 2014, pp. 55–115, Adv. Stud. Pure
Math. 83, 2019.

[28] A. Givental, Homological geometry I. Projective hypersurfaces. Selecta Math. 1
(1995), 325–345.

[29] A. Givental, Equivariant Gromov–Witten invariants. Int. Math. Res. Not. 1996
(1996), no. 13, 613–663.

[30] V. Golyshev, Deresonating a Tate period. 2009, arXiv:0908.1458.
[31] V. Golyshev and D. Zagier, Proof of the gamma conjecture for Fano 3-folds of

Picard rank 1. Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 1, 27–54.
[32] E. González and C. Woodward, Quantum cohomology and toric minimal model

programs. Adv. Math. 353 (2019), 591–646.
[33] S. Gorchinskiy and D. Dmitri, Geometric phantom categories. Publ. Math. Inst.

Hautes Études Sci. 117 (2013), 329–349.
[34] M. Guest, Quantum cohomology via D-modules. Topology 44 (2005), no. 2,

263–281.
[35] C. Hertling and Y. I. Manin, Weak Frobenius manifolds. Int. Math. Res. Not. 6

(1999), 277–286.
[36] C. Hertling, Y. I. Manin, and C. Teleman, An update on semisimple quantum

cohomology and F -manifolds. Tr. Mat. Inst. Steklova 264 (2009), Mnogomernaya
Algebraicheskaya Geometriya, 69–76. Translation in Proc. Steklov Inst. Math. 264
(2009), no. 1, 62–69.

[37] C. Hertling and C. Sevenheck, Nilpotent orbits of a generalization of Hodge struc-
tures. J. Reine Angew. Math. 609 (2007), 23–80.

[38] R. Horja, Hypergeometric functions and mirror symmetry in toric varieties. 1999,
arXiv:math/9912109.

[39] S. Hosono, Central charges, symplectic forms, and hypergeometric series in local
mirror symmetry. In Mirror symmetry. V, pp. 405–439, AMS/IP Stud. Adv. Math.
38, Amer. Math. Soc., Providence, RI, 2006.

2572 H. Iritani

https://arxiv.org/abs/1903.05300
https://arxiv.org/abs/1604.04652
https://arxiv.org/abs/0908.1458
https://arxiv.org/abs/math/9912109


[40] S. Hosono, A. Klemm, S. Theisen, and S. T. Yau, Mirror symmetry, mirror map
and applications to complete intersection Calabi–Yau spaces. Nuclear Phys. B 433
(1995), no. 3, 501–552.

[41] X. Hu and H-Z. Ke, Gamma conjecture II for quadrics. 2021, arXiv:2103.15143.
[42] H. Iritani, An integral structure in quantum cohomology and mirror symmetry for

toric orbifolds. Adv. Math. 222 (2009), no. 3, 1016–1079.
[43] H. Iritani, Ruan’s conjecture and integral structures in quantum cohomology. In

New developments in algebraic geometry, integrable systems and mirror symmetry
(RIMS, Kyoto, 2008), pp. 111–166, Adv. Stud. Pure Math. 59, Math. Soc. Japan,
Tokyo, 2010.

[44] H. Iritani, Quantum cohomology and periods. Ann. Inst. Fourier (Grenoble) 61
(2011), 2909–2958.

[45] H. Iritani, Global Mirrors and Discrepant Transformations for Toric Deligne–
Mumford Stacks. SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020),
032, 111 pages.

[46] L. Katzarkov, M. Kontsevich, and T. Pantev, Hodge theoretic aspects of mirror
symmetry. In From Hodge theory to integrability and TQFT t t�-geometry,
pp. 87–174, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, RI,
2008.

[47] M. Kontsevich, Birational invariants from quantum cohomology. Talk at Higher
School of Economics on 27 May 2019, as part of Homological Mirror Symmetry
at HSE, 27 May – 1 June, 2019.

[48] Y. P. Lee, H. W. Lin, and C. L. Wang, Flops, motives, and invariance of quantum
rings. Ann. of Math. (2) 172 (2010), 243–290.

[49] Y. P. Lee, H. W. Lin, and C. L. Wang, Quantum cohomology under birational
maps and transitions. In String-Math 2015, pp. 149–168, Proc. Sympos. Pure
Math. 96, Amer. Math. Soc., Providence, RI, 2017.

[50] Y. P. Lee, H. W. Lin, and C. L. Wang, Quantum flips I: local model. 2019,
arXiv:1912.03012.

[51] A. M. Li and Y. Ruan, Symplectic surgery and Gromov–Witten invariants of
Calabi–Yau 3-folds. Invent. Math. 145 (2001), 151–218.

[52] A. S. Libgober, Chern classes and the periods of mirrors. Math. Res. Lett. 6
(1999), 141–149.

[53] R. Lu, The b�-genus and a regularization of an S1-equivariant Euler class. J. Phys.
A 41 (2008), no. 42, 425204 (13 pp).

[54] M. McLean, Birational Calabi–Yau manifolds have the same small quantum prod-
ucts. Ann. of Math. 191 (2020), no. 2, 439–579.

[55] D. Orlov, Projective bundles, monoidal transformations, and derived categories
of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 852–862. English
translation in Russian Acad. Sci. Izv. Math., 41 (1993) no. 1, 133–141.

2573 Gamma classes and quantum cohomology

https://arxiv.org/abs/2103.15143
https://arxiv.org/abs/1912.03012


[56] D. Orlov, Derived categories of coherent sheaves and triangulated categories of
singularities. In Algebra, arithmetic, and geometry: in honor of Yu. I. Manin.
Vol. II, pp. 503–531, Progr. Math. 270, Birkhäuser Boston Inc., Boston, MA,
2009.

[57] Y. Ruan, The cohomology ring of crepant resolutions of orbifolds. In Gromov–
Witten theory of spin curves and orbifolds, pp. 117–126, Contemp. Math. 403,
Amer. Math. Soc., Providence, RI, 2006.

[58] F. Sanda and Y. Shamoto, An analogue of Dubrovin’s conjecture. Ann. Inst.
Fourier 70 (2020), no. 2, 621–682.

[59] C. van Enckevort and D. van Straten, Monodromy calculations of fourth order
equations of Calabi–Yau type. In Mirror symmetry. V, pp. 539–559, AMS/IP Stud.
Adv. Math. 38, Amer. Math. Soc., Providence, RI, 2006.

[60] T. Yasuda, Motivic integration over Deligne–Mumford stacks. Adv. Math. 207
(2006), no. 2, 707–761.

Hiroshi Iritani

Department of Mathematics, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, Japan,
iritani@math.kyoto-u.ac.jp

2574 H. Iritani

mailto:iritani@math.kyoto-u.ac.jp



	1. Gamma-integral structure in quantum cohomology
	1.1. Gamma class
	1.2. Quantum cohomology D-modules
	1.3. Gamma-integral structure

	2. Gamma conjectures
	2.1. Gamma conjecture I
	2.2. Gamma conjecture I in terms of flat sections
	2.3. Gamma conjecture II
	2.4. Conjecture of Sanda and Shamoto
	2.5. Monodromy data and Riemann–Hilbert problem

	3. Functoriality of quantum cohomology
	3.1. Crepant transformation
	3.2. Discrepant transformation
	3.3. Riemann–Hilbert problem for blowups

	References

