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Abstract

We review some recent results in knot concordance and homology cobordism. The proofs
rely on various forms of Heegaard Floer homology. We also discuss related open prob-
lems.
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1. Introduction

Many interesting phenomena occur in three and four dimensions that do not occur
in higher dimensions. Indeed, the Poincaré conjecture in dimensions five and higher was
proved by Smale [83] in 1961 using techniques from surgery theory, while the Poincaré con-
jecture in dimension three remained unsolved for another 40 years until Perelman’s proof of
Thurston’s geometrization conjecture [74–76]. In 1982, Freedman [19] proved the topologi-
cal 4-dimensional Poincaré conjecture, while the smooth 4-dimensional Poincaré conjecture
remains open. As another example of how dimension four is special, by work of Freed-
man [19] and Donaldson [12], Rn admits smooth structures that are not diffeomorphic to the
standard one only when n D 4.1

The 3-dimensional homology cobordism group and the knot concordance group
are fundamental structures in low-dimensional topology. The former played a key role in
Manolescu’s disproof of the high dimensional triangulation conjecture [55], while the latter
has the potential to shed light on the smooth 4-dimensional Poincaré conjecture (see, for
example, [18,58]).

Our goal is to review some recent applications of Heegaard Floer theory to homol-
ogy cobordism and knot concordance, and to discuss the power and limitations of these tools
to address major open questions in the field.

1.1. Homology cobordism
Two closed, oriented 3-manifolds Y0; Y1 are homology cobordant if there exists

a smooth, compact, oriented 4-manifold W such that @W D �Y0 t Y1 and the inclusions
� W Yi ! W induce isomorphisms

�� W H�.Yi I Z/ ! H�.W I Z/

for i D 0; 1. The key point is that, on the level of homology, W looks like a product. The 3-
dimensional homology cobordism group ‚3

Z consists of integer homology 3-spheres modulo
homology cobordism, under the operation induced by connected sum. A homology sphere
Y represents the identity in ‚3

Z if and only if Y bounds a homology 4-ball, and the inverse of
ŒY � in ‚3

Z is Œ�Y �, where �Y denotes Y with the opposite orientation. The Rokhlin invariant
[80] gives a surjective homomorphism

� W ‚3
Z ! Z=Z2;

showing that ‚3
Z is nontrivial. Manolescu [55] showed that if �.Y / D 1, then Y is not of order

two in ‚3
Z. By work of Galewski–Stern [22] and Matumoto [59], this leads to a disproof of

the triangulation conjecture in dimensions � 5. See [56,57] for an overview of this work. The
triangulation conjecture is also false in dimension four, by work of Casson; see [3].

Fintushel–Stern [14] used gauge theory to show that ‚3
Z is infinite, and Furuta [21]

and Fintushel–Stern [15] improved this result to show that ‚3
Z contains a subgroup isomor-

phic to Z1. Frøyshov [20] used Yang–Mills theory to define a surjective homomorphism

1 Smale, Perelman, Freedman, and Donaldson all won Fields medals for their work discussed
here; Perelman declined the award.
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‚3
Z ! Z, showing that ‚3

Z has a direct summand isomorphic to Z. (This is stronger than
having a Z subgroup, since, for example, Z is a subgroup of Q but not a summand.) In joint
work with Dai, Stoffregen, and Truong, we use Hendricks–Manolescu’s involutive Heegaard
Floer homology [32] to prove the following:

Theorem 1.1 ([9]). The homology cobordism group ‚3
Z contains a direct summand isomor-

phic to Z1.

Fundamental questions about the structure of ‚3
Z remain open:

Question 1.2. Does ‚3
Z contain any torsion? Modulo torsion, is ‚3

Z free abelian?

If there is any torsion in ‚3
Z, two-torsion seems the most likely. Indeed, any integer

homology sphere Y admitting an orientation-reversing self-diffeomorphism is of order at
most two in ‚3

Z. However, as far as we are aware, all known examples of such Y bound
integer homology balls, and hence are trivial in ‚3

Z.
In a different direction, it is natural to ask which types of manifolds can represent a

given class ŒY � 2 ‚3
Z. The first answers to this question were in the positive. Livingston [52]

showed that every class in ‚3
Z can be represented by an irreducible integer homology sphere

and Myers [61] improved this to show that every class has a hyperbolic representative.
In the negative direction, Frøyshov (in an unpublished work), F. Lin [49], and Stoffre-

gen [84] showed that there are classes in ‚3
Z that do not admit Seifert fibered representatives.

Nozaki–Sato–Taniguchi [63] improved this result to show that there are classes that do not
admit a Seifert fibered representative or a representative that is surgery on a knot in S3.
However, none of these results were sufficient to obstruct ‚3

Z from being generated by Seifert
fibered spaces. In joint work with Hendricks, Stoffregen, and Zemke, we prove the following:

Theorem 1.3 ([30, 31]). The homology cobordism group ‚3
Z is not generated by Seifert

fibered spaces. More specifically, let ‚SF denote the subgroup generated by Seifert fibered
spaces. The quotient ‚3

Z=‚SF is infinitely generated.

In light of the aforementioned Nozaki–Sato–Taniguchi result, it is natural to ask:

Question 1.4. Do surgeries on knots in S3 generate ‚3
Z?

The expectation is that surgeries on knots in S3 are not sufficiently generic to gen-
erate ‚3

Z, but such a result seems beyond the capabilities of current tools.

1.2. Knot concordance
Two knots K0;K1 � S3 are concordant if there exists a smooth, properly embedded

annulus A in S3 � Œ0; 1� such that Ki D A \ .S3 � ¹iº/ for i D 0; 1. The knot concordance
group C consists of knots in S3 modulo concordance, under the operation induced by con-
nected sum. The inverse of ŒK� in C is given by Œ�K�, where �K denotes the reverse of the
mirror image of K. A knot K � S3 D @B4 is slice if it bounds a smoothly embedded disk
in B4. Fox–Milnor [17] and Murasugi [60] showed that C is nontrivial, and J. Levine [48] used
the Seifert form to define a surjective homomorphism C ! Z1 ˚ .Z=2Z/1 ˚ .Z=4Z/1,
demonstrating that C is, in fact, highly nontrivial. In higher odd dimensions (that is, knotted
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S2nC1 in S2nC3, n � 1), Levine’s homomorphism is an isomorphism, while in the classical
dimension, the kernel is nontrivial [6]. See [53] for a survey of knot concordance.

We can consider various generalizations of the knot concordance group. For exam-
ple, rather than considering annuli in S3 � Œ0; 1�, we may consider annuli in homology
cobordisms. Two knots K0 � Y0 and K1 � Y1 are homology concordant if they cobound a
smooth, properly embedded annulus in a homology cobordism between Y0 and Y1.

Let CZ denote the group of knots in S3, modulo homology concordance. A knot
K � S3 represents the identity in CZ if and only if K bounds a smoothly embedded disk
in some homology 4-ball. Since B4 is of course a homology 4-ball, there is naturally a
surjection from C to CZ. A natural question is whether or not this map is injective; in other
words,

Question 1.5. If a knot K � S3 bounds a disk in a homology 4-ball, must K also bound a
disk in B4?

One reason why the question above is challenging is that many obstructions to a
knot K bounding a disk in B4 also obstruct K from bounding a disk in a homology 4-ball.

An even more difficult question is the following:

Question 1.6. If a knot K � S3 bounds a disk in a homotopy 4-ball, must K also bound a
disk in B4?

Recall the smooth 4-dimensional Poincaré conjecture which by work of Freedman
[19] may be stated as follows:

Conjecture 1.7 (Smooth 4-dimensional Poincaré conjecture). If a smooth 4-manifold X is
homeomorphic to S4, then X is actually diffeomorphic to S4.

A negative answer to Question 1.6 provides one possible strategy for disproving
Conjecture 1.7. Indeed, by Freedman [19], any homotopy 4-sphere is homeomorphic to S4.
Now suppose we found a homotopy 4-sphere X and a knot K � S3 D @.X n VB4/ such that
K bounds a smoothly embedded disk in X n VB4. If we could obstruct K from bounding a
smoothly embedded disk in B4, then it follows that X cannot be diffeomorphic to S4. This
approach was attempted in [18,58], but has yet to lead to a disproof of the conjecture.

We now return to the group CZ. This group is naturally a subgroup of OCZ, the group
of manifold–knot pairs .Y;K/, where Y is a homology sphere bounding a homology ball and
K is a knot in Y , modulo homology concordance. One can ask whether the injection from CZ

to OCZ is a surjection. Adam Levine [47] answered this question in the negative, showing that
there exist knots in a homology null-bordant Y (in fact, his example bounds a contractible
4-manifold) that are not concordant to any knot in S3. Expanding on this result, in joint work
with Levine and Lidman, we prove the following:

Theorem 1.8 ([39]). The subgroup CZ � OCZ is of infinite index. More specifically,

(1) the quotient OCZ=CZ is infinitely generated, and

(2) the quotient OCZ=CZ contains a subgroup isomorphic to Z.
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This result demonstrates the vast difference between knots in S3 and knots in arbi-
trary homology spheres bounding homology balls, up to concordance. The examples in the
infinite generation part of the theorem bound contractible 4-manifolds; it is unknown whether
the examples in the Z subgroup do. Zhou [90] proved that the quotient OCZ=CZ has a subgroup
isomorphic to Z1. (It is unknown whether his examples bound contractible 4-manifolds.)
The forthcoming joint work with Dai, Stoffregen, and Truong [10] improves Zhou’s result to
a Z1-summand.

One can also consider concordance in more general 4-manifolds. Let R be a ring.
Two closed, oriented, connected 3-manifolds Y0;Y1 are R-homology cobordant if there exists
a smooth, compact, oriented 4-manifold W such that @W D �Y0 t Y1 and the inclusions
� W Yi ! W induce isomorphisms

�� W H�.Yi I R/ ! H�.W I R/

for i D 0; 1. We have already discussed the case R D Z. The rational homology cobor-
dism group ‚3

Q contains elements of order two, for example, ŒRP 3�; in contrast, as asked in
Question 1.2, it remains open whether there is any torsion in the integer homology cobordism
group ‚3

Z.
We can consider concordances in other R-homology cobordisms, such as Q-homo-

logy cobordisms. A knot K � S3 is rationally slice if it is Q-homology concordant to the
unknot, or equivalently, if K bounds a smoothly embedded disk in a rational homology
4-ball.

Let CQS denote the subgroup of C consisting of rationally slice knots. Cochran,
based on work of Fintushel–Stern [13], showed that the figure-eight knot is rationally slice.
Hence Z=2Z is a subgroup of CQS , since the figure-eight is negative amphichiral and not
slice. Cha [7] extended this result to show that CQS has a subgroup isomorphic to .Z=2Z/1.
A natural question to ask is whether CQS contains elements of infinite order (see, for exam-
ple, [86, Problem 1.11]). Joint work with Kang, Park, and Stoffregen uses the involutive knot
Floer package of Hendricks–Manolescu [32] to prove:

Theorem 1.9 ([38]). The group of rationally slice knots CQS contains a subgroup isomor-
phic to Z1.

The figure-eight is slice in a rational homology 4-ball W with H1.W I Z/ D Z=2Z

(see, for example, [2, Section 3]), as are Cha’s examples [7].

Question 1.10. Does there exist a knot K � S3 that is not slice in B4 but is slice in a rational
homology 4-ball W with jH1.W I Z/j odd?

Compare this question to Question 1.5, which asks whether there is a knot K � S3

that is not slice in B4 but is slice in a integer homology 4-ball W . Indeed, both Questions 1.5
and 1.10 can be viewed as incremental steps towards Question 1.6, a negative answer to which
would in turn disprove the smooth 4-dimensional Poincaré conjecture.
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1.3. Ribbon concordance
We conclude the introduction with a discussion of ribbon knots, ribbon concor-

dances, and ribbon homology cobordisms. A knot K � S3 is ribbon if it bounds an immersed
disk in S3 with only ribbon singularities. A ribbon singularity is a closed arc consisting of
intersection points of the disk with itself such that the preimage of this arc is two disjoint
arcs in the disk with one arc a1 being contained entirely in the interior of the disk and the
other arc a2 having its endpoints on the boundary of the disk; see Figure 1. Note that ribbon
knots are slice, since ribbon singularities can be resolved in the 4-ball (namely, by pushing
the arc a1 farther into the 4-ball).

Figure 1

An example of a ribbon disk.

Conjecture 1.11 (Slice-ribbon conjecture [16]). Every slice knot is ribbon.

The slice-ribbon conjecture is true for two-bridge knots [51] and many infinite fam-
ilies of pretzel knots [25, 45]. On the other hand, potential counterexamples exist; see, for
example, [1,23].

Equivalently, a ribbon knot can be defined as a knot K � S3 that bounds a ribbon
disk in B4, that is, a smoothly embedded disk D � B4 such that the radial Morse function on
B4 restricted to D has no interior local maxima. There is a ribbon concordance from K0 to
K1 if there is a concordance from K0 to K1 in S3 � Œ0;1� with no interior local maxima (with
respect to the natural height function on S3 � Œ0; 1�) or, equivalently, if projection to Œ0; 1� is
Morse with only index 0 and index 1 critical points. Note that, unlike ordinary concordance,
ribbon concordance is not symmetric (and that the convention regarding the direction of the
ribbon concordance varies in the literature).

Conjecture 1.12 ([24]). Ribbon concordance is a partial order. That is, if there exist a ribbon
concordance from K0 to K1 and a ribbon concordance from K1 to K0, then K0 D K1.

Gordon [24] proved that Conjecture 1.12 holds for fibered knots and two-bridge
knots, and more generally for the class of knots generated by such knots under the oper-
ations of connected sum and cabling. He also proved that if S is a ribbon concordance from
K0 to K1, then �1.S3 n �.K0// ! �1.X/ is injective and �1.S3 n �.K1// ! �1.X/ is
surjective, where X denotes the exterior of S in S3 � Œ0; 1�.

The notion of a ribbon concordance can also be generalized to homology cobor-
disms. A ribbon cobordism between two 3-manifolds is a cobordism admitting a handle
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decomposition with only 1- and 2-handles. Observe that the complement of a ribbon con-
cordance from one knot to another is naturally a ribbon cobordism between their knot com-
plements. Daemi, Lidman, Vela-Vick, and Wong proposed the following 3-manifold analog
of Conjecture 1.12:

Conjecture 1.13 ([8]). Ribbon Q-homology cobordism is a partial order on closed, ori-
ented, connected 3-manifolds. That is, if there exist a ribbon Q-homology cobordism from Y0

to Y1 and a ribbon Q-homology cobordism from Y1 to Y0, then Y0 and Y1 are diffeomorphic.

The results in [8] provide evidence in support of Conjecture 1.13.

1.4. Organization
The remainder of this article is devoted to discussing applications of Heegaard Floer

homology to the theorems and problems discussed above. We will describe various Heegaard
Floer chain complexes associated to 3-manifolds and knots inside of them. As we progress,
our chain complexes will have more and more structure; we will sketch how this additional
structure leads to the results described in the introduction.

In Section 2, we discuss properties of the Heegaard Floer 3-manifold invariant of
[66, 70] and applications to homology cobordism. In Section 3, we move on to knot Floer
homology [69,78] and applications to concordance. With the advent of involutive Heegaard
Floer homology [32], these invariants can be endowed with additional structure; in Section 4,
we describe involutive Heegaard Floer homology, and in Section 5, we delve into involutive
knot Floer homology. Lastly, in Section 6, we discuss the potential (or lack thereof) for Hee-
gaard Floer homology to answer the questions posed in Section 1.

For an introduction to many of the tools described in this article, we refer the reader
to Sections 1–3 of [34].

2. Heegaard Floer homology: the 3-manifold invariant

In this section, we consider the Heegaard Floer 3-manifold invariant and maps
induced by 4-dimensional cobordisms. For expository overviews of Heegaard Floer homol-
ogy, see, for example, [40,72], and [34, Section 2].

2.1. Properties and examples
Given a closed, oriented 3-manifold Y , its Heegaard Floer homology HF�.Y / is a

finitely generated, graded module over F ŒU �, where F D Z=2Z and U is a formal variable
in degree �2. (There are other flavors, HFC.Y /; cHF.Y / of Heegaard Floer homology, but
for the purposes of this article, we will focus on the minus version.)

More precisely, every closed, oriented 3-manifold Y can be described as a union of
two handlebodies; such a decomposition is called a Heegaard splitting. In turn, a Heegaard
splitting can be described via a Heegaard diagram H , consisting of a closed, oriented surface
† of genus g, together with g ˛-circles and g ˇ-circles, which describe how the handlebodies
fill in the surface on either side. (These circles are required to satisfy a certain homological
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condition.) For technical reasons, we also fix a basepoint z in the complement of the ˛- and
ˇ-circles. Any two diagrams representing the same 3-manifold can be related by a sequence
of Heegaard moves, as described in [72, Section 2.6]; see also [34, Section 1].

From this data, Ozsváth–Szabó [70] construct CF�.H /, a free, finitely generated,
graded chain complex over F ŒU �. The variable U keeps track of the basepoint z. The chain
homotopy type of CF�.H / is an invariant of Y , that is, it does not depend on the choice of
Heegaard diagram, or on any other choices made in the construction. We often write CF�.Y /

to denote this chain homotopy class, or a representative thereof. Juhász–Thurston–Zemke
[41] prove something even stronger: Heegaard Floer homology is natural, in the sense that it
assigns a concrete module, rather than an isomorphism class of modules, to a 3-manifold.

Example 2.1. The Heegaard Floer homology of S3 is HF�.S3/ D F.0/ŒU �, where the sub-
script .0/ denotes that 1 2 F ŒU � is in grading 0. (This can easily be computed using the
definition of the Heegaard Floer chain complex.)

Example 2.2. The Heegaard Floer homology of the Brieskorn homology sphere †.2; 3; 7/

is HF�.†.2; 3; 7// D F.0/ŒU � ˚ F.0/. (This is not so easy to compute directly from the
definition of Heegaard Floer homology; however, it is a straightforward consequence of some
of the formal properties of Heegaard Floer homology.)

Example 2.3. The Heegaard Floer homology of the Brieskorn homology sphere †.2; 3; 5/

is HF�.†.2; 3; 5// D F.�2/ŒU �. (This can be computed using some of the formal properties
of Heegaard Floer homology.)

Remark 2.4. In this article, we take the slightly unconventional grading convention above,
which simplifies the formula for gradings in, for example, HF� of connected sums. Many
other sources use the convention that HF�.S3/ D F.�2/ŒU �, which simplifies calculations in
HFC.

Remark 2.5. For rational homology spheres, the gradings in Heegaard Floer homology take
values in Q. For integer homology spheres, the gradings take values in 2Z. For 3-manifolds
Y with H1.Y I Z/ infinite, the gradings are slightly more complicated; see [65, Section 4.2].

Since the degree of U is �2, any homogenously graded polynomial in F ŒU � is of
the form U n for some n 2 N. Thus, by the fundamental theorem of finitely generated graded
modules over a PID, we have that HF�.Y / is of the form

NM
iD1

F.di /ŒU � ˚

MM
j D1

F.cj /ŒU �=U nj F ŒU �;

for Y a rational homology sphere; that is, HF�.Y / is a direct sum of a free part and a U -
torsion part. Ozsváth–Szabó [66, Theorem 10.1] show that when Y is an integer homology
sphere, N D 1, that is, HF�.Y / is of the form

HF�.Y / D F.d/ŒU � ˚

MM
j D1

F.cj /ŒU �=U nj F ŒU �:
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The number d above is called the d -invariant of Y , denoted d.Y /. More generally, when Y

is a rational homology sphere with jH1.Y I Z/j D k, there are exactly k free summands in
HF�.Y /, in which case one obtains a k-tuple of d -invariants of Y .

Heegaard Floer homology satisfies a Künneth-type formula under connected sums
[66, Theorem 1.5]. That is, CF�.Y1#Y2/ is chain homotopy equivalent to

CF�.Y1/ ˝FŒU � CF�.Y2/:

In particular, if Y1 and Y2 are integer homology spheres, then the d -invariant is additive
under connected sum. (An analogous statement also holds for more general 3-manifolds.)

2.2. Cobordism maps
Heegaard Floer homology is a .3 C 1/-dimensional topological quantum field

theory (TQFT) [71, Theorem 1.1]. That is, to a 3-manifold, Heegaard Floer homology as-
sociates a module, and to a 4-manifold cobordism W from Y0 to Y1, it associates a chain
map

FW W CF�.Y0/ ! CF�.Y1/:

When W is a homology cobordism, FW induces an isomorphism

.FW ˝ id/� W U �1 HF�.Y0/ ! U �1 HF�.Y1/;

where U �1 HF�.Y / D H�.CF�.Y / ˝FŒU � F ŒU;U �1�/ [65, Proof of Theorem 9.1]. A straight-
forward algebra calculation then implies that d -invariants are invariants of homology cobor-
dism. In particular, we have a homomorphism

d W ‚3
Z ! 2Z;

and this homomorphism is surjective, since d.†.2; 3; 5// D �2.
In light of the discussion above, and motivated by the desire to study the homology

cobordism group ‚3
Z, one could define an equivalence relation �, called local equivalence,

on Heegaard Floer chain complexes, where CF�.Y0/ � CF�.Y1/ if there exist F ŒU �-module
chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /. We can now consider the group

D D
®
CF�.Y / j Y an integer homology sphere

¯
= �

under the operation induced by tensor product. This construction yields a homomorphism

‚3
Z ! D

obtained by sending ŒY � to ŒCF�.Y /�. However, it turns out that D is isomorphic to Z, with
the isomorphism being given by ŒCF�.Y /� 7! d.Y /=2.
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2.3. Ribbon homology cobordisms
Ribbon homology cobordisms induce particularly nice maps on Heegaard Floer

homology:

Theorem 2.6 ([8, Theorem 1.19]). Let W be a ribbon homology cobordism from Y0 to Y1.
Then

FW W HF�.Y0/ ! HF�.Y1/

is injective, and includes HF�.Y0/ into HF�.Y1/ as a direct summand.

The proof of Theorem 2.6 relies on considering the double D.W / of W , formed by
gluing W to �W along Y1; they also prove that the analogous statement holds for ribbon
Z=2Z-homology cobordisms. Their approach was inspired by [88].

3. Knot Floer homology

In this section, we will discuss the Heegaard Floer knot invariant, maps induced by
concordances, and various concordance invariants arising from the knot Floer complex. For
expository overviews of knot Floer homology, see [72, Section 10], [37, 54], [29, Section 2],
and [34, Section 3]. Note that [34] uses the same notation and conventions used here (i.e.,
viewing the knot Floer complex as a module over a two-variable polynomial ring), while the
others use a different but equivalent formulation in terms of filtered chain complexes.

3.1. Properties and examples
For simplicity, we will focus on knots in integer homology spheres. Let K be a

knot in an integer homology sphere Y . We can describe the pair .Y; K/ via a doubly pointed
Heegaard diagram H , which consists of a Heegaard diagram for Y with an extra basepoint w.
The knot K is the union of two arcs, specified by connecting the basepoint w to the basepoint
z in the complement of the ˛-arcs, pushed slightly into one handlebody, and connecting z

to w in the complement of the ˇ-arcs, pushed slightly into the other handlebody. See, for
example, [34, Section 1] for more details.

From this data, Ozsváth–Szabo [70] and independently J. Rasmussen [78] construct
a chain complex CFK.H /. One way of constructing this chain complex (see, for example,
[89, Section 1.5]) is as a free, finitely generated, bigraded chain complex over F ŒU; V �, the
second formal variable V corresponding to the second basepoint w. As one would hope, the
chain homotopy type of CFK.H / is an invariant of the pair .Y; K/, and does not depend on
the choice of diagram, or on any of the other choices made in the construction. We often
write CFK.Y; K/, or simply CFK.K/ when Y D S3, to denote this chain homotopy class,
or a representative thereof. Moreover, like the 3-manifold version, knot Floer homology is
natural [41].

Example 3.1. The knot Floer complex of the unknot in S3 is generated over F ŒU; V � by a
single generator x in bigrading .0; 0/ with trivial differential. (This can be computed directly
from the definition of the knot Floer chain complex.)
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Example 3.2. The knot Floer complex of the right-handed trefoil is generated over F ŒU; V �

by a, b, and c with the following differentials and bigradings:

@ gr
a 0 .0; �2)
b Ua C Vc .�1; �1/

c 0 .�2; 0/

(This can be computed directly from the definition of the knot Floer chain complex.)

There is not a simple characterization of finitely-generated, graded modules over
F ŒU; V �, since F ŒU; V � is not a PID. One way to obtain a module over a PID is to set V D 0

on the chain level. (There is a symmetry between U and V , so one could instead choose to
set U D 0.) Taking homology of the resulting chain complex, we obtain a version of knot
Floer homology, namely HFK�.Y; K/ given by

HFK�.Y; K/ D H�

�
CFK.Y; K/=.V D 0/

�
:

If we prefer an even simpler algebraic structure, we can set both U and V equal to zero on
the chain level. Taking homology of the resulting chain complex, we obtain another version
of knot Floer homology, denoted bHFK.Y; K/, namely

bHFK.Y; K/ D H�

�
CFK.Y; K/=.U D V D 0/

�
:

Using a suitable renormalized bigrading, this is the version of knot Floer homology whose
graded Euler characteristic is the Alexander polynomial.

Like the 3-manifold invariant, the knot Floer complex satisfies a Künneth-type for-
mula under connected sums [66, Theorem 1.5]. That is, CFK.Y1#Y2; K1#K2/ is chain homo-
topy equivalent to

CFK.Y1; K1/ ˝FŒU;V � CFK.Y2; K2/:

3.2. Maps induced by concordances
Knot Floer homology also behaves nicely under cobordisms. Consider a cobordism

.W; S/ from .Y0; K0/ to .Y1; K1/, that is, W is a 4-manifold cobordism from Y1 to Y2 and
S � W a properly embedded connected surface with boundary �K0 t K1. The pair .W; S/

induces a module homomorphism

FW;S W CFK.Y0; K0/ ! CFK.Y1; K1/:

When W is a homology cobordism and S is an annnulus, FW;S induces an isomorphism

.FW;S ˝ id/� W .U; V /�1 HFK.Y0; K0/
Š
�! .U; V /�1 HFK.Y1; K1/;

where .U; V /�1 HFK.Y0; K0/ D H�.CFK.Y; K/ ˝FŒU;V � F ŒU; U �1; V; V �1� [89, Theo-

rem 1.7]. When W D S3 � Œ0; 1�, we may simply write FS instead of FW;S .
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Using this additional structure, we define an equivalence relation on these chain
complexes that is well suited to studying the knot concordance group, and more generally,
concordances in homology cobordisms.

Definition 3.3. Two knot Floer complexes, CFK.Y0; K0/ and CFK.Y1; K1/, are locally
equivalent, denoted CFK.Y0;K0/ � CFK.Y1;K1/, if there exist F ŒU;V �-module chain maps

f W CFK.Y0; K0/ ! CFK.Y1; K1/ and g W CFK.Y1; K1/ ! CFK.Y0; K0/;

inducing isomorphisms on .U; V /�1 HFK.Yi ; Ki /.

Remark 3.4. In the literature, this equivalence relation is also referred to as �C-equivalence
[43] and stable equivalence [37].

As in the 3-manifold case above, we can now consider the group

C D
®
CFK.Y; K/ j Y a ZHS3 bounding a ZHB4, K a knot in Y

¯
= �

under the operation induced by tensor product, giving us a homomorphism

OCZ ! C

obtained by sending Œ.Y; K/� to ŒCFK.Y; K/�. (We require Y to bound a ZHB4 to parallel
the definition of OCZ.) By precomposing with the map C ! OCZ, we obtain a homomorphism
C ! C.

The group C is not easy to study. One way to obtain a simpler algebraic structure is
to set V D 0, in which case we can run the analogous construction, that is, we can consider
the group

C0
D

®
CFK.Y; K/=.V D 0/ j Y a ZHS3 bounding a ZHB4, K a knot in Y

¯
= �

where CFK.Y0; K0/=.V D 0/ � CFK.Y1; K1/=.V D 0/ if there exist F ŒU �-module chain
maps

f W CFK.Y0; K0/=.V D 0/ ! CFK.Y1; K1/=.V D 0/;

g W CFK.Y1; K1/=.V D 0/ ! CFK.Y0; K0/=.V D 0/;

inducing isomorphisms on U �1 HFK�.Yi ;Ki /; we call this equivalence relation local equiv-
alence mod V . As in the 3-manifold case, this group C0 is isomorphic to Z; indeed, up to
renormalization, this construction yields the Ozsváth–Szabó � -invariant [67] (see also [73,

Appendix A]).
In a case of mathematical Goldilocks, working over the full ring F ŒU; V � yields a

group that is too complicated to study, while working over the ring F ŒU � D F ŒU;V �=.V D 0/

yields a group that is too simple. Somewhat miraculously, it turns out that working over the
ring F ŒU; V �=.U V D 0/ is just right, at least for knots in S3. The main idea is that although
F ŒU; V �=.U V D 0/ has zero-divisors, it is somehow closer to being a PID than F ŒU; V � is.
Furthermore, for knots in S3, the local equivalence group mod U V is totally ordered, as we
now describe.
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Definition 3.5. We say that
CFK.K1/ � CFK.K2/

if there exists an F ŒU; V �=.U V D 0/-module chain map

f W CFK.K1/ ! CFK.K2/

such that f induces an isomorphism on H�.CFK.Ki /=U /=V -torsion. If

CFK.K1/ � CFK.K2/ and CFK.K2/ � CFK.K1/;

then we say that CFK.K1/ and CFK.K2/ are locally equivalent mod U V .

Remark 3.6. Note that since U and V are both zero-divisors in F ŒU; V �=.U V /, we cannot
invert them directly. Also note that requiring f to induce an isomorphism on the module
H�.CFK.Ki /=U /=V -torsion is ever so slightly stronger than requiring f to induce an iso-
morphism on V �1H�.CFK.Ki /=U /.

This is the same total order as that induced by " in [36]. Indeed, one way to define
the ¹�1; 0; 1º-valued concordance invariant " [35] (see also [11, Section 3]) is as follows:

• ".K/ � 0 if and only if CFK.K/ � F ŒU; V �,

• ".K/ � 0 if and only if CFK.K/ � F ŒU; V �.

In particular, ".K/ D 0 if and only if F ŒU; V � � CFK.K/ � F ŒU; V �.
For knots in S3, we are able to characterize their knot Floer complexes, up to local

equivalence mod U V :

Theorem 3.7 ([11, Theorem 1.3]). Let K be a knot in S3. The knot Floer complex of K is
locally equivalent mod U V to a standard complex, which can be represented by a finite
sequence of nonzero integers. Moreover, if we endow the integers with the following unusual
order:

�1 <Š
�2 <Š

�3 <Š
� � � <Š 0 <Š

� � � <Š 3 <Š 2 <Š 1;

then local equivalence classes mod U V are ordered lexicographically with respect to their
standard representatives.

See Section 4 of [11] for the definition of a standard complex. This characterization
of knot Floer complexes up to local equivalence mod U V is a key step in the definition of
the linearly independent family of concordance homomorphisms

'i W C ! Z; i 2 N

from [11]. The main idea is that 'i .K/ is the signed count of the number of times that i

appears in the sequence of integers parametrizing the local equivalence class mod U V of
CFK.K/. (For symmetry reasons, we actually only consider every other term in the sequence;
see [11, Section 7] for more details.)

For knots in S3, we have the following relationships between �; ", and 'i :
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Theorem 3.8 ([11, Proposition 1.2], [36, Proposition 3.2]). Let K be a knot in S3.

(1) If ".K/ D 0, then 'i .K/ D 0 for all i .

(2) The invariant � is equal to

�.K/ D

1X
iD1

i'i .K/:

In particular, if ".K/ D 0, then �.K/ D 0.

The invariant " can be generalized to a homology concordance invariant [39, Sec-

tion 4], which behaves like a sign under connected sum, in the sense that

• if ".Y1; K1/ D ".Y2; K2/, then ".Y1#Y2; K1#K2/ D ".Y1; K1/, and

• if ".Y1; K1/ D 0, then ".Y1#Y2; K1#K2/ D ".Y2; K2/.

The proof of Theorem 1.8(2) relies on using the filtered mapping cone of [28] to produce a
manifold–knot pair .Y;K/ with ".Y;K/ D 0 and �.Y;K/ D 1. By Theorem 3.8, we know that
if a knot K in a manifold Y is homology concordant to any knot J in S3 and ".Y; K/ D 0,
then �.Y; K/ D 0. Hence K � Y is not homology concordant to any knot in S3. Moreover,
since � is a concordance homomorphism, it follows that any nonzero multiple of .Y; K/ has
" D 0 and � nonzero, hence cannot be homology concordant to any knot in S3.

Remark 3.9. Note that ".K/, �.K/, 'i .K/, and, more generally, the local equivalence class
of CFK.K/ are all invariant under concordances in rational homology cobordisms. In par-
ticular, they all vanish for rationally slice knots. Thus, in order to study CQS , the group of
rationally slice knots, we will need additional structure, as discussed in Section 5.

3.3. Ribbon concordances
As in the case for 3-manifolds, ribbon concordances induce particularly nice maps

on the knot Floer complex:

Theorem 3.10 ([88, Theorem 1.7]). Let S be a ribbon concordance from K0 to K1 in S3 �

Œ0; 1�, and let S 0 denote the concordance obtained by reversing S . Then

FS 0 ı FS W CFK.K0/ ! CFK.K0/

is chain homotopic to the identity, via an F ŒU;V �-equivariant chain homotopy. In particular,
if S is a ribbon concordance from K0 to K1, then bHFK.K0/ is a direct summand of bHFK.K1/

and HFK�.K0/ is a direct summand of HFK�.K1/.

Since knot Floer homology detects the knot genus g.K/ [68], an immediate conse-
quence of the above theorem is that if there is a ribbon concordance from K0 to K1 then
g.K0/ � g.K1/ [88, Theorem 1.3].

2753 Homology cobordism, knot concordance, and Heegaard Floer homology



4. Involutive Heegaard Floer homology

We would like to use the Heegaard Floer package to study homology cobordism.
In light of Theorem 3.7, we see that a richer algebraic structure, namely, chain complexes
over a more complicated ring than F ŒU �, can give us richer invariants. Fortunately for us,
Hendricks and Manolescu [32] endowed the Heegaard Floer chain complex with the addi-
tional structure of a homotopy involution �. Very roughly, this additional data lets us think of
the Heegaard Floer chain complex as a module over (a quotient of) a two-variable poly-
nomial ring, allowing us to employ the techniques used in the proof of Theorem 3.7 to
define an infinite family of Z-valued homology cobordism homomorphisms. These homo-
morphisms lead to the proof of Theorem 1.1. Furthermore, the characterization of such chain
complexes up to a suitable notion of local equivalence is a key ingredient in the proof of The-
orem 1.3.

4.1. Properties and examples
Recall that in the construction of Heegaard Floer homology, we specify our 3-

manifold Y via a pointed Heegaard diagram H D .†;˛;ˇ; z/, where † is a closed, oriented
surface of genus g, and ˛ and ˇ are each a collection of g disjoint embedded circles in †.
Reversing the orientation of † reverses the orientation of Y , as does reversing the roles of
the ˛- and ˇ-circles. In particular, the Heegaard diagram H D .�†; ˇ; ˛; z/ describes the
same manifold as H , namely Y . Thus, there is a sequence of Heegaard moves taking H

to H , inducing an F ŒU �-equivariant chain map

ˆH ;H W CF�.H / ! CF�.H /I

this chain map is well defined since Heegaard Floer homology is natural [41]. There is also
a canonical F ŒU �-equivariant chain complex isomorphism

� W CF�.H / ! CF�.H /

given by the “obvious” identification of the generators of the two chain complexes. Hendricks
and Manolescu show that � D ˆH ;H ı � is a homotopy involution (that is, �2 ' id) and prove
that for a homology sphere Y , the chain homotopy type of the pair .CF�.H /; �/ is an invariant
of Y [32, Proof of Proposotion 2.7]; we will write .CF�.Y /; �/, called the �-complex of Y , to
denote a representative of this equivalence class. (An analogous statement holds for a general
3-manifold equipped with a self-conjugate spinc-structure; for ease of exposition, we have
chosen to focus on homology spheres to eliminate the need to discuss spinc-structures.)

Example 4.1. The �-complex of S3 is .F ŒU �; id/. (The map � is uniquely determined by the
fact that �2 ' id.)

Example 4.2. The �-complex of †.2; 3; 7/ is generated over F ŒU � by a, b, and c with @, �,
and gradings as follows:

2754 J. Hom



@ � gr
a 0 c 0

b Ua C Uc b �1

c 0 a 0

(The map � can be computed by realizing �†.2; 3; 7/ as C1-surgery on the left-handed
trefoil. See [32, Section 6.8].)

We have the following Künneth-type formula for �-complexes of connected sums
[33, Theorem 1.1]:�

CF�.Y1#Y2/; �1#2

�
'

�
CF�.Y1/ ˝FŒU � CF�.Y2/; �1 ˝ �2

�
;

where �1 (respectively �2) denotes the homotopy involution on Y1 (respectively Y2) and �1#2

denotes the homotopy involution on Y1#Y2.

4.2. Cobordism maps
The map � behaves nicely with respect to cobordism maps. For expositional simplic-

ity, we will focus on homology cobordisms. (One can also consider general cobordisms with
a conjugacy class of spinc-structures.) A homology cobordism W from Y0 to Y1 induces a
chain map

FW W CF�.Y1/ ! CF�.Y2/;

which commutes with �, up to homotopy [32, Proof of Proposition 4.9]:

FW ı �1 ' �2 ı FW :

In particular, we can define a refined version of local equivalence as follows:

Definition 4.3. Two �-complexes .C1; �1/ and .C2; �2/ are �-locally equivalent, denoted
.C1; �1/ � .C2; �2/, if there exist F ŒU �-module chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /, such that

f ı �1 ' �2 ı f and g ı �2 ' �1 ı g:

We can now consider the group

I D
®�

CF�.Y /; �
�

j Y an integer homology sphere
¯
= �

under the operation induced by tensor product. This construction yields a homomorphism

‚3
Z ! I

obtained by sending ŒY � to Œ.CF�.Y /; �/�. The additional requirement that the local equiva-
lences homotopy commute with � makes this group more interesting than before. However,
this group is almost too interesting, in the sense that it is very difficult to understand.
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As in the knot case above, a certain algebraic simplification allows us to characterize
elements in this group, up to an ever so slightly weaker notion of equivalence. The main idea
is to append “mod U ” to every statement in Definition 4.3 involving �.

Definition 4.4. Two �-complexes .C1; �1/ and .C2; �2/ are almost �-locally equivalent, if there
exist F ŒU �-module chain maps

f W CF�.Y0/ ! CF�.Y1/ and g W CF�.Y1/ ! CF�.Y0/;

inducing isomorphisms on U �1 HF�.Yi /, such that

f ı �1 ' �2 ı f mod U and g ı �2 ' �1 ı g mod U:

Similarly, we can relax the definition of an �-complex so as to only require that
�2 ' id mod U ; we will call such a complex an almost �-complex.2 Almost �-local equivalence
classes of almost �-complexes are totally ordered, with

.C1; �1/ � .C2; �2/;

if there exists an F ŒU �-module chain map f W C1 ! C2, inducing an isomorphism on
H�.Ci /=U -torsion, such that f ı �1 ' �2 ı f mod U .

Theorem 4.5 ([9, Theorem 6.2]). Every �-complex is almost �-locally equivalent to a stan-
dard complex, which can be represented by a finite sequence of the form .ai ; bi /

n
iD1 where

ai 2 ¹˙1º and bi 2 Z n ¹0º. Moreover, if we endow the integers with the following unusual
order:

�1 <Š
�2 <Š

�3 <Š
� � � <Š 0 <Š

� � � <Š 3 <Š 2 <Š 1;

then almost �-local equivalence classes are ordered lexicographically with respect to their
standard representatives.

The astute reader may notice that Theorem 4.5 looks very similar to Theorem 3.7.
Indeed, the idea is that �-complexes can roughly be thought of as chain complexes over
F ŒU; Q�=.Q2/, which are then very similar to chain complexes over F ŒU; V �. Analogously,
we can define a linearly independent family of homology cobordism homomorphisms

�i W ‚3
Z ! Z; i 2 N:

These homomorphisms can be used to show that the Brieskorn homology spheres
†.2j C 1; 4j C 1; 4j C 3/ span a free infinite rank subgroup of ‚3

Z, proving Theorem 1.1.
Rostovtsev [81] gives an alternate proof of Theorem 4.5 and extends our result to define an
additional, linearly independent integer-valued homology cobordism homomorphism.

Let OI denote the group of almost �-complexes up to almost �-local equivalence. We
have the homomorphism

Oh W ‚3
Z ! OI

2 Here, we use the word “almost” to denote that any statement regarding � should be taken
mod U . In the next section, we use the word “almost” to denote that any statement regarding
�K should be taken mod .U; V /.
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defined by sending ŒY � to Œ.CF�.Y /; �/�. We now describe the main ideas behind the proof
of Theorem 1.3, which states that Seifert fibered spaces do not generate ‚3

Z. Let ‚SF denote
the subgroup of ‚3

Z generated by Seifert fibered spaces. In [9, Section 8.1], we determine
Oh.‚SF/, the image of ‚SF in OI . Recall that elements of OI are finite sequences. Elements in
Oh.‚SF/ are exactly the sequences satisfying a certain monotonicity condition on their terms;
see [9, Theorem 8.1] for the precise statement. We then use the involutive surgery formula
[30, Theorem 1.6] to determine the �-complexes of surgeries on a family of connected sums
of torus knots and iterated cables. The sequences associated to these surgeries do not satisfy
the monotonicity condition of Oh.‚SF/. A similar statement applies to linear combinations of
these surgeries, giving Theorem 1.3.

5. Involutive knot Floer homology

In the previous section, we put additional structure, namely the homotopy invo-
lution �, on the Heegaard Floer chain complex CF�.Y /. In this section, we put additional
structure, namely a skew-graded, skew-equivariant (i.e., interchanges the actions of U and V )
chain map �K , on the knot Floer chain complex CFK.K/. The map �K is not a homotopy invo-
lution; rather, Hendricks–Manolescu [32, Section 6.2] show that �K squares to be homotopic
to the Sarkar map [82], which is induced by moving the basepoints w and z once around the
knot K. The map �K is the additional structure alluded to in Remark 3.9.

5.1. Properties and examples
The map �K is defined in a similar way to �. Consider a doubly-pointed Heegaard

diagram H D .†; ˛; ˇ; z; w/ for a knot K in an integer homology sphere Y . (With minor
modifications, these constructions also work for null-homologous knots in any 3-manifold.)
The doubly-pointed Heegaard diagram H D .�†; ˇ; ˛; w; z/ also describes K � Y , and
thus there is a sequence of Heegaard moves from H to H , inducing a F ŒU; V �-equivariant
chain map

ˆH ;H W CFK.H / ! CFK.H /:

(Care should be taken with regards to the basepoints; see [32, Section 6.2] for details.) There
is also a canonical skew-equivariant isomorphism

�K W CFK.H / ! CFK.H /;

given by the “obvious” identification of the generators of the two chain complexes. Then
�K is defined to be ˆH ;H ı �K . The chain homotopy type of the pair .CFK.H /; �K/ is an
invariant of the knot K in Y [32, Proposition 6.3]. As usual, we write .CFK.K/; �K/ to denote
a representative of this chain homotopy equivalence class, and we call the pair .CFK.K/; �K/

an �K-complex.

Example 5.1. The �K-complex of the unknot in S3 is .F ŒU;V �; id/. (The map �K is uniquely
determined by the fact that it squares to be homotopic to the Sarkar map.)
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Example 5.2. The �K-complex of the right-handed trefoil is described by

@ �K gr
a 0 c .0; �2)
b Ua C Vc b .�1; �1/

c 0 a .�2; 0/

(The map �K is uniquely determined by the fact that it is skew-graded and squares to be
homotopic to the Sarkar map.)

There is a Künneth-type formula for �K-complexes [87, Theorem 1.1],�
CFK.Y1#Y2; K1#K2/; �K1#K2

�
'

�
CFK.K1/ ˝ CFK.K2/; �K1 ˝ �K2 C .ˆ ˝ ‰/ ı .�K1 ˝ �K2/

�
:

See [87, Section 4.2] for the definitions of ˆ and ‰; for an expository overview, see [38,

Section 2].

5.2. Maps induced by concordances
Let .W; S/ be a Z=2Z-homology cobordism from .Y0; K0/ to .Y1; K1/, that is,

W is a Z=2Z-homology cobordism from Y0 to Y1 and S is a concordance from K0 to K1.
(More generally, one can consider spin cobordisms; see [32].) As one would hope, the module
homomorphism FW;S induced by .W; S/ behaves nicely with respect to �K [87, Theorem 1.3]

in the sense that
FW;S ı �K0 ' �K1 ı FW;S :

Based on previous sections, it may now be apparent to the reader what we do next.
We jump straight to the definition of almost �K-local equivalence; the definition of �K-local
equivalence can be obtained by striking out both instances of “mod .U; V /” in the definition
below.

Definition 5.3. Two �K-complexes .C1; �1/ and .C2; �2/ are almost �K-locally equivalent if
there exist F ŒU; V �-module chain maps

f W CFK.Y0; K0/ ! CFK.Y1; K1/ and g W CFK.Y1; K1/ ! CFK.Y0; K0/;

inducing isomorphisms on .U; V /�1 HFK.Yi ; Ki /, such that

f ı �K0

'

�K1 ı f mod .U; V / and g ı �K1

'

�K0 ı g mod .U; V /;

where 'denotes skew-equivariant homotopy equivalence.

We can now consider OIK , the group of �K-complexes modulo almost �K-local equiv-
alence, with the operation induced by tensor product. Note that this group has 2-torsion,
generated by, for example, the figure-eight knot, and hence this group is not totally ordered.
In particular, there are rationally slice knots, such as the figure-eight, with nontrivial image
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in OIK ; this is possible because the (almost) local equivalence class of a knot is an invariant
of concordances in Z=2Z-homology cobordisms, rather than Q-homology cobordisms, as
is the case in the noninvolutive setting. Thus, this toolkit is particularly well equipped for
studying rationally slice knots.

The proof of Theorem 1.9 relies on finding a linearly independent family of ratio-
nally slice knots. The knots under consideration are Kn, the .2n C 1; 1/-cable of the figure-
eight; these knots are rationally slice because the figure-eight is rationally slice, and thus its
.2n C 1; 1/-cable is rationally concordant (i.e., concordant in a rational homology cobor-
dism) to the .2n C 1; 1/-torus knot, which is the unknot.

We compute the almost �K-local equivalence class of .CFK.Kn/; �K/ using bordered
Floer homology [26,50], in particular, its applications to cables [27,77], together with formal
properties of �K , such as the fact that it squares to be homotopic to the Sarkar map. With this
computation in hand, we observe that there is certain structure in .CFK.Kn/; �K/ (roughly,
a particular F ŒU �=U n summand in HFK�.Kn/) which, using the formula for connected
sums of �K-complexes and properties of almost �K-local equivalences, allows us to determine
that the Kn are linearly independent.

6. What next?

As we have demonstrated, the Heegaard Floer package can answer a range of ques-
tions in low-dimensional topology. Do these techniques have the potential to answer any of
the open questions from Section 1?

Question 1.2 asks whether ‚3
Z contains any torsion. The most likely torsion is

order two, generated by a homology sphere admitting an orientation-reversing self-diffeo-
morphism. There are many constructions for building homology spheres with orientation-
reversing self-diffeomorphisms (for example, the double-branched cover of an amphichiral
knot with determinant one, or the splice of a knot complement with that of its mirror), but so
far, there has been no success in obstructing such an example from being homology cobor-
dant to S3. One can consider an algebraic version of the local equivalence group I , by
considering all �-complexes (not just those known to be realized by a 3-manifold) modulo
local equivalence. This algebraic group is known to have two-torsion; the difficulty lies in
finding a 3-manifold that realizes such an algebraic example. At present, computations of
�-complexes are limited to certain special families of manifolds (e.g., Seifert fibered spaces,
surgeries on knots in S3); we hope to improve this shortcoming in the future.

Question 1.4 asks whether surgeries on knots in S3 generate ‚3
Z. This seems like

a hard question to answer with Heegaard Floer homology, as the question about which �-
complexes can be realized by surgery on a knot in S3 then reduces to the question of which
�K-complexes can be realized by knots in S3. Even without the additional structure of �K ,
this is a difficult question; for some partial answers, see [29], as well as more recent progress
in [4,44,62].

As for Questions 1.5 and 1.6, which ask for knots that are not slice in B4 but are
slice in a homology B4 or a homotopy B4, respectively, it seems unlikely that Heegaard
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Floer homology will be able to provide an answer. Indeed, with the current technology, if
the Heegaard Floer package obstructs a knot from being slice in B4, then it also obstructs
the knot from being slice in a homology or homotopy B4. There are other invariants which
may be able to shed light on this question. For example, at present, it remains open whether
or not the Rasmussen s-invariant [79], defined using the Lee [46] deformation of Khovanov
homology [42] (see [5] for an expository overview), vanishes for knots that are slice in a
homology or homotopy B4.

We now turn to Question 1.10, which asks whether there exists a knot K � S3 that
is not slice in B4 but is slice in a rational homology 4-ball W with jH1.W I Z/j odd. It
seems unlikely that Heegaard Floer homology, in its present form, can address this condi-
tion. Note that involutive Heegaard Floer homology gives obstructions to being slice in a
Z=2Z-homology 4-ball; if W is a rational homology 4-ball with jH1.W I Z/j odd, then it is
a Z=2Z-homology ball. However, recall that prior to the advent of involutive Heegaard Floer
homology, there was no way to use Heegaard Floer homology to obstruct a knot (such as the
figure-eight) from being slice in any rational homology 4-ball. Perhaps there is some other
additional structure that we can add to the Heegaard Floer package, yielding new obstruc-
tions. Alternatively, it remains possible that the s-invariant may have something to say about
this question.

Conjecture 1.12 posits that ribbon concordance is a partial order. Zemke [88, Theo-

rem 1.7] proved that if there is a ribbon concordance from K0 to K1, then bHFK.K0/ injects
into bHFK.K1/. Thus, if there is also a ribbon concordance from K1 to K0, then bHFK.K0/ Š

bHFK.K1/. Note that there are infinite families of knots with the same knot Floer homology
[29, Theorem 1]. However, as far as the author knows, there are no known ribbon concordances
between distinct knots in any of those families. Further investigation is needed before we rule
out knot Floer homology as a tool for resolving Conjecture 1.12.

Closely related is Conjecture 1.13, which posits that ribbon Q-homology cobordism
is a partial order on 3-manifolds. There is a ribbon homology cobordism from S3 to Y # � Y

for any homology sphere Y . Taking Y D †.2; 3; 5/, and noting that HF�.†.2; 3; 5/# �

†.2; 3; 5// Š HF�.S3/ Š F.0/ŒU �, we see that we have two distinct 3-manifolds with the
same Heegaard Floer homology and a ribbon homology cobordism in one direction. (As
alluded to above, we do not know of an analogous example in the knot case.) However, since
†.2; 3; 5/# � †.2; 3; 5/ does not bound a simply-connected homology 4-ball [85, Proposi-
tion 1.7], it follows that there is no ribbon homology cobordism from †.2;3;5/# � †.2;3;5/

to S3 (for if there were, we could glue a 4-ball to the S3 end and obtain a simply-connected
homology ball with boundary †.2; 3; 5/# � †.2; 3; 5/). We refer the reader to [8] for further
evidence, some of it coming from various Floer homologies, in support of Conjecture 1.13.

As we have seen, advances in Heegaard Floer homology have answered many ques-
tions about homology cobordism and knot concordance. These successes were not immedi-
ate; they began in 2003, when Ozsváth–Szabó [65,67] defined the homomorphisms

d W ‚3
Z ! 2Z and � W C ! Z:
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The next major step in extracting concordance information from the knot Floer complex was
the definition of " in 2014 [36], which in turn led to two infinite families of concordance
homomorphisms

‡t W C ! R; t 2 Œ0; 2� and 'i W C ! Z; i 2 N;

the former defined by Ozsváth–Stipsicz–Szabó [64], and the latter by Dai, Stoffregen, Truong,
and the author [11]. The algebraic framework necessary to define ‡t and 'i existed since the
inception of knot Floer homology in the early 2000s, yet it took over a decade for anyone to
exploit this structure to define these new homomorphisms. Concurrent with these develop-
ments was the advent of Hendricks–Manolescu’s involutive Heegaard Floer homology [32],
which put new, more refined structure on the Heegaard Floer and knot Floer homology pack-
ages, yielding new homology cobordism homomorphisms and new rational concordance
obstructions. We look forward to seeing whether the Heegaard Floer package in its present
form can be further mined for new applications, to refining the structure on these invariants
even more to prove new theorems, and to developing new, unanticipated tools for resolving
the questions and conjectures that we have posed here.
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