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1. Introduction

Self-homeomorphisms of a topological space can be studied through their mapping
tori. This very basic observation connects surface automorphisms with 3-manifold theory. In
this survey, we focus on recent applications of virtual properties of 3-manifold groups to sur-
face automorphisms and their lifts to finite covers. We collect results and techniques in that
direction. We mention some currently open questions, most of which are reformulated from
more general 3-manifold versions. We review necessary background to make our exposition
accessible to non-expert readers.

Throughout this survey, a surface S refers to a connected compact orientable 2-ma-
nifold, possibly with boundary, and a surface automorphism .S; f / refers to an orientation-
preserving self-homeomorphism f W S ! S . A covering between surface automorphisms
.S 0; f 0/ ! .S; f / refers to an (unramified) covering projection �WS 0 ! S which is equiv-
ariant with respect to the pair of automorphisms (that is, f ı � D � ı f 0). By saying that
a covering .S 0; f 0/ ! .S; f / is finite, regular, characteristic, or so on, we mean that the
referred property holds for S 0 ! S .

2. Surface automorphisms after Nielsen and Thurston

We recall some aspects about surface automorphisms that have been well developed
since the mid-1970s. Our summary puts an emphasis on characterizing dynamical properties
of a surface automorphism in terms of the fundamental group of its mapping torus. To this
end, we denote the mapping torus of any surface automorphism .S; f / as

Mf D
S � R

.x; r C 1/ � .f .x/; r/
;

which is topologically a connected compact orientable 3-manifold, with boundary a possibly
empty disjoint union of tori. Note that we follow the dynamical convention. It makes sure
that translation along the R-factor S � R ! S � RW .x; r/ 7! .x; r C t / descends to the (for-
ward) suspension flow �t WMf !Mf , which is a continuous family of self-homeomorphisms
parametrized by t 2 R, such that �0 is the identity. We denote by �f 2H 1.Mf IZ/ the distin-
guished cohomology class homotopically represented by the natural projectionMf ! R=Z.

2.1. Classification of mapping classes
For surfaces of positive or zero Euler characteristic, the isotopy classes of their auto-

morphisms are easy to describe. When S is a sphere or a disk, any automorphism f of S is
isotopic to the identity. When S is an annulus, parametrized as R=Z � Œ�1; 1�, any automor-
phism f of S is isotopic to either the identity or the involution .xC Z; y/ 7! .�xC Z;�y/.
When S is a torus, parametrized as .R � R/=.Z � Z/, any automorphism f of S is isotopic
to a unique linear automorphism represented by a matrix in SL.2;Z/.

In general, the Nielsen–Thurston classification asserts that the isotopy class of any
surface automorphism falls into one of three types: periodic, reducible, or pseudo-Anosov.
The above description with torus automorphisms provides a prototype of the classification,
and the three types correspond to the representing matrix in SL.2;Z/ being elliptic/central,
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parabolic/central, or hyperbolic, respectively (as a fractional linear transformation on the
upper-half complex plane). In general, a surface automorphism is said to be periodic if it has
finite order under iteration, or reducible if it preserves a union of mutually disjoint, essential
simple closed curves on the surface. A pseudo-Anosov automorphism refers to a surface
automorphism .S; f / such that f preserves a pair of (transversely) measured foliations on
the interior of S , and rescales the measures by some factors � > 1 and ��1, respectively.
Unlike an Anosov torus automorphism, the foliations in the pseudo-Anosov case are allowed
to have prong singularities (having prong number � 3 at points in the interior, or � 1 at the
ends as punctures). We also require the pair of foliations to be transverse to each other except
at a common finite set of singular points. See [8, Exposé 1].

When S has negative Euler characteristic, an automorphism f of S is periodic up
to isotopy if and only if the mapping torus Mf supports the H2 � R geometry (and hence
also the fSL2.R/ geometry with @S ¤ ;); f is reducible up to isotopy if and only if Mf
has nontrivial geometric decomposition; f is pseudo-Anosov up to isotopy if and only if
Mf supports the 3-dimensional hyperbolic geometry H3. Moreover, in the reducible case, a
collection of curves on S for reducing f can be obtained by intersecting any essential torus
or Klein bottle inMf (minimally up to isotopy) with the distinguished fiber S � ¹0º. See [3,

Chapter 1].

2.2. Periodic orbit classes and indices
Given a surface automorphism, one could freely ask if there are any fixed points.

Nielsen’s fixed point theory is more than to answer yes or no. The general theory applies
to continuous self-maps of compact connected simplicial complexes. Instead of considering
individual fixed points, which may disappear or duplicate under homotopy, one will consider
abstract fixed point classes, and distinguish finitely many essential ones from the others. Then
the essential fixed point classes will depend only on the homotopy class of the self-map, and
each of them will guarantee at least one distinct fixed point. Below we follow the mapping
torus approach as suggested by B. Jiang in the survey [13]; see also [11] for more detail.

Let .S;f / be a surface automorphism. Denote by Fix.f /� S the set of fixed points.
For any x 2 Fix.f /, we obtain a 1-periodic trajectory (of the suspension flow) x W R=Z !

Mf (coming from the line x � R in S � R). We say that x; y 2 Fix.f / are of the same fixed
point class if x and y are freely homotopic in Mf . More abstractly, a fixed point class of
f can be defined as a free homotopy loop  in Mf , such that �f ./ D h�f ; Œ�i equals 1.
Every fixed point class p has a well-defined fixed point index ind.f I p/ 2 Z, which can be
described as follows.

Note that Fix.f / � S is a union of mutually disjoint isolated connected closed
subsets, with only finitely many components (since S is compact). The subset Fix.f I p/ �

Fix.f / of fixed point class p is a subunion of those components. If Fix.f I p/ is empty,
ind.f I p/ equals zero. Otherwise, take (a smooth structure of S and) a smooth homotopy
perturbation Qf of f , supported in an open neighborhood U of Fix.f I p/ away from the
rest of Fix.f /; make sure that Qf has only nondegenerate fixed points in U (that is, for any
x 2 Fix. Qf /\ U , the tangent map d Qf jx WTxS ! TxS has no eigenvalue 1). Then ind.f I p/
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can be calculated as the sum of the sign C1 or �1 of det.id � d Qf jx/, where x ranges over
Fix. Qf / \ U .

A fixed point class is said to be essential if its index is nonzero. In particular, every
essential fixed point class is represented by a fixed point of f . If S is closed and if f is
pseudo-Anosov, every fixed point represents a distinct essential fixed point class. In this
case, there are simple rules for telling the fixed point index. When a fixed point x is a k-
prong singularity (of either of the invariant foliations), its index equals 1� k if f preserves
every prong at x, otherwise its index equals 1; when x is not singular, its index equals �1

or 1 according as f preserves or reverses an orientation of the leaf through x. For general
surface automorphisms, it is also possible to characterize all the essential fixed point classes
and their index, in terms of normal forms in the Nielsen–Thurston classification [14].

For any positive integer m 2 N, an m-periodic orbit class of f can be defined as a
free homotopy loop  inMf with �f ./Dm. Them-index of them-periodic class is defined
as the sum of the fixed point indices of  0 with respect to f m, where  0 ranges over all the
free homotopically distinct lifts of  to the m-cyclic cover Mf m . (The indices of different
lifts are actually equal, so the summation only counts one value with suitable multiplicity.)
Finally, essential m-periodic orbit classes are those of nonzero m-index.

2.3. Homological directions
Let .S; f / be a surface automorphism. As every periodic orbit class p is free-

homotopically represented by a periodic trajectory in Mf , its homology class is a well-
defined element Œp� 2 H1.Mf I Z/. Passing to real coefficients, there is a unique minimal
convex cone in H1.Mf I R/ (formed by linear rays emanating from the origin) that contains
all the homology classes of the essential periodic trajectories. Fried shows that this cone
is polyhedral. In other words, it is the convex hull of finitely many extreme rays. If f is
pseudo-Anosov, this cone has codimension zero in H1.Mf I R/. The directions of rays in
the cone are called the (essential) homological directions of the suspension flow. Fried’s
cone of homological directions is exactly dual to the Thurston’s fibered cone that contains
�f 2 H 1.Mf I R/, as we elaborate below, based on Fried’s exposition [8, Exposé 14].

We recall that the Thurston norm is defined for any compact connected orientable
3-manifold N as a seminorm on the real linear space H 1.N I R/. It is nondegenerate if N
supports the 3-dimensional hyperbolic geometry (of finite volume). It is characterized by
the property that for any integral cohomology class � 2 H 1.N I Z/, the Thurston norm
of � is the minimum of the complexity among all properly embedded oriented surfaces
.S; @S/ � .N; @N / homologous to the Poincaré–Lefschetz dual of � in H2.N; @N I Z/.
Here, the complexity of S refers to

Pk
iD1 max.0;��.Si //, where S1; : : : ; Sk enumerate

the connected components of S .
The unit ball of the Thurston norm of N is a (possibly noncompact) convex poly-

hedron of codimension zero in H 1.N I R/, central symmetric about the origin. Its dual is a
(possibly positive codimensional) compact convex polyhedron in H1.N I R/ Š

HomR.H
1.N I R/;R/. Moreover, if � 2 H 1.N I Z/ is fibered (that is, homotopically rep-

resented by a bundle projection onto the circle with surface fibers), Thurston shows that �
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is contained in the cone over an open codimension-one face the Thurston norm unit ball, in
which the integral classes are all fibered. Such cones are called the fibered cones of N , over
the fibered faces of the Thurston norm unit ball in H 1.N I R/. The fibered faces are dual to
a collection of vertices in the dual of the Thurston norm unit ball in H1.N I R/, which we
may reasonably call the flow vertices.

For the mapping torus Mf of a surface automorphism .S; f /, we find a distin-
guished fibered cone in H 1.Mf I R/ that contains the distinguished cohomology class �f .
When S has negative Euler characteristic, the corresponding flow vertex can be figured out
as �ef =2 inH 2.Mf ; @Mf IR/ŠH1.Mf IR/, where ef 2H 2.Mf ; @Mf IZ/ denotes the rel-
ative Euler class of the (oriented, @-transverse) vertical tangent bundle ofMf with respect to
its fibering over R=Z, oriented compatibly to make �f .ef / D �.S/. We can naturally iden-
tify the tangent space ofH1.Mf IR/ at the opposite vertex ef =2 asH1.Mf IR/. Then Fried’s
cone of homological directions consists exactly of those tangent vectors at ef =2 pointing into
(the corner of) the polytope dual to the Thurston norm unit ball.

2.4. Various zeta functions
For any surface automorphism .S; f /, the Nielsen zeta function is a useful tool for

analyzing the iteration dynamics. It can be defined by the following expression:

�N;f .t/ D exp

 
1X
mD1

N.f m/

m
� tm

!
whereN.f m/ denotes the number of essential fixed points of f m, called the Nielsen number
of f m. When f is pseudo-Anosov with stretch factor � > 1, the Nielsen numbers N.f m/
grow exponentially as

lim
m!1

N.f m/1=m D �:

More generally, the above limit superior is equal to the maximum stretch factor among the
pseudo-Anosov components in the Nielsen–Thurston decomposition, or 1 if all the com-
ponents are periodic. In other characterizations, the logarithm of that value is known to be
the mapping-class topological entropy of f . In particular, �N;f .t/ converges absolutely as a
complex analytic function in t in a neighborhood of 0. It is known that �N;f .t/ is a radical
of a rational function in t near 0.

The Lefschetz zeta function �L;f .t/ of .S;f / is defined using the Lefschetz numbers
L.f m/ instead of the Nielsen numbers N.f m/. This makes �L;f .t/ easier to calculate than
�N;f .t/. Indeed, recall that L.f m/ is equal to the alternating sum of the traces of f m� on
H�.S I Q/. It follows that �L;f .t/ is equal to t��.S/ divided by the alternating product of
the characteristic polynomials of f� on H�.S I Q/. The resulting form can be recognized as
(a representative of) the Reidemeister torsion of Mf with respect to �f . This is an instance
of a general connection between twisted Lefschetz zeta functions and twisted Reidemeister
torsions.

Let R be a commutative domain that contains Z. Suppose that �W �1.Mf / !

GL.n; R/ is a linear representation over Rn. The twisted Lefschetz zeta function of .S; f /
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with respect to � is defined as

�
�

L;f
.t/ D exp

 
1X
mD1

P
p ��.p/ � indm.f I p/

m
� tm

!
;

where p ranges over all the m-periodic orbit classes; being a free homotopy loop, p also
represents a conjugacy class in �1.Mf /, so the character �� of � can be evaluated at p, as
the trace of � evaluated at any group element in that conjugacy class; the notation indm.f Ip/
stands for them-index of p with respect to f (so the summation over p is essentially finite);
finally, the whole expression is understood as a formal power series over the field of fractions
F.R/ in an indeterminate t , with exp.z/ D

P1

nD0 z
n=nŠ. In particular, ��

L;f
.t/ is invariant

under homotopy of f and conjugation of �. On the other hand, we simply recall that the
twisted Reidemeister torsion ��;�fMf

.t/ of Mf with respect to �f and � is well defined as
an element in F.RŒt; t�1�/ D F.R/.t/ up to units of RŒt; t�1� (that is, up to factors in the
multiplicative subgroup .RŒt; t�1�/� D R� � tZ); see [9]. Under the above assumptions,
�
�

L;f
.t/ agrees with the power series expansion in t of a unique rational function over F.R/,

and the identity
�
�;�f
Mf

.t/
:

D �
�

L;f
.t/

holds up to units of RŒt; t�1�; see [12] (and also [17, Lemma 8.2]).

3. Virtual homological eigenvalues

Let .S; f / be a surface automorphism. Since H1.S I Z/ is a finitely generated free
abelian group, the induced linear automorphism f�WH1.S I Z/!H1.S I Z/ has a character-
istic polynomial, which we denote as

�f .t/ D detZŒt�.t � id � f�/:

This is a monic polynomial over Z with the property �f .1/ D ˙1. If S has genus g and
h boundary components, �f .t/ factorizes as the product of a reciprocal polynomial of
degree 2g and cyclotomic factors of total degree max.0; h � 1/, because f preserves @S
and descends to an automorphism of the closed surface obtained by filling @S with disks.
Moreover, �f .t/ can be recognized as the (first) Alexander polynomial of Mf with respect
to �f , the latter being well-defined in ZŒt; t�1� up to units.

A homological eigenvalue of a surface automorphism .S; f / refers to a complex
root of the polynomial �f .t/, and a virtual homological eigenvalue of .S; f / refers to a
complex root of the polynomial �f 0.t/ where .S 0; f 0/ ! .S; f / is some finite covering.
We are interested in a general question as to which complex values may occur as virtual
homological eigenvalues of a given surface automorphism. Moreover, how do they reflect
the dynamical complexity of its isotopy class?

We start with the following well-known, simple observation.

Theorem 3.1. If a surface automorphism has no pseudo-Anosov type components in its
Nielsen–Thurston decomposition, then its virtual homological eigenvalues are all roots of
unity.
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Proof. The condition implies that some finite iterate of the given surface automorphism is
isotopic to a finite product of left- or right-hand Dehn twists along mutually disjoint simple
closed curves. Then the characteristic polynomial of that iterate is a power of t � 1. The con-
clusion follows because the condition also holds for any finite covering of the given surface
automorphism.

There are many pseudo-Anosov automorphisms on any surface of negative Euler
characteristic, such that the induced homological action is trivial. However, when .S; f / is
a pseudo-Anosov automorphism with transversely orientable invariant foliations, the stretch
factor � > 1 must occur as a homological eigenvalue. Moreover, if every singularity of the
invariant foliations is formed with an even number of prongs, one may achieve the transverse
orientability condition by passing to a covering .S 0; f 0/ of degree at most 2, so � still occurs
as a virtual homological eigenvalue. Note that the same trick does not apply when there are
singularities of odd prong numbers, because they locally obstruct the transverse orientability,
and they lift locally homeomorphically to any covering.

The above facts lead to the first part of the following theorem. The second part
is truly surprising, known as the gap theorem due to C. T. McMullen [22]. It is proved by
comparing the Teichmüller metric on the Teichmüller space and the Kobayashi metric on
Siegel spaces associated to finite covers.

Theorem 3.2. Let .S; f / be a pseudo-Anosov automorphism with stretch factor � > 1.

(1) If the invariant foliations of .S; f / have no singularities of odd prong numbers,
then � is a virtual homological eigenvalue of .S; f /.

(2) Otherwise, there exists some constant 1 < r < �, depending only on .S; f /,
such that every virtual homological eigenvalue � of .S; f / satisfies j�j < r .

McMullen conjectured the converse of Theorem 3.1. The converse has been proved
by the author [18], as the following theorem. The proof relies on the virtual specialization of
hyperbolic 3-manifold groups.

Theorem 3.3. If a surface automorphism has a pseudo-Anosov type component in its
Nielsen–Thurston decomposition, then it has a virtual homological eigenvalue outside the
complex unit circle.

Remark 3.4. An analogous conjecture for outer automorphisms of finitely generated free
groups is proved by A. Hadari [10]. The desired finite-index normal subgroup therein is con-
structed using nilpotent quotients. Hadari’s result also implies Theorem 3.3 for surfaces with
nonempty boundary.

An effective version of Theorem 3.3 is yet unknown. We pose the following ques-
tion, as analogous to the Kojima–McShane inequality regarding pseudo-Anosov stretch fac-
tors [15].
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Question 3.5. Suppose that .S; f / is an automorphism of a surface of negative Euler char-
acteristic. Does the following inequality hold as � ranges over all virtual homological eigen-
values of .S; f /:

sup
�

log j�j �
1

3� � j�.S/j
� Vol.Mf /‹

Here, Vol.Mf / denotes the Gromov norm ofMf times the volume of a regular ideal hyper-
bolic tetrahedron.

We mention another upper-bound estimate regarding the distribution of virtual
homological eigenvalues. It is a quick consequence of a theorem due to T. T. Q. Lê [16].
Recall that the (multiplicative) Mahler measure of a nonzero complex polynomial P.t/ D

c �
Qd
jD1.t � �j / refers to the positive value M.P / D jcj �

Qd
jD1max.1; j�j j/. In particular,

M.P / � 1 holds for any nonzero P.t/ 2 ZŒt �.

Theorem 3.6. Suppose that � � � ! .S 0
n; f

0
n/ ! � � � ! .S 0

1; f
0
1/ is a cofinal tower of surface

automorphisms which are regular finite coverings of .S; f /. Then

lim
n!1

log M.�n/

ŒS 0
n W S�

�
1

6�
� Vol.Mf /;

where �n denotes the characteristic polynomial of f 0
n� on H1.S 0

nI Z/.

Proof. Note that M.�gm/ D M.�g/
m for any g D f 0

n and any m 2 N. We can find some
sequencemn 2 N, such that the mapping toriM 00

n of .f 0
n/
mn form a cofinal tower of regular

finite coverings over Mf . Then apply [16, Theorem 1.1].

The estimate in Theorem 3.6 would become an equality if the homological torsion
growth conjecture could be proved to that generality [4, 20] (see also [16, Conjecture 1.3]).
That would also imply a positive answer to Question 3.5.

4. Determining properties using finite quotient actions

Let .S; f / be a surface automorphism. Fix a base point of S for speaking of �1.S/.
Using any path from the base point to its image under f , we can construct an automorphism
of �1.S/. Different choices of the path only affect the construction by inner automorphisms
of �1.S/. Therefore, for any characteristic subgroup K of �1.S/, .S; f / induces a well-
defined outer automorphism of the quotient group �1.S/=K, which we denote as Œf �K 2

Out.�1.S/=K/.

Theorem 4.1. Let .S; fA/ and .S; fB/ be automorphisms of a closed surface. If ŒfA�K is
conjugate to ŒfB �K in Out.�1.S/=K/ for every characteristic finite index subgroup K of
�1.S/, then fA and fB are of identical type in the Nielsen–Thurston classification.

Remark 4.2. (1) Theorem 4.1 is a consequence of a theorem due to H. Wilton and
P. A. Zalesskii [28]. They prove that the profinite group completion detects the
geometric decomposition of any finitely generated 3-manifold group. In fact,
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their result implies that fA and fB as in Theorem 4.1 have isomorphic Nielsen–
Thurston decomposition graph decorated with vertex types (as being periodic
or pseudo-Anosov). See [17, Section 12] for an exposition.

(2) The condition in Theorem 4.1 defines an equivalence relation on the set of auto-
morphisms, which passes to an equivalence relation on the mapping class group
Mod.S/. Equivalent mapping classes in this sense are said to be procongruently
conjugate (thinking of anyK as a “principal congruence subgroup” in �1.S/ by
analogy). Any procongruent conjugacy class in Mod.S/ is a disjoint union of
conjugacy classes in Mod.S/. Being procongruently conjugate is equivalent as
having conjugate image under the natural homomorphism Mod.S/ ! Out.b�/,
where b� denotes the profinite completion of � D �1.S/. The homomorphism
naturally factors through the profinite completion of Out.�/, which is very dif-
ferent from Out.b�/ in general. See [17, Section 3] for detailed discussion.

The following theorems are proved in [17].

Theorem 4.3. Let .S;fA/ and .S;fB/ be pseudo-Anosov automorphisms of a closed surface
of genus � 2. If ŒfA�K is conjugate to ŒfB �K in Out.�1.S/=K/ for every characteristic finite
index subgroupK of �1.S/, then fA and fB have identical stretch factor and their invariant
foliations have identical number of singularities of each prong number. In fact, fA and fB
have identical number of fixed points of each index.

Theorem 4.4. Let .S;fB/ be an automorphism of a closed surface. Then there exists a finite
collection B of automorphisms of S with the following property. If .S; fA/ is any automor-
phism, such that ŒfA�K is conjugate to ŒfB �K in Out.�1.S/=K/ for every characteristic finite
index subgroup K of �1.S/, then fA is isotopic to a topological conjugate of some fb 2 B.

Remark 4.5. Theorem 4.4 is equivalent to saying that every procongruent conjugacy class
in Mod.S/ is the disjoint union of finitely many conjugacy classes.

In the pseudo-Anosov case, the finiteness follows immediately from Theorem 4.3
(and Theorem 4.1), together with the well-known finiteness of pseudo-Anosov automor-
phisms with uniformly bounded stretch factor. See also [19] for a more recent finiteness result
regarding profinite completions of finite-volume hyperbolic 3-manifold groups.

Example 4.6. Let S be the torus .R � R/=.Z � Z/. The mapping class group Mod.S/ can
be identified with SL.2;Z/. In 1972, P. F. Stebe [26] discovered a pair of matrices"

188 275

121 177

#
and

"
188 11

3025 177

#
which are not conjugate in SL.2;Z/, or in GL.2;Z/, but are conjugate in GL.2;Z=NZ/ for
any natural number N .

The above example shows that the finiteness in Theorem 4.4 cannot be improved to
uniqueness, in general. Nevertheless, we pose the following question:

2800 Y. Liu



Question 4.7. Let S be a surface of negative Euler characteristic. If .S; fA/ and .S; fB/ are
pseudo-Anosov automorphisms, such that ŒfA�K and ŒfB �K are conjugate in Out.�1.S/=K/
for every characteristic finite index subgroup K of �1.S/, is it true that ŒfA� and ŒfB � are
conjugate in Out.�1.S//?

For a one-holed torus, M. R. Bridson, A. W. Reid, and H. Wilton have answered
Question 4.7 affirmatively [6]. More generally, if one could prove that finite-volume hyper-
bolic 3-manifold groups are profinitely rigid among 3-manifold groups, a positive answer
to Question 4.7 should follow from the bZ�-regularity of profinite isomorphisms as in [19].
See [25] for a survey of the profinite rigidity problem, and [5] for some recent evidence in
finite-volume hyperbolic 3-manifold groups.

Question 4.8. Input a pair of surface automorphisms .S; fA/ and .S; fB/. Is there an algo-
rithm to certify the statement that for all characteristic finite index subgroups K of �1.S/,
ŒfA�K and ŒfB �K are conjugate in Out.�1.S/=K/?

Question 4.9. Let .S; f / be a pseudo-Anosov automorphism on a closed surface of genus
� 2. Is it possible to characterize the Heegaard Floer homology HFC.Mf / [23,24] in terms
of Œf � 2 Out.b�/, where b� denotes the profinite completion of � D �1.S/?

5. Miscellaneous on fibered cones

Let .S; f / be a surface automorphism. For any regular finite coverM 0 of the map-
ping torusMf , the pullback �0 of the distinguished cohomology class �f lies in the interior
of a unique fibered cone inH 1.M 0IR/, which we simply refer to as the distinguished fibered
cone of M 0. The induced action of deck transformations on H 1.M 0I R/ fixes �0, and hence
preserves the distinguished fibered cone.

Theorem 5.1. If .S; f / is a pseudo-Anosov automorphism on a surface of negative Euler
characteristic, then for any natural number n, there exists a finite regular cover M 0 of Mf ,
such that the distinguished fibered cone of M 0 has at least n distinct deck transformation
orbits of codimension-one faces.

Remark 5.2. (1) Theorem 5.1 is a key ingredient in the proof of Theorem 3.3. For
the case with @S D ;, see [18, Problem 1.5] for an outline in dual terms of cones
of homological directions; see also [19, Section 6.2] for a more detailed proof.
The case with @S ¤ ; can be derived easily using a well-known hyperbolic
Dehn filling trick.

(2) By virtual specialization, every finite-volume hyperbolic 3-manifold is virtually
fibered, and has unbounded virtual first Betti numbers [2]. Moreover, the virtual
numbers of fibered cones are unbounded [1]. Theorem 5.1 shows that any fibered
cone can virtually become as complicated as you want.
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Question 5.3. Let .S; f / be a pseudo-Anosov automorphism of a surface of negative Euler
characteristic. For any primitive periodic trajectory  of �1.Mf /, does there always exist
a regular finite cover M 0 of Mf such that the homological direction along Œ 0� is extreme
on the distinguished cone of homological directions of M 0? Here,  0 denotes any preimage
component of  in M 00, and Œ 0� denotes its homology class in H1.M I R/.

In other words, is every primitive periodic trajectory covered by some virtual peri-
odic trajectory in an extreme virtual homological direction?

Question 5.4. LetN be an orientable finite-volume hyperbolic 3-manifold. For any embed-
ded closed geodesic  , does there always exist a finite coverN 0 ofN with a fibered class �0,
such that some preimage component  0 of  is freely homotopic to a periodic trajectory of
the pseudo-Anosov suspension flow on N 0 dual to �0?

In other words, is every primitive closed geodesic covered by some (essential) virtual
periodic trajectory, with respect to some virtual fibering?

Question 5.5. Let N be an orientable finite-volume hyperbolic 3-manifold with cusps. In
similar brief words, is every peripheral slope covered by some virtual slope of degeneracy,
with respect to some virtual fibering?

Any cohomology class  2 H 1.Mf I Z/ in the distinguished fibered cone is homo-
topically represented by a bundle projection Mf ! R=Z. The monodromy of that bundle
defines a surface automorphism whose mapping torus is homeomorphic to Mf . If f is
pseudo-Anosov, then the surface automorphism .S ; f  / associated to  is also pseudo-
Anosov, and its suspension flow is isotopic to �t up to parametrization.

Fried showed that the stretch factor �W 7! �.f  / extends to a continuous function
on the distinguished fibered cone of �f valued in .1;C1/, such that �.r / D �. /r holds
for any r > 0. Moreover, restricted to the corresponding fibered face of the Thurston norm
unit ball, 1= log� is a strictly concave function, and converges zero as  tends to the bound-
ary. McMullen introduced a Teichmüller polynomial in the group ring ‚ 2 ZH , where H
denotes the free abelianization of �1.Mf /. One may think of ‚ as a multivariable Laurent
polynomial by fixing a basis ofH , and‚ can be characterized by the property that�. / is the
maximum modulus among the zeros of the  -specialization of ‚ (that is,

P
h2H aht

 .h/

in ZŒt; t�1�, denoting ‚ D
P
h2H ahh in ZH and  WH ! Z in H 1.Mf I Z/). With the

Teichmüller polynomial, McMullen reproved the above properties of Fried’s stretch factor
function �, and went on to ask if the unique minimum of � on the distinguished fibered face
is achieved at a rational point (that is, a point in H 1.Mf I Q/) [21].

H. Sun exhibits examples where the rationality holds, and other more generic exam-
ples where the rationality fails [27]. The following theorem summarizes some properties of
the stretch factor function as discovered in [27].

Theorem 5.6. If .S; f / is a pseudo-Anosov automorphism, then the stretch factor minimiz-
ing point  0 on the distinguished fibered face of Mf is either rational or transcendental.
Moreover, for any finite cover M 0 of Mf , then the stretch factor minimizing point on the
distinguished fibered face of M 0 is the pullback of  0 divided by ŒM 0 W Mf �.
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As is implied by Theorem 5.6, the rationality/transcendence of the stretch factor
minimizing point is a property that depends only the fibered cone, and is a commensurability
class invariant with respect to cone in a certain sense.

We record the following question as suggested in Sun [27].

Question 5.7. Let N be a finite-volume hyperbolic 3-manifold. Does there always exist a
finite cover N 0 of N , such that N 0 has a fibered face on which the stretch factor function is
minimized at a transcendental point?

In [7], D. Calegari, H. Sun, and S. Wang initiate a systematic study of commensu-
rability relations of surface automorphisms. A pair of surface automorphisms .SA; fA/ and
.SB ; fB/ are said to be commensurable if .SA; f kA / and .SB ; f lB/ admit a common finite
covering surface automorphism for some natural numbers nonzero integers k and l . This
is equivalent to saying that the mapping tori MA of .SA; fA/ and MB of .SB ; fB/ admit a
common finite cover such that the distinguished cohomology classes �A and �B are pulled
back to rationally commensurable cohomology classes.

With natural extension of the terminology to 2-orbifold automorphisms, Calegari,
Sun, and Wang prove the following theorem.

Theorem 5.8. The commensurability class of any pseudo-Anosov surface automorphism
has a unique (possibly orbifold) minimal member.

Remark 5.9. Theorem 5.8 contrasts the well-known fact that the commensurability class of
any arithmetic hyperbolic 3-manifold has infinitely many orbifold minimal members.
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