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Abstract

This is a survey. The main subject of this survey is the homotopical or homological nature
of certain structures which appear in classical problems about groups, Lie rings and group
rings. It is well known that the (generalized) dimension subgroups have complicated com-
binatorial theories. In this paper we show that, in certain cases, the complexity of these
theories is based on homotopy theory. The derived functors of nonadditive functors, homo-
topy groups of spheres, group homology, etc., appear naturally in problems formulated in
purely group-theoretical terms. The variety of structures appearing in the considered con-
text is very rich. In order to illustrate it, we present this survey as a trip passing through
examples having a similar nature.
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1. Introduction

It would be nice to discuss the title first. What will we mean by “group theory”?
Obviously, not a collection of funny stories on various constructions of groups with exotic
properties, as well as not a classification of groups from the point of view of certain structure
theory. In this paper, the groups will be the main category we will work in. In some cases
it will be changed by Lie rings over integers. So, for us the “group theory” will mean just a
(mostly functorial) life inside the category of groups.

We will not define the homotopy pattern as a concept. The term pattern itself is
multi-valued. It is used in different philosophical contexts and usually is understood intu-
itively. One can try to define it after reading this paper. Somebody can understand it as a
system of signs of homotopy origin or a collection of relations that comes from the homo-
topy theory.

The main claim, or “formula,” which we state here is the following abstract relation:

.ˆ/
Intersection of subsctructures

Obvious part
� Homotopy pattern:

We will take some structure like a group, group ring, Lie ring or universal enveloping alge-
bra, consider certain substructures, their intersection, take its quotient by some obvious part
and see that, in many cases, this quotient contains elements of homotopical or homological
nature. An obvious part is not defined in a unified way, usually it is a maximal substructure
of the intersection defined using a given type of operations (for example, it is not an intersec-
tion itself). As a rule, the obvious part is a more explicit construction than the intersection of
substructures. One can consider the left-hand site of the formula .ˆ/ as “implicity modulo
explicity,” or define a hierarchy of the explicity and take the quotients of its terms.

It is a time to stop saying general words and do some math. Let G be a group,
ZŒG� its integral group ring, and b a two-sided ideal of ZŒG�. The problem of identification
of the subgroup

D.G;b/ WD G \ .1C b/ D hg 2 G j g � 1 2 bi

is a fundamental problem in the theory of groups and group rings. It is often the case that a
certain normal subgroupN.G;b/ ofG is easily seen to be contained inD.G;b/ and explicitly
defined in terms of G only, without using the group ring (and is the largest subgroup with
such a property). The computation of the quotient D.G; b/=N.G; b/ usually becomes a
challenging problem. This case will be the first example of our formula .ˆ/. Various choices
of the ideal b lead to the derived functors inside the quotients D.G; b/=N.G; b/. We will
discuss the derived functors and their appearance in this context in Section 2.

The main examples of the above type are classical dimension subgroups. Let g
be the augmentation ideal of ZŒG�. The subgroups Dn.G/ WD G \ .1 C gn/, n � 1 are
known as dimension subgroups. It is easy to see that, for any G and n � 1, the dimen-
sion subgroups contain the terms of lower central series of G: n.G/ � Dn.G/. The lower
central series are defined inductively as follows: 1.G/ WD G, nC1.G/ WD Œn.G/; G� D

hŒx; y�; x 2 n.G/; y 2 GiG , n � 1. Is it true thatDn.G/D n.G/? This problem was open
for many years (see Section 5 for some history). Our formula .ˆ/ states that the dimension
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quotients Dn=n may contain certain elements of homotopical nature. This is exactly the
case. Section 5 is about it. In particular, we will show in details in Section 5 how an element
Z=3 � �6.S

2/ is related to the 3-torsion in dimension quotients for Lie rings.
The formula .ˆ/, which presents not a rigorous statement but a feeling, goes through

the paper. In Section 3 we will see that the homotopy groups of certain spaces can be
described as intersections of subgroups in a group modulo a natural commutator subgroup.
In particular, the homotopy groups of the 2-sphere are given in this way. This is the well-
known Wu formula and its variations. Section 4 is about combinatorics of Wu-type formulas.
One can see examples of homotopy patterns as combinations of brackets in groups and Lie
rings. As we mentioned already, Section 5 shows how these combinations can be applied to
the classical dimension problem.

Section 6 is a bit isolated, however, its subject fits smoothly in a general context of
the paper. Section 6 is about the method of construction of functors via (derived) limits. We
show how to present certain derived functors, group homology, the forth dimension quotient
via limits over the category of group presentations. So the theory of limits becomes a unified
theory for different functors discussed in this paper. At the end of Section 6, we briefly discuss
the so-called fr-language, a combinatorial-linguistic game which can be used in the study of
functors.

On October 2, 2021, my friend and teacher Inder Bir Singh Passi passed away. For
all those 19 years that we were in contact, I was deeply touched by his delicacy, kindness,
and empathy for other people. In 2002, he invited me to visit India for the first time. That
visit changed my life. I dedicate this text to his memory.

2. Derived functors

The derived functors in the sense of Dold–Puppe [10] are defined as follows. For an
abelian groupA and an endofunctor F on the category of abelian groups, the derived functor
of F is given as

LiF.A; n/ D �i

�
FKP�Œn�

�
; i � 0; n � 0;

where P� ! A is a projective resolution of A, and K is the Dold–Kan transform, inverse
to the Moore normalization functor from simplicial abelian groups to chain complexes. For
simplicity, we write LiF.A/ WD LiF.A; 0/.

Derived functors appear naturally in the theory of Eilenberg–MacLane spaces,
Moore spaces and general homotopy theory. For example, for an abelian groupA, homology
H�.A/ can be filtred in a way that the graded pieces are derived functors of the exterior
powers Liƒ

j .A/ [6]. In particular, there exist the following natural exact sequences:

0 ! ƒ3.A/ ! H3.A/ ! L1ƒ
2.A/ ! 0;

0 ! ƒ4.A/ ! H4.A/ ! L1ƒ
3.A/ ! 0:

These exact sequences split as sequences of abelian groups but do not split naturally. This is
a common situation, the homology and homotopy functors usually present nontrivial gluing
of derived functors of different type.
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As a rule, the derived functors have a complicated structure. Here we will describe
a couple of them, in a sense the simplest ones, and show how they appear in the context of
group rings. First, let us recall the well-known description (see, for example, MacLane [25]),
of the derived functor of the tensor squareL1 ˝2 .A/D Tor.A;A/. Given an abelian groupA,
the group Tor.A;A/ is generated by the n-linear expressions �h.a1; a2/ (where all ai belong
to the subgroup hA WD ¹a 2 A j ha D 0º, h > 0), subject to the so-called slide relations

�hk.a1; a2/ D �h.ka1; a2/; (1)

for all i whenever hka1 D 0 and ha2 D 0, and an analogous relation, where the roles of
a1; a2 are interchanged.

The natural projection of the tensor square to the symmetric square ˝2 ! S2

induces a natural epimorphismL1 ˝2 .A/!L1S2.A/which maps the generator �h.a1; a2/

of L1 ˝2 .A/ D Tor.A;A/ to the generator ˇh.a1; a2/ of L1S2.A/ so that the kernel of this
map is generated by the elements �h.a; a/; a 2 hA.

The functor L1S2 appears as a quadratic piece of the homology of Eilenberg–
MacLane spaces H5K.�; 2/:

0 ! L1S2.A/ ! H5K.A; 2/ ! Tor.A;Z=2/ ! 0:

It is shown by Jean in [22] that the first derived functor of the symmetric cube can
be described as follows:

L1S3.A/ '
�
L1S2.A/˝ A

�
= JacS ; (2)

where JacS is the subgroup generated by elements of the form (Jacobi-type elements)

ˇh.x1; x2/˝ x3 C ˇh.x1; x3/˝ x2 C ˇh.x2; x3/˝ x1

with xi 2 hA.
Recall one more property of the functor L1S2. Suppose that an abelian group A

is presented as a quotient A D Q=U , for a free abelian Q and its subgroup U . Then
S2.A/;L1S2.A/ are naturally isomorphic to the zeroth and first homology of the Kozsul-type
complex [1]

ƒ2.U / ! U ˝Q ! S2.Q/:

The maps in this sequence are natural and can be easily recognized. Now consider the fol-
lowing diagram with exact columns:

ƒ2.U / // //
��

��

U ˝Q //
��

��

S2.Q/

ƒ2.Q/ // //

����

Q˝Q //

����

S2.Q/

L1S2.A/ // // ƒ2.Q/=ƒ2.U / // Q=U ˝Q // // S2.A/

(3)
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All vertical maps in this diagram are obvious, the middle horizontal sequence is the classical
Kozsul short exact sequence. The lower sequence is exact.

Now we return to the theory of nonabelian groups. Let F be a free group, R its
normal subgroup, f D .F � 1/ZŒF �, r D .R� 1/ZŒF �, as always. Let us describe the general-
ized dimension subgroupF \ .1C rf C f3/. Obviously, this subgroup contains 2.R/3.F /,
however, this is not a complete description. In order to find the remaining part, denote
Q WD Fab , U WD R=R \ ŒF; F �. Observe now that there are natural vertical isomorphisms

ƒ2.Q/=ƒ2.U / // Q=U ˝Q

2.F /
2.R/3.F /

// f2
rfCf3

and the lower map is induced by g 7! g � 1. That is, the needed generalized dimension
quotient can be described as (see [16] for another proof of this statement)

F \ .1C rf C f3/

2.R/3.F /
D L1S2.Gab/; (4)

whereG D F=R. It is easy to lift the element fromL1S2.F=R2.F // to F \ .1C rf C f3/.
Given ˇh.a1; a2/, denote by f1; f2 the preimages of a1; a2 in F , then f h

1 ; f
h

2 2 R2.F /.
Now the needed image is given as Œf1; f2�

h.
The identification (4) is an example of a situation described in our formula .ˆ/.

The subgroup 2.R/3.F / is the maximal obvious subgroup of the intersection
F \ .1C rf C f3/. In general, for two ideals a;b, the maximal obvious part ofD.F; a C b/
is the productD.F;a/D.F;b/. In the case above,D.F; rf/D 2.R/ andD.F; f3/D 3.F /.
For the situation of arbitrary ideals a and b, the quotient

D.F; a C b/
D.F; a/D.F;b/

shows how these ideals are “linked” in ZŒF � and in many cases has a homological descrip-
tion, what agrees with our formula .ˆ/.

Here is one more example related to the functor L1S2.
Recall the so-called Fox subgroup problem (see [13, p. 557]; [4, Problem 13]; [14]).

It asks for the identification of the normal subgroup F.n; R/ WD F \ .1 C rfn/ for a
free group F and its normal subgroup R. A solution to this problem has been given by
I. A. Yunus [37] and Narain Gupta [14, Chapter III]. It turns out that, while F.1;R/ D 2.R/

and F.2;R/D ŒR\ 2.F /;R\ 2.F /�3.R/, the identification of F.n;R/;n� 3, is given
as an isolator of a subgroup. For instance, F.3;R/ D

p
G.3;R/, where

G.3;R/ WD 2

�
R \ 3.F /

���
R \ 2.F /;R

�
; R \ 2.F /

�
4.R/:

It is shown in [31] that there is a natural isomorphism
F.3;R/

G.3;R/
' L1S2

�
R \ 2.F /

2.R/.R \ 3.F //

�
:
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As in the simplest example, the derived functorL1S2 can be lifted to the generalized
dimension subgroup. This gives a complete description of the third Fox subgroup,F.3;R/D

G.3;R/W , where W is a subgroup of F , generated by elements

Œx; y�mŒx; sy �
�1Œy; sx �

with

xm
D rxsx ; rx 2 R \ 3.F /; sx 2 2.R/;

ym
D rysy ; ry 2 R \ 3.F /; sy 2 2.R/:

Higher generalizations of this description are of interest. For instance, the complete descrip-
tion of the fourth Fox subgroup F \ .1C rf4/ should be related to the derived functors of
certain cubical functors.

The above examples lie at the tip of an iceberg, and present the simplest illustra-
tion of a deep relation between generalized dimension subgroups and derived functors. The
derived functors of high degree polynomial functors, as well as subgroups defined by ideals,
have complicated structure. In many cases the same kind of tricks as above, like diagram
chasing together with group-theoretical identifications, lead to surprising connections.

Here are some other examples of descriptions of the generalized dimension sub-
groups which use the derived functors (we assume that G D F=R):

F \ .1C r2f C f4/

3.R/4.F /
D L2L3

s .Gab/;

F \ .1C f.F 0 � 1/C rf3
C f4/

Œ2.R/; F �4.F /
D L1S3.Gab/;

F \ .1C frf C f4/

Œ2.R/; F �4.F /
D L1S3.Gab/ .provided Gab is 2-torsion-free/:

For an abelian group A, the third super-Lie functor L3
s .A/ is generated by brackets ¹a; b; cº,

a; b; c 2 A, which are additive in each variable with the following relations: ¹a; b; cº D

¹b; a; cº, ¹a; b; cº C ¹c; a; bº C ¹b; c; aº D 0. The derived functors of higher super-Lie
functors appear in the description of the subgroup F \ .1C rnf C fnC2/ for n � 2.

Some exotic examples of the same nature can be found in [30]. In particular, there
are the following descriptions of the generalized dimension subgroups:

F \ .1C rfr C sr/
2.S/3.R/

D L1S2
�
H2.G/

�
;

F \ .1C s2r C r2fr/
3.S/4.R/

D L2L3
s

�
H2.G/

�
;

where S D ŒF;R�, s D .S � 1/ZŒF � and H2.G/ the second integral group homology.

3. Homotopy pushouts

In this section we will see that not only derived functors but also the homotopy
groups of certain spaces can be presented in group-theoretical terms. We start with the sim-
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plest case. Let G be a group, and R;S its normal subgroups. Consider a homotopy pushout

K.G; 1/ //

��

K.G=R; 1/

��

K.G=S; 1/ // X

where the maps between classifying spaces K.�; 1/ are induced by natural epimorphisms
G ! G=R,G ! G=S . Classical van Kampen theorem implies that �1.X/D G=RS . In [8],
the second homotopy group of X is described as follows:

�2.X/ '
R \ S

ŒR; S�
:

This result gives a topological interpretation of the difference between the intersection and
the commutator of a pair of subgroups. (For a pair R; S of normal subgroups of a free
group F , ŒR;R� \ ŒS; S� � ŒR; S�. One can prove this as an exercise.)

A fact that the second homotopy group is related to a certain group-theoretical
construction is not surprising. The theory of (non)aspherical group presentations, identity
sequences, etc., is about the properties of the second homotopy group of a standard complex
constructed from a given group presentation. Next we will show how to extend the above
result for the case of three normal subgroups.

Let R; S; T be normal subgroups of G. Define an analog of the commutator sub-
group as

JR;S; T K WD ŒR \ S; T �ŒS \ T;R�ŒT \R;S�:

Consider a homotopy pushout

K.G; 1/ //

��

K.G=R; 1/

��

~~

K.G=S; 1/

��

//

��

K.G=RS; 1/

��

K.G=T; 1/

��

// K.G=RT; 1/

~~
K.G=ST; 1/ // X

2812 R. Mikhailov



The lower homotopy groups of X are described as follows (see [11]):

�1.X/ ' G=RST;

�2.X/ '
RS \RT

R.S \ T /
;

�3.X/ '
R \ S \ T

JR;S; T K
:

At first glance, it might seem that RS\RT
R.S\T /

is not symmetric in R; S; T and that the sub-
groupR plays a special role. However, the homotopy pushoutX is symmetric and the above
description of �2 provides a proof of the following isomorphisms:

RS \RT

R.S \ T /
'
SR \ ST

S.R \ T /
'
TR \ TS

T .R \ S/
:

The above description shows that the third homotopy group appears quite naturally
in the context of group theory. Next we will show how to get a purely group-theoretic result
using given homotopy identifications.

For a triple of normal subgroup R; S; T of G, consider the corresponding ideals
in ZŒG� W r WD .R � 1/ZŒG�, s WD .S � 1/ZŒG�, and t WD .T � 1/ZŒG�. An obvious ring-
theoretic analog of the subgroup JR;S; T K is the following ideal:

..r; s; t// WD r.s \ t/C .s \ t/r C s.t \ r/C .t \ r/s C t.r \ s/C .r \ s/t:

It is easy to check that, for any w 2 JR;S; T K, w � 1 2 ..r; s; t// and then one asks about the
structure of the quotient

G \ .1C ..r; s; t///
JR;S; T K

:

It is shown in [21] that there exists the following commutative diagram:

R\S\T
JR;S;T K

// r\s\t
..r;s;t//

��

�2.�X/ // H2.�X/

Here X is the homotopy pushout described above, �X is the loop space, the lower hori-
zontal map is the Hurewicz homomorphism, while the upper is the natural map induced by
g 7! g � 1. For a connected space Y , the kernel of the second Hurewicz homomorphism
�2.Y / ! H2.Y / is a 2-torsion group [21]. As a consequence, we get the following theorem
from [21].

Theorem 3.1. For any group G and its normal subgroups R;S; T , the quotient
G \ .1C ..r; s; t///

JR;S; T K

is an abelian 2-torsion group.
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The author does not know how to prove this results without using the homotopy
theory.

What about the higher homotopy groups? Two normal subgroups give a possibility
to model �2 for a certain space, three normal subgroups correspond to �3. Is it true that n
normal subgroups of a group allow constructing a space with a group-theoretical description
of its �n? The answer is “yes,” however, under certain conditions. For a group G and its
normal subgroupsR1; : : : ;Rn, n � 2, construct the homotopy pushout of the n-dimensional
cubical diagram with 2n � 1 classifying spacesK.G=

Q
i2I Ri /, I � ¹1; : : : ; nº. There exist

the so-called connectivity conditions on the collection of subgroups Ri , which imply that
(see [11])

�n.homotopy pushout/ '
R1 \ � � � \Rn

JR1; : : : ; RnK
;

where
JR1; : : : ; RnK WD

Y
I[JD¹1;:::;nº;I\JD;

� \
i2I

Ri ;
\
j2J

Rj

�
:

The main example we will consider here is the Wu formula for homotopy groups
of S2. Let F D F.x1; : : : ; xn/ be a free group of rank n � 2. Consider the following normal
subgroups of F :Ri D hxi i

F , i D 1; : : : ; n,RnC1 D hx1x2 : : : xniF . The homotopy pushout
of a diagram of the corresponding 2n � 1 classifying spaces is S2. Therefore we get the
following:

�nC1.S
2/ '

R1 \ � � � \RnC1

JR1; : : : ; RnC1K
:

This is a version of the Wu formula, proved in [36] using simplicial methods. In this particular
case, the above commutator subgroup equals to the symmetric commutator subgroup

ŒR1; : : : ; RnC1�S WD

Y
�2†nC1

�
: : : ŒR�.1/; R�.2/�; : : : ; R�.nC1/

�
:

Here †nC1 is the group of .nC 1)-permutations. That is, the homotopy groups of S2 can
be presented as

�nC1.S
2/ '

R1 \ � � � \RnC1

ŒR1; : : : ; RnC1�S
:

It turns out that the above intersection modulo the symmetric commutator coincides with the
center of the quotient of the free group F modulo the symmetric commutator, that is,

�nC1.S
2/ ' Z

�
F=ŒR1; : : : ; RnC1�S

�
:

A generalization of this construction to the higher spheres, as well as Moore spaces, is given
in [32]. For any n; k > 3, a finitely generated group Gn;k given by explicit generators and
relations is constructed such that �n.S

k/ ' Z.Gn;k/. The group Gn;k is defined in [32] as a
certain quotient of the amalgamated square of the pure braid group on n strands.

Should we mention that the presentation of homotopy groups in this section follows
the idea of our formula .ˆ/? It is always an intersection of some subgroups modulo an
obvious part. In this way, one can reflect on the difference between explicity of terms like
RS \RT and R.S \ T /.
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4. Wu-type formulas

What are the first questions that come to mind when you look at Wu formula for
homotopy groups of S2? How to get some results on ��.S2/ using group theory? Can one
find any new element from ��.S

2/ using its group-theoretic presentation? How to present
generators of the known elements of the homotopy groups in terms of the free group? Here
we will briefly discuss the latter question.

We know that �3.S
2/ D Z, �4.S

2/ D Z=2, �5.S
2/ D Z=2, �6.S

2/ D Z=12; : : :

all homotopy groups in degree > 1 of S2 are nonzero (see [20]). In general, the sequence
of finite abelian groups �n.S

2/, n � 4, is one of the most mysterious objects in math, it is
difficult to speculate how far we are from its understanding. It is a strange luck that we can
realize this extremely complicated sequence as a series of simply formulated subquotients
of free groups.

Looking at the Wu formula, one can also ask the following. What about other alge-
braic systems, different from groups? Clearly, the same type of quotients can be considered
for associative rings, Lie rings, etc. As a rule, the answers will be easier. In the associative
case, this is almost obvious. The case of Lie rings (over Z) is interesting and meaningful.
Let Ln D L.y1; : : : ; yn/, n � 2 be a free Lie ring over Z. Consider its ideals Ii D .yi /

L,
i D 1; : : : ; n, InC1 D .y1 C � � � C yn/

L. Define the Lie analog of the symmetric commutator
of ideas

ŒI1; : : : ; InC1�S WD

Y
�2†nC1

�
: : : ŒI�.1/; I�.2/�; : : : ; I�.nC1/

�
:

There is the following isomorphism:
I1 \ � � � \ InC1

ŒI1; : : : ; InC1�S
'

M
i�1

E1
i;n; (5)

where E1
�;� is the first page of the Curtis spectral sequence, defined via derived functors as

E1
i;j D Lj Li .Z; 1/:

Here Li is the i th Lie functor (see [7] for the discussion of this spectral sequence and prop-
erties of derived functors). The values of E1

�;� are known and can be described in terms of
Lambda-algebra (see [5,23]).

Now let us return to the problem of describing the generators in terms of free groups
or Lie rings. It is clear that the generators can be chosen in different ways, since we work
modulo the symmetric commutators. However, we try to find those with a simple form. Here
are the results in low dimensions (see [2]).

Case n D 2. In this case, the generators are given as commutators Œx1; x2� in the group, as
well as Œy1;y2� the Lie ring case (here we will write the group-expressions in terms of x’s and
Lie ring expressions in terms of y’s). Indeed, Œx1; x2� 2 R1 \R2 \R3 n ŒR1; R2; R3�S . In
this case,R1 \R2 \R3 D 2.F /, ŒR1;R2;R3�D 3.F / and 2.F /=3.F /' Z ' �3.S

2/.
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Case n D 3. In this case, �4.S
2/ D Z=2, E1

4;3 D Z=2, E1
i;3 D 0, i ¤ 4. The generators of

these Z=2-terms are given by�
Œx1; x2�; Œx1; x2x3�

�
;

�
Œy1; y2�; Œy1; y3�

�
:

It can be easily checked that these terms lie inR1 \ � � � \R4 and I1 \ � � � \ I4, respectively.
Since we work in low dimensions, it can be proved directly that they do not belong to the
symmetric commutators.

Case n D 4. This case is just a suspension of the previous one, �5.S
2/D Z=2,E1

8;4 D Z=2,
E1

i;4 D 0, i � 8. The generators are given as��
Œx1; x2�; Œx1; x2x3�

�
;
�
Œx1; x2�; Œx1; x2x3x4�

��
and ��

Œy1; y2�; Œy1; y3�
�
;
�
Œy1; y2�

�
; Œy1; y4�

��
:

The fact that these elements lie in the intersection of subgroups Ri or ideals Ii is obvious.
To prove that they do not lie in the symmetric commutators, we need some homotopy theory.
It can be done using simplicial methods, by realizing these elements as cycles in the Milnor
construction F ŒS1� and its Lie analog.

Case n D 5. This case is already complicated,�6.s
2/D Z=12,E1

6;5 D Z=3,E1
8;5 DE1

16;5 D

Z=2, E1
i;5 D 0, i ¤ 6; 8; 16. This horizontal line is the first place in the spectral sequence

where one can see a nontrivial gluing of the E1-term: two cells in degrees 8 and 16 with
values Z=2 are glued into Z=4 � �6.S

2/. It is easy to write down the generator of E1
16;5,

since it comes as a suspension of the previously written element E1
8;4, namely���

Œy1; y2�; Œy1; y3�
�
;
�
Œy1; y2�

�
; Œy1; y4�

��
;
��
Œy1; y2�; Œy1; y3�

�
;
�
Œy1; y2�

�
; Œy1; y5�

�
��:

The term E1
6;5 D Z=3 is generated by the element (see [2] for the proof using simplicial

methods and derived functors)

˛3 WD
��
Œy1; y5�; Œy2; y5�

�
; Œy3; y4�

�
�

��
Œy1; y5�; Œy3; y5�

�
; Œy2; y4�

�
C

��
Œy1; y5�; Œy4; y5�

�
; Œy2; y3�

�
C

��
Œy2; y5�; Œy3; y5�

�
; Œy1; y4�

�
�

��
Œy2; y5�; Œy4; y5�

�
; Œy1; y3�

�
C

��
Œy3; y5�; Œy4; y5�

�
; Œy1; y2�

�
:

The termE1
8;5 and the group-case liftings are much more complicated (see [2]). For example,

the 3-torsion from �6.S
2/ can be written as a product of 14 commutators in a free group of

weight � 6.
The element ˛3 corresponds to the Serre element Z=3� �6.S

2/. Analogous picture
takes place for all primes. For an odd prime p, the Serre element of order p appears in
the homotopy group �2p.S

2/. These elements can be easily seen from the structure of the
first page of the spectral sequence E1

2p;2p�1 D Z=p (these terms are labeled as �1 in the
language of Lambda-algebras). It turns out that the E1

2p;2p�1-term is isolated from other
Z=p-torsion terms of the spectral sequence, hence E1

2p;2p�1 D E12p;2p�1 (in the theory

2816 R. Mikhailov



of spectral sequences, such arguments are sometimes called lacunary reasons). Let yi for
i D 1; : : : ; 2p � 1 be free generators of a free Lie algebra and consider the following element:

p̨ D

X
�2†2p�2 a 2p�1-shuffle

�.1/<�.3/<���<�.2p�5/

.�1/�
�
Œy�.0/; y2p�2�; Œy�.1/; y2p�2�; Œy�.2/; y�.3/�; : : : ;

Œy�.2p�4/; y�.2p�3/�
�
I

the sum is taken over all permutations .�.0/; : : : ; �.2p � 3// 2 †2p�2 satisfying
�.0/ < �.1/; : : : ; �.2p � 4/ < �.2p � 3/, as well as �.1/ < �.3/ < � � � < �.2p � 5/. Here
we use the left-normalized notation, i.e., Œx; y; z� WD ŒŒx; y�; z�. Then p̨ presents a generator
of L2p�1L2p.Z; 1/ D E1

2p;2p�1 (see [2] for the proof).
Looking at the elements of free groups and Lie rings like ŒŒx1; x2�; Œx1; x2x3�� or ˛3,

one can get some impression of homotopy patterns. Next we will see how they work in the
context of dimension subgroups.

5. Classical dimension subgroups

Is it true that, for any groupG and n � 1,Dn.G/D n.G/? This question is known
as the dimension problem and has a long history. For a detailed discussion of this problem,
we refer to [14, 28, 33]. The first results in this direction are due to Magnus and Witt. They
proved that, for a free group F , the dimension subgroups coincide with the lower central
series [26, 35]. Incorrect solutions of the dimension problem appeared more than once, see
[9, 24] and [27, Theorem 5.15(i)]. The first example of a group with D4.G/ ¤ 4.G/ is due
to Ilya Rips [34]. The group constructed in [34] has order 238 and it seems that this is the
smallest finite group with the propertyD4 ¤ 4. The next point we have to mention regard-
ing the history of the question is the series of works of Narain Gupta. In order to describe
the dimension subgroups and solve the dimension problem completely, Gupta spent about
20 years developing a special calculus. As a final result, he published the paper [15], where
he claims that the dimension property holds for all groups of odd order. In particular, it fol-
lows from his claim that, for an odd prime p, it is not possible to construct a group G and
n � 1 with Dn.G/=n.G/ � Z=p. In fact, Gupta claimed even more, namely that, for any
group G, the dimension quotientsD�.G/=�.G/ are just Z=2-vector spaces. The last state-
ment was written in the unpublished manuscript of Gupta, which was available from 1990s
to the experts in the area.

The proofs given in the mentioned papers of Gupta are extremely complicated.
During many years the author, together with I. B. S. Passi, tried to understand these proofs. It
became clear already about 10 years ago that they contain gaps, however, it was not easy to
find counterexamples to the main statements. Finally, the following result was proved in [2]:

Theorem 5.1. For any prime p, there exists a group G and integer n, such that
Dn.G/=n.G/ contains Z=p as a subgroup.

Among other things, a small finite group G with D7.G/ ¤ 7.G/ is constructed
in [2]. The needed statement that D7.G/ ¤ 7.G/ is checked using GAP. The order of G is
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3494 and this is a 3-group without dimension property of the smallest order the authors were
able to construct.

In [2], both categories are considered, groups and Lie rings. What often happens is
that the computations for Lie rings are simpler. Here we will give detailed examples for the
case of Lie rings. For a Lie ring over integers L, consider its universal enveloping algebra
U.L/. The algebra U.L/ admits the augmentation ideal !. The Lie ring L embeds in U.L/,
and the dimension subgroups of L are defined as ın.L/ WD L\ !n. The lower central series
term n.L/ lies in ın.L/, and almost all main statements of the theory of dimension sub-
groups can be extended from groups to Lie rings, with simpler proofs (see [3]). In particular,
for any L, ın.L/ D n.L/, n D 1; 2; 3, and there exists a Lie analog of Rips example such
that ı4=4 D Z=2. The following result also is from [2].

Theorem 5.2. For any prime p, there exist a Lie ring A and integer n such that the abelian
group ın.A/=n.A/ contains Z=p as a subgroup.

In a Lie ring presentation, we introduce the following notation: for d 2 N, when
we write a generator y.d/ of degree d , we mean a list of generators y1; : : : ; yd ; and
when y.d/ is written for the left-normed iterated commutator, then y.d/ WD Œy1; : : : ; yd �.
Thus, for example, “hy

.2/
1 ; y

.3/
2 j Œy1; y2�i” is shorthand for “hy1;1; y1;2; y2;1; y2;2; y2;3 j

ŒŒy1;1; y1;2�; Œy2;1; y2;2; y2;3��i.” The following is proved in [2]. Given an integer s � 3, there
are integers e; c0; : : : ; cs and n D c0 C � � � C cs such that, for the Lie ring

A D
˝
y0 : : : ; ys; z

.c0/
0 ; : : : ; z.cs/

s j y0 C � � � C ys D 0; eciyi D zi for i D 0; : : : ; s
˛
;

there exists a natural embeddingM
i

E1
i;s ,! ın.A/=n.A/:

To illustrate how it works, we first rewrite formula (5) as follows. Take L to be a
free Lie ring with generators y0; : : : ; ys and one relation y0 C � � � C ys D 0. Set Ii D .yi /

L.
In this notation,

I0 \ � � � \ Is

ŒI0; : : : ; Is�S
'

M
i�1

E1
i;s :

Consider the universal enveloping algebra U.L/, the corresponding ideals
Ji D yiU.L/ in U.L/, and their symmetric product

.J0; : : : ; Js/S D

X
�2†sC1

J�.0/ � � �J�.s/:

The natural map L ! U.L/ induces

I0\���\Is

ŒI0;:::;Is �S
// J0\���\Js

.J0;:::;Js/S

L
i�1E

1
i;s

// Hs.U.LŒS
1�//
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Here U.LŒS1�/ is the universal enveloping algebra of the simplicial Lie ring LŒS1�, it has
infinite cyclic homology groups in all dimensions. At the same time,E1

i;j -terms of the lower
central series spectral sequence for S2 are finite for all j � 3. It follows that the map is 0.
Therefore, for s � 3 we have I0 \ � � � \ Is � L \ .J0; : : : ; Js/S when considered in the
universal enveloping algebra. See [2] for details.

Next we add the relations eciyi D zi , for a fixed choose of e; ci ; i D 0; : : : ; s. Recall
that the element zi is of degree ci . These relations imply that, for any w 2 I0 \ � � � \ Is , the
image of enw inA, lies in ın. An elementw is our homotopy pattern, we see that, if we write
it in the universal enveloping algebra U.L/, it lies in the symmetric product .J0; : : : ; Jn/S .
At the same time, it does not lie in the symmetric product ŒI0; : : : ; Is�S . Now the relations
eciyi D zi guarantee that enw lies in the nth augmentation power of the universal enveloping
algebra. There is no obvious reason for the element enw to lie in the nth term of the lower
central series of A. The detailed analysis shows that one can choose the constants e; ci , such
that enw will not lie in n.A/ (see [2]). We can call the described method the bloating of a
homotopy pattern.

In particular, we can take e D p, s D 2p � 1 and realize the p-torsion elements p̨

described in the previous section inside dimension quotients of Lie rings.
In some cases it is possible to find ci ’s sufficiently small. The following two exam-

ples are from [2], they are checked with computer assistance. Consider the Lie ring

A D
˝
y0; y1; y2; y3; z

.1/
0 ; z

.2/
1 ; z

.2/
2 ; z

.2/
3

ˇ̌
y0 C y1 C y2 C y3 D 0; y0 D 26z0; 2

6y1 D 25z1; 2
5y2 D 23z2; 2

3y3 D z3

˛
and the element ! D ŒŒy0; y1�; Œy0; y2��. In that Lie algebra, we have ! 2 ı7.A/ n 7.A/ and
2! 2 7.A/. So, our homotopy pattern, which generated L3L4.Z; 1/ and �4.S

2/, makes
the difference between ı7 and 7.

For p D 3, the situation is similar and the construction can be simplified. Consider
the following Lie ring:

A D
˝
yij ; z

.iCjC1/
ij for 0 � i < j � 5

ˇ̌
y01 C y02 C y03 C y04 C y05 D 0;

�y01 C y12 C y13 C y14 C y15 D 0;

�y02 � y12 C y23 C y24 C y25 D 0;

�y03 � y13 � y23 C y34 C y35 D 0;

�y04 � y14 � y24 � y34 C y45 D 0;

3iCjyij D zij for 0 � i < j � 5
˛
:

Then the element ! D 315.Œy04; y14; y23� � Œy04; y24; y13� C Œy04; y34; y12� C Œy14; y24;

y03�� Œy14; y34; y02�C Œy24; y34; y01�/ belongs to ı18.A/ n 18.A/ with 3! 2 18.A/. One
can easily recognize our homotopy pattern ˛3 rewritten in the way Œyi ; yj � yi�1;j�1.

The situation for groups is similar. We start with a free group

F D hx0; : : : ; xs j x0 : : : xs D 1i; Ri D hxi i
F ;
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and take an element q from the intersectionR0 \ � � � \Rs n ŒR0; : : : ;Rs�S . Since, for s � 3,
the Hurewicz homomorphism �sC1.S

2/ D �s.�S
2/ ! Hs.�S

2/ is the zero map, the ele-
ment q � 1, written in the group ring ZŒF �, belongs to the symmetric product of ideals
.r0; : : : ; rs/S . Next we use a bloating of a homotopy pattern applied to the group-case. The
difference between Lie ring and group cases is that, in the case of groups, we cannot transfer
exponents in a free way, Œxe; y� ¤ Œx; ye�. That is, the process has to be accomplished more
carefully. Again we refer to [2] for details. The Z=p-torsion terms in the dimension quotients
can be realized, for example, using Serre elements Z=p � �2p.S

2/. The experiments with
GAP show that Rips-type examples withD4 ¤ 4 also can be constructed using the described
method, by bloating of a homotopy pattern ŒŒx1; x2�; Œx1; x2x3�� which corresponds to the
homotopy element Z=2 D �4.S

2/.

6. Limits. Speculative functor theory

“All Rajayoga, for instance, depends on this perception and experience that our
inner elements, combinations, functions, forces, can be separated or dissolved,
can be new-combined and set to novel and formerly impossible workings or can
be transformed and resolved into a new general synthesis by fixed internal pro-
cesses.” (Sri Aurobindo, “The Synthesis of Yoga”)

A standard way to define a group or Lie algebra is combinatorial, i.e., via generators and
relations. In order to construct an algebraic objects with complicated properties, one can
play with generators and relations. Take, for example, two symbols a and b and one relation,
namely ˝

a; b
ˇ̌
a�1b2ab�1a3b�1

D 1
˛
:

It turns out that the resulting group has interesting and nonobvious properties. When we
consider some functor, we usually mean that this functor comes from a natural consideration
and is not constructed in a speculative way. There are no obvious combinatorial games which
give a possibility to define functors in terms of generators and relations. However, there is one
nonobvious way, and this section will be about it. We will see that the characters we discussed
before, like derived functors, dimension quotients and group homology, will appear in those
functorial constructions.

Let G be a group. By Pres.G/ we denote the category of presentations of G with
the objects being free groups F together with epimorphisms to G. Morphisms are group
homomorphisms overG. For a functor F W Pres.G/! Ab from the category Pres.G/ to the
category of abelian groups, one can consider the (higher) limits lim

 �

i F , i � 0, over the cate-
gory of presentations. That is, we fix our groupG, consider free presentationsR ,! F � G

and make functorial (on F;R) constructions F .F;R/. The limits lim
 �

i F .F;R/, i � 0, will
depend only onG and, moreover, present functors from the category of all groups to abelian
groups.
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The category Pres.G/ is strongly connected and has pairwise coproducts. The limit
lim
 �

F D lim
 �

0 F has the following properties. For any c 2 Pres.G/,

lim
 �

F D
®
x 2 F .c/ j 8c0 2 Pres.G/; ';  W c ! c0;F .'/.x/ D F . /.x/

¯
: (6)

Moreover, it is known [31] that the limit of a functor from a strongly connected category with
pairwise coproducts is equal to the equalizer

lim
 �

F Š eq
�
F .c/� F .c t c/

�
for any c 2 Pres.G/. In particular, this equalizer does not depend on c.

The standard and one of the simplest examples is the following. For a group G D

F=R, the Hopf formula for the second homology is very useful: H2.G/ D
R\2.F /

ŒF;R�
. The

second homology can be presented as a limit as well:

H2.G/ D lim
 �

R=ŒF;R�:

That is, the quotient R\2.F /
ŒF;R�

is the maximal subgroup of R=ŒF; R�, which depends on G
only.

The limits lim
 �

i F are studied in the series of papers [12, 17, 19, 29,31]. Next we will
give examples which illustrate the variety and complexity of functors which can be obtained
playing with limits.

The group homology can be presented as follows (see [12,17]):

lim
 �
.R˝n

ab
/F D H2n.G/; n � 1;

lim
 �

1.R˝n
ab
/F D H2n�1.G/:

Here the tensor powers of the relation modulesRab are considered with diagonal action ofF .
The derived functorsL1S2 andL1S3, which we discussed in Section 2, can be described via
limits (see [29,30])

lim
 �

2.F /

2.R/3.F /
D L1S2.Gab/;

lim
 �

3.F /

Œ2.R/; F �4.F /
D L1S3.Gab/;

lim
 �

3.F /

3.R/4.F /
D L2L3

s .Gab/;

lim
 �

4.F /

Œ2.R/; F; F �2.2.F //5.F /
D L1S4.Gab/;

lim
 �

2.R/

2.ŒR; F �/3.R/
D L1S2

�
H2.G/

�
:

Comparing the first three limits with the results of Section 2, we see that, in certain cases,
when the formula .ˆ/ can be applied, our homotopy patterns can be described as limits

lim
 �

Whole structure
Obvious part of an intersection

D Homotopy pattern:
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Observe that a simple deformation of the considered functor Pres ! Ab may change the
limits completely. For example,

lim
 �

3.F /

Œ2.F /;R�4.F /
D 0:

Let us mention a couple of exotic examples. If a groupG does not have a 2-torsion, then [17]

lim
 �

2.R/=
�
2.R/; F

�
D H4.GI Z=2/;

lim
 �

1 2.R/=
�
2.R/; F

�
D H3.GI Z=2/:

Recall the Fox quotient F .3;R/
G.3;R/

from Section 2. This quotient depends on F and R, not only
on G. The limit of this quotient is computed in [31] as

lim
 �

F.3;R/

G.3;R/
D L1S2

�
L1S2.Gab/

�
:

The next result shows how to present the fourth dimension quotient via limits (see
[31] for the proof)

Theorem 6.1. There is a natural short exact sequence

lim
 �

R \ 2.F /

2.R/.R \ 4.F //
,! lim
 �

2.F /

2.R/4.F /
�

D4.G/

4.G/
:

Theorem 6.1 shows how to describe the fourth dimension quotient as a functor
without using the group ring. The limits in Theorem 6.1 are just equalizers (6), one can
compute them for simple examples. The author thanks L. Bartholdi for computing these
limits for Rips-type examples using a computer. These computations show that the short
exact sequence from Theorem 6.1 does not split.

We finish the paper by briefly reviewing the so-called fr-language (see [18,19]). The
ideals f D .F � 1/ZŒF �, r D .R � 1/ZŒF � define functors Pres.G/ ! Ab. Moreover, all
possible products of ideals f; r, their sums and intersections define functors Pres.G/ ! Ab
as well, and we can ask how to describe their limits. One can take any sentence of symbols
f; r like rr C ffr C frf C rff or rrrf C frrr and consider their lim

 �

i as functors. The author
does not know any unified method to describe the limits for a given fr-sentence. For any
particular case, there are some special tricks, based on homological algebra or group theory.
Sometimes the results are surprising. For example, lim

 �

2 of two mentioned sequences are the
following:

lim
 �

2.rr C ffr C frf C rff/ D Gab ˝Gab;

lim
 �

2.rrrf C frrr/ D H5.G/:

Here are some more examples of computations, which show that the variety of functors
which can be presented as limits of fr-sentences is rich enough:

lim
 �

1.rff C frr/ D Tor
�
H2.G/;Gab

�
;

lim
 �

1.rr C frf C rff/ D H2.G;Gab/;

lim
 �

1.rr C frf/ D H3.G/;
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lim
 �

2.rr C frf/ D g ˝ZŒG� g;

lim
 �

1.rrf C frr/ D H4.G/;

lim
 �

1.rr C fff/ D Tor.Gab; Gab/;

lim
 �

2.rr C fff/ D Gab ˝Gab :

The point of this theory (which we also call fr-language) is that the formal manipula-
tions with codes in two letters may induce deep and unexpected transformations of functors.
Simple transformations of fr-codes, like changing the symbol r by f in a certain place, adding
a monomial to the fr-code, etc., induce natural transformations of (higher) limits determined
by these fr-codes. For example, the transformation of the fr-codes

rr C frf rr C frf C rff

induces the natural transformation of functors

H3.G/ D lim
 �

1.rr C frf/ lim
 �

1.rr C frf C frr/ D H2.G;Gab/:

Here the map H3.G/ ! H2.G;Gab/ is constructed as

H3.G/ D H2.G; g/ ! H2.G; g=g2/ D H2.G;Gab/;

where the last map is induced by the natural projection g� g=g2 D Gab .
We end this section with an observation that, in many cases, when the formula .ˆ/

can be applied to the structures described in terms of f and r, the homotopy patterns can be
seen via limits. For example, the well-known description of the .2n/th homology .n � 1/,

H2n.G/ D
rn \ frn�1f
rnf C frn

;

represents the formula .ˆ/. A simple computation (see [18]) shows that

lim
 �

1.rnf C frn/ D H2n.G/; n > 1:

The case n D 1 is an exception: lim
 �

1.rf C fr/ D g ˝ZŒG� g � H2.G/. In such cases, the
higher limits give a way to consider derived versions of the homotopy patterns as well. It
seems that this is a good point to end this survey.
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