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Abstract

The entropy of a hypersurface is defined by the supremum over all Gaussian integrals
with varying centers and scales, thus invariant under rigid motions and dilations. It mea-
sures geometric complexity and is motivated by the study of mean curvature flow. We will
survey recent progress on conjectures of Colding–Ilmanen–Minicozzi–White concerning
the sharp lower bound on entropy for hypersurfaces, as well as their extensions.
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1. Introduction

In the trailblazing work [34], Colding and Minicozzi define a notion of entropy for
hypersurfaces which is given by the supremum over all Gaussian integrals with varying cen-
ters and scales (cf. [67]). It is a geometric quantity that measures complexity and is invariant
under rigid motions and dilations. In this survey, we discuss recent results on geometric
properties of hypersurfaces with low entropy.

Entropy ismotivated by the study ofmean curvature flowwhich is a natural analogue
of the heat equation in extrinsic curvature flows. Any hypersurface evolves under mean cur-
vature flow in the direction of steepest descent for area, and the flow in general may become
singular even before its vanishing. By Huisken’s monotonicity formula [53], the entropy is
decreasing under mean curvature flow. Thus, the entropy at all future singularities for the
flow is bounded from above by that of the initial hypersurface.

By the work of Huisken [53] and Ilmanen [57], all possible blowups at a given sin-
gularity for a mean curvature flow are modeled by self-shrinkers which are hypersurfaces
that flow in a self-similarly shrinking manner. Despite the abundance of self-shrinkers (see
[63,70,71,80]), Colding andMinicozzi [34] study the properties of entropy and prove a striking
result that spheres, generalized cylinders, and hyperplanes are the only stable self-shrinkers
under mean curvature flow.

Inspired in part by the dynamic approach to mean curvature flow of [34], Colding,
Ilmanen, Minicozzi, and White [33] employ a perturbative argument and singularity analysis
for mean curvature flow to show that the round sphere minimizes entropy among all closed
(i.e., compact without boundary) self-shrinkers. They further conjecture that in dimension
less than 7, the round sphere indeed minimizes entropy among all nonflat self-shrinkers and
so does it among all closed hypersurfaces.

After reviewing basic properties of entropy in Section 2, we discuss, in Sections 3
and 4, recent progress towards the above conjectures of Colding–Ilmanen–Minicozzi–White,
with an emphasis on joint work with Bernstein [10,11]. We conclude our discussion in Sec-
tion 5 to explain various stability results for round spheres under small perturbation of
entropy.

2. Entropy for hypersurfaces

In this section, we discuss related background on the Colding–Minicozzi entropy
for hypersurfaces, with an emphasis on its connection with mean curvature flow.

2.1. Basic properties for entropy
Follwing Colding and Minicozzi [34] (cf. [67]), define the entropy for a hypersurface

† � RnC1 by

�Œ†� D sup
x02RnC1;t0>0

.4�t0/� n
2

Z
†

e
�

jx�x0 j2

4t0 dH n (2.1)

where H n is the n-dimensional Hausdorff measure on RnC1.
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It is readily checked that �Œ† � Rk � D �Œ†� and, for � > 0 and y 2 RnC1,

�Œ�† C y� D �Œ†�;

where �† C y is a hypersurface given by

�† C y D
®
z 2 RnC1

j z D �x C y for some x 2 †
¯
:

A direct calculation gives �ŒRn� D 1. Moreover, Stone [76] computes:

2 > �
�
S1

�
>

3

2
> �

�
S2

�
> � � � > �

�
Sn

�
> �

�
SnC1

�
> � � � !

p
2: (2.2)

The definition of entropy can be extended in a straightforward manner to measures
and varifolds on a Euclidean space. There are also interesting studies of analogues of the
Colding–Minicozzi entropy in noncompact Riemannian manifolds under certain curvature
and volume conditions by Sun [78] and in hyperbolic space by Bernstein [9] (see also [90]).

2.2. Mean curvature flow
A one-parameter family of hypersurfaces †t � RnC1 is a mean curvature flow if,

for x 2 †t , �
@x
@t

�?

D H†t ; (2.3)

where the superscript ? means the projection to the unit normal n†t on †t , and H†t is the
mean curvature given by

H†t D �H†t n†t D � div†t .n†t /n†t :

Not only is mean curvature flow a beautiful subject in its own right, it also models various
physical phenomena and has potential applications in numerous scientific fields, such as
biology, computer imaging, and material sciences (see, e.g., [31,62,66,68]).

By the avoidance principle (see [21, 6.3] and [45, Chap. 4]), the mean curvature flow
starting from any given closed hypersurface becomes singular in finite time. A central topic
in the study of mean curvature flow is to understand the asymptotic behavior of the flow near
singularities. Namely, suppose ¹†t ºt2Œ0;T / is a mean curvature flow with T > 0 the first
singular time. Let xi 2 †ti with xi ! x0 and ti ! T be such that the second fundamental
form jA†ti

.xi /j ! 1. If we define

�s D
1

p
T � t

†t and s D � log.T � t /;

then the family ¹�sºs�� logT satisfies, for y 2 �s ,�
@y
@s

�?

D H�s C
y?

2
; (2.4)

which is called the rescaled mean curvature flow associated to the flow ¹†t ºt2Œ0;T /. Thus,
characterizing the limits of �s as s ! 1 plays a fundamental role in the study of singularity
formation for mean curvature flow.
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Observe that the rescaled mean curvature flow ¹�sºs�� logT satisfies

d

ds

�
.4�/� n

2

Z
�s

e�
jyj2

4 dH n

�
D �.4�/� n

2

Z
�s

ˇ̌̌̌
H�s C

y?

2

ˇ̌̌̌2

e�
jyj2

4 dH n; (2.5)

so it is the (negative) gradient flow of the Gaussian surface area

F Œ�� D .4�/� n
2

Z
�

e�
jyj2

4 dH n: (2.6)

Notice that rewinding the change of variables in (2.5) gives exactly the monotonicity for-
mula discovered by Huisken [53]. And it follows that the entropy �Œ†t � is decreasing in t .
Moreover, sending s ! 1, up to passing to a subsequence, �s converges weakly to a critical
point, �0, of the functional F that satisfies the Euler–Lagrange equation

H�0 C
y?

2
D 0; (2.7)

and thus �Œ�0� � �Œ†0� (see [53, 57]). A hypersurface satisfying (2.7) is also called a self-
shrinker. Observe that ¹

p
�t �0ºt<0 is a Brakke flow [21] that satisfies (2.3) weakly, and we

call it a tangent flow at .x0; T /. One may also consider a blowup sequence �i .†ti � xi / with
�i ! 1, and, by Brakke’s compactness [21] (see also [55, Sect. 7]), the limit is also a Brakke
flow, called a limit flow at .x0; T /.

There is a wild zoo of examples of self-shrinkers (see [4, 63, 64, 70, 71, 80]). How-
ever, a long-standing conjecture of Huisken [58, #8] (and of Angenent–Chopp–Ilmanen [5]

in R3) asserts that starting with a generic closed hypersurface, the mean curvature flow
develops only spherical and cylindrical singularities. Recently, Colding and Minicozzi have
pioneered a number of innovative techniques about entropy and made important progress
towards Huisken’s conjecture (see [34–41]). Among them, the most relevant to this article is
the following result.

Theorem 2.1 ([34, Theorem 0.12]). The only smooth embedded entropy-stable self-shrinkers
with polynomial volume growth are round spheres, generalized cylinders and hyperplanes.

Here “entropy-stable” means that there are no perturbations of the self-shrinkers to
decrease the entropy. An easy consequence of Theorem 2.1 is that any singularities for mean
curvature flow that are not spheres or generalized cylinders may be perturbed away in an
appropriate sense. Moreover, it is possible to perturb the initial data to avoid certain unstable
singularities for mean curvature flow (see Chodosh–Choi–Mantoulidis–Schulze [27,28], Sun
[77] and Sun–Xue [81,82]).

Without the smoothness assumption, Colding and Minicozzi show that in dimen-
sion less than 7, Theorem 2.1 still holds for oriented F -stationary integral varifolds that
have singular sets with locally finite codimension-2 Hausdorff measure [34, Theorem 0.14].
Furthermore, in [91], Zhu utilizes an ˛-structural hypothesis in minimal surface theory and
extends this result to higher dimensions. Notice that the hypothesis on the size of singular
set is expected to hold for any self-shrinkers arising in mean curvature flow [57, page 8].
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2.3. Conjectures on the sharp lower entropy bound for hypersurfaces
The dynamic perspective of [34] suggests the following two closely related conjec-

tures of Colding, Ilmanen, Minicozzi, and White (cf. [33, Conjectures 0.9 and 0.10]).

Conjecture 2.2. For n � 6, there is an "0 D "0.n/ > 0 so that if † � RnC1 is a nonflat
self-shrinker not equal to the round sphere, then �Œ†� � �ŒSn� C "0.

Conjecture 2.3. For n � 6, if † � RnC1 is a closed hypersurface, then �Œ†� � �ŒSn�.

Both conjectures are known to be true with n D 1. Indeed, Conjecture 2.2 follows
directly from Abresch–Langer’s classification of self-shrinking planar curves [1]. And by
work of Gage–Hamilton [50] and Grayson [51], every closed embedded curve in plane evolves
under mean curvature flow to a round point which, together with the monotonicity of entropy,
proves Conjecture 2.3.

As remarked before, the mean curvature flow starting from any given closed hyper-
surface becomes singular in finite time and the self-shrinker modeling the singularity of the
flow has lower entropy. Thus, Conjecture 2.3 would follow fromConjecture 2.2. Despite The-
orem 2.1, one of the difficulties to prove Conjecture 2.2 is that if one perturbs a noncompact
self-shrinker, a priori it may flow smoothly without developing singularities.

At last, it may be interesting to think of Conjecture 2.2 as an analogue, in the Gaus-
sian setting, of the question on the sharp lower bound on density for minimal cones (see
Ilmanen–White [60] and Marques–Neves [69]).

3. Sharp lower bound on entropy for self-shrinkers

In this section, we discuss recent progress towards Conjecture 2.2. First, Brakke’s
local regularity [21, 6.1] implies that Rn has the least entropy of all self-shrinkers and, more-
over, there is a gap to the next lowest (see also White [88]). As such, Conjecture 2.2 concerns
the sharp lower entropy bound with a gap for all nonflat self-shrinkers.

Observe that if an immersed hypersurface has entropy strictly less than 2, then it
must be embedded. Thus, we always assume embeddedness for the remainder of this section.
Moreover, by the Frankel property (see [85, Theorem 7.4] and [61, Theorem C]), any embedded
self-shrinker is connected.

3.1. Closed self-shrinkers with low entropy
In [33], Colding, Ilmanen, Minicozzi, and White initiate the study of Conjecture 2.2

and prove the following result.

Theorem 3.1 ([33]). Given n, there exists " D ".n/ > 0 so that if † � RnC1 is a closed
self-shrinker not equal to the round sphere, then

�Œ†� � �
�
Sn

�
C ": (3.1)
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Moreover, if

�Œ†� � min
²

�
�
Sn�1

�
;

3

2

³
; (3.2)

then † is diffeomorphic to Sn. (If n > 2, then �ŒSn�1� < 3
2

and the minimum is unnecessary.)

Outline of the proof. By Abresch–Langer [1], the theorem is vacuously true with n D 1;
thus, assume n � 2 below. We also assume �Œ†� � min¹�ŒSn�; 3=2º, as otherwise the the-
orem follows from inequality (2.2). As † is closed and not round, it follows from Colding–
Minicozzi’s classification of stable self-shrinkers, Theorem 2.1, that † is entropy unstable.
Thus, there is a nearby hypersurface Q† with the following properties:

(1) �Œ Q†� < �Œ†�;

(2) Q† is inside of †, i.e., the compact region of RnC1 bounded by † contains Q†;

(3) H Q† �
1
2
x � n Q† > 0 (with a suitable choice of the unit normal of Q†).

(See [34, Corollary 5.15, Theorem 4.30, and Theorem 0.15].)
Next, one may use a Simon-type equation and the parabolic maximum principle

to show that, starting from Q†, the rescaled mean curvature flow, i.e., a family of hypersur-
faces Q†t � RnC1 flowing by equation (2.4), preserves property (2) and bounds the second
fundamental form A Q†t

by

jA Q†t
j
2

� Ce�2t

ˇ̌̌̌
H Q†t

�
1

2
x � n Q†t

ˇ̌̌̌2

(3.3)

for some constant C depending on Q†. As Q†t becomes singular in finite time, a (subse-
quential) limit of blowups of the rescaled flow Q†t at the singularity is given by a (possibly
singular) self-shrinker � . More crucially, estimate (3.3) gives

jAj � CH on the regular part of � . (3.4)

Appealing to the monotonicity of entropy, property (1) and the entropy bound of †

gives that

�Œ�� � �Œ Q†� < �Œ†� � min
²

�
�
Sn�1

�
;

3

2

³
:

Thus, by Allard’s regularity (see [3] or [73]) and estimate (3.4), � is a smooth embed-
ded mean-convex self-shrinker. Thus, the classification of mean-convex self-shrinkers of
Huisken [53] and of Colding–Minicozzi [34, Theorem 0.17] implies � is of the form
Sk � Rn�k . Furthermore, the entropy bound of � ensures � is the round sphere. Thus,
It follows that Q†t flows smoothly until it vanishes in a round point. Hence, as by construc-
tion Q† can be chosen to be sufficiently close, in the C 1 topology, to †, it follows that
�Œ†� > �Œ Q†� � �ŒSn� and † is diffeomorphic to Sn.

Finally, to see that there is a gap, one argues by contradiction. Suppose there is a
sequence of closed self-shrinkers †i that are not round with entropy converging to �ŒSn�.
Like before, perturbing these self-shrinkers and then applying rescaled mean curvature flow
to the perturbations gives a sequence of flows Q†i

t with entropy less than or equal to �Œ†i � and
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developing a spherical singularity in finite time. By the monotonicity of entropy, rescaling
the Q†i

t about the spherical singularity creates a new sequence of rescaled mean curvature
flows converging to the static sphere. This contradicts that, by Huisken [53], for i large †i

has negative curvature at some point.

Remark 3.2. In the proof of Theorem 3.1, the number 3
2
in the minimum of (3.2) is only

used to rule out the possibility of triple junctions arising in the rescaled mean curvature
flow. However, by the orientability and results on mod 2 flat chains [89], the second part of
Theorem 3.1 still holds under the weaker assumption that �Œ†� � �ŒSn�1�.

3.2. Noncompact self-shrinkers with low entropy
The arguments for Theorem 3.1 fail on noncompact self-shrinkers because perturb-

ing a noncompact self-shrinker and applying rescaled mean curvature flow to the perturba-
tion a priori may yield a rescaled mean curvature flow that has no singularities in finite time.
To overcome this issue, it is needed to combine ideas from the proof of Theorem 3.1 and
[11,14].

A starting point is to understand the asymptotic structure of noncompact self-
shrinkers. It is shown in [83] that any noncompact self-shrinker in R3 of finite genus is
smoothly asymptotic (at infinity) to a cone or a cylinder (see also [79, Appendix A]). Assum-
ing the noncompact self-shrinker has entropy bounded by that of the circle instead, a stronger
result is true (cf. [10, Proposition 4.5]).

Lemma 3.3. If † � R3 is a noncompact self-shrinker with �Œ†� � �ŒS1�, then one of the
following is true:

(1) † is isometric to a cylinder.

(2) There is a regular cone C � R3 so that † is smoothly asymptotic to C , i.e., as
� ! 0C, the �† converges to C in C 1

loc .R
3 n ¹0º/. In particular, the curvature

of † is quadratically decaying at infinity.

Here a regular cone is a proper subset of RnC1 that is invariant under dilations and the link
of the cone is a smooth embedded codimension-one submanifold of Sn.

Proof. By definition, there is a cone C � R3 so that as � ! 0C, the �† converges, in the
Hausdorff distance, to C . Fix any y 2 C n ¹0º. Observe that

p
�t †, t < 0, is a mean cur-

vature flow converging to C at time 0. Thus, as �Œ†� � �ŒS1� < 2, it follows from White’s
stratification theorem [87] that any tangent flow at .y; 0/ is a multiplicity-one self-shrinker of
the form � � R. Furthermore, by Abresch–Langer’s classification of self-shrinking planar
curves [1], � D R or S1. If � D S1, then Huisken’s monotonicity gives† splits off a line and,
thus, is isometric to a cylinder. If � D R, then Brakke’s local regularity [21] (see also White
[88]) implies the flow is regular near .y; 0/. As y is arbitrary, the second item follows.
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Next, it is shown in [11] that there is a topological restriction on asymptotically con-
ical self-shrinkers with entropy less than or equal to that of the round cylinder. This is the
key to the proof of Conjecture 2.2 with n D 2.

Theorem 3.4 ([11]). For n � 2, let † � RnC1 be a self-shrinker that is smoothly asymptotic
to a regular cone C . If �Œ†� � �ŒSn�1�, then the link of the asymptotic cone C separates
Sn into two connected components both diffeomorphic to †. As a consequence, the link is
connected.

Outline of the proof. The arguments belowmay be thought of a natural analog, in the asymp-
totically conical setting, of the arguments in the proof of Theorem 3.1. However, there is an
essential difference: while it is exploited there that the flow of a closed hypersurface must
form a singularity in finite time, it is shown below that the flow of an asymptotically conical
hypersurface with small entropy must exist without singularities for long-time and the flow
eventually becomes star-shaped.

As the theorem is trivially true for hyperplanes, without loss of generality assume
† ¤ Rn. By Theorem 2.1, † is entropy unstable, so there are two nearby hypersurfaces
Q†˙ � RnC1 such that

(1) �Œ Q†˙� < �Œ†� � �ŒSn�1� D �ŒSn�1 � R�;

(2) Q†C lies in one side of † while Q†� lies on the other side of †;

(3) H �
1
2
x � n > K.1 C jxj2/� on Q†˙ (with respective to the correct orientation)

for constants K > 0 and � < �1 both depending on †;

(4) Q†˙ are both smoothly asymptotic to the cone C .

In the proof of Theorem 3.1, it is convenient to think of self-shrinkers as static points
for the rescaled mean curvature flow and show the sign of H �

1
2
x � n is preserved under the

flow. Here it is crucial to instead study shrinker mean curvature relative to the space-time
point X0 D .x0; t0/ and at time t (see also [75])

SX0;t
D 2.t0 � t /H � .x � x0/ � n: (3.5)

By the parabolic maximum principle, the sign of shrinker mean curvature is preserved under
the mean curvature flow starting with Q†˙ at time �1. Notice that shrinker mean curvature
makes senses for mean curvature flows which start close to a self-shrinker but that persist up
to (and beyond) the singular time of the self-shrinker, which is the key to this proof.

Arguing similarly as in the proof of Theorem 3.1 and invoking property (1) give that
the flows Q†˙

t starting with Q†˙ at time�1 both exist smoothly for long-time and become star-
shaped at time 0. As Q†�

0 and Q†C
0 lie on different sides ofC and are both smoothly asymptotic

to C , it follows that the link of C divides Sn into two components !C and !� over which
Q†C

0 and Q†�
0 are radial graphs, respectively. Thus, Q†˙

0 and !˙ are diffeomorphic. Hence, by
construction, Q†�

0 and Q†C
0 are both diffeomorphic to † and so are !� and !C.
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Moreover, by the arguments in the proof of Theorem 3.4 and standard topological
facts, Theorem 3.4 can be further refined.

Theorem 3.5 ([14, Theorem 1.2]). For n � 2, let † � RnC1 is a self-shrinker smoothly asymp-
totic to a regular cone C . If �Œ†� � �ŒSn�1�, then † is contractible and the link of the
asymptotic cone C is a homology .n � 1/-sphere.

Immediately, the classification of surfaces and Alexander’s theorem [2] gives the
following consequence.

Corollary 3.6. For 2 � n � 3, let † � RnC1 be a self-shrinker smoothly asymptotic to a
regular cone. If �Œ†� � �ŒSn�1�, then † is diffeomorphic to Rn.

Wenow explainwhyConjecture 2.2 is truewith n D 2. Let† � R3 be a self-shrinker
with �Œ†� � �ŒS1�. If† is closed, then, by Theorem 3.1 and remark (3.2),† is diffeomorphic
to S2. If † is noncompact, then Lemma 3.3 implies that it is either a cylinder or smoothly
asymptotic to a regular cone. In the latter case, Corollary 3.6 implies † is diffeomorphic to
R2. Thus, by Brendle’s classification for genus-zero self-shrinkers [22], † is a round sphere,
a cylinder or a plane. Hence, it follows that the round sphere has the lowest entropy among
all nonflat self-shrinkers in R3 and cylinder has the second lowest. In particular, this proves
Conjecture 2.2 with n D 2 and "0.2/ D �ŒS1� � �ŒS2� > 0.

Furthermore, there is a gap to the third lowest. To see this, suppose there is a
sequence of self-shrinkers †i � R3 so that �ŒS1� < �Œ†i � < �ŒS1� C i�1. Thus, up to pass-
ing to a subsequence, the †i converges smoothly to a self-shrinker †0 with �Œ†0� D �ŒS1�.
By the preceding discussions, †0 is a cylinder. In particular, †0 has positive mean curvature.
The nature of convergence ensures that, for large i , †i also has positive mean curvature
in a large compact set. Hence, by the cylinder rigidity of Colding–Ilmanen–Minicozzi [32],
for i large †i is a cylinder, contradicting the entropy bound of †i . Hence, we arrive at the
following gap result.

Corollary 3.7 ([11, Corollary 1.2]). There is a ı > 0 so that if † � R3 is a self-shrinker not
equal to a round sphere, a cylinder or a plane, then �Œ†� � �ŒS1� C ı.

4. Sharp lower bound on entropy for closed

hypersurfaces

In this section, we discuss a complete resolution of Conjecture 2.3, which asserts
that round spheres have the least entropy of closed hypersurfaces of dimension less than 7.
By definition (see (2.1)) �Œ†� � 1 for any hypersurface † � RnC1. In fact, Chen [25] shows
that �Œ†� D 1 if and only if † is a hyperplane. Though a hyperplane can be approximated
by closed hypersurfaces, Conjecture 2.3 claims that the entropy of any closed hypersurface
is strictly larger than 1.

In [10], Bernstein and the author use a weak mean curvature flow and analyze termi-
nal singularities to confirm Conjecture 2.3 (compare Ketover–Zhou [65]) After that, Zhu [91]
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further elaborates on the Colding–Minicozzi classification of stable self-shrinkers (see The-
orem 2.1) to extend Conjecture 2.3 to all dimensions.

Theorem 4.1 ([10,91]; cf. [65]). If † � RnC1 is a closed hypersurface, then �Œ†� � �ŒSn�

with equality if and only if † is a round sphere.

Despite the discussion of Section 2.3, the proof of Theorem 4.1 that we explain
below is independent of Conjecture 2.2. We give necessary background on some key ingre-
dients that may be of independent interest and then sketch the proof of Theorem 4.1.

4.1. Weak mean curvature flow
Among various notions of weak mean curvature flow, the most relevant to this arti-

cle are the Brakke flow and level set flow. Following Ilmanen [55] (cf. [21]), a Brakke flow is
a one-parameter family of Radon measures onRnC1 which satisfy equation (2.3) in a certain
weak form. The Brakke flow ensures that the mass of the measures decreases along the flow.
A Brakke flow is integral if, at almost all times, the flow is an integer rectifiable Radon mea-
sure. Thinking of hypersurfaces † � RnC1 as measures H nb†, any smooth mean curvature
flow is an integral Brakke flow.

Motivated by work of Osher–Sethian [72] in numerical analysis, the theory of level
set flows has been established independently by Chen–Giga–Goto [26] and Evans–Spruck
[46–49] (cf. [54,55]). A level set flow is a family of hypersurfaces obtained in the following
way. First, embed a hypersurface † � RnC1 as the 0-level set of a Lipschitz function on
RnC1. Then evolving the function in the way that, intuitively, every level set of the function
flows by mean curvature yields a family of Lipschitz functions on RnC1. The level set flow
of † is given by the 0-level set of the family of functions. It is shown, for instance, in [46],
that the level set flow is well defined in the sense that it is independent of the choice of initial
functions and coincides with the smooth mean curvature flow as long as the latter exists.

For the purposes of this article, Brakke flows have two important properties. The
first is that Huisken’s monotonicity formula [53] also holds for Brakke flows (see [57] and
[86]). The second is the powerful regularity of Brakke [21] for such flows. A major technical
difficulty in using Brakke flows is that there is a great deal of nonuniqueness as, by construc-
tion, Brakke flows are allowed to vanish instantaneously. On the other hand, the level set
flow satisfies a strong maximum principle and thus is unique. In [55], Ilmanen uses an ellip-
tic regularization procedure to construct a multiplicity-one Brakke flow that is supported on
any given nonfattening level set flow (cf. Evans–Spruck [49]). Here a level set flow is nonfat-
tening if the flow does not develop nonempty interiors. Observe the nonfattening condition
is generic. Thus, it suffices to consider the closure (under Brakke’s compactness) of the set
of integral Brakke flows constructed by the elliptic regularization procedure.

4.2. Noncollapsed self-shrinkers and Brakke flows
An important notion of being noncollapsed for self-shrinkers and, more generally,

for flows is introduced in [10] and is used to ensure nonvanishing. A self-shrinkingmeasure on
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RnC1 is an integer n-rectifiable Radon measure � on RnC1 such that the associated varifold
is F -stationary.

Definition 4.2. A self-shrinking measure � on RnC1 is noncollapsed if there are y 2 RnC1

and R > 4
p

n so that

(1) spt.�/ is regular (i.e., smooth properly embedded) in the (open) ball BR.y/;

(2) spt.�/ separates BR.y/ � RnC1 into two connected components �C and ��

containing closed balls NB2
p

n.xC/ and NB2
p

n.x�/, respectively.

The measure � is strongly noncollapsed if � � �Rk is noncollapsed for all k � 0, where
�Rk is the k-dimensional Hausdorff measure on Rk .

For instance, if � is a noncompact self-shrinking measure on R3 with �Œ�� < 3=2,
then � is strongly noncollapsed (cf. Lemma 3.3). On the other hand, the avoidance principle
implies compact self-shrinking measures on RnC1 are all collapsed.

In an analogous way, define (strongly) noncollapsed Brakke flows as follows.

Definition 4.3. An integral Brakke flow K D ¹�t ºt�t0 in RnC1 is noncollapsed at time �

if there are .y; s/ 2 RnC1 � .t0; �/, R > 4
p

n.� � t0/, and 0 < " < min¹� � s; s � t0º so
that

(1) K is regular in BR.y/ � .s � "; s C "/;

(2) spt.�s/ separates BR.y/ � RnC1 into two connected components �C and ��

containing closed balls NB2
p

n.��s/.xC/ and NB2
p

n.��s/.x�/, respectively.

The Brakke flow K is strongly noncollapsed at time � if ¹�t � �Rk ºt�t0 is noncollapsed at
time � for all k � 0.

Note that if � is a self-shrinking measure that is (strongly) noncollapsed, then the
associated Brakke flow is (strongly) noncollapsed at time 0. A key observation is that being
(strongly) noncollapsed at a time is an open condition for integral Brakke flows. Thus, given
an integral Brakke flow K with finite entropy, if a tangent flow of K at .y; �/ is (strongly)
noncollapsed at time 0, then K is (strongly) noncollapsed at time � .

There is a general structural result for self-shrinking measures with entropy less
than that of a round sphere. It follows from an inductive argument and White’s stratification
theorem [87].

Proposition 4.4 ([10, Proposition 4.12]). For n � 2, if � is a self-shrinking measure on RnC1

with �Œ�� < �ŒSn�, then one of the following holds:

(1) � has compact support.

(2) � is strongly noncollapsed.

(3) There is a self-shrinking measure � on RnC1 so that �Œ�� � �Œ�� and
� D O� � �Rn�k for O� a compact self-shrinking measure and 1 � k � n � 1.
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4.3. Outline of the proof of Theorem 4.1
By work of Gage–Hamilton [50] and Grayson [51], the claim is true with n D

1. To that end, assume n � 2. Argue by contradiction, then suppose �Œ†� < �ŒSn�. Let
K D ¹�t ºt�0 be the integral Brakke flow in RnC1 with �0 D H nb†. By the spheres
comparison and avoidance principle, the extinction time of K , T0.K/ satisfies

0 < T0.K/ D sup
®
t � 0 j spt.�t / ¤ ;

¯
< 1:

Appealing to Definition 4.3 and the avoidance principle implies that K is collapsed at time
T0.K/. As being noncollapsed is an open condition for Brakke flows, any tangent flow of
K at time T0.K/ is collapsed at time 0. Recall from Section 2.2 that tangent flows are
given by self-shrinking measures. Thus, it is enough to show, for all 1 � k � n, the set,
C�Mk.�ŒSn�/, of all compact self-shrinking measures on RkC1 that have entropy less than
�ŒSn� is an empty set, because it would follow from Proposition 4.4 that all tangent flows
are strongly noncollapsed at time 0, giving a contradiction.

OnR2, all self-shrinkingmeasures with entropy less than 3=2 are smooth embedded
and thus have been classified byAbresch–Langer [1]. Thus, by a direct computation, the claim
is true with k D 1. Suppose, inductively, the claim holds for all 1 � k � l � 1. Assume
l < n C 1, as otherwise we are done. Argue by contradiction, then suppose the claim were
false for k D l . Take an entropy minimizing sequence of compact self-shrinking measures
�i on RlC1 with �Œ�i � < �ŒSn�. Then, up to passing to a subsequence, the �i converges to
a self-shrinking measure �0 with �Œ�0� < �ŒSn�. As any compact self-shrinking measure
is collapsed, the �i are all collapsed. By the openness of being noncollapsed, �0 is also
collapsed. Thus, by the inductive hypothesis and Proposition 4.4, �0 has compact support.
Our construction and the entropy bound ensure �0 is entropy stable and has a singular set of
codimension at least 2. Hence, appealing to Colding–Minicozzi [34, Theorem 0.14]when l � 6

while to Zhu [91, Theorem 1.2] when l � 7 gives �0 D H lbSl , contradicting �Œ�0� < �ŒSl �.
It remains only to characterize the equality case. Suppose �Œ†� D �ŒSn�. If † is

not (modulo translations and dilations) a self-shrinker, then applying mean curvature flow to
† for short time yields a closed hypersurface Q† with �Œ Q†� < �ŒSn�. This contradicts what
we have just shown. Thus, modulo translations and dilations, † is a self-shrinker. Moreover,
† is entropy stable, as otherwise one finds a perturbation of † so that the perturbation is a
closed hypersurface with strictly less entropy, giving a contradiction. Thus, the classification
of entropy stable self-shrinkers, Theorem 2.1, implies † is a round sphere.

5. Stability for the entropy inequality

We continue to discuss a natural follow-up question to Theorem 4.1 that whether
a closed hypersurface with entropy sufficiently close to the lowest is itself close to a round
sphere. There are various perspectives of this question. For instance, Wang [84] proves a
forward analogue of Brakke’s clearing-out lemma [21] and establish an explicit relationship
between a certain normalized Hausdorff distance of a surface to a round sphere and the
difference between their entropy (cf. [12]). It is also interesting to approach this question
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from a topological viewpoint. Indeed, an immediate application of mean curvature flow and
Corollary 3.7 is that any closed surface in R3 with entropy less than or equal to that of a
round cylinder has genus zero. In particular, such a surface is isotopic to S2.

A conditional isotopic stability result is also true in general dimensions. To state
the hypotheses, we follow relevant notions of [14]. For ƒ > 0, let RMC�

n.ƒ/ be the set of
nonflat regular minimal cones C � RnC1 with �ŒC � < ƒ, and let ��

n .ƒ/ be the set of nonflat
self-shrinkers † � RnC1 with �Œ†� < ƒ. The first hypothesis is

RMC�
k.ƒ/ D ; for all 3 � k � n. (?n;ƒ)

As all regular minimal cones in R2 consist of unions of rays, RMC�
1.ƒ/ D ;. Similarly, as

geodesics in S2 are great circles, RMC�
2.ƒ/ D ;. The second hypothesis is

��
n�1.ƒ/ D ;: (??n;ƒ)

As round cylinders are nonflat self-shrinkers, (??n;ƒ) holds only if ƒ � �ŒSn�1�. Bernstein
and the author [17] and Chodosh–Choi–Mantoulidis–Schulze [27] employ different strategies
to prove the following conditional result in general dimensions.

Theorem 5.1 ([17, Theorem 1.3]; cf. [27, Theorem 10.1]). Fix n � 3 and ƒ � �ŒSn�1�. If (?n;ƒ)
and (??n;ƒ) both hold and † is a closed connected hypersurface in RnC1 with �Œ†� � ƒ,
then † is smoothly isotopic to Sn.

Remark 5.2. By Marques–Neves’ proof of the Willmore conjecture (see [69, Theorem B])
RMC�

3.�ŒS2�/ D ;. And Corollary 3.7 ensures ��
2 .�ŒS2�/ D ;. Thus, (?n;ƒ) and (??n;ƒ)

are both fulfilled with n D 3 and ƒ D �ŒS2�.

5.1. Overview of the proof of Theorem 5.1
The basic idea is, again, to apply mean curvature flow to † and then analyze the

behavior of the flow near singularities. Let K be the Brakke flow starting at †. If, modulo
translations and dilations, † is a self-shrinker, then the claim follows from Theorem 3.1.
Otherwise, the entropy is strictly decreasing under the flow. Then it is shown in [14, Sect. 3]

that, by hypotheses (?n;ƒ) and (??n;ƒ), appealing to Allard’s regularity [3] andWhite’s strat-
ification theorem [87] implies that any singularities for K are modeled by smooth embedded
multiplicity-one self-shrinkers, which are either compact and, by Theorem 3.1, smoothly
isotopic to Sn, or noncompact asymptotically conical.

Due to the lack of a classification for self-shrinkers of simple topology in general
dimensions, it seems very difficult to rule out the possibility of these asymptotically conical
singularities for K . However, as suggested by Theorem 2.1, such singularities are unstable
under mean curvature flow and are expected to be perturbed away in an appropriate sense.
This strategy has been carried out in [27]. Namely, it is shown that the ancient mean curvature
flow that lies on one-side of a given asymptotically conical self-shrinker exists uniquely
for long-time. As an application, perturbing † and applying mean curvature flow to the
perturbation gives a mean curvature flow that is smooth until it disappears in a round point.
The claim follows immediately from this.
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The strategy of [17] is distinct from that of [27] and relies on the study of self-
expanding solutions to mean curvature flow [13,15–20]. There are two key ingredients. One is
an application of a forward analogue of Huisken’s monotonicity formula for flows emerging
from a conical singularity [15] (see also Section 5.2) to show that taking a second blowup
gives self-expanding flows. Another is a topological uniqueness for self-expanders asymp-
totic to a given cone with entropy less than that of a round cylinder [16] (see also Section 5.3).
Thus, combining these with a suitable bubble-tree blowup argument implies K is smooth at
almost all times and stay in the same isotopic class whenever it is smooth. Hence, as near its
extinction point K is isotopic to the shrinking spheres, it follows that † is isotopic to Sn.

5.2. Forward monotonicity formula for flows coming out of cones
Huisken’s monotonicity formula implies any tangent flows are backwardly self-

shrinking. On the other hand, it is unknown that whether tangent flows forward in time are
self-expanding or not. Nonetheless, suppose T D ¹�t ºt2R is a tangent flowwith�0 D H nbC

for C a regular cone in RnC1. Let T 0 D ¹�0
t ºt2R be a tangent flow of T at .0; 0/. Thus, T 0

is self-shrinking for negative times and equal to �t for all t � 0. To that end, we explain the
reason for that T 0 is self-expanding for positive times.

Consider the (forward) rescaled flow ¹�sºs2R associated to T bRnC1 � .0;1/ about
.0; 0/. Appealing to [56] and [27, Sect. 8] (cf. [44]) gives, for all s > 0, that spt.�s/ is trapped
between two self-expanders�� and�C, both smoothly asymptotic toC . Here self-expanders
are critical points for the expander energy functional

EŒ�� D

Z
�

e
jxj2

4 dH n: (5.1)

Following a suggestion of Ilmanen [56], define the relative expander entropy of �s relative
to �� by

ErelŒ�s; ��� D lim
R!1

�Z
BR

e
jxj2

4 d�s �

Z
��\BR

e
jxj2

4 dH n

�
: (5.2)

In [15], Bernstein and the author employ calibration type arguments to show the limit in (5.2)
exists and is finite. Prior to that, this relative functional has been studied by Ilmanen–
Neves–Schulze [59] in the curve case. Deruelle and Schulze [43] investigate this relative func-
tional in general dimensions and exploit the convergence rate between two self-expanders
[8] to show it is well defined and finite for pairs of self-expanders asymptotic to the same
cone.

Furthermore, it is shown in [15] that there is a monotonicity formula for the relative
expander entropy for flows emerging from a conical singularity. Applying this formula to
¹�sºs2R yields that, for s1 < s2,

ErelŒ�s2 ; ��� � ErelŒ�s1 ; ��� D �

Z s2

s1

Z ˇ̌̌̌
H �

x?

2

ˇ̌̌̌2

e
jxj2

4 d�s ds: (5.3)

As a consequence, given a sequence si ! �1, there is a subsequence sj so that the �sj

converges to a critical point of the functional E. This implies that T 0 is self-expanding for
positive times.
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5.3. Topological uniqueness for self-expanders with low entropy
It is illustrated by Angenent–Chopp–Ilmanen [5] that there is an open set of regular

cones so that for each cone in the set there are at least two self-expanders asymptotic to the
cone (cf. [13]). However, it is proved in [16] that given a regular cone with sufficiently small
entropy all self-expanders asymptotic to the cone are in the same isotopic class.

Theorem 5.3 ([16]). For 0 < ƒ � �ŒSn�1�, let C � RnC1 be a regular cone with �ŒC � < ƒ

and assume one of the following holds:

(1) 2 � n � 6 and ƒ D �ŒSn�1�.

(2) n � 7 and (?n;ƒ) holds.

If �1; �2 � RnC1 are two self-expanders both smoothly asymptotic to C , then �1 and �2 are
a.c.-isotopic with fixed cone.

Here two asymptotically conical hypersurfaces are said to be a.c.-isotopic with fixed
cone if there is an isotopy of hypersurfaces that respects the asymptotically conical behavior
and fixes the asymptotic cone.

Outline of the proof of Theorem 5.3. It follows from the main result of [20] that the space
of asymptotically conical expanders is an infinite-dimensional smooth Banach manifold.
Thus, invoking Smale’s version [74] of the Sard theorem gives a residual set R of regular
cones so that for each cone in the set any self-expanders smoothly asymptotic to the cone are
nondegenerate in the sense that there are no nontrivial normal Jacobi fields that fix the asymp-
totic cone. In particular, degenerate asymptotically conical self-expanders can be perturbed
with varying asymptotic cones to nondegenerate ones. As such, we focus below on generic
cones C 2 R. Our goal is to construct Morse flow lines joining any two self-expanders both
smoothly asymptotic to C .

Denote byACH n.C/ the space of hypersurfaces inRnC1 that are smoothly asymp-
totic to the cone C . It is convenient to define an order on ACH n.C/ as follows. First fix a
choice of unit normals nL on the link L of C . We then let !C � Sn be the open set so
that @!C D L and nL points into !C. For † 2 ACH n.C/, let �C.†/ � RnC1 be the
open set so that @�C.†/ D † and the blowdowns of �C in Sn converge as sets to !C. For
†1; †2 2 ACH n.C/, we say †1 � †2 provided �C.†2/ � �C.†1/.

Let ACEn.C/ � ACH n.C/ be the subset consisting of self-expanders. If
� 2 ACEn.C/ is unstable, then there are two eternal rescaled mean curvature flows that
deform � to two stable elements �˙ 2 ACEn.C/ with �� � � � �C. Moreover, if
� 0 2 ACEn.C/ is stable and � 0 � � (respectively, � � � 0), then � 0 � �� � � (respectively,
� � �C � � 0). The hypotheses ensure that the eternal flows are smooth. On the other hand,
if �0; �1 2 ACEn.C/ are (strictly) stable and �0 � �1, then appealing to a min–max con-
struction for relative expander entropy [18] yields an element �2 2 ACEn.C/ with �2 ¤ �i

for i 2 ¹0; 1º and �0 � �2 � �1. Again, the hypotheses guarantee the smoothness of the
min–max self-expander. Hence, arguing by induction on the cardinality of the subset con-
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sisting of stable elements of ACEn.C/ (see [19]), it follows that every element of ACEn.C/

can be deformed via rescaled mean curvature flows through a finite number of intermediate
elements of ACEn.C/ to the lowest (with respect to the order �), implying the claim.

6. Further discussions

Instead of assuming low entropy, Hershkovits and White prove a sharp relation
between the entropy and topology of closed self-shrinkers for all dimensions [52]. This may
be thought of as an extension of Theorem 3.1. Thinking of self-shrinkers as a special class of
ancient the mean curvature flow, combining with work of Angenent–Daskalopoulos–Sesum
[6,7], Bernstein–Wang [11], and Brendle–Choi [23,24], Choi, Haslhofer. and Hershkovits [29]
classify the ancient mean curvature flow in R3 with entropy less than or equal to that of
a cylinder. There is an analogous classification for ancient mean curvature flows in higher
dimensions under the assumption that the flows are smoothly asymptotic at time �1 to a
round cylinder [30].

In general, Conjecture 2.2 is wide open, in part because it is unknown whether there
is a complete classification for self-shrinkers of dimension at least 3 with simple topology
(compare Brendle [22]) It would be also interesting to study analogous questions in higher
codimensions. We refer the interested reader to [41] and references therein.

Very recently, Daniels–Holgate [42] combines [29] and [30] with suitable barriers to
construct smooth mean curvature flows with surgery that approximate weak mean curvature
flows with only spherical and neck-pinch singularities. Together with [28], this implies that
any closed hypersurface in R4 that has entropy less than or equal to �ŒS1 � R2� is smoothly
isotopic toS3, which, together with Theorem 5.1, sheds some light on the smooth Schoenflies
conjecture for R4.
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