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Abstract

In mathematics, we are often drawn to the simple or elegant, but what lies at the other end
of the spectrum? How can we build and study complex objects? How can we break them
down? In this note, we will describe some tools for building functions and surfaces with
structure at many different scales and, conversely, tools for decomposing complex objects
into simple pieces. These methods are based on ideas from geometric measure theory and
harmonic analysis, and we will give some applications to quantitative and metric geometry.
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What makes one object more complex than another? For instance, what makes a
high-genus surface more complex than a sphere, or what makes a random graph with n2

vertices more complex than an n� n grid? A rough definition of complexity is that complex
objects are hard to describe concisely. The Kolmogorov complexity of a string of 0’s and 1’s,
for instance, measures the number of bits it takes to describe an algorithm that outputs that bit
string. Then, on the one hand, the 1000-bit sequence 0; 1; 0; 1; : : : ; 0; 1 has low Kolmogorov
complexity, since it is the output of a simple algorithm. On the other hand, there are at most
2kC1 � 1 possible algorithms that can be described in at most k bits, so a generic string has
large complexity: over 99% of the 1000-bit strings have complexity of at least 990 bits.

This highlights one of the properties of complex objects: while nearly all n-bit
strings have complexity of at least 0:99n bits, it is impossible to construct an example of
such a string without using randomness—any explicit deterministic construction of an n-bit
string is an algorithm, so its complexity is bounded by the length of the algorithm. Situa-
tions like this are not uncommon in combinatorics. Erdős [7], for instance, famously bounded
the Ramsey numbers by showing that a random 2

s
2 -vertex graph is overwhelmingly likely

to have no s-vertex cliques or s-vertex independent sets. Nevertheless, no specific graph is
known to have this property, and there is no known way to construct such graphs for large s
without using randomness.

This is one reason that random graphs, surfaces, and complexes can behave in
strange and unexpected ways. All the familiar examples of graphs, surfaces, and complexes
can be constructed algorithmically, so they are simple in the sense of Kolmogorov. Complex
objects may be generic, but complex objects can be strange and unexpected to an intuition
trained on familiar examples.

One may hope, however, that objects in Rn may behave in more familiar ways. In
this note, we will confirm this intuition by constructing objects in Rn that are as complex
as possible and bounding the complexity of such objects by decomposing them into simpler
pieces. In Section 1, we will construct Lipschitz functions, and in Section 2, we will construct
closed surfaces.

In both cases, we find that the complexity of these objects is bounded by geometric
quantities. A Lipschitz function on the unit interval, for instance, has a graph which is a curve
in Rn. One can construct a Lipschitz function by starting with a linear function, then perturb-
ing it repeatedly, but each perturbation increases the length of the graph, so the complexity
of the function is ultimately bounded by the length of the graph. Likewise, a surface in Rn

may be complex, but it can often be decomposed into a sum of several pieces. If the pieces of
the decomposition are simple and their size is bounded, the decomposition gives an efficient
description of the surface and bounds its complexity. Finally, in Section 3, we describe some
applications of these techniques to geometric measure theory and metric geometry.

1. How to build a function

We start with a simple example. What does a generic 1-Lipschitz function of a
single variable look like? (Most of these ideas can be generalized to higher dimensions,
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but we stick to one dimension for simplicity.) This question turns out to be surprisingly
tricky. For example, one possible approach is to discretize; one can construct a Lipschitz
function f W Œ0; 1� ! R by choosing some n 2 N and a sequence of bounded i.i.d. random
variables y1; : : : ; yn and defining

f

�
k

n

�
D

kX
iD1

yi

n
:

We extend to all of Œ0;1� by linear interpolation; as long as jyi j � 1 for all i , this is 1-Lipschitz.
For any finite n, this produces potentially interesting 1-Lipschitz functions, but the central
limit theorem implies that as n ! 1, these functions tend toward g.x/ D mx, where m is
the mean of the distribution that the yi are drawn from.

The problem is that there are no nontrivial scale-invariant models of random 1-
Lipschitz functions. By Rademacher’s theorem, any Lipschitz function is differentiable
almost everywhere, and the same is true for random 1-Lipschitz functions; if f W Œ0; 1�! R is
a random 1-Lipschitz function drawn from some distribution, then for almost every x 2 Œ0;1�,
there exists a random variable f 0.x/ with jf 0.x/j � 1 such that

P
�

lim
h!0

f .x C h/ � f .x/

h
D f 0.x/

�
D 1: (1.1)

For any r > 0, we can rescale f around x by letting fr .h/ D r�1.f .x C rh/ � f .x//.
Then (1.1) implies that fr converges almost surely to the random linear function h 7! f 0.x/h.
It follows that any scale-invariant distribution on the space of 1-Lipschitz functions must be
supported on the space of affine functions.

Instead, we can construct complex Lipschitz functions by combining functions
with different scales. The simplest example is a Weierstrass-type construction; if �k.x/ D

10�k sin.10kx/, then f .x/ D
1
L

PL�1
kD0 �k.x/ is a 1-Lipschitz function whose graph has

bumps at the L different scales 1; 10�1; : : : ; 10�LC1. The bumps at scale 10�k have height
roughly 1

L
times their width, so we say that f is 1

L
-bumpy at L different scales. (One can

construct a random 1-Lipschitz function with similar complexity by replacing the �k’s by
random 1-Lipschitz functions that oscillate with amplitude and wavelength roughly 10�k .)

With a little more care, we can make this function more complex. The key is that

f 0.x/ D

L�1X
kD0

1

L
cos.10kx/

and there’s little correlation between cos.10kx/ and cos.10lx/ when k ¤ l . That is, f 0.x/

is a sum ofL values between �
1
L

and 1
L

. At x D 0, all these values are 1
L

, so f 0.x/D 1, but
for a typical x 2 R, these values are close to independent, so f 0.x/ is typically of order

p
L

L
,

which much smaller than 1. In fact, by the central limit theorem, if L is large and

g.x/ D
1

L

L2X
kD0

10�k sin.10kx/;

then g is 1
L

-bumpy at L2 different scales and the distribution of g0.x/ is close to a Gaussian
with variance less than 1. While g is not 1-Lipschitz, it is almost Lipschitz in the sense that
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jg0.x/j < 5 for all but a tiny fraction of points, and we can make it 5-Lipschitz by changing
it on a tiny fraction of its domain. This produces a Lipschitz function that is 1

L
-bumpy at L2

different scales.
This is just about the bumpiest a Lipschitz function can be. One way to see this is a

theorem of Dorronsoro [5]. Let f W R ! R be differentiable. For x 2 R and r > 0, we define
a quantity f̌ .x; r/ that measures how close f is to affine on .x � r; x C r/ by

f̌ .x; r/ D
1

r2
min

�

Z xCr

x�r

ˇ̌
f .y/ � �.y/

ˇ̌
dy;

where � ranges over all affine functions. This is normalized to be scale invariant; if g.x/ D

cf .c�1x/, then ˇg.x; r/D f̌ .c
�1x; c�1r/, and Dorronsoro’s Theorem implies that if f is

supported on Œ0; 1� and satisfies kf 0k2 < 1, then
1X

nD0

Z 1

0
f̌ .x; 2

�n/2 dx
dr
r

.


f 0



2

2
: (1.2)

It can help to interpret this inequality as an expectation. Let x be a uniformly distributed
random point in Œ0; 1�. Then

Ex

"
1X

nD0

f̌ .x; 2
�n/2

#
.



f 0


2

2
: (1.3)

In particular, for anyL > 0, the expected number of n’s such that f̌ .x; 2
�n/ > 1

L
is at most

a constant times L2, meaning that a 1-Lipschitz function is, for the most part, 1
L

-bumpy at a
maximum of roughly L2 different scales.

The exponent 2 in these bounds comes from the Pythagorean Theorem: adding a
bump of height r

L
to a segment of length r multiplies the length by roughly a factor of 1

L2 ,
so covering a curve by such bumps (making it 1

L
-bumpy at scale r) increases its length by

roughly a factor of 1
L2 . If f W Œ0; 1� ! R is a 1-Lipschitz function, its graph is a curve of

length between 1 and
p
2. The length is minimized when f is constant, and is larger when

f is bumpier. Making f to be 1
L

-bumpy at a scale increases the length of the graph by
roughly 1

L2 , so the bound on the length of the graph implies that f can be 1
L

-bumpy at no
more than roughly L2 different scales. Going further in this direction leads to similar results
for rectifiable curves, like Jones’s Traveling Salesman Theorem [13].

2. How to build a surface

Now we turn our attention to surfaces. There are many ways to construct com-
plicated closed surfaces embedded or immersed in Rn. One can, for instance, construct
codimension-1 surfaces by embedding a k-complex X in Rn and letting † be the boundary
of a regular neighborhood of X ; one can construct self-similar surfaces inductively, like the
Koch snowflake or the Menger sponge; or one can use general position arguments or the
Whitney Embedding Theorem to embed arbitrary k-manifolds in Rn.

Although these surfaces can be complex, they can still be decomposed into simple
pieces. For example, ifX � Rn is an embedded simplicial complex, then its regular neighbor-
hoodR can be decomposed into neighborhoods of individual simplicesRı . The fundamental
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Figure 1

A stage in the construction of the Koch snowflake can be decomposed into triangles, and the total length of the
triangles is bounded by the length of the original curve.

class ŒR� of R is the sum ŒR� D
P

ı ŒRı � of the fundamental classes of the pieces, and the
boundaryAD Œ@R�D @ŒR� can be writtenAD

P
ı @ŒRı �. Likewise, any step in the construc-

tion of the Koch snowflake or the Menger sponge can be written as a sum of the boundaries
of equilateral triangles or cubes, as in Figure 1. These decompositions are efficient in the
sense that the total area of the pieces is bounded by a multiple of the area of the original
surface.

In this section, we will argue that arbitrary surfaces in RN cannot be too much
more complex than Lipschitz functions. That is, given a surface † � RN , written as a k-
cycleM D Œ†� 2 Ck.R

nIZ2/with coefficients in Z2, we can writeM as a sumM D
P

i Ai

of k-cycles such that each of the Ai ’s can be approximated by graphs of Lipschitz functions
(Lipschitz graphs) with bounded total volume. Furthermore, this decomposition is efficient,
i.e., the total area of the Ai ’s is bounded by a multiple of the area of †.

In the following, we take Ck.X I A/ to be the set of singular Lipschitz k-chains
in X with coefficient group A, i.e., formal sums M D

P
i ai Œıi � where ai 2 A n ¹0º and

ıi W�
k ! X are distinct Lipschitz k-simplices. When A D Z or R, we define massM DP

i jai j volk ıi , where volk ıi is the k-dimensional Hausdorff measure of ıi , counted with
multiplicity. When A D Z2, we define massM D

P
i volk ıi .

2.1. Decomposing into cubes
We first use cellular approximation and the Federer–Fleming Deformation Theorem

to decompose cycles into sums of boundaries of cubes.
Let 0 < t < 1 and let �t be the grid of side length t in Rn. By cellular approximation,

any chain in Rn can be approximated by a cellular chain in �t . The following special case of
the Federer–Fleming Deformation Theorem makes this approximation quantitative.

Theorem 2.1 ([6, 8]). There is a cn > 0 with the following property. Let t > 0. Let T 2

Ck.R
nI A/ be a singular Lipschitz k-chain over a coefficient group A D Z; R, or Z�
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(i.e., a formal sum of Lipschitz maps �k ! Rn such that @T D 0). Suppose that @T 2

Ck�1.�t IA/ is a cellular chain. Then there are a cellular k-chain P 2 Ck.�t IA/ and a
singular Lipschitz .k C 1/-chain Q such that:

(1) massP � cn massT ,

(2) massQ � cnt massT , and

(3) @Q D P � T .

In particular, @P � @T D @2Q D 0, so P and T have the same boundary.
Furthermore, if T is supported in a subcomplexK � �t , then P is supported in the

same subcomplex.

Let T 2 Ck.�1/ be a cellular k-cycle and let M D mass T . We will decompose T
by constructing a sequence of approximations of T . Let P0 D T , and for each i � 1, let
Pi 2 Ck.�2i / be a cellular approximation of T in �2i as in Theorem 2.1.

On the one hand,Pi is a sum of k-cells of �2i , so massPi is a multiple of 2ki . On the
other hand, massPi � cn massT for all i . Therefore, if 2ki > cn massT , then Pi D 0. Let
i0 be the smallest integer such that 2ki0 > cn mass T . Then Pi0 D 0, so we can decompose
T as

T D

i0�1X
iD0

.Pi � PiC1/:

For each i , Pi � PiC1 is a cellular cycle in �2i , so there is some cellular chain
Ri 2 CkC1.�2i / such that @Ri D Pi � PiC1. We can use Theorem 2.1 to find Ri . LetQi be
a .k C 1/-chain as in Theorem 2.1 so that @Qi D Pi � T and massQi � 2icn massT . Then
@.Qi �QiC1/ D Pi � PiC1 2 Ck.�2i /. That is, Qi �QiC1 has cellular boundary, so we
can apply Theorem 2.1 again to approximate it by a cellular chain Ri 2 CkC1.�2i / such that

massRi � cn.massQi C massQiC1/ � cn.2
icn massT C 2iC1cn massT / . 2i massT

and
@Ri D @.Qi �QiC1/ D Pi � PiC1:

We write Ri as a sum Ri D
P

j ai;jRi;j , where the Ri;j ’s are .k C 1/-cells of �2i and
massRi D

P
j jai;j j2.kC1/i . Then

T D

i0�1X
iD0

@Ri D

i0�1X
iD0

X
j

ai;j @Ri;j ;

decomposes T as a sum of boundaries of cubes.
The number and size of the pieces of the decomposition is bounded in terms of the

mass of T . For each 0 � i � i0, the total mass of the boundaries of the cubes is bounded byX
j

jai;j j mass @Ri;j �

X
j

jai;j j2ik
D 2�i massRi . massT;
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so, since 2ki0 � cn massT , we have
i0�1X
iD0

X
j

jai;j j mass.@Ri;j / . i0 mass.T / . mass.T / log mass.T /:

This decomposition and similar decompositions are useful for studying isoperimet-
ric inequalities. Recall that the isoperimetric inequality in Rn implies that for any k-cycle T ,
there is a .k C 1/-chain S such that @S D T and massS . .massT /

kC1
k . If Ri are as above,

then S D
Pi0�1

iD0 Ri satisfies @S D T , and since 2ki0 � cn massT ,

mass.S/ �

i0�1X
iD0

massRi .
i0�1X
iD0

2i massT � 2i0 mass.T / . mass.T /
kC1

k :

More generally, this decomposition is useful for studying higher-dimensional ver-
sions of the Dehn function of a group or space, which measure the difficulty of filling a
k-cycle in a space by a .k C 1/-chain. In many cases (see, for instance, [20]), one can use a
version of the Federer–Fleming Deformation Theorem to decompose an arbitrary k-cycle T
into a sum of scalings of simple pieces T D

P
i Si and construct a filling of T by adding

together fillings of the Si ’s.

2.2. An inductive strategy
One difficulty with this decomposition is that the total volume of the pieces grows

when �1 is replaced by a finer grid. That is, the decomposition above writes a cycle T 2

Ck.�1/ as a sum of boundaries of cubes T D
PM �1

iD0

P
j @Ri;j , where 2kM � mass T andP

j mass.@Ri;j / � massT for all i ; the total mass of the @Ri;j ’s is at most M massT .
Letm< 0 and let T 2 Ck.�2m/. By applying the same decomposition to a rescaling

of T , we can write T D
PM�1

iDm

P
j @Ri;j , where each Ri;j is a cube of side length 2i and

2kM � massT . Unfortunately, the total mass now satisfies
M �1X
iDm

X
j

@Ri;j . .M �m/massT;

and even if massT is fixed, this will get larger as m ! �1.
Ideally, given m < 0 and a cycle T 2 Ck.�2m/, we would like a decomposition

T D
P

i Ki such that
P

i massKi . massT , with constant independent ofm; such a decom-
position opens up applications in geometric measure theory. In the rest of this section, we
will pursue such decompositions.

One such decomposition appears in Wenger’s proof of Gromov’s Filling Inequal-
ity [19]. Gromov’s Filling Inequality states the following.

Theorem 2.2 ([12]). Let k > 0. There is a c > 0 such that for any Banach space X and
any k-cycle A 2 Ck.X/, there is a .k C 1/-chain D 2 CkC1.X/ such that @D D A and
massD � c.massA/

kC1
k .

The methods used in the previous section cannot be used to prove Theorem 2.2,
because the constants in the Federer–Fleming Deformation Theorem depend on the dimen-
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sion of the ambient space. Nevertheless, it is straightforward to prove Theorem 2.2 when A
is round, i.e., when diam suppA . .massA/

1
k .

Lemma 2.3 (Cone-type inequality). Let k > 0. There is a c > 0 such that for any Banach
space X and any k-cycle A 2 Ck.X/, there is a .k C 1/-chain D 2 CkC1.X/ such that
@D D A and massD � c.massA/.diam suppA/.

Proof. We translate so that 0 2 suppA. Suppose that A D
P

i ai Œıi � for some ai 2 Z and
some Lipschitz simplices ıi W�

k ! X . Let ıi W�
k � Œ0; 1� ! X , ıi .x; t/ D tıi .x/. Then

D D
P

i ai Œıi � satisfies the desired properties.

Difficulties arise, however, when A is not round, for example, when A is a long
skinny cylinder. Wenger proves Theorem 2.2 by decomposing an arbitrary cycle A into a
sum of round cycles and applying the cone-type inequality to each piece, and in this section,
we will describe a version of his strategy, with some details simplified for the sake of brevity.
Any inaccuracies and oversimplifications are entirely our fault.

We say that a k-chain T is c-round if massT � c.diamsuppT /k . Let c > 0 be small.
The key idea of Wenger’s decomposition is that ifA is not c-round, then we can “cut” an open
ball B out of A so that the cut-off piece is round. That is, we can decompose A D A0 CM

so that M is a round cycle with suppM � NB and suppA0 � X n B .
We find B by noting that since A is not c-round, there are x 2 suppA and 0 < r <

diam suppA such that mass.A \ B.x; r// 2 Œ c
2
rk ; crk �. We let B D B.x; r/ and let K D

A nB be the restriction of A toX nB , so that suppK D .suppA/ nB and @K 2 Ck�1.@B/.
Let L 2 Ck.@B/ be a chain such that @L D @K and let A0 D K � L so that A0 is a cycle.

If c is sufficiently small and if x and r are chosen carefully, we can arrange that
massL �

c
4
rk ,

massA0
D massA � mass.A \ B/C massL � massA �

c

4
rk ;

and
mass.A � A0/ D mass.A \ B/C massL � 2crk :

Let M D A � A0. Then

diam supp.M/ � diamB � 2r � 2c� 1
k .massM/

1
k ;

so M is .2�kc/-round. Furthermore,

massM . massA � massA0: (2.1)

Equation (2.1) is important because it lets us use this construction in an inductive
argument. Let c > 0 be as in the argument above and let A0 D A. If we have constructed Ai

and Ai is not c-round, then there is a ball Bi and a decomposition Ai D AiC1 CMi where
Mi is a round cycle with suppMi � NBi and massMi . massAi � massAiC1. Otherwise,
if Ai is c-round, we terminate the construction, letting AiC1 D 0 and Mi D Ai .
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If this construction terminates with some An D 0, we have A D
Pn�1

iD0 Mi and
n�1X
iD0

massMi .
n�1X
iD0

.massAi � massAiC1/ D massA0 � massAn D massA:

Otherwise, for any n > 0, A D An C
Pn�1

iD0 Mi , and

massAn C

n�1X
iD0

massMi . massAn C

n�1X
iD0

.massAi � massAiC1/ D massA:

In general, we cannot guarantee termination, but we can choose the Bi ’s so that
limi massAi D 0 and diam suppAi < 2 diam suppA for all i . Consequently, for any " > 0,
there is an efficient decomposition A D

Pn�1
iD0 Mi or A D An C

Pn�1
iD0 Mi such that each

of the Mi ’s is round and massAn < " (if the decomposition has an An term). By apply-
ing Lemma 2.3 to each summand, one constructs D0; : : : ; Dn such that @Di D Mi and
@Dn D An. Let D D

P
Di . Then

massD . " diam suppAC

n�1X
iD0

.massMi /
kC1

k ;

and if " is sufficiently small,
massD . .massA/

kC1
k ;

as desired.

2.3. Quasiminimizers and uniform rectifiability
Wenger’s proof of Gromov’s Filling Inequality suggests a general strategy for con-

structing efficient decompositions inductively:

(1) Let A 2 Ck.R
n/ be a k-cycle. Let A0 D A.

(2) Suppose by induction that we have constructed a cycle Ai . Find a region
Ui � Rn and a cycle AiC1 such that Ai and AiC1 are the same outside Ui

and
mass.Ai � AiC1/ . massAi � massAiC1:

Let Mi D Ai � AiC1.

(3) Repeat this process until there is some m such that Am D 0 or massAm is as
small as desired.

(4) Then A D Am C
Pm

iD0Mi , and

massAm C

mX
iD0

massMi . massAm C

mX
iD0

.massAi � massAiC1/ . massA:

In fact, this is the strategy behind the following theorem, which efficiently decom-
poses an arbitrary cellular mod-2 cycle as a sum of uniformly rectifiable pieces.
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Theorem 2.4 ([21]). Let n > 0. There is a c > 0 with the following property. Let t > 0 and
let �t be the grid of side length t in Rn. Any mod-2 cycle A 2 Cd .�t I Z2/ can be written as a
sumAD

Pm
iD0Mi of mod-2 d -cyclesMi 2 Cd .Ei IZ2/, where eachEi is a d -dimensional,

c-uniformly rectifiable subcomplex of �t and
P

jEi j . massA.

Uniform rectifiability is a property defined and studied by David and Semmes [3]. It
has many definitions; we will present a definition that uses a function ˇE .x; r/ that measures
the “bumpiness” of a set E � Rn, similar to the function f̌ .x; r/ in Section 1. Let c > 1,
let d > 0 be an integer, and let j � j denote Hausdorff d -measure. A set E � Rn is Ahlfors
c-regular if

c�1rd <
ˇ̌
E \ B.x; r/

ˇ̌
< crd for all x 2 E and 0 < r < diamE: (2.2)

For x 2 E and r > 0, let

ˇE .x; r/ D
1

rdC1
min

P

Z
E\B.x;r/

d.y; P / dy;

where P ranges over all d -planes in Rn and dy represents Hausdorff d -measure. Then
ˇE .x;r/measures how wellE \B.x;r/ can be approximated by a plane. It is scale-invariant
in the sense that if cE D ¹cy j y 2 Eº, then ˇE .x; r/ D ˇcE .cx; cr/.

For any c > 1, we say thatE � Rn is c-uniformly rectifiable ifE is Ahlfors c-regular
and if it satisfies the following inequality based on (1.2). For every x 2 E and r > 0,

1

rd

Z
E\B.x;r/

Z s

0

ˇE .y; s/
2 ds
s

dy � c: (2.3)

That is, a uniformly rectifiable set is an Ahlfors regular set which is no bumpier than a
Lipschitz function. The prototypical example of a uniformly rectifiable set is the graph of a
Lipschitz function, or a Lipschitz graph.

The power of uniform rectifiability is that this condition is equivalent to a variety of
other conditions onE. The work discussed in the next section, for instance, uses the fact that
a uniformly rectifiable set admits a corona decomposition. Defining such a decomposition
rigorously is rather technical, and we point interested readers to [3], but briefly, if E admits
a corona decomposition, then there is a collection C of Lipschitz graphs with uniformly
bounded Lipschitz constants that approximates E efficiently at most points and most scales.
That is, on the one hand, for almost every x 2 E, there is a finite set of “bad scales” Sx � Z

such that for all i 2 Z n Sx , either 2�i > diamE or the intersection B.x; 2�i / \ E can be
approximated by an element of C . Furthermore, as x ranges over E, the average size of Sx

is bounded. On the other hand, the set C is not too big; in particular, the total measure of the
elements of C is comparable to the measure of E.

Conversely, if a set is not uniformly rectifiable, then it must be complex—it must be
far from a plane at many scales. Fractals are typical examples; if E is self-similar but not a
plane, then ˇE .x; r/ > " for most x’s and r’s, so

P1

iD0 ˇE .x; r2
�i /2 is typically infinite.

Fractals also provide examples of sets that are rectifiable but not uniformly rectifi-
able. One such set is based on the four-corners Cantor set. For each i � 0, let Ki be the i th
step in the construction of the four-corners Cantor set, so thatK0 D @Œ0; 1�2 is the boundary
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Figure 2

Three stages in the construction of the four-corners Cantor set. The stages of the construction are uniformly
Ahlfors regular, but there is no c such that they are all c-uniformly rectifiable.

of the unit square, and each set KiC1 is obtained by replacing each square in Ki by four
squares of one fourth the side length (Figure 2). Then for any x 2 Ki and any j � i , the
intersectionKi \B.x; 4�j / is not close to a line, so ˇKi

.x; 4�j C1/ & 1. Therefore, for any
y 2 Ki , we have Z 1

4�i

ˇK1.y; s/
2 ds
s

� i:

That is, the increasing complexity of the Ki ’s implies that there is no c > 0 such that all of
theKi ’s are c-uniformly rectifiable. Nevertheless, for each i , the fundamental class ofKi is
a cellular cycle in �4�i , so Theorem 2.4 implies that it can be written as a sum of uniformly
rectifiable pieces. In this case,Ki is a sum of the fundamental classes of 4i disjoint squares,
each of side length 4�i .

The key tools for constructing the decomposition in Theorem 2.4 are the induc-
tive strategy in Section 2.2 and a result of David and Semmes [4], which states that quasi-
minimizing sets are uniformly rectifiable. A set is quasiminimizing if compactly-supported
deformations cannot decrease its area by too much. To state this rigorously, let U � Rn

be a bounded open set. We say that a continuous map f W Rn ! Rn is a deformation sup-
ported in U if f .U / � U and f .x/ D x for all x 62 U . Let k > 1. A set S � Rn such that
jS \ B.0; �/j < 1 for all � > 0 is said to be .k; r/-quasiminimizing if for every open set
U � Rn with diamU < r , every deformation f supported in U satisfiesˇ̌

f .S \ U/
ˇ̌

�
1

k
jS \ U j:

For example, Lipschitz graphs are quasiminimizing sets. Let ˛W Rn�1 ! R be a
1-Lipschitz function, let  W Rn�1 ! Rn,  .x/ D .x; ˛.x//, and let S D  .Rn/ be the
graph of ˛. Let � W Rn�1 � R ! Rn�1 be the projection �.x; y/ D x. On the one hand, � is
distance-decreasing, so j�.E/j � jEj for allE � Rn. On the other hand, for anyE � S , we
have E D  .�.E//, and since  is 2-Lipschitz, we haveˇ̌

�.E/
ˇ̌

� jEj � 2n
ˇ̌
�.E/

ˇ̌
:

For any deformation f supported in U , we have �.f .U \ S// � �.U \ S/, soˇ̌
f .U \ S/

ˇ̌
�

ˇ̌
�

�
f .U \ S/

�ˇ̌
�

ˇ̌
�.U \ S/

ˇ̌
�
1

2n
jU \ S j:

That is, S is .2n;1/-quasiminimizing.
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David and Semmes proved the following theorem.

Theorem 2.5 ([4]). Let n; d > 0 and k > 1. There is a c > 0 such that if S � Rn, r �

1
10

diamS , and S is .k; r/-quasiminimizing, then S is c-uniformly rectifiable.

The proof of Theorem 2.4 uses Theorem 2.5 to implement the inductive strategy. Let
k > 10 and let c be as in Theorem 2.5. LetA0 D A 2 Cd .R

nI Z2/ be a mod-2 cycle. If i � 0

and the support Si D suppAi is c-uniformly rectifiable, we let AiC1 D 0 and terminate the
construction. Otherwise, Theorem 2.5 implies that Si is not a quasiminimizer. That is, there
is a deformation fi WRn ! Rn, supported on some bounded setUi with diamUi <

1
10

diamSi

such that jfi .Si \Ui /j <
1
k

jSi \Ui j. If we choose the deformation carefully, we can ensure
that fi .Si / is a union of d -cells of �t , so that the push-forwardAiC1 D .fi /].Ai / is a cellular
chain. We let Mi D Ai � AiC1.

Since each Ai is a mod-2 cellular chain, we have massAi D j suppAi j D jSi j. Each
step of this construction decreases the measure of Si and thus decreases the mass of Ai . In
fact,

massAi � massAiC1 D jSi \ Ui j �
ˇ̌
fi .Si \ Ui /

ˇ̌
�
9

10
jSi \ Ui j > 0

and

massMi � jSi \ Ui j C
ˇ̌
fi .Si \ Ui /

ˇ̌
� 2jSi \ Ui j � 3.massAi � massAiC1/:

The number of cells in Ai is an integer and decreases with i , so this guarantees that the
process terminates, i.e., Am D 0 for some m. Then A D

Pm�1
iD0 Mi and

m�1X
iD0

massMi �

m�1X
iD0

3.massAi � massAiC1/ � 3massA:

That is, this is an efficient decomposition ofA. Choosing the fi so that theMi ’s are supported
on uniformly rectifiable sets, however, is more difficult, and we point interested readers to
the full proof in [21].

Thus, while surfaces in Rn can be complex, their complexity is bounded by their
volume, and complex surfaces can be efficiently decomposed into pieces that are not too
much bumpier than Lipschitz graphs.

3. Applications

In this section, we will describe some ways to apply the decompositions described
in the previous section to bound the topology of cycles and currents in Rn and to bound
embeddings of nilpotent groups into Banach spaces.

3.1. Geometric measure theory and quantifying the topology of embedded
submanifolds
Theorem 2.4 can be used to bound the topological complexity of an arbitrary cycle

in Rn. Specifically, it can be used to quantify how difficult it is to orient a mod-2 cycle, that
is, to lift it to a cycle with integer coefficients.
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Given a cycle A 2 Cd .R
nI Z2/, a pseudoorientation of A is a cycle P 2 Cd .R

n/

such that P � A .mod 2/. In general, a cycle A has many pseudoorientations. We define
the nonorientability of A to be the infimal mass of a pseudoorientation, i.e.,

NO.A/ D inf¹massP j P is a pseudoorientation of Aº:

The nonorientability of a surface measures how difficult it is to cut that surface
into orientable pieces. That is, let † � R4 be an arbitrary nonorientable surface and let
A D Œ†�. Let � be a graph (a 1-dimensional simplicial complex) embedded in † such that
each connected component of † n � is orientable. (For instance, let † be a Klein bottle
and let � be a simple closed curve that cuts † into a cylinder.) Let C1; : : : ; Ck be these
components. Orient them arbitrarily and let C D

Pk
iD1ŒCi �. Let G D @C D

Pk
iD1 @ŒCi �.

Each edge e of � is in the boundary of two components Ci and Cj , so e occurs
exactly twice in the sum

Pk
iD1 @ŒCi �. If the orientations of Ci and Cj agree on e, then the

occurrences of e cancel out and it has coefficient 0 in G. If the orientations disagree, then
e has coefficient ˙2. Since all coefficients of G are even, G=2 is a 1-cycle with integer
coefficients, so there is some D such that @D D G=2. By the isoperimetric inequality, we
can chooseD such that massD � .massG/2 � `.�/2, where `.�/ is the total length of the
edges of � . Let P D C � 2D; then P � C � A .mod 2/, so P is a pseudoorientation of
A and

NO.A/ � massP � massAC 2`.�/2:

In [21], Theorem 2.4 was used to prove the following.

Theorem 3.1 ([21]). Let n > 0 and 0 < d < n. There is a c > 0 with the following prop-
erty. Let t > 0 and let �t be the grid of side length t in Rn. Then for any mod-2 cycle
A 2 Cd .�t I Z2/, NO.A/ � cmassA.

By Theorem 2.4, A D
P

i Mi where each Mi is a cycle supported on a uniformly
rectifiable set Ei . Nonorientability is subadditive, so it suffices to use the uniform rectifia-
bility of the Ei ’s to bound NO.Mi /.

The proof relies on approximating the uniformly rectifiable set Ei by Lipschitz
graphs. To give a brief sketch, since Ei is uniformly rectifiable, it has a corona decom-
position, i.e., a collection of Lipschitz graphs C such that for most points x 2 Ei and most
scales 0 < r < diamEi , the intersection B.x; r/\Ei is close to one of the Lipschitz graphs
ƒ 2 C . Then the restriction ofMi toB.x; r/ can be approximated by a chain inƒ, and since
ƒ is orientable, that chain inherits an orientation fromƒ. If every intersection B.x; r/\Ei

could be approximated by oriented surfaces and all of the orientations agreed, then it would
be easy to lift Mi to a cycle with integer coefficients. Difficulties only arise where Ei is
complex—from choices of x and r such that B.x; r/ \ Ei cannot be approximated by a
Lipschitz graph or when elements of C don’t have consistent orientations—but the uniform
rectifiability of Ei bounds how much complexity it can have.
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3.2. Metric geometry and embeddings of nilpotent groups
In a more recent work, these tools have been applied to study embeddings into

Banach spaces, especially the Heisenberg groups. The Heisenberg groups are the simplest
family of nonabelian nilpotent groups, and their noncommutativity makes them difficult to
embed into Banach spaces in a way that preserves their metrics.

An introduction to the Heisenberg group can be found, for instance, in [1], but briefly,
the integer Heisenberg group HZ

n is the group generated by X1; : : : ; Xn; Y1; : : : ; Yn, and Z
such that ŒXi ; Yi � D XiYiX

�1
i Y �1

i D Z and all other pairs of generators commute. This is
isomorphic to a group of upper-triangular .nC 2/ � .nC 2/ matrices of the form0BBBBBBBB@

1 x1 � � � xn z

: : : y1

: : :
:::

: : : yn

1

1CCCCCCCCA
(3.1)

where the xi ’s, yi ’s, and z are all integers. Here, Xi 2 Hn is identified with the matrix of
form (3.1) with all coefficients zero except that xi D 1 and likewise for Yi andZ. The integer
Heisenberg group is a lattice in the nilpotent Lie group obtained by taking the matrices of
the form (3.1) with real coefficients; we call this Lie groupHn and write elements ofHn as
points .x1; : : : ; xn; y1; : : : ; yn; z/ 2 R2nC1.

A key feature of the Heisenberg group is the difference between the vertical direction
Z and the horizontal directionsXi and Yi . For any n, one can calculate that ŒXn

i ; Y
n

i � D Zn2 .
That is, quadratically large powers of Z can be written as products of linearly many Xi ’s
and Yi ’s. Let hZi be the z-axis inHn; in the terminology of geometric group theory, hZi is
a quadratically distorted subgroup. Left-invariant metrics on Hn inherit this quadratic dis-
tortion; we will equip Hn with the left-invariant metric such that

d
�
0; .x1; : : : ; xn; y1; : : : ; yn; z/

�
D max

®
jxi j; jyi j;

p
jzj

¯
:

Then, for t ¤ 0, the map

st .x1; : : : ; xn; y1; : : : ; yn; z/ D .tx1; : : : ; txn; ty1; : : : ; tyn; t
2z/;

which scales horizontal directions by t and scales the vertical direction by t2, is an automor-
phism of Hn that scales the metric by a factor of t .

A natural question is how wellHn can be embedded into different spaces, especially
Banach spaces. This has applications in theoretical computer science, where the accuracy of
some algorithms depends on how well certain metric spaces embed in L1 (see, for instance,
[11,15]). In this section, we will consider embeddings of Hn into Lp spaces.

For any n> 1 and anyp 2 Œ1;1/,Hn, equipped with its subriemannian metric, does
not embed in Lp by a bi-Lipschitz map. When p > 1, this follows from a version of Pansu’s
differentiability theorem [18], which states that Lipschitz maps fromHn toLp can be locally
approximated by homomorphisms fromHn toLp . SinceLp is abelian andZD ŒX1;Y1�, any
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such homomorphism must send each vertical line (coset of hZi) to a point; thus, Lipschitz
maps from Hn to Lp cannot be bi-Lipschitz.

This differentiability fails, however, for maps to L1; Lipschitz maps need not be
differentiable anywhere. Instead, Cheeger and Kleiner [2] proved thatHn does not embed in
L1 by showing that the behavior of maps fromHn toL1 depends on the structure of surfaces
in Hn.

To give a rough idea of this argument, suppose that M is a measure space and that
f WHn ! L1.M/ is a Lipschitz function. We claim that f is not bi-Lipschitz. For almost
everym 2M , the coordinate function fmWHn ! R has bounded variation [2]. Almost every
sublevel set of a BV function has finite perimeter. (A finite perimeter set is a set that can
be approximated by sets whose boundary has uniformly bounded Hausdorff measure.) If
E D f �1

m ..�1; t �/ is such a sublevel set, then an analogue of De Giorgi’s theorem in Hn

implies that the reduced boundary @�E has a approximate tangent plane at almost every
x 2 @�E [9]. Furthermore, this tangent plane is a vertical plane (a union of vertical lines);
vertical planes are the only scale-invariant codimension-1 subgroups of Hn. Thus, when
r > 0 is small, the intersection B.x; r/ \ E is close to the intersection of B.x; r/ with a
half-space bounded by a vertical plane.

In fact, for almost every m 2 M and x 2 Hn, there is an r > 0 such that fmjB.x;r/

is close to a function Nfm whose sublevel sets are half-spaces bounded by vertical planes. We
call Nfm a vertical function. By Fubini’s theorem, there is some x 2Hn and some r > 0 such
that fmjB.x;r/ is close to a vertical function Nfm for all but a small fraction of m 2 M ; then
f jB.x;r/ is close to a map Nf such that every coordinate function of Nf is vertical. Then Nf

sends vertical lines in B.x; r/ to a point, so f is not bi-Lipschitz on B.x; r/.
This argument links the metric properties of f to the shape of the sublevel sets

Em;y D f �1
m ..�1; y�/. For example, if the Em;y’s are all smooth at some scale � (i.e., if

B.x;�/\Em;y is close to a vertical half-space for allm; t , and x 2 @Em;y), then f collapses
vertical line segments at scale �. Conversely, if f is c-bi-Lipschitz at scales betweenR andR0

(i.e., there are c, R, and R0 such that

cd.p; q/ �


f .p/ � f .q/




1

� d.p; q/

for all p; q 2 Hn such that d.p; q/ 2 ŒR; R0�), then the Em;y’s must be bumpy at scales
betweenR andR0; in the language of Sections 1 and 2, theEm;y’s must be roughly c-bumpy
at roughly log R0

R
different scales.

The techniques of Sections 1 and 2, however, bound how bumpy a surface can be.
Given a set U � Rn of finite perimeter, we can approximate U by a set U t which is a
union of cells of �t . As t ! 0, this approximation converges to U , and since U has finite
perimeter, the .n� 1/-volume of the boundary j@U t j stays bounded. The boundary @U t can
be viewed as an .n � 1/-cycle, so by Theorem 2.4, @U t is a sum of cycles supported on
uniformly rectifiable sets. Each of these pieces is no bumpier than a Lipschitz function; they
all satisfy (2.3).

The results of [16] extend this to the Heisenberg groupHn and prove that the bound-
ary @U of a set U �Hn of finite perimeter can be decomposed as a sum of cycles supported
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on sets E � Hn. Uniform rectifiability is not as well studied in Hn as in Rn, and it is not
known which definitions of uniform rectifiability generalize toHn, but [16] shows that theE’s
admit intrinsic corona decompositions. These are collections of intrinsic Lipschitz graphs
that approximate E at most points and scales. (Intrinsic Lipschitz graphs were introduced
in [10] as an analogue of Lipschitz graphs.) When n � 2, intrinsic Lipschitz graphs in Hn

are about as bumpy as Lipschitz graphs in Rn. That is, like Lipschitz graphs, an intrinsic
Lipschitz graph can be 1

L
-bumpy at no more than roughlyL2 scales. This corresponds to the

following bound:

Theorem 3.2 ([16]). For any n� 2 there is a c > 0 such that for sufficiently largeR>1, there
are no 1-Lipschitz maps f WHn ! L1 that are c.logR/� 1

2 -bi-Lipschitz at scales between 1
and R. Furthermore, this is sharp; there is a c0 > 0 such that for every sufficiently large R,
there is a 1-Lipschitz map f WHn ! L1 that is c0.logR/� 1

2 -bi-Lipschitz at scales between 1
and R.

Intrinsic Lipschitz graphs in H1, however, can be much bumpier than Lipschitz
graphs in Rn. In [17], it is shown that intrinsic Lipschitz graphs in H1 can be 1

L
-bumpy at

up to roughly L4 scales, but no more than that. This matches the bound for Lipschitz curves
proved in [14] and corresponds to the following bound.

Theorem 3.3 ([17]). There is a c > 0 such that for sufficiently large R > 1, there are no
1-Lipschitz maps f WH1 ! L1 that are c.logR/� 1

4 -bi-Lipschitz at scales between 1 and R.
Furthermore, there is a c0 > 0 such that for every sufficiently large R, there is a 1-Lipschitz
map f WH1 ! L1 that is c0.logR/� 1

4 -bi-Lipschitz at scales between 1 and R.

This leads to the following consequence:

Theorem 3.4 ([17]). There is a metric space M that has a bi-Lipschitz embedding into L1

and L4, but not Lp for 1 < p < 4.

In short, the extent to which f preserves the metric on Hn depends on the bumpi-
ness/complexity of the sublevel setsEm;y , and the maximum possible complexity of a finite-
perimeter subset E � Hn depends on the ambient dimension n.

4. Conclusion

Some possible next questions include:

• How can other topological properties of a manifold be quantified? How do they
depend on the complexity of the manifold?

• These decompositions bound the complexity of manifolds embedded in Rn, sug-
gesting that manifolds embedded in Rn are less complex than abstract manifolds.
How does that affect their geometry?
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• How does the maximum possible complexity of a manifold embedded in a spaceX
depend on the geometry of X?

More generally, these tools suggest a link between complexity and geometry. If a
manifold is simple in the sense that it embeds in Rn, then it is simple in the sense that it
can be decomposed into simple pieces. In a way, any object that can be drawn on a piece
of paper embeds, more or less, in a low-dimensional Euclidean space; conversely, a key
property of very complex objects like random graphs and arithmetic manifolds is that they
are hard to embed, hard to decompose, and hard to visualize. Perhaps the objects whose
shapes we can imagine are the objects simple enough to fit in our imagination. How can we
better understand the shape of objects on the far end of the complexity spectrum?
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