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Abstract

An action of a group on a topological space is rigid if small perturbations to the action
have little meaningful influence on its global dynamics. Many examples of rigid actions
come from geometric considerations. This introductory survey describes the idea of
“looking to infinity” as a source both of rigid examples and proofs of rigidity, starting
with some early history then passing quickly to recent developments in topological rigidity
of group actions. The examples considered include actions of hyperbolic manifold groups
on the visual boundary of their universal cover, automorphism groups of surface groups,
boundary actions of hyperbolic groups in the sense of Gromov, and group actions derived
from Anosov flows on 3-manifolds.
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Figure 1

A regular tiling of the hyperbolic plane by octagons with geodesic sides. The symmetries of this tiling is a
hyperbolic group with boundary S1. Identifying sides of the octagonal domain by translations indicated on the
figure gives a genus 2 surface with hyperbolic structure.

1. Introduction

The boundary at infinity. This survey concerns some recent developments in topological
rigidity of group actions that come from “looking to infinity.”

To start, let us take a short tour of a familiar object, the Poincaré ball model of the
hyperbolic space. Recall that hyperbolic n-space, Hn, is the unique complete, simply con-
nected manifold of constant curvature �1. We can visualize it via the Poincaré ball model,
the open unit ball in Rn equipped with the Riemannian metric ds2 D

4kdxk2

.1�kxk2/2 . In this
model, infinite geodesics are the Euclidean lines and half-circles that meet the boundary
of the ball orthogonally (see Figure 1 for an illustration when n D 2). Isometries of Hn

preserve geodesics and totally geodesic half-spaces, from which one can deduce that they
induce homeomorphisms of the sphere bounding the Poincaré ball. But what is this sphere
of “points at infinity”?

Let us try to describe the boundary from the perspective of someone inside Hn.
Standing at a point in Hn, your field of vision is a sphere, each line of sight a geodesic ray
based at your eye. Each ray in this Sn�1-family tends to a unique point on the boundary
sphere. To avoid privileging any one point as the eye of an observer, we might broaden our
definition of the “sphere at infinity” as follows. In a geodesic metric space .X; dX /, define
an equivalence relation on unit speed geodesic rays by declaring that two such rays, say ˛,
 W Œ0;1/ ! X , are equivalent if there exists a constant D such that dX .˛.t/; .t// < D

holds for all t . Applying this to Hn, the equivalence classes of geodesic rays are in a one-
to-one correspondence with points on the boundary sphere of the Poincaré ball, and also to
visual directions based at a given point.

The beauty of this definition, beyond being independent of a basepoint, is that we
did not need to model hyperbolic space as a ball in Rn to compactify it. Thus, it lends itself
to other spaces with negative—or even coarse analogs of negative—curvature. Applying this
definition to any proper geodesic metric spaceX that is ı-hyperbolic in the sense of Gromov
(we will return to this later) gives an “ideal boundary” denoted @1X , which is a compact
space when equipped with the quotient topology induced from the compact-open topology
on all geodesic rays. Informally, two boundary points are close if they can be represented by
rays that stay a bounded distance from each other for a long time. This topology can be natu-
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rally extended toX [ @1X , compactifyingX . The isometries ofX preserve geodesics, and
preserve the equivalence relation of staying a bounded distance apart, so extend to home-
omorphisms of the boundary with this topology. This is the starting point for our story of
groups acting on boundary spaces.

Rigidity. A group � acting on a spaceX is locally rigid if the only possible small deforma-
tions of the action are by trivial procedures—constructions that do not meaningfully change
the global dynamics of the action. Of course, what “trivial procedure” and “meaningfully
change” mean depends on the context, but a standard interpretation is that there should
be either a surjective map, a self-homeomorphism, a diffeomorphism, or an isometry of
X (semi)conjugating the perturbed action of � back to the original. That is, if � W � !

Homeo.X/ is the original action, and �0 a perturbation, then rigid means that there is a map
h W X ! X satisfying h ı �0./ D �./ ı h for all  2 � . If invertible, h is a genuine con-
jugacy; if merely surjective, it is called a semiconjugacy. One can strengthen this notion:
globally rigid means that any deformation, no matter how big or small, is still (semi)con-
jugate to the original; and one can even do away with the idea of deforming continuously:
strong rigidity typically means that any other action of the group is either semiconjugate to
the original or essentially trivial.

The first major examples of local rigidity to attract significant attention were lattices
in linear groups. A lattice in a group G is a discrete subgroup � such that G=� has finite
volume, such as SL.n;Z/ in SL.n;R/; it is cocompact if the quotient is compact. In 1960,
as a means of showing the surprising fact that discrete, cocompact subgroups of SL.n;R/
are conjugate to arithmetic groups, Selberg showed that the inclusion of such a lattice into
SL.n;R/ is locally rigid in the sense that any nearby representation is conjugate by an ele-
ment of SL.n;R/. This, together with concurrent work of Calabi, Weil, Calabi–Vesentini
and others, was the birth of rigidity theory. At the time, the major techniques were alge-
braic (Selberg’s work hinged on traces of group elements) and differential geometric. But an
important new idea of Selberg, picked up by Mostow, was that of escape to infinity, an idea
that would prove extremely fruitful to others. Mostow writes:

“Upon analyzing Selberg’s proof of his rigidity theorem, the key relation shows its
force as the elements [considered here in an abelian subgroup] go to infinity... It
seemed to me desirable to exploit relations at infinity not only on abelian subfami-
lies, but among all elements of � near infinity.” [35]

What does this mean? Mostow’s first success was with lattices in Isom.Hn/ Š

O.n; 1/= ˙ 1, so I will center our discussion here. Given isomorphic cocompact lattices
� and � 0, one can build a map f W Hn ! Hn, equivariant with respect to their actions by
isometries. Mostow’s idea was to ask whether this equivariant map of Hn extends to a map
on the boundary at infinity (the answer is “yes, always”) and to study the regularity of the
extension (a harder answer: “it is necessarily a conformal map, induced by conjugation by
an isometry”). This led to the proof of
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Theorem 1.1 (Mostow rigidity for hyperbolic manifolds [34]). SupposeM and N are com-
pact, hyperbolic manifolds of dimension at least 3. IfM andN are diffeomorphic, then they
are isometric.

Shortly afterwards, Margulis noticed that one needs only assume M and N have
isomorphic fundamental groups.

Theorem 1.2 (Mostow rigidity, algebraic reformulation [30]). Let M and N be compact,
hyperbolic manifolds of dimension at least 3. If �1.M/Š �1.N /, thenM andN are isomet-
ric. Equivalently, any two isomorphic cocompact lattices in O.n; 1/ are conjugate provided
n � 3.

To the reader meeting this theorem for the first time, I wish to emphasize the fol-
lowing dramatic consequence: for hyperbolic manifolds, every metric invariant is actually
a topological invariant. Volume? Length of a shortest closed geodesic? Theorem 1.2 says
these quantities are completely determined by the algebraic structure of the fundamental
group of the manifold.

Mostow later extended his rigidity result to lattices in other semisimple Lie groups,
the first step again being to construct boundary maps. There are many excellent surveys on
these results and their influence in the work of Margulis, Zimmer, and many others; I rec-
ommend those of Fisher and Spatzier [12,36] as a starting point for the curious reader. Here
we will take a different tack, skipping ahead to some very recent developments on rigidity of
boundary actions. These will occur in settings where, for reasons of low dimension or low
regularity, many of the dynamical techniques descended from Mostow and his contempo-
raries fall short, but the essence of the idea to look at the boundary prevails.

2. Surface groups acting on the circle

Hyperbolic structures on surfaces. The attentive reader will have noticed the hypothesis
“dimension at least 3” in Mostow’s theorem. Indeed, this is necessary, as there is a contin-
uum of nonisometric hyperbolic structures on any surface of genus g � 2, a fact that has
been known (depending on how you count) at least since the time of Riemann or Poincaré.
These correspond to the continuum of discrete, faithful representations, called Fuchsian rep-
resentations, of the fundamental group of the surface into Isom.H2/.

The way in which Mostow’s original strategy fails in dimension 2 is quite subtle,
having to do with the fact that there is no perfect analog of a quasiconformal map in dimen-
sion 1. Agard’s survey “Mostow rigidity on the line” [1] contains a nice discussion of what
goes right and wrong.1 That said, for a fixed genus g, each boundary action corresponding to

1 There are many other proofs of Mostow rigidity, all falling short for surfaces in different
ways. A proof using Gromov’s simplicial volume relies on the fact that an ideal simplex
of maximal volume in the hyperbolic n-space is regular—a meaningful distinction when
n � 3, but in H2 all ideal triangles are isometric. Besson–Courtois–Gallot [5] have a
strengthening of Mostow’s theorem with a different endgame to the proof hinging on an
inequality involving the determinant of an n � n derivative matrix, which simply fails for
n D 2.
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a hyperbolic structure on a genus g surface is conjugate by a homeomorphism of the circle.2

This suggests that one might recover a notion of rigidity by weakening the regularity of the
maps in question. Reducing regularity is actually quite a natural consideration: leaving the
realm of hyperbolic structures and instead considering the boundary at infinity of the uni-
versal cover of the surface with an arbitrary Riemannian metric, or on a Cayley graph for the
fundamental group of the surface, one retains only a topological circle with an action of the
fundamental group by homeomorphisms. These actions are all conjugate to each other, and
also all to any Fuchsian action, by a homeomorphism of the circle.

Rigidity at infinity for surfaces. This brings us to a beautiful theorem of Matsumoto on
boundary rigidity for surfaces. To state it, I will first make precise the notion of rigidity
described before. A group action of � on X is a homomorphism � ! Homeo.X/. The
space of actions Hom.�;Homeo.X// is the set of all actions equipped with the compact-
open topology: informally, two actions are close if, for every element  in a large finite subset
of � , the homeomorphisms given by the actions of  are pointwise close on a large compact
subset ofX . Global rigidity is a statement about the homogeneity of a connected component
of Hom.�;Homeo.X//; Matsumoto’s version is as follows:

Theorem 2.1 (Matsumoto’s rigidity [31]). Suppose that † is a surface of genus at least 2,
and � W �1.†/ ! Homeo.S1/ lies in the same connected component as a Fuchsian repre-
sentation �0. Then there is a continuous, monotone, degree 1 map h W S1 ! S1 such that
h ı �./ D �0./ ı h holds for all  2 �1.†/.

“Monotone” here means that hweakly preserves the cyclic ordering of points on S1.
A triple .x1; x2; x3/ of distinct points in S1 has a positive or negative orientation depending
on whether you proceed anticlockwise or clockwise around the circle as your read the points
in order. To weakly preserve this order, a map sends each positively oriented triple either to
a positively oriented triple or to a degenerate one where two or more points coincide. Thus,
h may collapse an interval to a point, but does not double back on itself.

This weakening of the notion of conjugacy in the theorem statement is necessary, as
it is easy to construct small, nonconjugate perturbations of almost any action of a countable
group on the circle using a “blow up” trick. Enumerate your group � , fix a point x and some
small " > 0, and replace the image of x under the action of the nth element of � with a closed
interval of length "

2n . The result is a circle whose circumference is increased by ". Extend
the original action of � over the inserted intervals by declaring that g takes the interval
corresponding to f .x/ to that of gf .x/ by the unique affine map. This procedure gives an
action by homeomorphisms, and the map h W S1 ! S1 collapsing each inserted interval to
a point is a semiconjugacy.

Group cohomology. A remarkable theorem of Ghys [14] says that the equivalence relation
on group actions generated by semiconjugacy, in the sense defined above using a mono-

2 This is again a subtle point: one can show that, if such a conjugating homeomorphism is
differentiable with nonzero derivative at a single point, then it is real analytic, induced from
an isometry of H2, and the surfaces are isometric.
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tone maps, is actually a cohomological phenomenon. As is well known, the inclusion of the
rotation subgroup SO.2/Š S1 into the group HomeoC.S

1/ of orientation-preserving home-
omorphisms of the circle is a homotopy equivalence, thus the cohomology of the classifying
space for HomeoC.S

1/ is generated by an Euler class in degree 2. It is less well known
(following from a deep theorem of Thurston) that the cohomology of HomeoC.S

1/ as a dis-
crete group is also generated by the Euler class: the map from the discrete HomeoC.S

1/ to
HomeoC.S

1/ with the usual topology induces an isomorphism on cohomology.
Given an action � W � ! HomeoC.S

1/ of a group by orientation-preserving home-
omorphisms of the circle, one can pull back the discrete, integral Euler class to an element
of H 2.�I Z/. Typically, remembering only the Euler class and forgetting the action results
in a great loss of information. For instance, if � is a surface group, then H 2.�I Z/ Š Z,
but there are uncountably many distinct actions of � on the circle, even up to semiconju-
gacy. However, the Euler class is a bounded cocycle in the sense of Gromov, and the second
bounded cohomology of a surface group is infinite dimensional. Ghys showed, remarkably,
that this pullback of the Euler class in bounded cohomology determines the action up to
semiconjugay. The rigidity statement of Matsumoto quoted above is, in fact, a consequence
of a stronger theorem, in which he shows that there is a unique, maximal (meaning pairing
maximally with the fundamental class of the surface) bounded second cohomology class,
corresponding to the semiconjugacy class of a Fuchsian representation.

Rigidity of geometric actions. The Fuchsian surface groups acting on the circle in Mat-
sumoto’s rigidity theorem are lattices in PSL.2;R/, the group of orientation-preserving
isometries of H2. With this in mind, we make the following definition:

Definition 2.2. An action of a group � on a manifold X is geometric if it is obtained by the
embedding of � as a cocompact lattice in a connected Lie groupG acting transitively on X .

This definition is modeled after the idea of a geometry from Klein’s Erlangen pro-
gram: a connected Lie group acting transitively on a space with compact point stabilizers.
When X is the circle, we can easily list all geometric actions of groups. The connected Lie
groups acting transitively on S1 are the rotation group SO.2/, the projective linear group
PSL.2;R/ acting on RP 1 D S1, and finite cyclic covers (i.e., central extensions by finite
cyclic groups) of PSL.2;R/, which act naturally on finite covers of S1—conveniently, also
topological circles (see [15]). Any cocompact lattice in one of these groups is, up to finite
index, the fundamental group of a surface of genus g for some g � 2, and these are all
obtained by lifting Fuchsian surface groups to a finite cyclic cover. Provided that the degree
of the cover divides the Euler characteristic of the surface, such a lift exists and gives a lattice
in the corresponding cyclic extension of PSL.2;R/.

Matsumoto’s theorem gives global rigidity for geometric examples where the ambi-
ent Lie group is PSL.2;R/. With Maxime Wolff, we showed this for all geometric surface
groups:

Theorem 2.3 (Rigid , geometric on the circle [24,29]). An action of a surface group on S1

is globally rigid if and only if it is geometric.
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The direction geometric implies rigid consists in a careful study of geometric rep-
resentations using the Poincaré rotation number and techniques of Calegari and Walker; a
detailed expository account is given in [25] and an alternative proof given later by Matsumoto,
using a Markov partition and Maskit combination theorem style of argument, in [32]. The
statement that rigid implies geometric is much more difficult: handed an action of �1.†/

on the circle, with no knowledge about it except that you cannot deform it, you need to
reconstruct the ambient Lie group and lattice surface group.

The proof in [29] is rather technical, but, under a major simplifying assumption one
can produce a much easier proof in which the strategy of “reconstruction” is evident. This
is carried out in the relative short paper [27]. The simplifying assumption eliminates the
possibility that �.�1.†// lies in one of the nontrivial covers of PSL.2;R/. As a consequence
of this assumption, one can deform the representation so that some simple closed curve a on
the surface has its action �.a/ conjugate to the boundary action of a hyperbolic isometry of
PSL.2;R/. This means that the action of �.a/ on the circle has exactly two fixed points, one
attracting and one repelling.

Having found one such simple closed curve, we find many, and then start the recon-
struction: we show that the arrangement of attracting and repelling points of the action
of these simple closed curves on the circle agrees with the intersection pattern of lifts of
geodesic representatives of these curves on the surface. Under a Fuchsian representation, the
axes of translation of elements are exactly such lifts of curves, and this allows us to build
the desired semiconjugacy to the Fuchsian class. Figure 1 gives a representative visual: the
geodesics shown there are all represented by simple closed curves; it is the cyclic order of
their endpoints that we recover.

Open questions. For any real linear algebraic group G and finitely presented group
� D hS j Ri, the space of representations Hom.�; G/ is a real algebraic variety, a sub-
space of GjS j cut out by the finitely many relations from R. Thus Hom.�; G/ has finitely
many connected components. Goldman [17, Theorem A] gives a precise count in the case
where � is the fundamental group of a closed surface, and G the k-fold covering group
of PSL.2;R/. Geometric representations exist precisely when k divides 2g � 2; if k is
larger than 2g � 2, then there is only a single connected component: every representation is
deformable to the trivial representation. Using this, one can show that for a given genus g, up
to deformation, there are only finitely many representations of �1.†g/ into a Lie subgroup
of S1. By contrast, we do not know:

Question 2.4. Does the space Hom.�1.†g/;HomeoC.S
1// have finitely many connected

components?

Question 2.5. Can every action of a surface group on the circle be deformed into one with
image in a Lie group?

In fact, the situation is even messier than this. “Deformation” suggests movement
along a path of representations, while my definition of rigidity referred to homogeneity of
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connected components. Alas, we do not know if path components and connected components
of Hom.�1.†g/;HomeoC.S

1// agree.
At the time of framing Definition 2.2, I was very enthusiastic about pursuing the

theme “rigid $ geometric” to see to what extent it might play out in settings beyond group
actions on the circle. In retrospect, that seems too optimistic: geometric examples are excel-
lent candidates for rigidity, but I do not think they are precisely all the rigid examples of
actions in a general setting. This is not to deter anyone in their attempt to prove such a
theorem—perhaps for the right modification of the definition of geometric (maximal dimen-
sion Lie group might be a good start), and the right definition of rigid, such a statement is true.

Our next topic should provide evidence for continued optimism, as we look at the
first obvious generalization of surface groups acting on the circle—the boundary actions of
fundamental groups of hyperbolic manifolds of higher dimension. In fact, one does not need
Hn here (and so we will bid a temporary farewell to lattices) but only a Riemannian metric
of negative curvature.

3. Manifold groups acting on boundary spheres

We described in the introduction how to compactify certain spaces by equivalence
classes of geodesic rays. When the space in question is the universal cover of a closed hyper-
bolic or negatively curved surface, Matusmoto’s Theorem 2.1 says that the induced boundary
action of the fundamental group is rigid. While his proof does not apply for manifolds of
higher dimension (there is no bounded Euler class and no cyclic order of points at infinity
for groups acting on higher dimensional spheres), Bowden and I recently proved an analo-
gous local result in generality:

Theorem 3.1 ([6]). LetM be a compact, orientable n-manifold with negative curvature, and
�0 W �1.M/ ! Homeo.Sn�1/ the boundary action. There exists a neighborhood U of �0 in
Hom.�1.M/;Homeo.Sn�1// consisting of representations which are topological factors of
�0 in the sense of classical dynamics: for each representation � 2 U , there is a continuous,
surjective map h W Sn�1 ! Sn�1 satisfying h ı �./ D �0./ ı h for all  2 �1.M/.

The key idea of the proof is to encode the dynamics of the action �0 and a perturba-
tion � in foliated spaces, and promote topologically stable properties (such as transversality)
to the desired dynamical stability. We describe a few details of the strategy now.

From group actions to foliated spaces. Given an arbitrary manifoldM and an action � of
�1.M/ by homeomorphisms on a space F , the associated foliated F -bundle over M is the
quotient of QM � F by the diagonal action of �1.M/ via deck transformations on QM and via
� on F . This quotient space is an F -bundle over M , and since the action is diagonal, the
“horizontal foliation” of QM � F by leaves of the form QM � ¹�º descends to a topological
foliation on this bundle, topologically transverse to the fibers. If M and F have smooth
structures (which we will always take to be the case) and the action is by diffeomorphisms,
then the result is a smooth bundle with smooth foliation, transverse to the fibers. The idea to
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Figure 2

UT .H2/ is trivialized as H2 � S1, where the point on S1 (height) is given by the endpoint at infinity of a
geodesic ray with given tangent vector. Leaves of the weak-stable foliation are horizontal, weak-unstable leaves
intersect them transversely along geodesics.

encode actions or representations in foliated spaces is not new—for instance, as one example
of a use quite close to our theme, Goldman’s 1980 thesis [16] presents the idea of a geometric
structure as a section of a foliated bundle (following Kulkarni, Sullivan, and Thurston), using
this perspective to understand representations of surface groups into PSL.2;R/.

We are interested in the special case where M and � are as in Theorem 3.1. When
� D �0 is the action on the boundary at infinity, the associated foliated sphere bundle over
M is isomorphic to the unit tangent bundle of M . This gives additional structure which we
exploit in the proof.

Foliations on the unit tangent bundle. The unit tangent bundle UT .M/ of a negatively
curved manifoldM has a natural foliation F transverse to its sphere fibers. We can describe
this by looking at the unit tangent bundle of the universal cover QM and using the bound-
ary at infinity. For each point z 2 @1

QM , let Lz � UT QM be the set of all unit tangent
vectors to geodesic rays that represent z. The leaf Lz is homeomorphic to QM (there is
exactly one tangent vector in a given direction at each point), so the sets Lz partition UT QM

into n-dimensional hyperplanes. Following classical work of Anosov, these sets are actually
smooth, embedded submanifolds. The action of �1.M/ on UT QM sends leaves to leaves,
so this foliation descends to one on UT .M/, and the bundle isomorphism between the foli-
ated sphere bundle associated to the boundary action can be chosen to naturally identify
this foliation on UT .M/, called the weak-stable foliation with the “horizontal” foliation
on the foliated bundle. See Figure 2 left for an illustration when QM D H2. Of course, one
could equally well make the opposite choice of considering the set of tangent vectors v that
emmanate from a common point at infinity. This gives the weak-unstable foliation, which is
also transverse to the fibers, and transverse to leaves of the weak-stable foliation.

Maps between bundles. The proof of Theorem 3.1 starts with the construction of a par-
ticularly well behaved map between the foliated bundles associated with nearby actions,
as illustrarted in Figure 3. Given a perturbation � of the standard boundary action �0, one
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Figure 3

An equivariant map locally close to the identity on QM � @G captures a perturbation of the action of G D �1.M/

on @G. The images of horizontal leaves QM � ¹xº intersect the leaves of the stable foliation of geodesic flow (in
red) along quasigeodesics allowing us to use large-scale metric stability to prove dynamical stability. For general
groups, one needs a more complicated space and a substitute for the stable foliation.

builds, by hand, a �1.M/-equivariant map QM � Sn�1 ! UT QM where on the left we have
an action via � on the sphere factor, and on the right the standard action on the unit tangent
bundle. Although � does not act by diffeomorphisms (only homeomorphisms), by sacrificing
injectivity we can design this equivariant map to send each horizontal leaf QM � ¹pº to a C 1-
embedded submanifold of UT QM that stays C 1-close to leaves of the weak-stable foliation
over large compact sets (i.e., its tangent distribution is uniformly close to the weak-stable
distribution). This means that the images of horizontal leaves remain transverse to the leaves
of the weak-unstable foliation on UT QM . We show that any two such leaves that intersect do
so along a path that is uniformly close to a geodesic in UT QM .

Now the boundary at infinity makes another appearance. Using some deep results on
the dynamics of the action of �1.M/ on its boundary (including the remarkable convergence
group property, which we will, alas, not have space to discuss here), we show that the near-
geodesics on the image of each “horizontal” leaf QM � ¹pº cut out by the weak-stable leaves
all share a common endpoint at infinity, depending only on the parameter p. This association
of such a point p to this common endpoint at infinity gives a map Sn�1 ! Sn�1. And this
map, it turns out, gives the desired semiconjugacy of the actions.

4. Coarse hyperbolicity: from spaces to groups

Following Gromov, a geodesic metric space X is called ı-hyperbolic (for some
ı � 0) if every geodesic triangle T inX has the property that each side of T lies in the metric
ı-neighborhood of the union of the other two sides. For example, any tree is 0-hyperbolic,
and it is a pleasant exercise in hyperbolic trigonometry to show that Hn, with its metric of
constant curvature �1, is ı-hyperbolic for the constant ı D ln.1C

p
2/.

This definition also works for groups: a finitely generated group is hyperbolic if
its Cayley graph is ı-hyperbolic for some ı. While the constant ı depends on the gener-
ating set, the notion hyperbolic for some ı does not. Indeed, “ı-hyperbolic for some ı”
is a metric invariant up to quasiisometry, the relation shared between Cayley graphs with
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different generating sets. This concept is the center of Gromov’s highly influential essay
Hyperbolic groups, and the setting in which one can compactify a space by a boundary at
infinity with the method given in the introduction—although Gromov attributes this idea as
“essentially due to Mostow and Margulis” due to its appearance in the theorems we quoted
earlier [18, 0.3B].

A finitely generated group acts naturally on its Cayley graph by auotmorphisms,
hence by isometries when edges are taken to have unit length. Thus, it induces an action by
homeomorphisms on the boundary. One can therefore ask:

Question 4.1. Let� be a finitely generated hyperbolic group. Is the action of� on its bound-
ary (locally) rigid, up to semiconjugacy?

Rather than repeatedly writing “locally rigid up to semiconjugacy,” we borrow ter-
minology from classical dynamics, traditionally applied to actions of Z, but just as valid for
group actions. An action �0 of � on a space X is topologically stable if, for any sufficiently
nearby action �, there is a surjective, continuous map h satisfying h ı �./ D �0./ ı h for
all  2 � . Typically, one requires h to depend continuously on the perturbation, being close
to the identity if � is sufficiently close to �0. Thus, the statement of Theorem 3.1 is simply
an assertion of topological stability for manifold fundamental groups.

Boundaries of groups. While the examples of boundaries at infinity we have looked at so far
have been spheres, the topology of the boundary of a group is typically quite complicated,
both locally and globally (see [20]). In some cases, the topology is so complicated that a
positive answer to Question 4.1 follows from the structure of the boundary itself. Kapovich
and Kleiner [22] have examples of groups where the only automorphisms of their boundary
come from left multiplication. From this one can easily deduce rigidity: the action of the
group on its boundary is an isolated point in Hom.�;Homeo.@1�//. For free groups, whose
boundary is a Cantor set, one can also use the “ping-pong” dynamics of the action to prove
local rigidity using a relatively hands-on argument.

At the other end of the spectrum are groups with sphere boundary. In contrast to
Kapovich–Kleiner’s boundaries, homeomorphisms of the sphere are very easy to perturb,
each having an infinite-dimensional family of deformations, making Question 4.1 partic-
ularly interesting. It is in this context that Manning and I recently proved an analog to
Theorem 3.1:

Theorem 4.2 (Rigidity for sphere boundary actions [26]). For any Gromov hyperbolic group
� with sphere boundary, the natural action of � on @1� is topologically stable.

In proving this, we remove all the differential topological machinery (such as
transversality and the regularity of weak-stable foliations) from the proof of Theorem 3.1,
replacing it with coarse metric machinery. The fundamental starting point is the stability of
quasigeodesics.
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Quasigeodesic stability. A quasigeodesic is a map  from R into a metric space .X; dX /

such that, for some constants K, C , the bounds
1

K
dX

�
.t/; .s/

�
� C � jt � sj � KdX

�
.t/; .s/

�
C C

hold for all t; s 2 R. More generally, a .K; C / quasiisometric embedding of a metric space
.Y; dY / into .X; dX / is a map  W Y ! X that satisfies the above bounds for all points t; s in
Y , with jt � sj replaced by the distance dY .t; s/. Such a map is called a quasiisometry if it
has the additional property of being coarsely surjective, meaning that each point of Y lies a
uniformly bounded distance away from some point in the image.

The idea of quasigeodesic stability comes from work of H. M. Morse in the early
1920s. In [33], he considers the following question: suppose we take a closed surface †
of genus g � 2 equipped with an arbitrary Riemannian metric, and a homeomorphism
f W † ! †hyp identifying it with some fixed hyperbolic genus g surface †hyp. What do
length-minimizing geodesic paths on e† look like under the lifted map Qf W e† ! e†hyp? Do
they share properties with genuine hyperbolic geodesics, such as tending in each direction
to a unique point on the boundary of the disc in the Poincaré model?

Morse’s map Qf is an example of a quasiisometry, and the image of a length-
minimizing geodesic under Qf is a quasigeodesic. In answering the question above, Morse
proves what is now known as the Morse lemma on quasigeodesic stability. In its modern,
more general form, this lemma states:

Lemma 4.3 (Morse lemma). There exists a constant B D B.K; C; ı/ such that for any ı-
hyperbolic metric space X , every .K;C / quasigeodesic  W R ! X lies in the B-neighbor-
hood of a unique geodesic, and hence every quasigeodesic ray defines a unique point on
@1.X/.

In addition, quasigeodesics satisfy a local-to-global principle: a map which is a
.K;C / quasigeodesic embedding when restricted to all sufficiently long segments is, in fact,
globally a quasigeodesic. This allows us to pursue the broad strategy used in proving Theo-
rem 3.1 in this coarse setting. We first translate a perturbation of an action into a nice map
between foliated metric spaces, then show that images of leaves intersect leaves in (a pre-
ferred section of) the target foliated space along quasigeodesics. Of course, having no smooth
manifold or universal cover on hand makes the strategy nontrivial to even set up, and much
harder to execute!

Related results and open questions. Much existing work on the dynamics of groups acting
on their boundaries relies on local expansivity: for each point of the boundary, there is an ele-
ment of the group that contracts this neighborhood a uniform amount (thus, one has uniform
expansion under the inverse, hence the name).3 Sullivan [37] used this property to demon-
strate a structural stability result for Kleinian groups acting on the boundary sphere of H3:
aC 1-small perturbation of such an action has an invariant set on which the action is conjugate

3 There are many related definitions of expansivity, here I am roughly following Sullivan.
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to the original action of the group on its limit set. This was recently improved and generalized
by Kapovich–Kim–Lee [21] to prove structural stability for a much broader class of expan-
sive actions, including boundary actions of hyperbolic groups, under perturbations which
preserve a generalized expansivity property. Lipschitz-small perturbations are one exam-
ple to which their theory applies, however, general continuous perturbations do not preserve
local expansivity and so are not covered by this strategy. Sullivan’s method involves a dynam-
ical “coding” of points by sequences of group elements, suggesting a connection to classical
symbolic dynamics. This is no coincidence, and we now know a number of rigidity results
in this direction (see [7]). However, the following general problem remains open:

Question 4.4. Is the action of every hyperbolic group � on its boundary topologically
stable? What techniques apply to intermediate cases between the boundary sphere case and
Kapovich–Kleiner’s rigid examples? Which examples exhibit a rigidity property stronger
than topological stability, and what phenomena are responsible for this behavior?

As mentioned before, group boundaries can be topologically complex. One way the
sphere plays an essential role in the proof of Theorem 4.2 is that its homeomorphism group
is locally contractible, and there is no obvious substitute for this property in other settings.
An interesting first case to attack might be the Menger curve, this being the boundary of a
random group in the standard density model.

We note also that it is unknown which topological spaces occur as boundaries of
groups. Thus, an approach to Question 4.4 either has to be restricted to families of understood
examples, or avoid explicitly describing the boundary altogether.

5. Automorphism groups acting at infinity

An automorphism of a finitely generated group � defines a quasiisometry of the
Cayley graph of � , and therefore extends to a homeomorphism of @1� . The inner auto-
morphism defined by conjugation by  is a bounded distance (with bound given by the word
length of  ) from the map induced by left-multiplication by  , so Inn.�/Š � agrees with the
actions we have already discussed and considering the action of Aut.�/ is a natural next step.

Enlarging � Š Inn.�/ to Aut.�/ is most interesting when the outer automorphism
group of � is large. Many hyperbolic groups have trivial or finite outer automorphism group,
the most basic case where Out.�/ is infinite is when� is the fundamental group of a surface.4

This case is particularly interesting to low dimensional topologists due to its relationship with
mapping class groups.

Mapping class groups. A mapping class is an equivalence class of homeomorphism up
to isotopy. Let MCG˙.†/ WD �0.Homeo.†// denote the group of all mapping classes of

4 Following the work of Paulin and Rips, Levitt showed that one-ended hyperbolic groups
have infinite outer automorphism group if and only if they split, as an HNN extension or an
amalgam of groups with finite center, over a virtually cyclic subgroup with infinite center, so
in some sense resemble the surface groups we will discuss.

2606 K. Mann



a surface †. One may also consider the subgroup of homeomorphisms fixing a basepoint,
in which case MCG˙.†; x/ denotes the group of homeomorphisms fixing x up to isotopy
preserving x. The subscript ˙ here indicates that we consider both orientation preserving and
reversing homeomorphisms, the mapping class groups denoted MCG.†; x/ and MCG.†/,
respectively, are the index two subgroups of orientation-preserving elements.

For a surface † (which we continue to assume is of genus at least two, so that its
fundamental group is hyperbolic), the Dehn–Nielsen–Baer theorem is the statement that the
exact sequence

Inn
�
�1.†/

�
! Aut

�
�1.†/

�
! Out

�
�1.†/

�
is isomorphic, term by term, to the Birman exact sequence

�1.†/ ! MCG˙.†; x/ ! MCG˙.†/:

This isomorphism has a particularly nice geometric description, using boundary
actions and the identification of e† with H2 coming from a choice of hyperbolic structure
on†. Choose a lift Qx of the point x on†, so each f 2 Homeo.†/ fixing x has a unique lift Qf

to H2 that fixes Qx. Since† is compact and f is continuous, this lift is a quasiisometry of H2

so induces a continuous map on the boundary circle. If f and g represent the same element of
MCG˙.†;x/, lifting an isotopy preserving Qx will move all points on e† a uniformly bounded
distance, so will not change boundary homeomorphism. Thus, considering the action of lifts
on the boundary gives a well-defined map from MCG˙.†; x/ to homeomorphisms of S1,
agreeing with the action of Aut.�1.†// under the identification above.

In his problem list on mapping class groups [8, Question 6.2], Farb asks whether
these actions are rigid:

Question 5.1 (Farb). Is every faithful action of MCG.†; x/ on S1 by homeomorphisms
necessarily semiconjugate to the standard action on the boundary?

Question 5.1 asks for a much stronger form of rigidity than exhibited by the action
of the fundamental group �1.†/. There are many distinct semiconjugacy classes of faithful
actions of �1.†/ on the circle; in fact, one can even take these to have image in PSL.2;R/
(see, e.g., [23] for a detailed discussion and references). Despite this, Farb’s question is actu-
ally quite reasonable because of torsion. The mapping class group of a surface group contains
many finite-order elements, and any action of a finite cyclic group on the circle is conjugate
to an action by rotations. Thus, the presence of torsion is suggestive, though no guarantee,
of rigidity.

Unexpectedly, something even stronger than what Farbs asks for is true—the hypoth-
esis “faithful” is not needed, but only nontrivial.

Theorem 5.2 (Mapping class rigidity [28]). For any surface † of genus at least 2, every
nontrivial action of MCG.†; x/ on the circle is (up to choice of orientation) semiconjugate
to the standard boundary action.

The proof, as expected, makes use of torsion, but in a perhaps unexpected way: we
study the action of orbifold fundamental groups that contain �1.†/. The definition of Euler
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number for surface group actions on S1 that we introduced in Section 2 can be extended
to actions of orbifold fundamental groups in a natural way so that it is multiplicative under
covers, like Euler characteristic. We use geometric and topological arguments (relying on
torsion) to show that nontrivial actions of MCG.†; x/ have a maximal Euler number, and
use Matsumoto’s theorem to prove rigidity.

Since torsion plays a critical role in this argument, we do not know if a similar result
holds for all finite-index subgroups of MCG.†; x/. It would be interesting to see another
approach to mapping class rigidity, relying more on group structure and less on the geom-
etry and topology of the surface, perhaps towards a general theory for rigidity of actions of
automorphism groups of other hyperbolic groups.

6. Anosov flows on 3-manifolds

We conclude this survey by describing a different method of producing actions at
infinity, this one coming from the orbit space of an Anosov flows on a 3-manifold. A flow
�t on a Riemannian manifold M is called Anosov if there is a �t -invariant global splitting
of the tangent bundle TM as a direct sum

TM D X ˚Ess
˚Euu;

where X is the direction of the flow, Ess is the “stable distribution” consisting of vectors
whose length is uniformly contracted by the flow, and Euu is the “unstable distribution”
consisting of vectors that are uniformly expanded (or, more precisely, uniformly contracted
when the direction of the flow is reversed). Contracted has a specific meaning: there are
positive constants c and � > 0 such that the length of the pushforward of a tangent vector
.�t /�.v/ under the time t map of the flow is bounded above by ce��t jjvjj for all t > 0. On a
compact manifold, one may always find a Riemannian metric on M adapted to the flow for
which one may take the multiplicative constant c D 1.

It is a classical result that the two distributionsEs WDX ˚Ess andEu WD X ˚Euu

are integrable, meaning they are everywhere tangent to a foliation. We will restrict our atten-
tion in this section to 3-manifolds, thus Ess; Euu, and X are all one-dimensional, and the
foliations F s and F u tangent to X ˚ Ess and X ˚ Euu are 2-dimensional transverse foli-
ations that meet along the orbits of the flow.

The two most basic examples of Anosov flows in dimension 3, and indeed the start-
ing points for the construction of all other known examples, are suspensions of linear maps
on tori and geodesic flows on surfaces.

Example 6.1 (Linear Anosov maps on tori). Consider a transformation A 2 SL.2;Z/ with
trace.A/ > 2, or equivalently, two distinct, real eigenvalues of norm not equal to 1. Since A
preserves the integer lattice in R2, it descends to a self-diffeomorphism NA of the square torus
T 2 WD R2=Z2. LetM be the mapping torus of NA, the quotient of T 2 � R under the relation
.x; 0/� . NAn.x/;n/ for n 2 Z. The straight line flow .x; s/ 7! .x; sC t / on T 2 � R descends
to a flow �t on M . Each eigendirection of A defines a 1-dimensional NA-invariant line field
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onM , one of which is uniformly contracted by �t flow and one uniformly expanded, giving
the desired Anosov property.

The reason Anosov flows are such interesting examples in dynamics is that they
simultaneously exhibit global stability and local chaos. Local chaos means that nearby points
have vastly different trajectories. This is already apparent in Example 6.1, for instance, the
origin on T 2 D R2=Z2 is fixed by NA so is a periodic orbit of �t , but arbitrarily nearby
points have infinite trajectories that intersect the torus T 2 � ¹0º along a dense set. Moreover,
this interspersing of periodic and infinite trajectories happens everywhere: since the induced
action of elements of SL.2;Z/ preserve the finite set of points of the form ¹.p=q; r=q/ W 0 �

p; r < qº (for any fixed q) on the fundamental domain Œ0; 1�2 for R2=Z2, any such point
eventually returns to itself under iterates of NAn, giving a closed orbit for �t .

By contrast, the global picture of the flow is overall stable. Replacing A by a nearby
nonlinear diffeomorphism of T 2 and doing the same construction gives a new flow on the
same topological space, which turns out always to be conjugate to the flow just discussed.
In fact, here one can even replace A by any map with the same action on homology of T 2

[13,19].
The second building block for Anosov flows is geodesic flow in negative curvature.

The simplest such examples come from hyperbolic surfaces.

Example 6.2 (Geodesic flow). Let † be a surface equipped with a metric of constant
curvature �1, and let M D UT .†/ be its unit tangent bundle. Geodesic flow is the map
that, at time t , sends a unit tangent vector v 2 UT .†/ to the vector tangent to the line
¹exp.sv/ W s 2 Rº at the point exp.tv/. One can compute explicitly using the identification
of UT .†/ with PSL.2;R/ that this flow is Anosov. The weak-stable and weak-unstable
foliations from the flow (lifted to e†) are exactly those shown in Figure 2. Leaves of F s

consist of tangent vectors to geodesics with a common forward endpoint, and F u those with
a common negative endpoint at infinity.

Classifying flows. Having given two families of examples, we now embark on the ambi-
tious program to understand all Anosov flows in dimension 3. For this, one must answer
questions of:

• Existence. Which 3-manifolds support an Anosov flow? What techniques can be
used to construct families of examples?

• Abundance. If M 3 supports one Anosov flow, can it support many dynamically
distinct ones?

• Classification. What invariants can be used to distinguish distinct flows?

The existence problem has a long history, but is still not completely solved. The work
of Palmeira and Verjovsky from the 1970s shows that if M supports an Anosov flow, then
QM is homeomorphic to R3, thus M must be irreducible. An irreducible 3-manifold admits

a decomposition along tori into geometric pieces, so the next question to ask is which kinds
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of pieces M may have. Margulis [2, Appendix] showed that �1.M/ is large in the sense that
it has exponential growth: for any fixed generating set, the number of reduced words of
length r in the group grows exponentially in r . This rules out, for instance, geometric man-
ifolds with a Euclidean structure. There are a number of constructions—Dehn surgery and
other gluing techniques—that produce examples on geometric manifolds with exponential
growth, or manifolds with a nontrivial torus decomposition, and a few other known special
constraints, but we still lack a complete picture.

The approach to classification that I wish to discuss here is the purely topological
one, namely, classifying flows up to orbit equivalence. Two flows �t and t on a manifoldM
are called orbit equivalent if there is a self-homeomorphism ofM taking orbits of �t to orbits
of  t , in other words, the 1-dimensional foliations on M by flowlines are homeomorphic.

The remainder of this survey is devoted to describing a very recent rigidity result
(Theorem 6.3 and its generalization) saying that Anosov flows can be distinguished up to this
equivalence by the set of homotopy classes of loops represented by closed orbits. The proof
of this result comes, again, from looking to a boundary at infinity. This time, the boundary
is that of the orbit space of the flow.

R-covered flows and orbit spaces. A first topological invariant to distinguish flows comes
from the global transverse structure F s . Lifting F s to a foliation QF s on QM gives a foliation
of R3 by planes. Collapsing each plane to a point produces a 1-dimensional manifold called
the leaf space of QF s . The leaf space is either non-Hausdorff, or homeomorphic to R; in the
latter case we say the flow is R-covered. This terminology does not privilege F s , by [3, 10]

the leaf space of QF s is Hausdorff if and only if that of the lifted unstable foliation QF u is as
well. These two cases (R covered and non-Hausdorff leaf space) lend themselves to different
techniques for classification. We discuss the R covered case first.

While being R-covered may seem like a restrictive hypothesis, there are, in fact,
many diverse examples. Both Examples 6.1 and 6.2 are R-covered, and many more can be
produced by modifying these manifolds using Dehn surgery. A given manifold may support
arbitrarily many inequivalent R-covered flows even if geometric; Bowden and Mann [6] give
constructions of such on closed hyperbolic manifolds.

Our understanding of R-covered flows is due largely to the work of Barbot and
Fenley, starting with the work in [3, 10]. They consider the orbit space O of the flow, the
quotient of QM obtained by collapsing each flowline to a point. Any R-covered flow that is not
obtained from a hyperbolic toral automorphism such as in Example 6.1 has the remarkable
property that its orbit space is homeomorphic to an infinite diagonal strip in the plane, as
shown on the left of Figure 4, with QF s and QF u being the vertical and horizontal foliations.
Such flows are called skew. Since the topology of the foliations on this orbit space does
not distinguish flows, any classification theorem must rest on a new algebraic or topological
invariant. In recent work, Barthelmé and I show that the spectrum of periodic orbits (the free
homotopy classes of loops represented by periodic orbits of the flow) does the job:

Theorem 6.3 (Spectral rigidity for flows [4]). Suppose �t and  t are R-covered Anosov
flows on a compact 3-manifoldM . The conjugacy classes in �1.M/ represented by the free

2610 K. Mann



Figure 4

The orbit space of a skew flow (left) and a schematic of that of a pseudo-Anosov flow (right). Nonseparated stable
and unstable leaves “meeting at infinity” define a shift � commuting with the action of �1.M/ on the skew picture.

homotopy classes of closed orbits for �t and  t agree if and only if the flows are orbit
equivalent via a map isotopic to the identity.

The action on O at infinity. The interesting case in Theorem 6.3 is for skew flows, as
the mapping torus of a linear Anosov map admits only the obvious suspension flow and
its inverse. To solve the problem for skew flows, we look to the boundary at infinity—the
compactification of O by the lines in the diagonal strip model. The action of �1.M/ on
QM descends to O and extends to an action by homeomorphisms on each boundary line,

commuting with a translation of the line that comes from the structure of the lifted foliations.
The dynamics of individual elements acting on the line at infinity are also well understood.
Up to passing to the index-two subgroup of elements preserving orientation, it is an example
of what we call a hyperbolic-like action.

Definition 6.4 ([4]). An action of a groupG on the line is hyperbolic-like if it commutes with
the translation x 7! x C 1, and every nontrivial element either acts freely, or has precisely
two fixed points in each unit interval, one attracting and one repelling.

In the tradition of classical theorems of Hölder and Solodov, which promote infor-
mation about the dynamics of individual homeomorphisms of the line to a global conclusion
about the structure of a group action, we prove a general result on hyperbolic-like actions on
the line.

Theorem 6.5 (Hyperbolic actions are determined by fixed spectra [4]). Given two faithful,
minimal, hyperbolic-like actions of a groupG on R, if the sets of elements acting with fixed
points for each action agree, then the two actions are conjugate by a homeomorphism.

The strategy of the proof for Theorem 6.5 is to recover the linear order of fixed points
of elements (and hence reconstruct a dense subset of the line) from the algebraic data of the
set of elements with fixed points. This is not far in spirit from the “reconstruction” strategies
described in Section 2. Theorem 6.5 is really the heart of the proof of Theorem 6.3, what
remains is to promote the conjugacy of actions at infinity to an honest orbit equivalence,
a technique already used by Barbot.
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Non-R-covered flows and pseudo-Anosov flows. In the case where the leaf spaces of QF s

and QF u are non-Hausdorff, one can leverage the topology of these foliations to get informa-
tion about the flow, a perspective fruitfully exploited by Fenley in [11]. It turns out that the
same family of techniques also applies to a strictly broader class of pseudo-Anosov flows—
topological flows with expanding/contracting behavior as in the Anosov case, but where F s

and F u are allowed to branch in a specified way along a discrete set of periodic orbits.
The orbit space of such a flow is a topological plane with two transverse, 1-dimen-

sional, possibly singular foliations, as cartooned in Figure 4 (right). In [9], Fenley gives a
natural construction of a compactification of the orbit space of any pseudo-Anosov flow by
a boundary circle so that the compactified space is homeomorphic to a disk and the natural
action of the fundamental group of the manifold by homeomorphisms of O extends to the
boundary. In the work in preparation with Barthelmé and Frankel, we use this boundary circle
and the induced action of �1.M/ to prove spectral rigidity for all transitive, non-R-covered
Anosov and pseudo-Anosov flows on compact 3-manifolds. Combined with Theorem 6.3,
this gives a full spectral rigidity result in the Anosov and pseudo-Anosov setting: provided
the flow is transitive, if the conjugacy classes in �1.M/ represented by the free homotopy
classes of closed orbits for two flows �t and  t agree, then the flows are orbit equivalent via
a map isotopic to the identity.

Although this work gives one answer to the classification problem, many open ques-
tions remain, especially regarding existence and abundance. Of particular interest to me
is the interplay between geometry of a manifold and topology of the leaf spaces of such
flows, hyperbolic manifolds being a particularly interesting example. Which hyperbolic 3-
manifolds admit Anosov flows? Does the complexity of the manifold bound the number of
distinct flows it may admit? May a hyperbolic manifold admit infinitely many inequivalent
Anosov flows?
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