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Abstract

I describe what is currently known, for d � 5, about the rational homotopy type of the
group of diffeomorphisms of the d -disc relative to its boundary, and the closely related
group of homeomorphisms of d -dimensional Euclidean space.
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1. Introduction

I will be concerned with the homotopy types of the topological groups of dif-
feomorphisms Diff.Rd / and homeomorphisms Homeo.Rd / of Euclidean space, and of
diffeomorphisms Diff@.Dd / and homeomorphisms Homeo@.Dd / of closed discs fixing
the boundary pointwise (equivalently, compactly-supported diffeomorphisms and homeo-
morphisms of Euclidean space). By scaling outwards, the group Diff.Rd / deformation
retracts to the subgroup of linear diffeomorphisms, and thence to the subgroup O.d/ of
orthogonal diffeomorphisms of Rd . By scaling inwards (the “Alexander trick”), the group
Homeo@.Dd / contracts to a point.

In contrast, the groups Homeo.Rd / and Diff@.Dd / have much more mysterious
homotopy types. As long as d ¤ 4, all four groups are related by smoothing theory [23,

Essay V], which provides a homotopy equivalence

Homeo@.Dd /

Diff@.Dd /
' �d

0

�
Homeo.Rd /

Diff.Rd /

�
and so, incorporating the above and writing Top.d/ WD Homeo.Rd /, provides a homotopy
equivalence (the “Morlet equivalence”)

BDiff@.Dd / ' �d
0

�
Top.d/

O.d/

�
:

Taking the homotopy type ofO.d/ as given, theMorlet equivalence shows that understanding
the homotopy types of Top.d/ and BDiff@.Dd / are more or less equivalent. The latter is
independently interesting as it classifies smooth Dd -bundles � W E ! B trivialised near the
boundary, and this perspective offers a useful way to study it: it is the perspective I usually
adopt. For any manifold M of dimension d ¤ 4, smoothing theory identifies Homeo@.M/

Diff@.M/

with certain path components of a space of sections �@.Fr.TM/ �O.d/
Top.d/
O.d/

! M/, so
these homotopy types furthermore describe the difference between diffeomorphisms and
homeomorphisms of all d -manifolds. It is therefore an important goal of geometric topology
to investigate these homotopy types.

In this essay I will describe what is known about the rational homotopy type of
BDiff@.Dd /, and some recent techniques which are allowing us to say more about it. Along
the way the influence of Michael Weiss will be seen at every turn, and it is a pleasure to
acknowledge and celebrate his many profound contributions to this subject.

2. Some phenomena

I will first describe the classical approach to calculating ��.BDiff@.Dd // ˝ Q,
which describes it completely in the so-called pseudoisotopy stable range, and then explain
twomore recent results which indicate the existence of new phenomena outside of this range:
the work of Watanabe on configuration space integrals, and the work of Weiss on unstable
topological Pontrjagin classes.
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2.1. Pseudoisotopy and algebraic K -theory
The topological group of smooth pseudoisotopies

C.M/ WD
®
f W M � Œ0; 1�

diffeo
�! M � Œ0; 1� j f fixes @M � Œ0; 1� [ M � ¹0º pointwise

¯
of a manifold M participates in a fibre sequence

Diff@
�
M � Œ0; 1�

�
! C.M/

f 7!f jM �¹1º

��������! Diff@.M/; (2.1)

and so measures to what extent diffeomorphisms of M � Œ0; 1� may be represented as loops
of diffeomorphisms of M . There is a stabilisation map

�M W C.M/ ! C
�
M � Œ0; 1�

�
morally induced by crossing with the interval, but technically slightly more involved. The
(smooth) pseudoisotopy stable range ˆ.d/ is the minimum of the connectivities of �M

taken over all manifolds M of dimension � d , and it is a deep theorem of Igusa [21] that
ˆ.d/ � min. d�7

2
; d�4

3
/. The stabilisation C .M/ WD hocolimn C.M � Œ0; 1�n/ may be pro-

moted to a homotopy-invariant functor from the category of spaces to the category of infinite
loop spaces. The stable parameterised h-cobordism theorem [42] relates the functor C .�/ to
Waldhausen’s [41] algebraic K-theory of spaces – or to the K-theory of ring spectra – by the
fibration sequence (with cosection) of infinite loop spaces

BC .M/ ! Q.MC/ ! �1K
�
SŒ�M�

�
:

In particular, for M D Dd the rational homotopy equivalence K.S/ ! K.Z/ and
Borel’s [3] calculation

Ki .Z/ ˝ Q D

8<: Q; i D 0; 5; 9; 13; 17; 21; : : : ;

0; else

determines ��.C.Dd // ˝ Q in the pseudoisotopy stable range as being a copy of Q in each
degree � 3 mod 4.

A further piece of structure on C.M/ is the pseudoisotopy involution. Writing � for
the reflection of Œ0; 1� at 1

2
, this is given by

f 7�! Nf D
�
f jM�¹1º � Œ0; 1�

��1
ı .M � �/ ı f ı .M � �/;

and there are compatible involutions on the fibration sequence (2.1) given by inversion on
Diff@.M/, and by conjugating by the reflection M � � on Diff@.M � Œ0; 1�/. By analysing
this involution, as well as the other involution on C.M � Œ0; 1�/ induced by C.M � �/ and
their compatibility with �M , it can be shown (see [22, Section 6.5] for a nice discussion) that

�i

�
BDiff@.D2n/

�
˝ Q D 0;

�i

�
BDiff@.D2nC1/

�
˝ Q D

8<: Q; i � 0 mod 4;

0; else

(2.2)

in the pseudoisotopy stable range. This calculation was first obtained by Farrell and
Hsiang [9], though by somewhat different means.
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2.2. Configuration space integrals
Kontsevich [25] proposed a method to produce invariants of smooth vertically

framed Dd -bundles � W E ! B trivialised near the boundary, by forming (certain compac-
tifications of) the fibrewise configuration spaces and integrating suitably chosen differential
forms along these associated configuration space bundles. The combinatorics of these forms
are organised in terms of graphs, and the result is a chain map GC2

d Œ�d�_ ˝Q R ! ��.B/

from a certain graph complex to the de Rham complex of the base, so the homology of
this graph complex yields invariants of the original bundle. Up to regrading, the chain com-
plexes GC2

d only depend on the parity of d , and they split GC2
d D

L
g GC

2;g-loop
d

as a sum
of subcomplexes of fixed loop order. See Willwacher’s contribution to the 2018 ICM for an
introduction to these objects.

The work of Watanabe. The detailed investigation of this construction has been taken up by
Watanabe, firstly in [43–45] for odd-dimensional discs as Kontsevich proposed, and latterly
[46,47] for even-dimensional discs, too. Write BDiff fr@ .Dd / for the space classifying smooth
vertically framed Dd -bundles trivialised near the boundary. (The analogue of the Morlet
equivalence in this setting has the formBDiff fr@ .Dd / ' �dTop.d/—up to a small correction
of path-components which I shall ignore—so studying smooth framed disc bundles has an
even closer connection to homeomorphisms of Euclidean space.) Kontsevich’s construction
in particular gives characteristic classes

�r 2 H r �.d�3/
�
BDiff fr@ .Dd /I A.�1/d

r

�
;

where AC
r and A�

r are real vector spaces spanned by connected trivalent graphs of loop
order r C 1 (equipped with certain orientation data which I shall neglect), modulo the IHX
relation (and modulo certain signs when changing orientation data: these signs depend on
the superscript C and �). This vector space arises as the lowest nontrivial homology of
GC2;.rC1/-loop

d
˝Q R: the differential is given by summing over splitting vertices, so all

trivalent graphs are automatically cycles, and the IHX relation arises from the three ways
to split a 4-valent vertex. For small values of r , the dimension of A�

r has been calculated
to be 1; 1; 1; 2; 2; 3; 4; 5; 6; 8; 9 for r D 1; 2; : : : ; 11, and the dimension of AC

r has been
calculated to be 0; 1; 0; 0; 1; 0; 0; 0; 1 for r D 1; 2; : : : ; 9.

Watanabe’s results in this direction ([44, Theorem 3.1] taking into account the im-
provement in [45], and [46] taking into account the improvement in [47]) is that, as long as
d � 4, the evaluation map

�r W �r �.d�3/

�
BDiff fr@ .Dd /

�
˝ R ! A.�1/d

r

is surjective. In fact, his result is somewhat more precise: he constructs for each trivalent
graph � a more-or-less explicit framed Dd -bundle over a sphere which is sent by the map
�r to the class of � .

This does not directly tell us about BDiff@.Dd / because of the framing data, but
the difference is easily understood. Forgetting framings defines a homotopy fibre sequence

�dO.d/ ! BDiff fr@ .Dd / ! BDiff@.Dd /;
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and it is not hard to calculate

��

�
�dO.d/

�
˝ Q D

M
k�3;

k�2dC1 mod 4

QŒd � k�:

Thus as long as d is even, or d is odd and r > 1, one still has the lower bound

dimQ �r �.d�3/

�
BDiff@.Dd /

�
˝ Q � dimR A.�1/d

r :

It is worth pausing at this point to emphasise how remarkable it is that Watanabe’s results
apply for d D 4, and imply, for example, that �2.BDiff@.D4// ˝ Q ¤ 0.

However, when d is odd—say d D 2n C 1—and r D 1, the composition

R Š �2n�2

�
�2nC1O.2n C 1/

�
˝ R ! �2n�2

�
BDiff fr@ .D2nC1/

�
˝ R

�1
�! Aodd

1 Š R

might be nontrivial, and in fact it is. Watanabe addresses this difficulty in his earlier work
[43], by constructing an integral refinement of �1, and playing off this integrality against the
non-integrality of the topological Pontrjagin classes: his conclusion is that, as long as certain
arithmetic conditions ([43, Corollary 2], [44, Corollary 3.5]) involving Bernoulli numbers and
the orders of stable homotopy groups of spheres are satisfied, one may still conclude that
�2n�2.BDiff@.D2nC1// ˝ Q ¤ 0. He verified this computationally for all odd n � 399.

Automorphisms of the little discs operads. Configuration space integrals are constructed
from (suitable compactifications of) all the ordered configuration spaces Confk.Dd /, and all
the natural maps between them, applied fibrewise to a (vertically framed) Dd -bundle. There
is another way to encode (the homotopy types of) these configuration spaces and the natural
maps between them, namely as the little d -discs operad Ed . There is a topological version
of the framed little d -discs operad, which means that in a suitable homotopical sense the
group Top.d/ acts on Ed , giving a map

BTop.d/ ! BhAut.Ed /;

where the latter is the classifying space of the E1-algebra of derived automorphisms of the
little d -discs operad. Looping this .d C 1/ times gives a map

BDiff fr@ .Dd / ' �dTop.d/ ! �dhAut.Ed /:

(This corresponds [2] to applying the embedding calculus of Goodwillie and Weiss [18, 49]

to framed self-embeddings of Dd relative to the boundary, though that point of view is not
necessary for this discussion.)

The derived automorphisms of the rationalised little d -discs operad E
Q
d

have
been studied by Fresse, Turchin, and Willwacher [11], who for d � 3 give an identifica-
tion �i .hAut.EQ

d
// D Hi .GC2

d /. Combined with the above, this gives a map

�i

�
BDifffr@ .Dd /

�
˝ Q ! HiCd .GC2

d /;

and it is difficult to imagine that this is given by anything other than evaluation of Kont-
sevich’s invariant, but as far as I know the connection between this point of view and con-
figuration space integrals has not yet been made precise. Assuming for now that this is so,
Watanabe’s results show that this map hits those graph homology classes represented by
trivalent graphs.
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2.3. Pontrjagin–Weiss classes
It follows from thework of Sullivan and of Kirby and Siebenmann that the homotopy

fibre Top=O of the map BO ! BTop has finite homotopy groups, and therefore that

H �.BTopI Q/ D QŒp1; p2; p3; : : :�;

a polynomial ring on certain classes pi of degree 4i which pull back to the Pontrjagin classes
on BO: these are the topological Pontrjagin classes. By pulling back along the stabilisation
map BTop.d/ ! BTop, they are defined for all Rd -bundles.

For real vector bundles of dimension 2n, and so universally in the cohomology of
BO.2n/, the definition of Pontrjagin classes in terms of Chern classes of the complexifica-
tion immediately gives that

pi D 0 for i > n; (2.3)

pn D e2; (2.4)

where e denotes the Euler class. The Euler class only depends on the underlying spherical
fibration of the vector bundle, obtained by removing the zero-section. An Rd -bundle also
has an associated spherical fibration (by removing any section), and hence also has an Euler
class: as both the Euler and Pontrjagin classes are defined on BTop.2n/, one may then ask
about the validity of the identities (2.3) and (2.4) there.

The work of Weiss. Reis and Weiss [39] had proposed an elaborate strategy for establishing
these identities, but in a spectacular turnaround Weiss [50] then showed that these identities
are in fact generally false for Rd -bundles. I will comment further on his strategy in Sec-
tion 4.1, as its philosophy is fundamental to all the results in Section 3.

To say more precisely what Weiss proved, consider the fibration sequence
Top.2n/

O.2n/
! BO.2n/ ! BTop.2n/:

The rational cohomology classes pn � e2 and pi for i > n are defined on BTop.2n/ and
are canonically trivial on BO.2n/, and hence yield (pre-)transgressed cohomology classes
.pn � e2/� and p�

i on Top.2n/
O.2n/

. Weiss showed [50, Section 6] that for many n and i � n (he
shows that n � 83 and i < 9n

4
� 11, or n � 59 and i < 7n

4
will do) these evaluate nontrivially

against �4i�1.
Top.2n/
O.2n/

/: this certainly implies that the corresponding pn � e2 and pi are
nontrivial in the cohomology of BTop.2n/, but is stronger. Translated to diffeomorphisms
groups of discs via the Morlet equivalence, Weiss’ result shows that the map

�4i�2n�1

�
BDiff@.D2n/

�
Š �4i�2n�1

�
�2n

0

Top.2n/

O.2n/

�
Š �4i�1

�
Top.2n/

O.2n/

�
.pn�e2/� or p�

i
����������! Q

is nontrivial for many n and i � n. I will call an element of �4i�2n�1.BDiff@.D2n//

a Pontrjagin–Weiss class if it is detected by such maps.
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Odd dimensions. OnBO.2n C 1/ the Pontrjagin classes still satisfypi D 0 for i > n, which
is the analogue of (2.3), so there are (pre-)transgressed classes p�

i on Top.2nC1/
O.2nC1/

for i > n,
and one may ask about their nontriviality on homotopy groups. As these classes pull back to
the classes of the same name on Top.2n/

O.2n/
, this nontriviality follows from Weiss’ theorem in

many cases.
It seems to be less well known that there is also an analogue of (2.4) in odd dimen-

sions. Namely, there is a characteristic class E of S2n-fibrations such that

pn D E (2.5)

in H 4n.BO.2n C 1/I Q/. It may be defined as follows. Given an S2n-fibration
S2n ! X

�
! Y with orientation local system O , the self-intersection of the fibrewise diag-

onal map � W X ! X �Y X defines a fibrewise Euler class efw.�/ 2 H 2n.X I O/, and then
E.�/ WD

1
2

R
�

efw.�/3 2 H 4n.Y I Q/.
As E depends only on the underlying spherical fibration, it is also defined in

H �.BTop.2n C 1/I Q/, so one can also ask whether the identity (2.5) fails to hold here,
or even better whether the cohomology class .pn � E/� on Top.2nC1/

O.2nC1/
evaluates nontrivi-

ally on �4n�1.
Top.2nC1/
O.2nC1/

/. It can be checked that under BTop.2n/ ! BTop.2n C 1/ the
class E pulls back to e2, so .pn � E/� pulls back to .pn � e2/� on Top.2n/

O.2n/
, and hence the

nontriviality of .pn � E/� on homotopy groups in many degrees also follows from Weiss’
theorem.

Propagating. Formalising the method used above, the stabilisation maps

�d
0
Top.d�1/
O.d�1/

�0BDiff@.Dd�1/

�d
0
Top.d/
O.d/

BDiff@.Dd /

(known as “Gromoll maps” on the diffeomorphism group side) show that if a Pontrjagin–
Weiss class exists on BDiff@.Dd�1/, and the cohomology class detecting it can be defined
on Top.d/

O.d/
, then it survives to BDiff@.Dd /.

Relation to configuration space integrals. Somewhat surprisingly, the map

�2n�2

�
BDiff fr@ .D2nC1/

�
Š �4n

�
BTop.2n C 1/

� E
�! Q

can be identified with the simplest Kontsevich invariant �1 (which is that associated to the
‚-graph) as studied by Watanabe in [43]. From this point of view, Watanabe’s argument in
that paper shows that pn ¤ E in H 4n.BTop.2n C 1/I Q/, so is closely related to Weiss’
theorem (but does not imply it!). This is explained in detail in [28, Appendix B].

3. The rational homotopy type of BDiff@.Dd /

The results of the last section give a complete calculation (2.2) of the rational homo-
topy groups ��.BDiff@.Dd // ˝ Q valid in the pseudoisotopy stable range, but also indicate
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the existence of various new phenomena outside of this range. These new phenomena start in
degrees� d , and Krannich [26] and I [37] had shown that (2.2) is in fact valid in degrees. d .
In this section I present two recent results, obtained in collaboration with Kupers and with
Krannich, giving detailed information quite far outside of this range, and I then speculate
about what they might be indicating.

3.1. Even-dimensional discs
Kupers and I [32,34] have investigated the rational homotopy type of BDiff@.D2n/.

The following is the main result of [32], incorporating the improvement from [34, Section 7.1].

Theorem 3.1 (Kupers–Randal-Williams). Let 2n � 6. Then �j .BDiff@.D2n// ˝ Q D 0 for
j < 2n � 1, and for j � 2n � 1 we have

�j

�
BDiff@.D2n/

�
˝ Q

D

8̂̂<̂
:̂

Q; j � 2n � 1 mod 4; j 62
S

r�2Œ2r.n � 2/ � 1; 2r.n � 1/ C 1�;

0; j 6� 2n � 1 mod 4; j 62
S

r�2Œ2r.n � 2/ � 1; 2r.n � 1/ C 1�;

‹; otherwise:

The copies of Q in this theorem are generated by Pontrjagin–Weiss classes in the
sense of Section 2.3, and the theorem gives a complete calculation in degrees � 4n � 10, as
well as in higher degrees outside of the indicated “bands”.

It can be cast in a somewhat stronger form by using the Morlet equivalence
BDiff@.D2n/ ' �2n

0
Top.2n/
O.2n/

and considering the fibration sequence

�2nC1

�
Top

Top.2n/

�
! �2n

�
Top.2n/

O.2n/

�
! �2n

�
Top
O.2n/

�
:

A slight strengthening of the theorem is then that ��.�2nC1 Top
Top.2n/

/ ˝ Q is supported in
degrees

S
r�2Œ2r.n � 2/ � 1;2r.n � 1/ C 1�; the rational homotopy groups of�2n Top

O.2n/
are

Q in every degree � 2n � 1 mod 4, and the right-hand map detects the Pontrjagin–Weiss
classes.

The result can also be given a little more structure by using the involution on
BDiff@.D2n/ ' �2n

0
Top.2n/
O.2n/

induced by conjugation by a reflection of the disc. The terms in
the fibration sequence above have compatible involutions, which on ��.�2n

0
Top

O.2n/
/ ˝ Q acts

as .�1/, and on ��.�2nC1 Top
Top.2n/

/ ˝ Q acts as .�1/r in the band of degrees
Œ2r.n � 2/ � 1; 2r.n � 1/ C 1� (when such bands overlap this should be regarded as incon-
clusive). This implies the existence of Pontrjagin–Weiss classes outside of degreesS

r�2;r oddŒ2r.n � 2/ � 1; 2r.n � 1/ C 1�.
Finally, as explained in Section 2.3, Pontrjagin–Weiss classes can be propagated

from smaller discs to larger ones. The conclusion of this discussion is depicted in Figure 1.
It seems likely that all possible Pontrjagin–Weiss classes already exist in ��.BDiff@.D6//.

3.2. Odd-dimensional discs
Krannich and I [28] have investigated the rational homotopy type ofBDiff@.D2nC1/.
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Figure 1

Rational homotopy groups of BDiff@.D2n/. The calculation is complete in the unshaded region, and � denotes
Pontrjagin–Weiss classes. The lightly shaded bands are those on which the reflection acts as C1, and
Pontrjagin–Weiss classes are still present in these; the darkly-
shaded bands are those where the reflection acts as �1. Existing copies of � have been propagated downwards
along lines of slope �1 as in Section 2.3. The numbers denote Watanabe’s lower bounds on these groups. The
dotted line indicates the Igusa stable range.
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Theorem 3.2 (Krannich–Randal-Williams). For degrees j � 3n � 8, we have

�j

�
BDiff@.D2nC1/

�
˝ Q D Kj C1.Z/ ˝ Q ˚

8<: Q; j � 2n � 2 mod 4; j � 2n � 2;

0; otherwise:

The first term is the rational algebraicK-theory of the integers, extending the classes
discussed in Section 2.1. The second term consists of Pontrjagin–Weiss classes. As discussed
in Section 2.3, the lowest of these—in degree .2n � 2/—corresponds to the configuration
space integral associated to the ‚-graph, and so accounts for the class in this degree found
for odd n � 399 by Watanabe [43], and show that such classes exist for all n. The conclusion
of this discussion is depicted in Figure 2.

In proving Theorem 3.2, Krannich and I were only attempting to calculate within
the indicated range, and with the method we used it is not clear how to establish the “band”
pattern in higher degrees for odd-dimensional discs, too. But it does seem feasible that the
method used to prove Theorem 3.1 could be adapted to the odd-dimensional case (though
there are significant hurdles) and I think it very likely that the “band” pattern occurs in this
case, too.

3.3. Outlook and speculation
These two theorems have sufficient detail that one is tempted to propose a structural

description of ��.BDiff@.Dd // ˝ Q. In fact, it seems better to describe ��.BTop.d// ˝ Q.
Summarising the structural features of the above results, ��.BTop.d// ˝ Q has

(i) classes corresponding to Pontrjagin classes, i.e. detected by BTop.d/ !

BTop, in degrees � 0,

(ii) classes corresponding to K�>0.Z/ ˝ Q if d is odd, in degrees & d , and a
class corresponding to K0.Z/ ˝ Q in degree d if d is even (detected by the
Euler class),

(iii) classes supported in bands of degrees around k � d for each k � 2 (at least for
d even, but lets suppose that this also occurs for d odd).

Orthogonal calculus. This behaviour could be explained by Weiss’ theory of orthogonal
calculus [48], a calculus of functors for continuous functors F W J ! Top defined on the
category J of real inner product spaces and their isometric embeddings. It may be applied
to the functor Bt W V 7! BTop.V /, where it provides a tower of Taylor approximations

:::

T2Bt.V / �1
�
S2�V ^ ‚Bt.2/

�
hO.2/

T1Bt.V / �1
�
S1�V ^ ‚Bt.1/

�
hO.1/

Bt.V / T0Bt.V / BTop;
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Figure 2

Rational homotopy groups of BDiff@.D2nC1/. The calculation is complete in the unshaded region: � denotes
Pontrjagin–Weiss classes, and ı denotes algebraic K-theory classes. In the shaded region we have indicated
existing Pontrjagin–Weiss classes, and the numbers denote Watanabe’s lower bounds on these groups.
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whose kth layer is described in terms of an O.k/-spectrum ‚Bt.k/, the kth derivative, and
the 1-point compactifications Sk�V of the vector spaces Rk ˝ V . The zeroth Taylor approx-
imation is the stabilisation of the functor, in this case BTop. It is a theorem of Waldhausen
that ‚Bt.1/ is A.�/ D K.S/, with a certain O.1/-action, and, in view of the rational equi-
valence K.S/ ! K.Z/, points (i) and (ii) above can be accounted for by the first Taylor
approximation. Point (iii) would then be accounted for if

(i) the Taylor tower converges (rationally), and

(ii) for each k � 2 the homotopy orbits .‚Bt.k//hSO.k/ of the derivative spectra
have finitely-many nontrivial (rational) homotopy groups.

In this worldview, the (finitely-many) rational homotopy groups of .‚Bt.k//hSO.k/ corres-
pond to the rational homotopy classes of BTop.d/ in the kth band which are not detected by
Pontrjagin classes or algebraic K-theory: more precisely, the residual O.k/=SO.k/-action
splits ��..‚Bt.k//hSO.k// ˝ Q into eigenspaces, and the .�1/d -eigenspace provides the kth
band of BTop.d/. In particular, this worldview predicts that the homotopy groups in the kth
band depend only on the parity of d .

By Theorems 3.1 and 3.2, this property does indeed hold for the second band, and
Krannich and I [28] have used this to investigate the second derivative ‚Bt.2/, establishing a
rational equivalence

‚Bt.2/
'Q map.S1

C; S�1/

of O.2/-spectra, where O.2/ acts in the usual way on S1. Reis and Weiss [39] had earlier
shown that map.S1

C; S�1/ is the second derivative of the orthogonal functor Bg.V / WD

BhAut.S.V //, the classifying space of the monoid of homotopy automorphisms of the unit
sphere in the inner product space V , and the natural map Bt ! Bg (in fact, zigzag) induces
an equivalence on rationalised second derivatives.

Automorphisms of little discs operads and graph complexes. In Section 2.2 I explained
that there is a map

BTop.d/ ! BhAut.Ed / (3.1)

corresponding to a derived action of Top.d/ on the little d -discs operad Ed . I mentioned
also that the derived automorphisms of the rationalisation E

Q
d
have been analysed by Fresse,

Turchin, and Willwacher [11], giving an identification �i .hAut.EQ
d

// D Hi .GC2
d / for d � 3

in terms of a version of Kontsevich’s graph complex. There is a loop-order decomposition
GC2

d D
L

g�1 GC
2;g-loop
d

and, for g � 2,

H�.GC2;g-loop
d

/ is supported in degrees � 2
�
g.d � 3/ C 3; g.d � 2/ C 1

�
;

and furthermore up to translating degrees this homology depends only on the parity of d .
There are some computer calculations of these groups, but they are largely unknown. On the
other hand, the 1-loop part is completely known, and is

H�.GC2;1-loop
d

/ D

M
k�1;

k�2dC1 mod 4

QŒd � k�:
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Writing EV for the little discs operad modelled on the unit disc in an inner product
space V , one can consider orthogonal calculus applied to the functor Ba W V 7! BhAut.EV /

(or perhaps better BhAut.EQ
V /: there is an important and subtle question if BhAut.EV / !

BhAut.EQ
V / is a rationalisation on universal covers, which I shall elide). Presumably by

passing to appropriate models one can upgrade the maps (3.1) to a map Bt ! Ba of ortho-
gonal functors. The data above would seem to suggest that Ba enjoys precisely the prop-
erty described in the last section, namely that ‚Ba.1/ is rationally equivalent to the O.1/-
spectrum map.CP 1

C ; S0/, where the action is by complex conjugation, and that for k � 2

the rational homotopy groups of .‚Ba.k//hSO.k/ are supported in degrees Œ4 � 3k; 2 � 2k�

and combine the k-loop graph homology for both parities encoded as the O.k/=SO.k/-
eigenspace decomposition. (In particular, this suggests an action of the twisted group ring
H ��.BSO.k/I Q/ŒO.k/=SO.k/� on the graded vector space

s�2kH�.GC2;k-loop
2 / ˚ s�3kH�.GC2;k-loop

3 /;

giving a potentially nontrivial relationship between even and odd graph homology.)
There are two reasons BTop.d/ ! BhAut.EQ

d
/ cannot be a rational equivalence:

(i) this map tends to kill the Pontrjagin–Weiss classes (and for d odd the algeb-
raic K-theory classes),

(ii) the 1-loop graph contributionH�C1.GC2;1-loop
d

/ � ��.BhAut.EQ
d

// does not
come from ��.BTop.d// ˝ Q.

Point (i) concerns the contribution to BTop.d/ D Bt.Rd / due to the first Taylor
approximation T1Bt.Rd /, and, given the degrees in which the 1-loop graphs contribute,
point (ii) presumably concerns the contribution to BhAut.EQ

d
/ D Ba.Rd / due to the first

Taylor approximation T1Ba.Rd /. Together these suggest that a better question is to ask about
the rational homotopy cartesianness of

BTop.d/ Bt.Rd / T1Bt.Rd /

BhAut.EQ
d

/ Ba.Rd / T1Ba.Rd /:

(3.2)

If this square were rationally homotopy cartesian for all large enough d then in particular
the maps on derivatives ‚Bt.k/ ! ‚Ba.k/ would be rational equivalences for all k � 2.
As evidence for this, from the proposed description of the rational homotopy groups of
.‚Ba.k//hSO.k/ described above, and the calculation of 2-loop graph homology, one can
easily deduce that ‚Ba.2/ 'Q map.S1

C; S�1/ and that the induced map ‚Bt.2/ ! ‚Ba.2/

is indeed a rational equivalence.
When d D 2n, rational homotopy cartesianness of (3.2) is equivalent to the map

BDifffr@ .D2n/ ' �2n
0 Top.2n/ ! �2n

0

�
hAut.EQ

2n/ � Top
�

being a rational equivalence, and by comparing certain graphical models arising in [32] with
graph complexes arising in the operadic model for embedding calculus it looks like this
might be true. Kupers, Willwacher, and I are trying to make this precise.
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4. Methods

I will now explain some of the ideas which go into the proofs of Theorems 3.1
and 3.2, though my goal is to give an overall impression of the methods involved rather than
explain how exactly they are combined to prove these two particular results.

4.1. Weiss fibre sequences and the general strategy
Weiss’ proof of the existence of Pontrjagin–Weiss classes contains an observation

[50, Remark 2.1.3] which technically does not play a role in his argument but is central to
its philosophy. It is more a general principle than a specific formulation, and I shall give
it only in a modestly general form: variants of it underlie many recent results about diffeo-
morphism groups [6,7,24,28,30–32]. Let W be a manifold with boundary @W decomposed as
@�W [ @CW into codimension zero submanifolds with common boundary. Then there is a
fibration

BDiff@
�
@�W � Œ0; 1�

�
! BDiff@.W / ! BEmbŠ

@CW .W; W /: (4.1)

The rightmost term needs a little explaining: it is the classifying space of the group-like
topological monoid EmbŠ

@CW .W; W / of those self-embeddings of W which are the identity
on @CW , and which are isotopic to diffeomorphisms. But crucially these self-embeddings
are allowed to send @�W into the interior of W , as indicated in Figure 3.

Figure 3

A self-embedding of W relative only to @CW .

This is not a technically difficult result (after passing to a different model of the
rightmost term, it is a simple consequence of the parameterised isotopy extension theorem).
Somewhat more technical is Kupers’ theorem [30, Section 4] that this fibration sequence
deloops—with respect to the evident composition law on BDiff@.@�W � Œ0; 1�/—which is
sometimes convenient.

The importance of this fibration sequence is the following strategy which it indic-
ates: to understandBDiff@.@�W � Œ0; 1�/, you can instead try to understandBDiff@.W / and
BEmbŠ

@CW .W; W /, for any manifold W containing @�W in its boundary. This is power-
ful because these two spaces can sometimes be accessed, though by very different meth-
ods: the homology of BDiff@.W / by parameterised surgery theory, and the homotopy of
BEmbŠ

@CW .W; W / by embedding calculus. Let me explain how this strategy may be imple-
mented to study BDiff@.Dd /.
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Set-up for discs. If d D 2n then take Wg;1 WD D2n#g.Sn � Sn/ and @�Wg;1 D

D2n�1 � @Wg;1, so that the fibration (4.1) takes the form

BDiff@.D2n/ ! BDiff@.Wg;1/ ! BEmbŠ
@CWg;1

.Wg;1; Wg;1/; (4.2)

where we have identified D2n�1 � Œ0; 1� � D2n.
If d D 2n C 1 then instead of directly using (4.1), take the handlebody

Vg WD \g.Sn � DnC1/, and use a variant of (4.1) allowing most of the boundary of Vg

to not be fixed. This takes the form

BC.D2n/ ! BDiffD2n.Vg/ ! BEmbŠ

D2n;Wg;1
.Vg ; Vg/; (4.3)

where the left-hand term is given by pseudoisotopies of D2n, the middle term by diffeo-
morphisms of Vg fixing a discD2n � @Vg but allowing the rest of the boundary to move, and
the right-hand term is given by self-embeddings of Vg which preserve
@Vg n int.D2n/ D Wg;1 setwise, and furthermore preserve a disc D2n � Wg;1 pointwise.
By the fibration sequence

BDiff@.D2nC1/ ! BC.D2n/ ! BDiff@.D2n/ (4.4)

from (2.1), given BDiff@.D2n/ it is equivalent to get at BDiff@.D2nC1/ or BC.D2n/, and
I will explain below why the latter is more accessible.

Parameterised surgery. The reason for the choice of manifold Wg;1 is that Galatius and I
[15] have shown that the maps BDiff@.Wg;1/ ! BDiff@.WgC1;1/, induced by the evid-
ent embeddings Wg;1 ,! WgC1;1, are homology isomorphisms in a range of homological
degrees tending to infinity with g, as long as 2n � 6, and furthermore [13] that a certain
parameterised Pontrjagin–Thom map

hocolim
g!1

BDiff@.Wg;1/ ! �1
0 MT�n;

to the infinite loop space of a certain Thom spectrum, induces an isomorphism on homology.
The rational cohomology of the right-hand side is quite simple: it is a polynomial algebra on
certain easily-defined cohomology classes, known as Miller–Morita–Mumford classes.

These results are analogues in high dimensions of Harer’s [20] theorem on the sta-
bility of the homology of mapping class groups of oriented surfaces, andMadsen andWeiss’
[35] theorem on the stable homology of thesemapping class groups. In fact, the stability result
holds much more generally for all 2n-manifolds of the form W #g.Sn � Sn/ with 2n � 6

and W simply-connected (or even with virtually polycyclic fundamental group [12]), and
there is an analogous description of the stable homology for any W of any even dimension
[14] (including dimension 4). See Galatius’ contribution to the 2014 ICM for an overview of
this theory.

In odd dimensions the stable homology of the diffeomorphism groups of the ana-
logous manifolds D2nC1#g.Sn � SnC1/ is not yet known, but Botvinnik and Perlmutter [5]
have a version for BDiffD2n.Vg/, and Perlmutter [36] has the appropriate stability theorem
in this case. This accounts for the use of the modified Weiss fibre sequence (4.3) in odd
dimensions, rather than a more obvious analogue of (4.2) involving D2nC1#g.Sn � SnC1/.
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Embedding calculus. The difficulty of studying embeddings of one manifold into another
depends on the codimension, but this must be counted appropriately. What matters is the
geometric dimension of the target minus the handle dimension of the source. In particular,
if W is d -dimensional but can be constructed from @CW � Œ0; 1� by attaching handles of
index � h, then self-embeddings of W relative to @CW have codimension d � h. If this
codimension is � 3, then the theory of embedding calculus as developed by Goodwillie,
Klein, and Weiss [17, 18,49] can be used to access spaces of self-embeddings of W relative
to @CW . This theory provides a tower

:::

BT3EmbŠ
@CW .W; W /

BT2EmbŠ
@CW .W; W /

BEmbŠ
@CW .W; W / BT1EmbŠ

@CW .W; W /;

(4.5)

such that, as long as the codimension (as described above) is � 3, the map

BEmbŠ
@CW .W; W / ! BT1EmbŠ

@CW .W; W / D holim
k!1

BTkEmbŠ
@CW .W; W /

is an equivalence. The bottom stage BT1EmbŠ
@CW .W; W / is equivalent to the classifying

space of the monoid BunŠ
@CW .T W;T W / of bundle maps T W ! T W which are the identity

over @CW andwhich are homotopic to the derivative of a diffeomorphism, and the homotopy
fibre of BTkEmbŠ

@CW .W; W / ! BTk�1EmbŠ
@CW .W; W / has a description in terms of a

space of sections of a bundle Zk ! Ck.W / over the configuration space of k unordered
points in W , whose fibres are constructed from the configuration spaces of � k ordered
points in W . Thus in principle the bottom stage and these homotopy fibres are amenable to
calculation by homotopical methods.

For the manifold Wg;1 and @CWg;1 D D2n, the codimension in the sense described
is n, so the embedding calculus tower converges as long as 2n � 6. For the manifolds Vg ,
there is a similar tower for BEmbŠ

D2n;Wg;1
.Vg ; Vg/, which converges for 2n C 1 � 7.

The strategy which suggests itself is then to calculate as much as you can about the
middle and right-hand terms of (4.2) and (4.3) using these two very different methods, and
then use these fibre sequences and (4.4) to deduce things about BDiff@.Dd /. This is a very
attractive picture, but for getting explicit answers there is a serious

Difficulty. Parameterised surgery fundamentally gets at the homology groups of diffeo-
morphism groups, whereas embedding calculus, at least if applied in the most classical way,
naturally allows one to get at the homotopy groups of embedding spaces.

4.2. Qualitative results
One situation in which this Difficulty is not so serious is if one wishes to obtain

qualitative results about BDiff@.@�W � Œ0; 1�/, for example, that its homology or homo-
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topy groups lie in a given Serre class. This was pioneered by Kupers [30], to prove that
the homotopy (or equivalently, homology) groups of BDiff@.Dd / are finitely-generated for
d ¤ 4; 5; 7. A slight variant of his line of reasoning is as follows.

Firstly, for D2n consider the Weiss fibre sequence (4.2), which may be delooped.
Using [13,15], as long as 2n � 6, the homology of BDiff@.Wg;1/ is easily seen to be finitely-
generated in degrees � �

g�3
2
, so it suffices to show that the homology of

X WD BEmbŠ
@CWg;1

.Wg;1; Wg;1/

is finitely-generated, too. Using the embedding calculus tower (4.5), it is not difficult to show
that the higher homotopy groups of X are all finitely-generated, and hence to deduce that
the homology of the universal cover eX is finitely-generated. It remains to study the spectral
sequence for the fibration eX ! X ! B�1.X/

and the crucial point here is that the group

�1.X/ D �0

�
EmbŠ

@CWg;1
.Wg;1; Wg;1/

�
Š �0

�
Diff@.Wg;1/

�
=�0

�
Diff@.D2n/

�
enjoys Wall’s finiteness property (F1). In this case it is clear by Kreck’s [29] calculation of
the group �0.Diff@.Wg;1//, but as a general principle it follows from Sullivan’s theorem [40]

that mapping class groups of simply-connected manifolds of dimension � 5 are commen-
surable (up to finite kernel, see [27]) to arithmetic groups.

Secondly, for D2nC1 it suffices, given the above, to prove finite-generation of the
homology of BC.D2n/, so consider the Weiss fibre sequence (4.3), which may also be
delooped. Using [5, 36], as long as 2n C 1 � 9, the homology of BDiffD2n.Vg/ is finitely-
generated in a stable range, and embedding calculus considerations as above show that the
homology of BEmbŠ

D2n;Wg;1
.Vg ; Vg/ is finitely-generated, too.

When working modulo a Serre class, one can sometimes also determine the lowest
nontrivial term modulo that class. Bustamante and I [7] have used the above strategy with
a Weiss fibre sequence for the manifolds Xg WD S1 � D2n�1#g.Sn � Sn/ to analyse
��.BDiff@.S1 � D2n�1//.p/ for 2n � 6 modulo the Serre class of finitely-generated
Z.p/-modules, where we show that it vanishes in degrees � < min.2p � 3; n � 2/ and isL1 Z=p in degree 2p � 3 as long as 2p � 3 < n � 2. This was known in the pseudoiso-
topy stable range using algebraicK-theory methods [19], but our work gives a rather different
perspective on this infinitely-generated subgroup.

Turning the Weiss fibre sequence around. A further point of view on the Weiss fibre
sequence is that, assumingBEmbŠ

@CW .W;W /may be understood using embedding calculus,
it reduces questions about BDiff@.W / for a whole class of manifolds W to questions about
the single space BDiff@.@�W � Œ0; 1�/. As the minimal choice of @�W is @�W D Dd�1,
this gives another reason to be particularly interested in BDiff@.Dd /.

Kupers [30] exploits this point of view to show—given the homological, and so
also homotopical, finite generation of BDiff@.Dd / discussed above—that BDiff@.W / has
finitely-generated higher homotopy groups for any closed 2-connected manifold W of
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dimension d ¤ 4; 5; 7. More recently Bustamante, Krannich, and Kupers [6] have exten-
ded this to any closed manifold of dimension 2n � 6 with finite fundamental group.

4.3. Quantitative results
To obtain quantitative results one must confront the Difficulty. The most obvious

way to do this—in the case of discs—is to try to make Kupers’ method from the last section
quantitative, by trying to calculate the homology of the right-hand terms of (4.2) and (4.3).

This is the strategy I pursued with Krannich in [27] to prove Theorem 3.2, and
(though for S1 � D2n�1 and not for discs) with Bustamante in [7]. An important prelim-
inary simplification is to consider the Weiss fibre sequence with framings (or similar): for
example, in the framed version

BDiff fr@ .D2n/ ! BDiff fr@ .Wg;1/ ! BEmbfr;Š
@CWg;1

.Wg;1; Wg;1/ (4.6)

of the sequence (4.2), BDiff fr@ .D2n/ differs from BDiff@.D2n/ by a copy of �2nO.2n/,
whose rational homotopy groups are completely understood, but [13, 15] shows that the
rational homology of BDiff fr@ .Wg;1/ is trivial in the stable range, which is far simpler
than the rational homology of BDiff@.Wg;1/. Luckily, the effect on the homology of the
self-embeddings term is also beneficial. The way we calculate the homology of the (framed)
self-embedding spaces in these papers is not in fact using embedding calculus as I have been
advertising, but rather using disjunction theory (which is in any case the fuel which makes
embedding calculus work [17, 18], but using it directly is sometimes more convenient), in
the form of Morlet’s lemma of disjunction in [7] and Goodwillie’s multi-relative disjunction
lemma [16] in [27]. The nature of the calculations involved makes it hard to say anything very
general about them, so I shall not try to.

Instead, I should like to discuss an alternative strategy, which is what Kupers and
I do in [32] and prepare for in the companion papers [31, 33, 34], and is what leads to the
proof of Theorem 3.1. There we adopt the view that embedding calculus is very well suited
to calculating—or estimating—the rational homotopy groups of BEmbŠ

@CWg;1
.Wg;1; Wg;1/,

and sowe propose to calculate—or estimate—the rational homotopy groups ofBDiff@.Wg;1/

(in fact, we consider the framed version BDifffr@ .Wg;1/, but again the difference on rational
homotopy groups is very mild). Describing these is an interesting problem in its own right,
especially in view of Berglund and Madsen’s [1] calculation of the rational homotopy and
stable cohomology of the groups of block diffeomorphisms and of homotopy automorphisms
of Wg;1. In the remainder I will focus on this calculation, and not try to explain exactly how
it implies Theorem 3.1.

4.4. Torelli groups
Diffeomorphisms of Wg;1 induce automorphisms of Hn.Wg;1I Z/ which preserve

the intersection form, giving a homomorphism

˛g W Diff@.Wg;1/ ! Gg WD

8<:Og;g.Z/; n even,

Sp2g.Z/; n odd:
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This is surjective if n is even or n D 1; 3; 7, but for other odd values of n has image a certain
finite-index subgroup G0

g . By analogy with the case 2n D 2, the kernel of ˛g is called the
Torelli group and denoted Tor@.Wg;1/, so that there is a fibration sequence

BTor@.Wg;1/ ! BDiff@.Wg;1/ ! BG0
g : (4.7)

Now the fundamental group ofBDiff@.Wg;1/ is quite complicated, as it surjects onto
the arithmetic group G0

g , so although the results of [13, 15] describe the rational cohomo-
logy of this space, there is no reason to think that this has much to do with its rational
higher homotopy groups. However, by (4.7) these higher homotopy groups are the same as
those of BTor@.Wg;1/, and, as long as 2n � 6, the Weiss fibre sequence can be used (in
“qualitative mode”) to prove that the space BTor@.Wg;1/ is nilpotent [31, Theorem C]. Thus
BTor@.Wg;1/ has a meaningful rationalisation, and its rational homotopy and cohomology
groups are closely related (in the sense that there are spectral sequences computing each
from the other). On the other hand, passing to the infinite covering space BTor@.Wg;1/ of
BDiff@.Wg;1/ has an unknown effect on cohomology, so the problem is now to understand
the rational cohomology of BTor@.Wg;1/.

Cohomology of Torelli groups. The fibration (4.7) provides a representation of the arith-
metic group G0

g on the rational vector spaces H i .BTor@.Wg;1/I Q/, and, as long as 2n � 6

and g � 2, a further application of the Weiss fibre sequence in “qualitative mode” shows
[31, Theorem A] that these are algebraic representations of G0

g , i.e. they extend to repres-
entations of the ambient algebraic group Gg 2 ¹Og;g ; Sp2gº. As Gg -representations are
semisimple, and the irreducibles are classified in terms of Young diagrams and are all
summands of tensor powers of the defining Gg -representation H WD Hn.Wg;1I Q/, the
G0

g -representation H i .BTor@.Wg;1/I Q/ may be determined in terms of the vector spaces�
H i

�
BTor@.Wg;1/I Q

�
˝ H ˝S

�G0
g (4.8)

for all finite sets S , and the structure maps between them given by applying permutations
and contractions H ˝ H ! Q. On the other hand, the vector spaces (4.8) are related, by the
Serre spectral sequence for (4.7), to the cohomology groups

H �
�
BDiff@.Wg;1/I H ˝S

�
(4.9)

with coefficients in the S th tensor power of the local system H on BDiff@.Wg;1/ provided
by the G0

g -representation H . Using work of Borel [4] this Serre spectral sequence can be
shown to degenerate: Ebert and I [8] introduced this strategy, but as the results of [13,15] only
describe the cohomology of BDiff@.Wg;1/ with constant coefficients, we were only able to
use it to determine ŒH i .BTor@.Wg;1/IQ/�G

0
g in a stable range. However, the results of [13,15]

also apply to BDiff�@.Wg;1/ for quite arbitrary tangential structures � (such as framings, but
also including “maps to a space Y ”), and exploiting the functoriality of the result with respect
to � (this kind of argument originates in [38]) it is possible to calculate (4.9) in a stable range,
and hence by the strategy outlined here to calculate H �.BTor@.Wg;1/I Q/ in a stable range
of degrees, as a Q-algebra and as a G0

g -representation. This is done in [33].
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A similar strategy can be applied toBDiff fr@ .Wg;1/, though by a subtlety in the proof
the argument above does not directly calculate the cohomology of BTorfr@ .Wg;1/. Instead,
there is a certain fibration sequence

X1.g/ ! BTorfr@ .Wg;1/ ! X0

with X0 a loop space having rational cohomology ƒQŒ N�4j �2n�1 j j > n=2�. The N�4j �2n�1

are secondary characteristic classes associated to the fact that the family signature van-
ishes for two different reasons on BTorfr@ .Wg;1/: because of the framing, and because of
the triviality of the action on H n.Wg;1I Z/. The analogue of the argument above leads to
the following description of the cohomology of the nilpotent space X1.g/. For r � 3 and
v1; : : : ; vr 2 H n.Wg;1I Q/, there are defined twisted Miller–Morita–Mumford classes

�1.v1 ˝ � � � ˝ vr / 2 H .r�2/n
�
X1.g/I Q

�
;

which satisfy:

(i) linearity in each vi ,

(ii) �1.v�.1/ ˝ � � � ˝ v�.r// D sign.�/n � �1.v1 ˝ � � � ˝ vr /,

(iii)
P

i �1.v1 ˝ � � � ˝ vk�1 ˝ ai / ^ �1.a#
i ˝ vk ˝ � � � ˝ vr / D �1.v1 ˝ � � � ˝ vr /,

(iv)
P

i �1.v1 ˝ � � � ˝ vr ˝ ai ˝ a#
i / D 0,

where
P

i ai ˝ a#
i 2 H n.Wg;1I Q/˝2 is dual to the intersection form. The framed analogue

of the group G0
g acts on �1.v1 ˝ � � � ˝ vr / by its evident action on the vi 2 H n.Wg;1I Q/.

Kupers and I [32] show that, in a range of degrees tending to infinity with g, the cohomo-
logy algebra of X1.g/ is generated by the classes �1.v1 ˝ � � � ˝ vr / and subject only to the
relations (i)–(iv).

Homotopy of Torelli groups. As the rational cohomology ofX1.g/ is supported in degrees
divisible by n in a stable range, it follows formally that its rational homotopy groups are
supported in degrees [r�1Œr.n � 1/ C 1; rn� in this stable range, so exhibit a band pattern.

But it turns out that we can do a lot better. It is not hard to see that the above data in
fact presents a quadratic algebra, generated by the elements �1.v1 ˝ v2 ˝ v3/ of degree n

(modulo (iv)), and it is then tempting to ask whether this quadratic algebra is Koszul. Kupers
and I [34] prove that H �.X1.g/I Q/ is indeed Koszul in a stable range of degrees (this was
simultaneously proved by Felder, Naef, and Willwacher [10]), so it follows that in this range
��.X1.g// ˝ Q is in fact supported in degrees of the form r.n � 1/ C 1, and is furthermore
given by the quadratic dual Lie algebra. Up to a few extension questions, this calculates
��.BDiff@.Wg;1// ˝ Q in a stable range.

Acknowledgements

It is a pleasure to thank those with whom I have collaborated on the ideas described here:
Mauricio Bustamante, Johannes Ebert, Søren Galatius, Manuel Krannich, and Alexander
Kupers.

2875 Diffeomorphisms of discs



Funding

The author was supported by the ERC under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 756444), and by a Philip Leverhulme
Prize from the Leverhulme Trust.

References

[1] A. Berglund and I. Madsen, Rational homotopy theory of automorphisms of man-
ifolds. Acta Math. 224 (2020), no. 1, 67–185.

[2] P. Boavida de Brito and M. Weiss, Spaces of smooth embeddings and configura-
tion categories. J. Topol. 11 (2018), no. 1, 65–143.

[3] A. Borel, Stable real cohomology of arithmetic groups. Ann. Sci. Éc. Norm. Supér.
(4) 7 (1974), 235–272.

[4] A. Borel, Stable real cohomology of arithmetic groups. II. In Manifolds and Lie
groups (Notre Dame, Ind., 1980), pp. 21–55, Progr. Math. 14, Birkhäuser, Boston,
Mass., 1981.

[5] B. Botvinnik and N. Perlmutter, Stable moduli spaces of high-dimensional handle-
bodies. J. Topol. 10 (2017), no. 1, 101–163.

[6] M. Bustamante, M. Krannich, and A. Kupers, Finiteness properties of auto-
morphism spaces of manifolds with finite fundamental group. 2021,
arXiv:2103.13468.

[7] M. Bustamante and O. Randal-Williams, On automorphisms of high-dimensional
solid tori. 2020, arXiv:2010.10887.

[8] J. Ebert and O. Randal-Williams, Torelli spaces of high-dimensional manifolds.
J. Topol. 8 (2015), no. 1, 38–64.

[9] F. T. Farrell and W.-C. Hsiang, On the rational homotopy groups of the diffeo-
morphism groups of discs, spheres and aspherical manifolds. In Algebraic and
geometric topology, Stanford 1976, pp. 325–337, Proc. Sympos. Pure Math.
XXXII, Amer. Math. Soc., Providence, RI, 1976.

[10] M. Felder, F. Naef, and T. Willwacher, Stable cohomology of graph complexes.
2021, arXiv:2106.12826.

[11] B. Fresse, V. Turchin, and T. Willwacher, The rational homotopy of mapping
spaces of En operads. 2017, arXiv:1703.06123.

[12] N. Friedrich, Homological stability of automorphism groups of quadratic modules
and manifolds. Doc. Math. 22 (2017), 1729–1774.

[13] S. Galatius and O. Randal-Williams, Stable moduli spaces of high-dimensional
manifolds. Acta Math. 212 (2014), no. 2, 257–377.

[14] S. Galatius and O. Randal-Williams, Homological stability for moduli spaces of
high dimensional manifolds. II. Ann. of Math. (2) 186 (2017), no. 1, 127–204.

[15] S. Galatius and O. Randal-Williams, Homological stability for moduli spaces of
high dimensional manifolds. I. J. Amer. Math. Soc. 31 (2018), no. 1, 215–264.

2876 O. Randal-Williams

https://arxiv.org/abs/2103.13468
https://arxiv.org/abs/2010.10887
https://arxiv.org/abs/2106.12826
https://arxiv.org/abs/1703.06123


[16] T. G. Goodwillie, A multiple disjunction lemma for smooth concordance embed-
dings. Mem. Amer. Math. Soc. 86 (1990), no. 431, viii+317.

[17] T. G. Goodwillie and J. R. Klein, Multiple disjunction for spaces of smooth
embeddings. J. Topol. 8 (2015), no. 3, 651–674.

[18] T. G. Goodwillie and M. Weiss, Embeddings from the point of view of immersion
theory. II. Geom. Topol. 3 (1999), 103–118 (electronic).

[19] J. Grunewald, J. R. Klein, and T. Macko, Operations on the A-theoretic nil-terms.
J. Topol. 1 (2008), no. 2, 317–341.

[20] J. L. Harer, Stability of the homology of the mapping class groups of orientable
surfaces. Ann. of Math. (2) 121 (1985), no. 2, 215–249.

[21] K. Igusa, The stability theorem for smooth pseudoisotopies. K-Theory 2 (1988),
no. 1–2, 1–355.

[22] K. Igusa, Higher Franz–Reidemeister torsion. AMS/IP Stud. Adv. Math. 31,
Amer. Math. Soc., Providence, RI/International Press, Somerville, MA, 2002.

[23] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds,
smoothings, and triangulations. Ann. of Math. Stud. 88, Princeton University
Press, Princeton, NJ/University of Tokyo Press, Tokyo, 1977.

[24] B. Knudsen and A. Kupers, Embedding calculus and smooth structures. 2020,
arXiv:2006.03109.

[25] M. Kontsevich, Feynman diagrams and low-dimensional topology. In First
European Congress of Mathematics, Vol. II (Paris, 1992), pp. 97–121, Progr.
Math. 120, Birkhäuser, Basel, 1994.

[26] M. Krannich, A homological approach to pseudoisotopy theory. I. Invent. Math.
(to appear), arXiv:2002.04647.

[27] M. Krannich and O. Randal-Williams, Mapping class groups of simply connected
high-dimensional manifolds need not be arithmetic. C. R. Math. Acad. Sci. Paris
358 (2020), no. 4, 469–473.

[28] M. Krannich and O. Randal-Williams, Diffeomorphisms of discs and the second
Weiss derivative of BTop.�/. 2021, arXiv:2109.03500.

[29] M. Kreck, Isotopy classes of diffeomorphisms of .k � 1/-connected almost-
parallelizable 2k-manifolds. In Algebraic topology, Aarhus 1978, pp. 643–663,
Lecture Notes in Math. 763, Springer, Berlin, 1979.

[30] A. Kupers, Some finiteness results for groups of automorphisms of manifolds.
Geom. Topol. 23 (2019), 2277–2333 (electronic).

[31] A. Kupers and O. Randal-Williams, The cohomology of Torelli groups is algeb-
raic. Forum Math. Sigma 8 (2020), e64.

[32] A. Kupers and O. Randal-Williams, On diffeomorphisms of even-dimensional
discs. 2020, arXiv:2007.13884.

[33] A. Kupers and O. Randal-Williams, On the cohomology of Torelli groups. Forum
Math. Pi 8 (2020), e7.

[34] A. Kupers and O. Randal-Williams, On the Torelli Lie algebra. 2021,
arXiv:2106.16010.

2877 Diffeomorphisms of discs

https://arxiv.org/abs/2006.03109
https://arxiv.org/abs/2002.04647
https://arxiv.org/abs/2109.03500
https://arxiv.org/abs/2007.13884
https://arxiv.org/abs/2106.16010


[35] I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces: Mum-
ford’s conjecture. Ann. of Math. (2) 165 (2007), no. 3, 843–941.

[36] N. Perlmutter, Homological stability for diffeomorphism groups of high-dimen-
sional handlebodies. Algebr. Geom. Topol. 18 (2018), no. 5, 2769–2820.

[37] O. Randal-Williams, An upper bound for the pseudoisotopy stable range. Math.
Ann. 368 (2017), no. 3–4, 1081–1094.

[38] O. Randal-Williams, Cohomology of automorphism groups of free groups with
twisted coefficients. Selecta Math. (N.S.) 24 (2018), no. 2, 1453–1478.

[39] R. Reis and M. Weiss, Rational Pontryagin classes and functor calculus. J. Eur.
Math. Soc. (JEMS) 18 (2016), no. 8, 1769–1811.

[40] D. Sullivan, Infinitesimal computations in topology. Publ. Math. Inst. Hautes
Études Sci. 47 (1977), 269–331.

[41] F. Waldhausen, Algebraic K-theory of spaces. In Algebraic and geometric topo-
logy (New Brunswick, NJ, 1983), pp. 318–419, Lecture Notes in Math. 1126,
Springer, Berlin, 1985.

[42] F. Waldhausen, B. Jahren, and J. Rognes, Spaces of PL manifolds and categories
of simple maps. Ann. of Math. Stud. 186, Princeton University Press, Princeton,
NJ, 2013.

[43] T. Watanabe, On Kontsevich’s characteristic classes for higher dimensional sphere
bundles. I. The simplest class. Math. Z. 262 (2009), no. 3, 683–712.

[44] T. Watanabe, On Kontsevich’s characteristic classes for higher-dimensional sphere
bundles. II. Higher classes. J. Topol. 2 (2009), no. 3, 624–660.

[45] T. Watanabe, Erratum to: On Kontsevich’s characteristic classes for higher-
dimensional sphere bundles. II. Higher classes. 2018, https://www.math.kyoto-
u.ac.jp/~tadayuki.watanabe/kon2-erratum.pdf.

[46] T. Watanabe, Some exotic nontrivial elements of the rational homotopy groups of
Diff.S4/. 2018, arXiv:1812.02448.

[47] T. Watanabe, Addendum to: Some exotic nontrivial elements of the rational homo-
topy groups of Diff.S4/ (homological interpretation). 2021, arXiv:2109.01609.

[48] M. Weiss, Orthogonal calculus. Trans. Amer. Math. Soc. 347 (1995), no. 10,
3743–3796.

[49] M. Weiss, Embeddings from the point of view of immersion theory. I. Geom.
Topol. 3 (1999), 67–101 (electronic).

[50] M. Weiss, Dalian notes on Pontryagin classes. Geom. Topol. (to appear),
arXiv:1507.00153.

Oscar Randal-Williams

Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK,
or257@cam.ac.uk

2878 O. Randal-Williams

https://www.math.kyoto-u.ac.jp/~tadayuki.watanabe/kon2-erratum.pdf
https://www.math.kyoto-u.ac.jp/~tadayuki.watanabe/kon2-erratum.pdf
https://arxiv.org/abs/1812.02448
https://arxiv.org/abs/2109.01609
https://arxiv.org/abs/1507.00153
mailto:or257@cam.ac.uk



	1. Introduction
	2. Some phenomena
	2.1. Pseudoisotopy and algebraic K-theory
	2.2. Configuration space integrals
	2.3. Pontrjagin–Weiss classes

	3. The rational homotopy type of B\mathrm{Diff}_{\partial }(D^d)
	3.1. Even-dimensional discs
	3.2. Odd-dimensional discs
	3.3. Outlook and speculation

	4. Methods
	4.1. Weiss fibre sequences and the general strategy
	4.2. Qualitative results
	4.3. Quantitative results
	4.4. Torelli groups

	References

