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Abstract

This article surveys the Weierstrass representation of surfaces in the three- and four-
dimensional spaces, with an emphasis on its relation to the Willmore functional. We also
describe an application of this representation to constructing a new type of solutions to the
Davey–Stewartson II equation. They have regular initial data, gain one-point singularities
at certain moments of time, and extend to smooth solutions for the remaining times.

Mathematics Subject Classification 2020

Primary 53A05; Secondary 35B38, 35Q51, 53C422

Keywords

Surfaces in the Euclidean spaces, Weierstrass (spinor) representation of surfaces,
two-dimensional Dirac operator, Willmore functional, Davey–Stewartson equation

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 4, pp. 2638–2654
DOI 10.4171/ICM2022/92

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. The Weierstrass (spinor) representation of surfaces in

the three-space

The Weierstrass representation for minimal surfaces in the three-space is as follows:
for any pair of holomorphic functions  1 and N 2 defined in a domain U � C in the complex
plane, the formulae

x1.P / D
i

2

Z �
. 21 C N 22 /dz C . N 21 C  22 /d Nz

�
C x1.P0/;

x2.P / D
1

2

Z �
.� 21 C N 22 /dz C .� N 21 C  22 /d Nz

�
C x2.P0/;

x3.P / D

Z
Œ 1 N 2dz C N 1 2d Nz�C x3.P0/

(1.1)

determine a minimal surface in R3. Here we assume that U is simply-connected or the inte-
grals over cycles in U vanish, and the integrals are taken along a path from a fixed point
P0 2 U to P . Moreover, every minimal surface admits such a representation. Weierstrass
used another data, namely f D N 22 and g D

 1
N 2

. However, for the generalization of this rep-
resentation, it is worth to consider  1 and  2 and treat this pair as a solution of the Dirac
equation

D D 0;  D

 
 1

 2

!
; (1.2)

for a two-dimensional Dirac operator of the form

D D

 
0 @

�N@ 0

!
C

 
U 0

0 U

!
; U D NU ;

where a real-valued potential U vanishes for minimal surfaces. Now the Weierstrass repre-
sentation generalizes as follows:

Theorem 1.1 ([16]). For every solution  of (1.2), the formulae (1.1) define a surface in R3

for which z is a conformal parameter, the induced metric takes the form

ds2 D e2˛dzd Nz; e˛ D j 1j
2

C j 2j
2;

and the potential U of the Dirac operator equals

U D
He˛

2
;

where H is the mean curvature.

Theorem 1.2 ([26]). Every surface in R3 (with a fixed conformal parameter z on it) admits
such a representation even globally. Therewith is a section of a spinor bundle over the sur-
face, the formU 2dx ^ dy is globally defined and its integral over the surface is proportional
to the Willmore functional

W D

Z
H 2d� D 4

Z
U 2dx ^ dy;

where d� is the induced area form of the surface.
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Hence, being considered for the Dirac operators with general real-valued potentials,
the formulae (1.1) define the Weierstrass (spinor) representation of general surfaces in R3.

Theorem 1.1 was derived from the similar formulae in the book by Eisenhart
[9, Problem 35.4] where instead of (1.2) the following condition is used:

L 1 D L N 2 D 0; L D @N@ �
@ logU
U

N@C U 2:

Here D naturally arises as the “square root” of the Schrödinger operator L. The represen-
tation based on the Dirac operator provides many more opportunities because its potential
has no singularities and the operator has good spectral properties. In the advanced problems
of his textbook, Eisenhart frequently proposed to prove results from various articles, and we
cannot exclude that these formulae might be traced to some earlier publication. It appears
that this local representation is equivalent to another one derived in [14], where the Dirac
operator was not used either.

In [16] the Weierstrass representation was used for introducing the deformations of
surfaces admitting such a representation. The operator D generates a hierarchy of solution
equations of the form

@D

@tn
D ŒD;An� � BnD;

where An and Bn are matrix differential operators such that the principal term of An takes
the form

An D

 
@2nC1 C N@2nC1 0

0 @2nC1 C N@2nC1

!
C � � � :

This evolution preserves the zero energy level ofD deforming the corresponding eigenfunc-
tions

@ 

@t
C A D 0 (1.3)

and D 0 D 0 for the initial data  0 D  jtDt0 , then D D 0 for all t � t0.
For n D 1, we have the modified Novikov–Veselov (mNV) equation [5]

Ut D

�
Uzzz C 3UzV C

3

2
UVz

�
C

�
U Nz Nz Nz C 3U Nz

NV C
3

2
U NV Nz

�
where

V Nz D .U 2/z :

In the case when U jtD0 depends only on x, we have U D U.x; t/ and the mNV equation
reduces to the modified Korteweg–de Vries equationUt D

1
4
Uxxx C 6UxU

2 (here V DU 2).
In the same manner, the original Novikov–Veselov equation

Ut D Uzzz C U Nz Nz Nz C .V U /z C . NV U / Nz ; V Nz D 3Uz

generalizes the Korteweg–de Vries equation.
The mNV deformation introduced in [16] is as follows: let a surface be induced

by  via (1.1) and consider solutions U and  of the mNV equation and (1.3) with
given initial data. Then for any moment of time, we have a spinor  that determines the
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deformed surface. In fact, we have infinitely many deformations defined up to translations
by .x1.P0; t /; x2.P0; t /; x3.P0; t //. This is some family of the mNV deformations of the
surface.

Theorem 1.3 ([26]). The mNV deformations evolve tori into tori and preserve their confor-
mal classes and the values of the Willmore functional.

Theorems 1.2 and 1.3 hint at the relation of this representation to the Willmore
functional. Formulae (1.1) give immersions of the universal covers of surfaces and there are
no compact minimal surfaces without boundary in R3. Hence the infima for the Willmore
functional for various conformal classes of closed surfaces show how much stress must be
applied for converting an immersion of the universal cover into an immersion of a closed
surface. In Section 2 we briefly expose how the Weierstrass representation was applied to
studying the conformal geometry of surfaces.

In Section 4, in contrast to Section 2 where analysis was applied to geometry, we
discuss the recent applications of geometry to analysis. We show how to construct exact
solutions to the Davey–Stewartson II equation. Therewith, geometry of surfaces helps in
finding a new scenario for creating singularities of solutions with regular initial data.

It would be interesting to apply the Weierstrass representation to other problems
of the surface theory (bending, existence of umbilics, etc.). In particular, if some conjec-
ture appears false, then methods of integrable systems can help in constructing an explicit
counterexample (see, for instance, [1]).

2. Spectral characteristics of D and conformal geometry

of surfaces

The Willmore conjecture which states that the minimum of the Willmore functional
among tori in R3 is attained at the Clifford torus was proved in [19] by means of the geometric
measure theory and calculus of variations.

In the mid-1990s we proposed an approach to proving it using Theorem 1.3 and the
integrable systems theory. This approach was not implemented, but we think it is worth to
be briefly exposed here.

It was conjectured in [26] that

a nonstationary torus (with respect to the mNV flow and up to translations) cannot
be a local minimum of the Willmore functional.

Otherwise, by Theorem 1.3, the minimum of the Willmore functional would contain an infi-
nite family of tori invariant under the mNV flow and this would be very unlikely. By the
general philosophy of integrable systems, the stationary solution to the mNV equation has
the simplest possible spectral curve [27].

Since the flow preserves the conformal classes of tori, the same conjecture has to
be valid for tori of every fixed conformal class.
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For two-dimensional differential operators with periodic coefficients, the spectral
curve (on the zero level energy) parameterizes its Floquet eigenfunctions [8]. In our case a
Floquet eigenfunction  of the operatorD with the eigenvalue (or the energy)E is a formal
solution to the equation

D D E 

which satisfies the periodicity conditions

 .q C j / D e2�i.k;j / .z; Nz/; j D 1; 2;

where 1 and 2 generate the lattice of periods ƒ of the potential U and .k; / D

k1
1
j C k2

2
j is the inner product. The quantities k1; k2 2 C are called the quasimomenta

of  and �.j / D e2�i.k;j / are Floquet multipliers. All possible triples .k1; k2; E/ for
which Floquet functions exist form an analytic subsetQ.U / in C3, invariant under the dual
latticeƒ� � R2 � C2 acting on the quasimomenta. We proved that for the two-dimensional
operators�CU and @y � @2x CU in 1985. However, this paper was unpublished, although
referred in [18] and was exposed in [30]. Now we define the spectral curve as the complex
curve

� D
�
Q \ ¹E D 0º

�
=ƒ�

and consider it up to biholomorphic equivalence, making the definition independent on the
choice of a basis for ƒ. The curve is an invariant of the mNV flow, it is naturally completed
by a couple of points at infinity, which compactify it in the case of finite genus. The Floquet
functions are glued into a meromorphic section over � . The above rough definition must be
detailed for singular spectral curves. In general, the space of Floquet functions corresponding
to a point from � is one-dimensional and the multiple points have to be normalized in such
a manner that for the resulting curve � to every point there corresponds a one-dimensional
space, there is a meromorphic section of this bundle, and every Floquet function is a linear
combination of sections at different points (see the definition of � in [30]). The spinor  
generating a torus via (1.1) has the Floquet multipliers equal to ˙1.

The spectral curve defined for D is a particular case of the general spectral curves
which play a fundamental role in integrable systems. They are the first integrals of the system
(that was first showed for the Korteweg–de Vries equation in [22]. The particular case of
them are the spectral curves of constant mean curvature tori which are always of finite genus
[13,25]. In general, this spectral curve is of infinite genus. For finite genera cases, solutions
to the integrable systems are expressed in terms of theta functions on spectral curves. In our
case all Floquet functions are reconstructed from certain data related to � and the value of
the Willmore functional is also determined by them [27]. We conjectured that

for tori in R3, the curve � , i.e., the set of the multipliers �.j /, is conformally
invariant (as is the Willmore functional).

Since this is evident for translations and rotations, one was left to prove the same for the
Möbius inversion, which was accomplished in [12].
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For the Clifford torus parameterized by x; y such that 0 � x, y � 2� , the potential
U of its Weierstrass representation is

U.x/ D
sin x

2
p
2.sin x �

p
2/

and its spectral curve � is CP 1 with two pairs of glued points.
For differential operators on surfaces of higher genera, the analog of Floquet–Bloch

theory is unknown. It would be interesting to find it, if it exists, for the Dirac operator D.
For spheres, there are no analogs of the Floquet functions and the zero energy level

of D just consists of the kernel KerD.
We notice that there is an antiinvolution 

 1

 2

!
�
!

 
� N 2

N 1

!
; �2 D �1; (2.1)

acting on KerD. This implies that the dimension of the kernel over C is always even.
We say that a sphere in R3 admits a spinor representation with a one-dimensional

potential if after removing a certain pair of points we obtain the cylinder R � S1 for which
the potential of the representation depends on x only, i.e.,U DU.x/. These are, for instance,
spheres of revolution. By using the inverse scattering transform of one-dimensional Dirac
operators on the line, we proved

Theorem 2.1 ([28]). For spheres with a one-dimensional potential, we have

W D 4

Z
U 2dx ^ dy � 4�N 2; (2.2)

where dimC KerD D 2N , and the equalities are achieved at the soliton potentials

UN .x/ D
N

2 cosh x
:

We call the spheres that correspond to these potentials soliton spheres, and it appears
that they have very interesting geometrical properties [6]. In [28] we conjectured that

inequality (2.2) holds for all spheres.
Soon after the preprint of [28] appeared, Friedrich showed that this conjecture

implies the following statement:
Given an eigenvalue � of the Dirac operatorD on a two-dimensional spin-manifold

homeomorphic to the two-sphere,

�2Area.M/ � �m2.�/; (2.3)

where m.�/ is the multiplicity of �.
For m.�/ D 2, inequality (2.3) was already proved by Bär [2].
The arguments by Friedrich were as follows. On a spin-manifold of dimension 2

with the metric e2˛dzd Nz, the Dirac operator (on the spin-manifold) takes the form

D D 2e�3˛=2

 
0 @

�N@ 0

!
e˛=2;
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and the equation
D' D �'

is rewritten as " 
0 @

�N@ 0

!
�
�e˛

2

#
 D 0;

where D e˛=2', and if � is constant, then (2.2) implies (2.3). Moreover, if �DH , then this
is exactly the Dirac equation (1.2) (the sign of the mean curvature can be changed without
any loss) and, since e˛ D j j2, we have j'j D 1. Therefore the Weierstrass representation is
rewritten in terms of solutions of the Dirac equation

D' D H'

of constant length, j'j D 1 [11, Theorem 13].
This embedding of the Weierstrass representation into the general framework of

Dirac operators on spin-manifolds appears very fruitful: it led to its generalization, the spino-
rial representation of immersions of manifolds, which are not necessarily two-dimensional,
into certain homogeneous spaces (see [3] and references therein).

The Weierstrass representation for surfaces in R3 was generalized for surfaces in
three-dimensional Lie groups with left-invariant metrics in [4]. It helped establish some facts
on constant mean curvature surfaces in these groups.

It would be interesting, at least as a test problem, to find a discretization of the
Weierstrass representation by means of discrete complex analysis. In [36] that was done for
the generalizations of the representation for time-like surfaces in R2;1;R3;1, and R2;2. But
in these cases complex analysis is not involved because the principal term of the Dirac oper-
ator D has the form

� 0 @�
@� 0

�
where � and � are isotropic coordinates.

The conjectured inequality (2.2) was finally proved with its generalizations for sur-
faces of higher genera:

Theorem 2.2 ([10]). For a closed oriented surface of genus g immersed into R3 via (1.1)
and (1.2), we have

Z
U 2dx ^ dy �

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�N 2; for g D 0,8<: �N 2

4
for N even,

�.N 2�1/
4

for N odd,
for g D 1,

�
4g
.N 2 � g2/; for g > 1;

where dimC KerD D 2N .

3. Surfaces in the four-space and the Davey–Stewartson

equation

Theorem 2.2 was derived from the Plücker formula in the quaternionic algebraic
geometry [10].
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The Weierstrass representation allows applying to surface theory other branches
of mathematics. In Section 2 we discuss an approach based on the spectral theory of the
Dirac operator. The quaternionic algebraic geometry applies algebro-geometrical methods
by considering solutions of the Dirac equation as “holomorphic” sections of spinor bundles.
It starts with treating the symmetry (2.1) as a multiplication by an imaginary unit j and
considering KerD as a linear space over quaternions H [24]. Therewith one may consider
the Dirac operator of the more general form

D D

 
0 @

�N@ 0

!
C

 
U 0

0 NU

!
(3.1)

whose kernel is also invariant under (2.1).
For that we identify C2 with H as follows:

.z1; z2/ ! z1 C jz2 D

 
z1 �Nz2

z2 Nz1

!
and consider the two matrix operators

N@ D

 
N@ 0

0 @

!
; jU D j

 
U 0

0 NU

!
D

 
0 � NU

U 0

!
;

where j 2 H is the imaginary unit for which we have j 2 D �1, zj D j Nz, and N@j D j @.
Then the Dirac equation D D 0 takes the form

.N@C jU /. 1 C j 2/ D .N@ 1 � NU 2/C j.@ 2 C U 1/ D 0:

Since  1 and N 2 are sections of the same bundle E, we rewrite the Dirac equation as

.N@C jU /. 1 C N 2j / D 0

and treatE ˚E as a quaternionic line bundle whose sections are of the form 1 C N 2j . The
symmetry (2.1) induces some quaternion linear endomorphism J of E such that J 2 D �1,
 1 C N 2j ! . 1 C N 2j /j D � N 2 C  1j , and this J defines for any quaternion fiber
a canonical splitting into C ˚ C (in our case this is a splitting into  1 and N 2) and such
a bundle is called a “complex quaternionic line bundle.” The kernel of D D N@ C jU is
invariant under the right-side multiplications by constant quaternions and hence is a linear
space over H.

The “quaternionic” analog of the classical the Plücker formula established in [10]

implies (2.2) and (2.3).
By using the analogy with complex algebraic geometry, other interesting results

were obtained, in particular on Bäcklund transformations and special classes of surfaces.
Moreover, this approach offers another opportunity: in its framework the Weierstrass rep-
resentation was also extended to surfaces in R4 and therewith R4 was naturally identified
with H. In the coordinate language, the representation was written down in [17] and is as
follows.
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Let D be of the form (3.1) and introduce the formally conjugate operator

D_
D

 
0 @

�N@ 0

!
C

 
NU 0

0 U

!
:

Theorem 3.1 ([17]). If  and ' satisfy the equations

D D 0; D_' D 0: (3.2)

then the formulae

xk.P / D xk.P0/C

Z
.xkz dz C Nxkz d Nz/; k D 1; 2; 3; 4;

x1z D
i

2
. N'2 N 2 C '1 1/; x2z D

1

2
. N'2 N 2 � '1 1/;

x3z D
1

2
. N'2 1 C '1 N 2/; x4z D

i

2
. N'2 1 � '1 N 2/;

(3.3)

define the surface in R4 for which the induced metric is given by e2˛dzd Nz D

.j 1j
2 C j 2j

2/.j'1j
2 C j'2j

2/dzd Nz and jU j D
jHje˛

2
with H being the mean curvature

vector.

For U D NU and  D ', this representation reduces to (1.1).
The converse is also true but there is a difference with surfaces in R3 for which a

choice of a parameter z defines  uniquely up to multiplication by ˙1.

Theorem 3.2 ([29]). Every oriented surface (with a given conformal parameter) has repre-
sentation (3.3). The spinors  and ' are defined up to the gauge transformations

 1 ! eh 1;  2 ! e
Nh 2; '1 ! e�h'1; '2 ! e� Nh'2; U ! e

Nh�hU;

where h is holomorphic. For every torus, the potential U may be taken doubly periodic.

Let us explain the appearance of these gauge transformations and, at the same time,
why the dimensions 3 and 4 are distinguished by the existence of such spinor representations.

The Grassmannian QGn;2 of oriented two-planes in Rn is diffeomorphic to the
quadric Q:

z21 C � � � C z2n D 0; .z1 W � � � W zn/ 2 Qn � CP n�1:

To every oriented plane with an positively oriented orthonormal basis e1 D .x1; : : : ; xn/,
e2 D .y1; : : : ; yn/ there corresponds the point .z1 W � � � W zn/; zk D xk C iyk , k D 1; : : : ; n,
of this quadric. Given a surface .X1.z; Nz/; : : : ;Xn.z; Nz// in Rn with a conformal parameter z,
we define the Gauss map as

z !

�
@X1

@z
W � � � W

@Xn

@z

�
2 Qn:

It is straightforward to derive that the image of the Gauss map lies in the quadric from the
conformality of z. For n D 3, the quadricQ3 is diffeomorphic to C1 and its rational param-
eterization is

z1 D
i

2
.a2 � b2/; z2 D

1

2
.b2 � a2/; z3 D ab; .a W b/ 2 CP 1;
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and the spinor  is reconstructed from the Gauss map as  1 D a, N 2 D b. For n D 4, we
have the diffeomorphic Segre mapping

CP 1 � CP 1 ! Q4

of the form z1 D
i
2
.a1b1 C a2b2/, z2 D

1
2
.a2b2 � a1b1/, z3 D

1
2
.a1b2 � a2b1/,

z4 D
i
2
.a2b1 � a1b2/, .a1 W a2/ 2 CP 1, .b1 W b2/ 2 CP 1, the spinors take the form

' D .a1; Na2/,  D .b1; Nb2/ and are reconstructed up to the gauge transformations. Since
they have to satisfy (3.2), h has to be holomorphic. For n > 4, the quadricsQn have no such
rational parameterizations.

The operators D and D_ enter the representation of the Davey–Stewartson (DS)
equations via compatibility of linear systems. That led to introducing the DS deformations
of surfaces, the four-dimensional analog of the mNV deformations [17].

We consider one of such deformations for which we proved that it transforms tori
into tori and preserves the Willmore functional 4

R
jU j2dx ^ dy [29]. It has the form

Ut D i
�
Uzz C U Nz Nz C .V C NV /U

�
; V Nz D 2

�
jU j

2
�
z

(3.4)

and is the compatibility condition for the linear problems

D D 0; @t D A 

where

A D i

 
�@2 � V NU N@ � NU Nz

U@ � Uz N@2 C NV

!
:

It is also the compatibility condition for the system

D_' D 0; 't D A_';

where

A_
D �i

 
�@2 � V U N@ � U Nz

NU@ � NUz N@2 C NV

!
:

This equation is called the Davey–Stewartson II (DSII) equation.
The evolution of  and ' gives us a deformation of the Gauss map of surfaces (3.3)

which are at every moment of time defined up to a translation depending on the temporal
variable.

4. The Moutard transformation for the Davey–Stewartson

II equation and its applications

The Moutard transformation was introduced in 1876 in projective differential geom-
etry for the equation

fxy C Uf D 0:

Given a solution f0 of this equation, the transformation constructs another equation of this
form with a different potential QU such that to every solution of the first equation there corre-
sponds a solution of the new one and this is done by an explicit analytical formula. One of the
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problems to which the transformation was applied is an explicit construction of an immer-
sion of the hyperbolic plane into R3 which, by Hilbert’s theorem, appeared to be impossible.
Later, the one-dimensional version, the Darboux transformation, was constructed and has
found many important applications in mathematical physics.

Recently, the version for the elliptic equation fz Nz C Uf D 0 was applied, for
instance, to constructing in terms of explicit analytical formulae

(1) blowing up solutions of the Novikov–Veselov equation with regular and fast
decaying initial data [34],

(2) two-dimensional von Neumann–Wigner potentials with multiple positive eigen-
values [21].

We recall that a potential of the Schrödinger operator on Rn is called von Neumann–Wigner
if it has a positive eigenvalue.

Here we construct a Moutard-type transformation for (3.2) and extend it to a trans-
formation of solutions of the DSII equation.

Extend spinors  and ' to H-valued functions, i.e.,

‰ D

 
 1 � N 2

 2 N 1

!
; ˆ D

 
'1 � N'2

'2 N'1

!
and put

!.ˆ;‰/ D �
i

2
.ˆ>�3‰ Cˆ>‰/dz �

i

2
.ˆ>�3‰ �ˆ>‰/d Nz;

where X ! X> is the conjugation of X , and �3 D
�
1 0
0 �1

�
is the Pauli matrix. If ‰ and ˆ

satisfy the Dirac equations (3.2) then !.ˆ; ‰/ and !.‰; ˆ/ are closed forms. Denote, for
brevity, � D

�
0 1

�1 0

�
. The H-valued function

S.ˆ;‰/.z; Nz/ D �

Z
!.ˆ;‰/

D

Z "
i

 
 1 N'2 � N 2 N'2

 1'1 � N 2'1

!
dz C i

 
 2 N'1 N 1 N'1

� 2'2 � N 1'2

!
d Nz

#
D

Z
d

 
ix3 C x4 �x1 � ix2

x1 � ix2 �ix3 C x4

!
defines a surface in R4 D H with z as the conformal parameter (3.3). Hence we identify S
with a surface in R4.

Let us define the H-valued function

K.ˆ;‰/ D ‰S�1.ˆ;‰/�ˆ>��1
D

 
i NW a

�Na �iW

!
: (4.1)

The following theorem gives a Moutard-type transformation for D.

Theorem 4.1 ([20]). Given ‰0 and ˆ0, the solutions of (3.2), for every pair ‰ and ˆ of
solutions of the same equations, the H-valued functionse‰ D ‰ �‰0S

�1.ˆ0; ‰0/S.ˆ0; ‰/; ê D ˆ �ˆ0S
�1.‰0; ˆ0/S.‰0; ˆ/
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satisfy the Dirac equations
QDe‰ D 0; QD_ê D 0

for the Dirac operators with the potential

QU D U CW; (4.2)

whereW is defined by (4.1) forK.ˆ0;‰0/. Here S.‰0;ˆ0/ is normalized by the condition

�S�1.ˆ0; ‰0/� D
�
S�1.‰0; ˆ0/

�>
:

The potential QU is the potential of the Weierstrass representation of the surface S�1

with z being a conformal parameter. The surface S�1 is obtained from S by composition of
the inversion centered at the origin and the reflection .x1;x2;x3;x4/! .�x1;�x2;�x3;x4/.

For U D NU and ‰ D ˆ, this transformation reduces to the transformation of Dirac
operators with real-valued potentials given in [35] in different form. In [32] it was related
to the Weierstrass representation of surfaces in R3 by proving that it corresponds to the
Möbius inversion S ! S�1. This gives another proof of the conformal invariance of the
Floquet multipliers by explicitly describing the transformations of the Floquet functions.
Theorem 4.1 implies its analog for tori in R4. However, in this case the curve � is not
preserved by the Möbius inversions. For instance, for the Clifford torus in the unit sphere
S3 � R4, the spectral curve � of its Möbius inversion centered at some point is CP 1

except for the case when the surface lies in a plane, in which case it is CP 1 with a pair of
double points [20].

Let us replace K.ˆ;‰/ in (4.1) with

S.ˆ;‰/.z; Nz; t/ D �

Z
!.ˆ;‰/C �

Z
!1.ˆ;‰/;

where

!1.ˆ;‰/ D

 "
ˆ>
z

 
1 0

0 0

!
Cˆ>

Nz

 
0 0

0 1

!#
‰

�ˆ>

" 
1 0

0 0

!
‰z C

 
0 0

0 1

!
‰ Nz

#!
dt:

We have

Theorem 4.2 ([33]). IfU solves the Davey–Stewartson II equation (3.4) and‰ andˆ satisfy
the equations D‰ D 0, ‰t D A‰, D_ˆ D 0, and ˆt D A_ˆ, then the Moutard transfor-
mation (4.2) of U gives the solution QU of the DSII equation

QUt D i
�

QUzz C QU Nz Nz C 2. QV C
NQV / QU

�
; QV Nz D

�
j QU j

2
�
z

with
QV D V C 2iaz

where a is given by (4.1).

2649 Surfaces via spinors and soliton equations



The geometrical meaning of this transformation is as follows: for every fixed t , the
spinors ‰ and ˆ determine some surface S.t/ in R4 and U is the potential of such a repre-
sentation. The surfaces S.t/ evolve via the DSII equation. We invert every such surface and
obtain the t -parameter family of surfaces QS.t/D S�1.t/which evolve via the DSII equation.
Starting with a family of smooth surfaces and the corresponding smooth potentials U , we
may construct singular solutions of the DSII equation: when S.t/ passes through the origin,
the function QU loses continuity or regularity because the origin is mapped into the infinity
by the inversion.

One of the simplest applications of Theorem 4.2 consists in constructing exact solu-
tions from holomorphic functions. In this case we start from the trivial solution U D V D 0

for which ‰ and ˆ are defined by holomorphic data. For instance, we have

Theorem 4.3 ([33]). Let f .z; t/ be a function which is holomorphic in z and satisfies the
equation

@f

@t
D i

@2f

@z2
:

Then
U D

i.zf 0 � f /

jzj2 C jf j2
; V D 2iaz ;

where

a D �
i. Nz C f 0/ Nf

jzj2 C jf j2
;

satisfy the Davey–Stewartson II equation.

Geometrically, we have the deformation of graphs w D f .z; t/ which are minimal
surfaces in R4 D C2. Whenever f .z; t/ vanishes at z D 0, the graph passes through the
origin and the solution QU loses continuity or regularity. Hence the Weierstrass representation
visualizes the creation of singularity and gives a method for finding such solutions.

We already applied this idea to constructing a solution with a one-point singularity
for the modified Novikov–Veselov equation by using the Enneper surface [31]. However, in
contrast to the mNV equation, the DSII has an important physical meaning.

In the variables
X D 2y; Y D 2x:

the Davey–Stewartson II equation takes the form known in mathematical physics, namely

iUt � UXX C UY Y D �4jU j
2U C 8'XU;

�' D
@2'

@X2
C
@2'

@Y 2
D

@

@X
jU j

2;
(4.3)

where ReV D 2jU j2 � 4'X , 'X D
@'
@X

[7]. This version of the DSII equation is called focus-
ing.

Ozawa constructed a blow-up solution to (4.3) with the initial data

U.X; Y; 0/ D
e�ib.4a/�1.X2�Y 2/

a.1C ..X=a/2 C .Y=a/2/=2/
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and showed that, for constants a and b such that ab < 0, we have

kU k
2

! 2� � ı as t ! T D �a=b

in � 0 where kU k2 D
R

R2 jU j2 dx dy is the squared L2-norm of U and ı is the Dirac distri-
bution centered at the origin [23]. We remark that kU k2 D 2� and the solution extends to
T > �a=b and gains regularity. In [15] it is conjectured for this equation that the blow-up
in all cases is self-similar and the time-dependent scaling is as in the Ozawa solution. This
conjecture is based on numerical results.

Let us consider the simplest examples of the solutions given by Theorem 4.3. We
denote by c a constant which may take arbitrary complex values, and by r we denote jzj;

z 2 C.
Next we consider

(1) f D z2 C 2it C c,

U D
i.z2 � 2it � c/

jzj2 C jz2 C 2it C cj2
;

V D
4. Nz2 � 2it C Nc/

jzj2 C jz2 C 2it C cj2
�
2.2z. Nz2 � 2it C Nc/C Nz/2

.jzj2 C jz2 C 2it C cj2/2
;

(4.4)

and jU j D O. 1
r2
/ as r ! 1. If c is not purely imaginary, then the solution is

always smooth. If c D i t� , � 2 R, then for t D �
�
2
, U has singularity at z D 0

of the type
U � ie2i� as r ! 0; where z D rei� :

We remark thatU 2L2.R2/ for all t and c. Since a small variation of c removes
singularities, they are unstable.

(2) f D z4 C 12itz2 � 12t2 C c,

U D
i.3z4 C 12itz2 C 12t2 � c/

jzj2 C jz4 C 12itz2 � 12t2 C cj2
: (4.5)

This solution becomes singular for c D 12t2 which is possible if and only if
c is real-valued and positive. In this case it has singularities U � �12te2i� at
z D 0 for t D ˙

p
c=12.

The solution to the mNV equation constructed in [31] is real-valued and regular except for
the time Tsing when it has singularity at the origin of the form U � � cos 2�.

We remark that kU k2 is the first integral of the system. For (4.4), it is always equal to
2� except for the time Tsing when the solution becomes singular. For t D Tsing, it is equal to� .
Analogously, for (4.5) it is equal to 4� for t such thatU is nonsingular, and is equal to 3� for
t D Tsing. The multiplicity of the value of this functional to � in both cases is explained by
that the surfaces QS are immersed Willmore spheres (with singularities for singular moments
of time).

By taking polynomials of higher degree for f , we can construct such singular solu-
tions for which the regular initial data have any polynomial decay.
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Are there another physically relevant wave equations that admit solutions with such
singularities?
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