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Abstract

This is an expository paper. We will discuss some recent development in Kähler–Ricci
flow on Fano manifolds.
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1. Introduction

Ricci flow was introduced by Hamilton in the early 1980s [27], and it preserves the
Kählerian structure. The Kähler–Ricci (abbreciated as KR) flow is simply the Ricci flow
restricted to Kähler metrics. If M is a Fano manifold, that is, a compact Kähler manifold
with positive first Chern class c1.M/ > 0, we usually consider the following normalized
KR-flow:

@!.t/

@t
D � Ric

�
!.t/

�
C !.t/; !.0/ D !0; (1.1)

where !0 and !.t/ denote the Kähler forms of a given Kähler metric g0 and the solutions
of Ricci flow with initial metric g0 in 2�c1.M/, respectively.1 Then the flow preserves the
Kähler class, i.e., Œ!.t/� D 2�c1.M/ for all t . In particular, the flow preserves the volume
of !.t/.

We may write solutions of (1.1) as

!.t/ D !t D !0 C
p

�1@N@'t > 0

for some Kähler potential ' D 't . Let h be a Ricci potential of the background metric !0

such that
Ric.!0/ � !0 D

p
�1@N@h:

In 1985, Cao [11] first reduced (1.1) to solving a parabolic complex Monge–Ampère (MA)
equation in the space of Kähler potentials as follows:

@'

@t
D log

!n
'

!n
0

C ' � h: (1.2)

By using the maximum principle, he proved that (1.2) has a global solution !t for all t � 0.
Thus the main interest in (1.1) is to study the limit behavior of !.t/, as well as 't of (1.2).
In particular, if 't has a smooth limit, !.t/ will converge to a Kähler–Eintein (KE) metric.
Hence, (1.1) also provides an approach to study KE-metrics on a Fano manifold. Compared
to the continuity method used by Yau [68] and Aubin [4], Cao’s argument also gives a vari-
ant proof via KR-flow of the existence of KE-metrics on a compact Kähler manifold with
negative or trivial first Chern class.

In the one-dimensional case, i.e., M D S2, Hamilton proved the convergence of
(1.1) to a round sphere under the assumption of positive curvature of !0 [28]. Later, Chow
removed the Hamilton’s condition [18, 19]. But both proofs depend on the uniformization
theorem. An independent proof for the convergence of (1.1) on S2 was given by Chen–
Lu–Tian [13]. As a consequence, they gave a proof of the uniformization theorem by using
the Ricci flow.

Motivated by the Frankel conjecture, there are many influential works published for
KR-flow on CP n under the assumption of positive (or nonnegative) bisectional curvature,
for instance, see [6, 16,26,41], among other references. In particular, Chen–Sun–Tian gave a
proof of the Frankel conjecture by employing the Ricci flow [14].

1 For simplicity, we will denote a Kähler metric by its Kähler form thereafter.
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Because there are some well-known obstructions for KE-manifolds (cf. [25, 40]),
a Fano manifold may not admit a KE-metric, in general. Thus, the solutions 't of (1.2) may
develop a singularity. It makes the investigation more complicated, when studying the limit
behavior of the flow (1.1). In this paper, we will introduce some basic tools, as well as some
recent developments of the KR-flow, including Perelman’s fundamental estimates for KR-
flow, the smooth convergence of KR-flow, the progress on Hamilton–Tian conjecture and
the KR-flow on G-manifolds with singular limits.

2. Kähler–Ricci solitons

A special class of solutions of (1.1) are related to KR-solitons. A KR-soliton on a
Fano manifold M is a pair .X; !/, where X is a holomorphic vector field (HVF) on M and
! 2 2�c1.M/ is a Kähler metric on M such that

Ric.!/ � ! D LX .!/; (2.1)

where LX denotes the Lie derivative along X . If X D 0, the KR-soliton becomes a KE-
metric.

In 1985, Bando–Mabuchi proved the following uniqueness result for KE-metrics on
a Fano manifold [7].

Theorem 2.1 (Bando–Mabuchi). For any two KE-metrics ! and !0 on a Fano manifoldM ,
there is a � 2 Aut.M/ such that

!0
D ��!;

where Aut.M/ is the group of holomorphism transformations of M .

Bando–Mabuchi’s uniqueness theorem was generalized to KR-solitons by Tian and
the author in 2000 [58, 59]: a KR-soliton on a compact complex manifold, if it exists, must
be unique modulo Aut.M/. Furthermore, X lies in the center of Lie algebra of a reductive
part Autr .M/ of Aut.M/. We call such an X a soliton HVF, which is also unique modulo
Aut.M/. In fact, it is determined by the modified Futaki invariant, regardless of the existence
of KR-solitons [59].

An important class of examples of KR-solitons were found in toric manifolds by
Wang–Zhu in 2004. They solved (2.1) for a soliton HVF and torus-invariant metrics on a
Fano toric manifold by using the technique of real MA-equations.

Let �t D exp¹t Re.X/º be a 1-PS in Aut.M/. Then it is easy to see that the induced
metrics by �t from a KR-soliton !,

!.t/ D ��
t ! D ! C

p
�1@N@'t ; (2.2)

are solutions of (1.1), as well as 't are solutions of (1.2). In particular, a KE-metric is a static
solution of (1.1).

Note that 't in (2.2) is not uniformly bounded. Thus, we usually study the conver-
gence of (1.1) or (1.2) in the sense of geometric metrics modulo holomorphism or diffeo-
morphism transformations; see [14,16,55,56,60,61,65,66,72,73], etc.
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3. Perelman’s estimates

There is a fundamental estimate for (1.1) established by Perelman in 2003 [43].

Lemma 3.1 (Perelman). Let ht be a Ricci potential of !t in (1.1). Then there are constants
c > 0 and C > 0 depending only on the initial metric !0 such that the following are true:

(1) diam.M;!t / � C , vol.Br .p/; !t / � cr2n;

(2) For any t 2 .0;1/, there is a constant ct such that ht D � P�t C ct satisfies

kht kC 0.M/ � C; krht k!t � C; k�ht kC 0.M/ � C: (3.1)

Perelamn’s proof of Lemma 3.1 depends on the W -functional and the argument in
proving noncollapsing of Ricci flow in the pioneering paper of his solution of the Poincaré
conjecture [42]. A detailed proof of Lemma 3.1 can be found in a paper by Sesum–Tian [45].
We note that ht is a Ricci potential of !t . Thus (3.1) means that the Ricci potential is uni-
formly bounded along the KR-flow (1.1) as well as the scalar curvature.

For Kähler metrics g in 2�c1.M/ on an n-dimensional Fano manifold M , Perel-
man’s W-functional can be defined with a pair .g; f / by (cf. [62])

W.g; f / D .2�/�n

Z
M

�
R.g/C jrf j

2
C f

�
e�f !n

g ; (3.2)

where f is a real smooth function normalized byZ
M

e�f !n
g D

Z
M

!n
g D V: (3.3)

Then Perelman’s entropy �.g/ is defined by

�.g/ D inf
f

®
W.g; f / j .g; f / satisfies (3.3)

¯
:

The number �.g/ can be attained by some f (cf. [44]). In fact, such an f is a solution of the
equation

24f C f � jDf j
2

CR D �.g/: (3.4)

In particular, f D �X if !g D !KS , where �X is a potential of soliton HVF X associated
to the KR-soliton !KS [61]. As a consequence, one can further prove that the minimizer of
W.g; �/ is uniquely associated to g near a KR-soliton (cf. [47]).

The first variation of �.!g/ with !g 2 2�c1.M/ has been computed [61,62],

ı�.!g/ D �.2�/�n

Z
M

˝
Ric.g/ � g C Hessf; ıg

˛
e�f !n

g :

Then it is easy to see that �.!t / is monotonic along the flow (1.1). Thus the smooth limit of
!t in Cheeger–Gromov topology should be a KR-soliton. In particular, if the curvature of !t

is uniformly bounded, then by the regularity of Ricci flow [46]. together with the noncollapse
property in Lemma 3.1(1), there exists a sequence of !t which converges smoothly to a KR-
soliton in Cheeger–Gromov topology.

Since the scalar curvature of !t is uniformly bounded along (1.1) by Lemma 3.1(2),
the monotonicity of the entropy �.!t / implies a uniform log Sobolev inequality associated
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to !t . It was proved by Zhang that this log Sobolev inequality is equivalent to the following
Sobolev inequality [70]:�Z

M

j j
2n

n�1!n
t

� n�1
n

� Cs

�Z
M

jr j
2
!t
!n

t C

Z
M

j j
2
!t
!n

t

�
; 8 2 C1.M/; (3.5)

where Cs is a uniform constant independent of t .

4. Smooth convergence

As we know, the smooth limit of KR-flow (1.1) should be a KR-soliton. Thus it
is natural to study the convergence of KR-flow on a Fano manifold which admits a KR-
soliton. In 2002, Perelman first announced the convergence result on KE-manifolds in his
distinguished paper [42] (see the last paragraph in the introduction part). In 2007, Tian and
the author gave a proof of Perelman’s result with discrete Aut.M/ [60]. The proof is based
on an inequality of Moser–Trudinger type established by Tian in his seminal work on KE-
mertrics [51]. Then in 2013, we avoided using the Moser–Trudinger inequality and so gave a
complete proof of Perelman’s result for the convergence of KR-flow on KE-manifolds [61].
In the general case of KR-solitons, we have proved the following convergence result in [56].

Theorem 4.1. Let .M;!KS / be a Fano manifold which admits a KR-soliton!KS 2 2�c1.M/

with respect to an HVF X . Let KX be a compact 1-PS in Aut.M/ generalized by Im.X/.
Then for any KX -invariant initial metric !0 2 2�c1.M/, the flow (1.1) converges to !KS

exponentially modulo Aut.M/.

Proof of Theorem 4.1 is reduced to solving the following modified KR-flow equa-
tion:

@!.t/

@t
D � Ric

�
!.t/

�
C !.t/C LX!.t/; !.0/ D !0: (4.1)

Analogous to (1.1), (4.1) is equivalent to

@'

@t
D log

!n
'

!n
0

C ' CX.'/C �X � h; (4.2)

where �X is a potential ofX associated to !0. We will deform theKX -invariant initial metric
!0 from !KS by a path !� (� 2 Œ0; 1�), for example, !� D �!0 C .1� �/!KS , to prove the
convergence of 't in (4.2) for any initial !� .

The first step is to prove the convergence of Kähler potentials 't in (4.2) for an
initial metric !0 very close to !KS . This is related to the stability problem of KR-flow (4.1).
We use a contradiction argument employing the fact of uniqueness of KR-solitons with the
help of the regularity of (4.2) on M � Œ�1C t; 1C t � for any t . In a subsequent paper [73],
the author actually proved that 't is convergent to a Kähler potential exponentially (without
any holomorphism transformation). Moreover, the KX -invariance condition for !0 can be
removed. But we do not know whether the convergence is still with an exponential rate after
holomorphism transformation, in general.

2722 X.H. Zhu



By the first step, we see that there is �0 � 1 such that the flow (4.1) is convergent
for the initial metric !� with any � < �0. It remains to prove that the convergence still holds
for !�0 . We can also use a contradiction argument. A key estimate is to show that the energy
level L.!�0/ of the flow for the initial metric !�0 satisfies

L.!�0/ D lim
t!1

�.!
�o
t / D �.!KS /: (4.3)

In fact, we prove

Proposition 4.2. Suppose thatM is a Fano manifold which admits a KR-soliton .!KS ;X/.
Then for any KX -invariant initial metric ! of KR-flow (1.1), it holds that

L.!/ D .2�/�n
�
nV �NX

�
c1.M/

��
; (4.4)

where

NX

�
c1.M/

�
D

Z
M

�X .!/e
�X .!/!n (4.5)

is a holomorphic invariant for HVFs, which is independent of ! 2 2�c1.M/, and �X .!/ is
a potential of X associated to ! with a normalizationZ

M

e�X .!/!n
D

Z
M

!n
D V: (4.6)

The proof of Proposition 4.2 depends on an estimate of the asymptotic behavior
of minimizer ft in (3.4) for metric !t of the flow (1.1) via the Sobolev inequality (3.5)
[56, Lemma 3.3, Proposition 4.2].

Remark 4.3. (1) For a KX -invariant initial metric !0, 't in (4.2) is convergent to
a Kähler potential exponentially as in the first step (without any holomorphism
transformation).

(2) In case of Fano toric manifolds, the author proved the convergence of (1.2)
for a torus-invariant initial metric !0 after torus transformations by using the
technique of the real MA-equation [72]. As a consequence, the result gives an
alternative proof of Wang–Zhu’s theorem [67] for the existence of KR-solitons
on toric manifolds via the Ricci flow.

5. H -invariant

The invariant NX .c1.M// in (4.5) can be defined for any Y 2 �r .M/ as follows
(cf. [56]):

H.Y / D FY .Y /CNY

�
c1.M/

�
; (5.1)

where
FY .Y / D

Z
M

Y.h! � �Y .!//e
�Y .!/!n

and
NY

�
c1.M/

�
D

Z
M

�Y .!/e
�Y .!/!n:
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Here ! is chosen as aK-invariant metric in 2�c1.M/ and Im.Y / generates a compact 1-PS
in Autr .M/ so that �Y .!/ is a real potential of HVF Y . Note that FX .�/ is just the modified
Futaki-invariant and so FX .X/ D 0 [59]. Thus,

H.X/ D NX

�
c1.M/

�
:

Moreover, H.Y / can be also written as (cf. [56, (5.3)])

H.Y / D

Z
M

�Y .!/e
h!!n; (5.2)

where the Ricci potential h! is normalized byZ
M

eh!!n
D

Z
M

!n
D V

and is �Y .!/ given in (4.6). Thus if we do not care about the normalization of �Y .!/,

H.Y / D

Z
M

�Y .!/e
h!!n

� V ln
�
1

V

Z
M

e�Y .!/!n

�
; 8Y 2 �r .M/: (5.3)

In the above formula, .�H.�// is usually called an H -invariant in the literature [9, 22, 29,

30], which can be defined for any special degeneration induced by C �-actions on M as the
generalized Futaki-invariant of Ding–Tian [23].

By calculating the H -invariant for the special degeneration arising from the KR-
flow (1.1) with the help of Hamilton–Tian conjecture [51] (also see the next section), Dervan–
Székelyhidi recently proved (4.4) for any! 2 2�c1.M/ [22]. As a consequence, they removed
the assumption for a KX -invariant initial metric !0 in Theorem 4.1 as follows.

Theorem 5.1 (Dervan–Székelyhidi). Let .M;!KS / be a Fano manifold which admits a KR-
soliton !KS . Then for any initial metric !0 2 2�c1.M/, the flow (1.1) converges smoothly
to !KS in the sense of Kähler potentials modulo Aut.M/.

There are other applications of H -invariant to the uniqueness of limit of KR-flow
and the optimal degeneration of Fano manifolds; we refer the reader to recent papers [9,29,

35,65].

Remark 5.2. As we see, Dervan–Székelyhid’s proof of Theorem 5.1 depends on the Hamil-
ton–Tian conjecture. It would be interesting to give a direct proof without using the conjec-
ture as done for Theorem 4.1 in [56].

6. A new approach to the Hamilton–Tian conjecture

In [51], Tian proposed the following conjecture (a folklore conjecture of Hamilton–
Tian (HT-conjecture) [5,17,42,57]):

Any sequence of .M; !.t// contains a subsequence converging to a length space
.M1; !1/ in the Gromov–Hausdorff topology and .M1; !1/ is a smooth KR-soliton out-
side a closed subset S , called the singular set, of codimension at least 4. Moreover, this
subsequence of .M;!.t// converges locally to the regular part of .M1;!1/ in the Cheeger–
Gromov topology.
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The HT-conjecture asserts the existence of a singular limit of (1.1) with local reg-
ularity. The above Theorem 4.1 (and Theorem 5.1) confirms the conjecture for the Fano
manifold admitting a KR-soliton. In this case, the convergence of flow !t is smooth in the
sense of Kähler potentials, in particular, the curvature of !t is uniformly bounded. However,
it has been found in some special Fano manifolds with large symmetric group action that
the curvature of !t cannot stay uniformly bounded [37] (also see the next section). In other
words, there are examples of Fano manifolds on which the KR-flow develops singularities
of type II. Thus, in general, there is no smooth limit of a KR-flow.

The Gromov–Hausdorff convergence part in the HT-conjecture follows from Perel-
man’s noncollapse result and Zhang’s upper volume estimate [71]. There is significant
progress on this conjecture, first by Tian and Zhang in dimension less than 4 [57], then
by Chen–Wang [17] and Bamler [5] in higher dimensions. In fact, by using the tools of geo-
metric measure theory, Bamler proved a generalized version of the conjecture for a Ricci
flow with uniformly bounded scalar curvature. His result can be also regarded as a version
of Ricci flow for Cheeger–Colding compactness theorem [12] for Riemannian metrics with
a bounded Ricci curvature.

In this section, we discuss an alternative proof of the HT-conjecture in a joint work
with Wang [66]. Precisely, we prove

Theorem 6.1. For any sequence of .M;!t / of (1.1), there is a subsequence ti ! 1 and a
Q-Fano variety QM1 with klt singularities such that !ti is locally C1-convergent to a KR-
soliton !1 on Reg. QM1/ in the Cheeger–Gromov topology. Moreover, !1 can be extended
to a singular KR-soliton on QM1 with a L1-bounded Kähler potential  1 and the comple-
tion of .Reg. QM1/; !1/ is isometric to the global limit .M1; !

0
1/ of !ti in the Gromov–

Hausdorff topology. In addition, if !1 is a singular KE-metrics,  1 is continuous andM1

is homeomorphic to QM1 which has Hausdorff codimension of singularities of .M1; !
0
1/

equal to at least 4.

Compared to the proofs by blowing-up arguments in the two long papers [17] and [5],
our proof of Theorem 6.1 is purely analytic by using the technique of the complex MA-
equation. In Theorem 6.1, we also obtain a structure of Q-Fano variety with klt singularities
for the Gromov–Hausdorff limit in the HT-conjecture.

The proof of Theorem 6.1 is based on a recent result of Liu–Székelyhidi on Tian’s
partical C 0-estimate for polarized Kähler metrics with Ricci curvature bounded below [39].
In a paper of Zhang [69], it has been observed that Liu–Székelyhidi’s result can be applied
to prove a partial C 0-estimate for a sequence of Kähler metrics raised from the flow !t of
(1.1). We note that the HT-conjecture also implies a partial C 0-estimate for the flow (1.1)
(cf. [15,57]). Thus we actually prove that the HT-conjecture and the partial C 0-estimate for
the KR-flow are equivalent.

Let .M;L; !/ be a polarized manifold such that ! is a Kähler metric in 2�c1.L/.
Choose a Hermitian metric h on L such that R.h/ D !. Then for any positive integer l , we
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have an L2-inner product on H 0.M;Ll ; !/,

.s1; s2/ D

Z
M

hs1; s2ih˝l!
n; 8s1; s2 2 H 0.M;Ll ; !/: (6.1)

Thus for any orthonormal basis ¹s˛º .0 � ˛ � N D N.l// ofH 0.M;Ll ; !/, we define the
Bergman kernel by (cf. [48])

�l .M;!/.x/ D

NX
iD0

ˇ̌
s˛

ˇ̌2

h˝l .x/; 8x 2 M; (6.2)

which is independent of choice of the basis ¹s˛º.
The following fundamental result was proved by Liu–Székelyhidi [39].

Lemma 6.2 (Liu–Székelyhidi). Given n;D; v > 0, there is a positive integer l and a real
number b > 0 with the following property: Suppose that .M; L; !/ is a polarized Kähler
manifold with ! 2 2�c1.L/ such that

Ric.!/ � �!; vol.M;!/ � v; diam.M;!/ � D: (6.3)

Then for any x 2 M , one has

�l .M;!/.x/ � b: (6.4)

An inequality like (6.4) was called a partialC 0-estimate by Tian [49,50,52,53], which
plays a critical role in his proof of YTD-conjecture [54]. The upper bound of �l .M; !/ can
be also obtained by using the standard Moser iteration (for example, see [31, Lemma 3.2]).

By (6.4), we can write! as a metric with bounded Kähler potential using the Fubini–
Study metric as the background metric. In fact, if the orthonormal basis ¹s˛º .0 � ˛ � N/

defines an embedding ˆ, then we have

! D ˆ�

�
1

l
!F S

�
�
1

l

p
�1@N@ log �l .M;!/:

By the gradient estimate for s˛ (cf. [24,49]) and the lower bound (6.4) for �l .M;!/, it holds
that

ˆ�

�
1

l
!F S

�
� C.n;D; v/!: (6.5)

This is because

ˆ�.!F S / D
p

�1

PN
˛D0hrs˛;rs˛i

�l .M;!/
�

p
�1
.
PN

˛D0hrs˛; s˛i/.
PN

˛D0hs˛;rs˛i/

�2
l
.M;!/

:

As in [69], we modify metric!t to �t so that (6.3) is satisfied by solving the following
MA-equation:

.�t /
n

D .!t C
p

�1@N@�t /
n

D eht!n
t ; sup

M

�t D 0; (6.6)

where ht is a uniformly bounded Ricci potential of !t chosen as in Lemma 3.1. By Yau’s
solution to Calabi’s problem [68], (6.6) can be solved, and by Moser iteration (cf. [58]) we
have

j�t j � C
�
kht kC 0.M/; !0

�
� A: (6.7)
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By (6.7), each orthonormal basis of H 0.M;K�l
M ; !t / is comparable to any one of

H 0.M;K�l
M ; �t /. Thus by Lemma 6.2, we prove [66, Proposition 2.7],

Proposition 6.3. Given any sequence !ti (i ! 1/ of flow !t , there is a subsequence of !ti ,
which is still denoted as !ti , such that (6.4) holds for !ti and the embedding of M by an
orthonormal basis ¹s˛

ti
º of H 0.M;K�l

M ; !ti / in CPN converges to a normal variety QM1.

Denoting the embedding of ¹s˛
ti

º by ˆi , we have QMi D ˆi .M/ converging to a
normal variety QM1 by Proposition 6.3. Thus

.ˆ�1
i /�!ti D

1

l
!F S C

p
�1@N@'i ; (6.8)

where �i D �
1
l
.ˆ�1

i /�.log �l .M;!i // satisfies

j'i j � C: (6.9)

Moreover, by the gradient estimate for s˛
ti

[31, Lemma 3.1],rs˛
ti


!ti

� Cs

�
khti kC 0.M/; Cs; n

�
l

n
2 C1; (6.10)

where Cs is the Sobolev constant in (3.5). Thus as in (6.5), we get
1

l
!F S j QMi

� C.ˆ�1
i /�!ti : (6.11)

By (6.9) and (6.11), we can derive a local C k;˛-estimate for �i via the parabolic
equation (1.2). In fact, we may choose exhausting open sets � � QM1. Then by Propo-
sition 6.3, there are diffeomorphisms ‰i

 W � ! QMi such that the curvature of !F S j Q�i


is C k-uniformly bounded independently of i , where Q�i
 D ‰i

 .� /. For simplicity, we let
Q!i D

1
l
!F S j QMi

.
The following key estimate was obtained in [66, Lemma 3.1].

Lemma 6.4. There exist constants A;C ; A such that

j'i j � A in QMi ; (6.12)

C�1
 Q!i � .ˆ�1

i /�!ti � C Q!i in Q�i
 ; (6.13)

k'i kC k;˛. Q�i
 / � A : (6.14)

The estimates (6.12)–(6.14) in Lemma 6.4 can be extended to Kähler potentials �s
i

of metrics !ti Cs associated to the background O!i , where s 2 Œ�1; 1� and �s
i satisfies

.ˆ�1
i /�!ti D O!i C

p
�1@N@'s

i :

By Lemma 6.4, we see that !ti (by taking a subsequence) is locally C1-convergent
to a KR-soliton !1 on Reg. QM1/ in the Cheeger–Gromov topology, which can be extended
to a singular KR-soliton on QM1 with a L1-bounded Kähler potential  1 in the sense of
full MA-measure [8]. In the case of KE-metrics !1, one can further show that the local
limit of �ti on Reg. QM1/ associated to !ti in (6.6) is just !1. Thus in this case, we can
actually prove that the Gromov–Hausdorff limit .M1; !

0
1/ is homeomorphic to QM1 and
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the Hausdorff codimension of singularities of .M1; !
0
1/ is at least 4. The Q-Fano structure

of QM1 with klt singularities can be proved as in [8,31,54].

Remark 6.5. The uniqueness of Q-Fano structure of QM1 in Theorem 6.1 is independent
both of the sequence and initial metric !0 2 2�c1.M/. We refer the reader to recent papers
[15,29,65].

7. KR-flow on G-manifolds

In this section, we discuss the KR-flow on a Fano G-manifold, which develops sin-
gularities of type II [37]. In this joint paper, Li, Tian, and the author prove

Theorem 7.1. Let G be a complex reductive Lie group and .M; J / be a Fano G-manifold.
Suppose that .M;J / does not admit any KR-soliton. Then any solution of KR-flow on .M;J /
with an initial metric !0 2 2�c1.M; J / is of type II.

Here by a G-manifold we mean a (biequivariant) compactification of G which
admits a holomorphic G � G-action and has an open and dense orbit isomorphic to G
as a G � G-homogeneous space [1–3]. Clearly, toric manifolds form a special class of G-
manifolds with G being the torus group.

A criterion theorem for the existence of KE-metrics on FanoG-manifolds was estab-
lished by Delcroix [20] several years ago.

Theorem 7.2 (Delcroix). LetM be a FanoG-manifold with associated moment polytopeP .
Let PC be the positive part of P defined by a positive roots’ system ˆC D ¹˛º of G. Then
M admits a KE-metric if and only if the barycenter of PC with respect to ˆC satisfies

bar.PC/ 2 2�C„; (7.1)

where „ is the relative interior of the cone generated by ˆC and � D
1
2

P
˛2ˆC

˛.

Delcroix’s proof obtains a prior C 0-estimate for a class of real MA-equations on
the positive cone aC � a D Rr (r is the rank of G, i.e., the dimension of a maximal torus
inG) defined byˆC as done for toric Fano manifolds in [67]. Later, Li, Zhou, and the author
gave another proof of Delcroix’s theorem by verifying the properness of K-energy and also
generalized the theorem to the case of KR-solitons [38].

By Theorem 7.2, it is possible to classify all Fano G-manifolds which admit a KE-
metric or KR-solitons. For example, for the rank r D 2, there are two SO4.C/-manifolds
and one Sp4.C/-manifold which cannot admit any KR-solitons, see [20,21,37,74]. Thus The-
orem 7.1 provides a class of examples of Ricci flow with singularities of type II on Fano
manifolds.

By the HT-conjecture and the uniqueness result in [29, 65], we may assume that
the initial metric !0 in Theorem 7.1 is K � K-invariant. Here K is a maximal compact
subgroup of G. The proof of Theorem 7.1 includes two main steps by using a contradic-
tion argument under the assumption of uniformly bounded curvature: first, proving that the
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Cheeger–Gromov limit .M1; J1/ of any sequence of K �K-invariant metrics on .M; J /
is still a G-manifold; second, showing that the complex structure J1 of limit will not jump
from J . It is useful to mention that the above two steps work for any sequence of K �

K-invariant metrics in 2�c1.M; J / and can be also generalized to any sequence of K �K-
invariant metrics with uniformly bounded curvature on a polarizedG-manifold. For example,
as an application one can establish an analogue of Theorem 7.1 for Calabi’s flows [10] with
singularities of type II on polarized G-manifolds.

7.1. A direct proof of Theorem 7.1 for a sequence of !t

In the following, we present a more direct proof of Theorem 7.1 from a paper jointly
with Tian [63]. We turn to prove

Theorem 7.3. Let !i .D !ti ; ti ! 1/ be a sequence of .M; !t ; J / in the flow of (1.1)
with a K �K-invariant initial metric !0 2 2�c1.M; J /. Suppose that the curvature of !i

is uniformly bounded. Then !i converges to a KR-soliton in the sense of Kähler potentials
on .M; J /. In particular, .M; J / admits a KR-soliton.

We need to recall some notation and facts proved in [37]. Let ¹E1; : : : ;Enº be a basis
of the Lie algebra g. Then the right (left) action of G induces a space of span¹e1; : : : ; enº

of HVFs with Im.ea/ 2 k on M , where k is the Lie algebra of K. By the partial C 0-
estimate as in Section 6, there is a sequence of Kodaira embeddings ˆi W M ! CPN

induced by an orthonormal basis ¹si
˛º in H 0.K�m

M ; !i / such that the image ˆi .M/ D OMi

converges to the image ˆ1.M1/ D OM1 in the topology of complex submanifolds, where
ˆ1 W M1 ! CPN is the Kodaira embedding induced by an orthonormal basis ¹s1

˛ º in
H 0.K�m

M1
; !1/.

Let span¹ Oei
1; : : : ; Oei

nº be a space of HVFs on OMi induced by ˆi . It has been proved
in [37, (4.6)] that for each a, . Oei

a; O!i / converges to an HVF . Oe1
˛ ; O!1/ on OM1 in the sense

of [37, Definition 3.1], where O!i D
1
m
!F S j OMi

and O!1 D
1
m
!F S j OM1

. Moreover, the basis
¹ Oe1

1 ; : : : ; Oe1
n º induces an effective G-action on OM1.

Let T C be a torus subgroup of G acting on OM1 with a basis ¹X1; : : : ; Xrº of
a D J k \ tC . Then it can be regarded as a subgroup of the maximal torus group QT C in
CPN . Let QW1; : : : ; QWN C1 be theN C 1 hyperplanes in CPN where QT C does not act freely.
Thus for any induced HVF QX of X 2 tC on OM1, one has®

Ox 2 OM1 j QX. Ox/ D 0
¯

�

[
˛

QW˛: (7.2)

Let O denote an open denseG-orbit inM . SinceM has finitely manyG �G-orbits
[1,2], there are basis points xı 2 MnO, ı D 1; : : : ; k, such that

M D O
[

ı

.G �G/xı : (7.3)

Note that the closure of each G � G-orbit .G � G/xı is a smooth algebraic variety whose
dimension is less than n. Then, up to a subsequence, the closure ofˆi ..G �G/xı/ converges

2729 Kähler–Ricci flow on Fano manifolds



to an algebraic limit in CPN . As a consequence,ˆi .MnO/ has an algebraic limitD OM1 in
OM1 � CPN .

Let OO1 D OM1 nD OM1 be an open set in OM1. We set

OO0
1 D OO1 n

�[
˛

QW˛

�
and O0

1 D ˆ�1
1 . OO0

1/ � M1: (7.4)

Note that
e1

a D .ˆ�1
1 /� Oe1

a ; a D 1; : : : ; n:

Thus

NX.x1/ ¤ 0; 8x1 2 O0
1;

NX 2 span
®
e1

1 ; : : : ; e
1
r

¯
: (7.5)

Fix a point Ox1 2 OO1. We choose Oxi 2 OM ! Ox1 and let xi D ˆ�1
i . Oxi / 2 O1.

Then xi ! x1 2 M1 in the Gromov–Hausdorff topology. Let x0
i D .x1

i ; : : : ; x
r
i / 2 a be

the real part of local partial coordinates zi in [37, Section 2.1]. Without loss of generality, we
may assume x0

i 2 aC since the metric !i is K �K-invariant. By the argument in the proof
of [37, Lemma 4.4], we have actually proved the following key lemma.

Lemma 7.4. Suppose that the center of g is zero. Then there is an absolute constant A such
that ˇ̌

x0
i

ˇ̌2
D

ˇ̌
x1

i

ˇ̌2
C � � � C

ˇ̌
xr

i

ˇ̌2
� A: (7.6)

Proof of Theorem 7.3. Let  ; i be Weyl-invariant convex functions on a associated to the
background metric !0 D

p
�1@N@ andK �K-invariant metrics !i , respectively. It suffices

to prove that

j'i j D
ˇ̌
 i

�  
ˇ̌

� C (7.7)

for some absolute constant C [56].
We first consider Case 1: G is semisimple. Then by Lemma 7.4, (7.6) holds. Thus,

by [37, (4.18)], there is a small Euclidean ball B" in a such that

det. i
ab/.x

0/ � ı0; 8x0
2 B" \ aC: (7.8)

Moreover, as in the proof of [37, (4.23)], there is an open set B 0 � B" \ aC such that for any
˛ 2 ˆC, we have ˝

˛;r i .x0/
˛
� c0; 8x0

2 B 0: (7.9)

Thus, by the metric matrix (2.3) in [37, Lemma 2.1], we get

a0! � !i �
1

a0

! in �0
"; (7.10)

where a0 is a small absolute constant and

�0
" D

®
z 2 �" j x0

z 2 B 0
¯

(7.11)

is an open set of �" D ¹z D .z1; : : : ; zn/ j jzl � xl
i j < "º.
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We claim that there are a point zi
0 2 �0

" and an absolute constant C1 such that

'i .z
i
0/ � sup

M

'i � C1 and � 'i .z
i
0/ � sup

M

.�'i / � C1: (7.12)

By the Green formula, we have

sup
M

'i �
1

V

Z
M

'i!
n
i C C2: (7.13)

On the other hand, by the Sobolev inequality (3.5) and the Green function estimate [7], there
is an absolute constant A1 such that the Green function Gt .�; �/ associated to !t satisfiesZ

M

Gt .x; �/!
n
t D 0 and Gt .x; �/ � A1:

Thus as in (7.13), we also have

sup
M

.�'i / �
1

V

Z
M

.�'i /!
n
i C C3; (7.14)

where C3 is an absolute constant.
For any small number ı � 1, we let Mı D

C2V
ı

and M 0
ı

D
C3V

ı
. Set

Eı D

°
z 2 �0

" j 'i .z/ � sup
M

'i �Mı

±
and

Ei
ı D

°
z 2 �0

" j
�
�'i .z/

�
� sup

M

.�'i / �M 0
ı

±
:

Then, by (7.13) and (7.14), it is easy to see that

meas!.Eı/ � ı and mess!i
.Ei

ı/ � ı:

By (7.10), it follows that

meas!.Eı/; meas!.E
i
ı/ ! 0 as ı ! 0:

Note that meas!.�
0
"/ is strictly positive. Hence (7.12) must be true.

By (7.12), we get

oscM 'i � sup
M

'i C sup
M

.�'i /C C � C4:

Recall that !s D !0 C
p

�1@N@'s satisfies the following complex MA-equation:

@'s

@s
D log

.!0 C
p

�1@N@'s/
n

!n
0

C 's � h; s 2 Œ�1C ti ; ti C 1�: (7.15)

Then by Lemma 3.1, we may assume that 's satisfies (cf. [60])

j'sj � C and
ˇ̌̌̌
@'s

@s

ˇ̌̌̌
� C; 8s 2 Œ�1C ti ; ti C 1�:

Thus by the regularity, we get

k'i kC k;˛ � C: (7.16)

As a consequence, !i converges to a KR-soliton on .M; J / [42,60].
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Next we deal with the general Case 2: The center gc of g is not zero. Let ac � a

be the real part of gc . By the above case 1 and the argument in the proof of [37, Lemma 4.4]

(Case 1 on page 14), we may assume that jx0
i j ! 1 as i ! 1 and˝

˛; x0
i

˛
� A; 8˛ 2 ˆC; (7.17)

for some absolute constant A, where ˆC is a positive roots’ system. Write x0
i as

x0
i D x0

i C x00
i ;

where x0
i 2 ac . Then ˝

˛; x0
i

˛
D

˝
˛; x00

i

˛
� A: (7.18)

Let
Q i .x/ D  i .x C x0

i /:

Then Q i .x/ is still a Weyl-invariant convex function on a and it still satisfies equation (7.15).
Moreover, by (7.18), x00

i is uniformly bounded if ac ¨ a. Thus we can argue as in Case 1 for
Q i such that (7.16) holds, while the "-cube �" of dimension n centered at xi in (7.11) is
replaced by

Q�" D
®
z D .z1; : : : ; zn/ j

ˇ̌
zl

� Qxl
i

ˇ̌
< "

¯
in the local coordinates ¹zlºlD1;:::;n, where x00

i D . Qxl
i ; : : : ; Qxl

i /. As a consequence,

!i D Q!i D
p

�1@N@ Q i

converges to a KR-soliton in the sense of Kähler potentials on .M; J /. The proof is com-
plete.

7.2. Examples by Li–Li
By Theorems 7.1 and 6.1 for the HT-conjecture, the limit of KR-flow should be a

singular KR-soliton on a Q-Fano variety QM1 if a FanoG-manifoldM does not admit a KR-
soliton. It is interesting to study the degenerate structure of QM1 from M . Recently, Y. Li
and Z. Li classified QM1 for the case of G D SO4.C/ in [35].

It is known that there are three possible Fano compactifications of SO4.C/ of dimen-
sion 6 (cf. [21]). By Theorem 7.2, one of the compactifications admits a KE-metric and the
other two cannot admit any KE-metric (cf. [74]). Since SO4.C/ is semisimple, the latter two
also cannot admit any KR-soliton. Thus by Theorem 7.1, the limit QM1 of a flow on these
two manifolds should be a singular Q-Fano variety.

By studying the minimizer of H -invariant (see Section 5) for G � G-equivariant
special degenerations on a FanoG-manifold, Y. Li and Z. Li proved that the minimizer can be
attained by a G �G-equivalent special degeneration with a center fiber of G �G-spherical
variety [35]. In the case of G D SO4.C/, they further showed that the two G �G-spherical
varieties corresponding to the two non-KE-manifolds above are both relatively modifiedK-
polystable. By Han–Li’s uniqueness result for the minimizers of H -invariant [29] and the
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fact that the Perelman’s entropy (see Section 3) attains the maximum along the KR-flow
[15,22,65], these two spherical varieties should be limits QM1 of KR-flows.

Remark 7.5. (1) Examples in [36] show that the singular limit QM1 of KR-flow on
a G-manifold cannot be a Q-Fano variety of G-compactification, in general.
We expect it is aG �G-spherical variety as in the above case ofG D SO4.C/.

(2) To the best of the author’s knowledge, there is no known example of Fano man-
ifoldM with discrete Aut.M/ on which the solution of a KR-flow is of type II.
In fact, we do not know whether there is a Fano manifold with discrete Aut.M/

on which the limit of a KR-flow is a singular KE-metric. In the latter, M must
be K-semistable (cf. [34,65]).
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