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Abstract

Manifolds with torus boundary have played a special role in the study of Floer homology
for 3-manifolds since the early days of the subject. In joint work with Jonathan Hanselman
and Liam Watson, we defined a geometrical Heegaard Floer invariant for 3-manifolds
with torus boundary. The invariant is a reformulation of the bordered Floer homology of
Lipshitz, Ozsváth, and Thurston, and takes the form of a collection of immersed closed
curves (possibly decorated with local systems) in a covering space of the punctured torus.
We briefly discuss the construction of the invariant and some applications to the L-space
conjecture of Boyer–Gordon–Watson and Juhász. We then describe a generalization to
manifolds with sutured boundary, and some applications to the study of satellite knots.
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1. Introduction

In the seminal papers [16,17], Andreas Floer created two branches of the theory which
now bear his name. The first branch is concerned with symplectic geometry, and provides
invariants of symplectomorphisms and Lagrangian submanifolds. The second branch, with
which we will be concerned, provides invariants of 3-manifolds. In addition to Floer’s work,
which uses SU2 instantons, there are many different approaches to defining Floer homology
for 3-manifolds, including the monopole Floer homology of Kronheimer and Mrowka [35]

or Hutchings’ theory of embedded contact homology [29]. We will mainly use the Heegaard
Floer homology of Ozsváth and Szabó [44] which is easy to compute and relatively simple
to work with from a technical standpoint. Regardless of their definition, all Floer theories
assign an abelian group to a closed connected oriented 3-manifold Y . The key question we
will be concerned with is:

“What is the Floer homology of a 3-manifoldM with @M ' T 2?”

Here our main criterion for defining the Floer homology is that if Y D M1 [T 2 M2, we
should be able to recover the Floer homology of Y from the Floer homologies ofM1 andM2.

1.1. The view from 1992
It is illuminating to consider the situation for Floer’s original instanton homology,

as it was understood 30 years ago. Let I �.Y / be the homology of a chain complex CI�.Y /,
which is generated by irreducible flat SU2 connections on Y if things are nice enough. By
considering the holonomy representation, we see that the set of flat connections is in bijection
with the SU2 character variety of Y :

XSU2.Y / D
®
� W �1.Y / ! SU2

¯
=SU2

where SU2 acts on the set of representations by conjugation, .A � �/.x/DA�.x/A�1. A rep-
resentation � is reducible if its image is contained in an abelian subgroup of SU2; otherwise,
it is irreducible. Any reducible representation can be factored as �1.Y / ! H1.Y / ! S1 �

SU2, so if H1.Y / D 0, the unique irreducible representation is the trivial one.
If @M ' T 2, we can likewise consider the character varietyXSU2.M/. The inclusion

i� W �1.@M/ ! �1.M/ induces a map i� W XSU2.M/ ! XSU2.@M/. Since �1.T
2/ ' Z2 is

abelian, every � W �1.T
2/ ! SU2 is reducible. Any two 1-parameter subgroups in SU2 are

conjugate, and the stabilizer of a fixed 1-parameter subgroup is the Weyl group W D Z=2.
It follows that

XSU2.T
2/ D

®
� W Z2

! S1
¯
=W D T 2=.Z=2/

is the pillowcase orbifold T 2=.x � �x/. Figure 1 shows the image i�.XSU2.M// for two
simple 3-manifolds, namelyM D S1 �D2 andM D MT2;3 – the exterior of the right-hand
trefoil knot in S3.

If Y D M1 [T 2 M2, the inclusions ij � W �1.T
2/ ! �2.Mj / induce maps

i�j W XSU2.Mj / ! XSU2.T
2/. The simplest example of such a gluing is a Dehn filling,

where M2 D S1 �D2. In this case, it is easy to see:
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Figure 1

The pillowcase orbifold XSU2 .T
2/ is shown on the left. The solid line at the bottom is i�.XSU2 .S

1 �D2//. The
middle figure shows the image of XSU2 .MT2;3

/, which consists of a reducible part (the line at the bottom of the
figure) and an irreducible part (the line segment of slope 6). The figure on the right shows the intersection
between the two character varieties corresponding to C1 surgery on the trefoil.

Lemma 1.1. If Y D M1 [T 2 .S1 � D2/, then X.Y / is naturally identified with the fiber
product XSU2.M1/ �XSU2 .T 2/ XSU2.S

1 �D2/.

The Poincaré sphere is the result of C1 surgery on T2;3. The corresponding fiber
product is illustrated on the right-hand side of Figure 1. There are 3 intersection points (cir-
cled) between XSU2.MT2;3/ and XSU2.S

1 � D2/, which tells us that XSU2.P / consists of
two irreducible characters and a single reducible character.

It is tempting to consider the image i�.XSU2.M// � XSU2.@M/ as a proxy for the
Floer homology ofM . However, a closer consideration of this picture reveals many difficul-
ties:

• How should the reducible flat connections be treated? If Y is a homology sphere,
the only reducible connection is the trivial one, which we can afford to ignore. As
soon as H1.Y / ¤ 0, this is no longer feasible.

• If instead of takingM2 D S1 �D2 we use another 3-manifold, the fiber product
in Lemma 1.1 becomes more complicated. Each intersection between irreducible
points in i�1 .XSU2.M1// and i�2 .XSU2.M2// gives an entire circle of irreducible
flat connections in XSU2.Y /.

• Perhaps most importantly, XSU2.Y / is only the set of generators for CI�.Y /. To
compute the homology, we must understand the differential, which involves count-
ing solutions to the SU2 ASD equation on Y � R. A priori, there is no reason to
believe that the character variety should tell us anything about this.

Despite these problems, there were reasons for optimism as well. Indeed, CI�.Y /

was Z=8 graded, and the reduction of this grading to Z=2 agreed with the sign of intersection
in the fiber product. Hence the two irreducible generators for CI�.P / have the same Z=2

grading, and there were no differentials in the chain complex. Fintushel and Stern [15] showed
that the same was true for any Seifert fibered space.
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The second, very potent reason was Floer’s exact triangle, which related the Floer
homologies of different Dehn fillings of M . Suppose K � Y1 is a null-homologous knot,
and let Y0 and Y1 be the manifolds obtained by 0 and 1 surgery on K. Then we have:

Theorem 1.2 ([8,18]). There is a long exact sequence

� � � ! I �.Y1/ ! I �.Y0/ ! I ��1.Y1/ ! I ��1.Y1/ ! � � � :

The original motivation for this theorem was the relation between character varieties
shown in Figure 2, and the fact that it holds suggests that our naive idea for thinking about
the Floer homology of M in terms of the picture provided by the character variety might
have something to it after all.

Figure 2

The pillowcase with curves corresponding to C1, 0, and 1 surgery slopes. The C1 curve can be continuously
deformed to the union of the other two, producing a chain complex which computes HI�.Y1/ but whose
generators are the union of the generators of CI�.Y0/ and CI�.Y1/.

1.2. The modern perspective
In 30 years, we have made a lot of progress. Many of the technical difficulties

associated with instanton theory have been simplified or elided, first by the appearance
of Seiberg–Witten theory [53] and then by the development of Heegaard Floer homology
[44]. The problems associated with reducibles (such as the first two points above) have been
addressed in several ways: by working with appropriate equivariant versions of the theory,
as in [35]; by restricting to sectors in which reducibles do not appear [36]; or by dividing out
by the based gauge group (or something similar) rather than the full gauge group [34].

We will focus on the Heegaard Floer invariant cHF, which, roughly speaking, corre-
sponds to the monopole Floer invariant obtained by using the based gauge group instead of
the full gauge group. If .Y; z/ is a closed, connected, oriented, pointed 3-manifold, cHF.Y; z/
is a finite-dimensional vector space over the field F D Z=2. Some parts of the theory are
also known to work with Z coefficients, but we will stick to Z=2 coefficients throughout. If
z; z0 2 Y , there is a diffeomorphism  W Y ! Y with  .z/ D z0, so cHF.Y; z/ ' cHF.Y; z0/,
but this isomorphism is not canonical, as was first observed by Juhász [32]. (The point z
corresponds to the point used to define the based gauge group in Seiberg–Witten theory.)
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Suppose that Y DM1 [† M2, where† is a connected surface containing z. In this
situation, the yoga of extended TQFTs suggests that to † we should associate an additive
category A.†/, that M1 and M2 should determine objects A.Mi / of A.†/, and that we
should have cHF.Y; z/ Š Hom

�
A.M1/;A.M2/

�
:

This picture was realized by Lipshitz, Ozsváth, and Thurston [39] in their seminal work on
bordered Floer homology. They described the category A.†/ in terms of algebraic objects
which they called Type D and Type A structures. Their work was given a beautiful geometri-
cal interpretation by Auroux [2,3] who showed that A.†/ can be interpreted as the partially
wrapped Fukaya category of the symmetric product Symg.† � z/.

Auroux’s result is very important from a philosophical standpoint, but its prac-
tical applications are limited by the difficulties of working with the Fukaya category of
Symg.† � z/. Naively, the objects of the Fukaya category are Lagrangian submanifolds,
but in reality one must also consider arbitrary mapping cones built up out of Lagrangians.
The algebra required to do this is essentially the same as that of Type A and Type D structures
invented by Lipshitz, Ozsváth, and Thurston.

The one exception to this rule is the case g D 1, where we can give a simple geo-
metric description of the (compactly supported) Fukaya category of T 2 � z. We say that a
curve in T 2 � z is nice if it is an immersed closed curve which is unobstructed, in the sense
that it bounds no monogon in T 2 � z. Then we can formulate a version of the (compactly
supported) Fukaya category, which we denote by F .T 2 � z/. The objects of F .T 2 � z/

are finite unions of nice curves equipped with local systems, and the group Hom.
1; 
2/ can
be computed combinatorially. In particular, if 
1 and 
2 are primitive nonisotopic curves in
T 2 � z, Hom.
1; 
2/ is determined by the minimal geometric intersection number i.
1; 
2/.

Let F .T 2 � z/ be the set of isomorphism classes of objects in F .T 2 � z/. Together
with Hanselman and Watson, we proved the following theorem, which realizes the geomet-
rical hope expressed in the previous section in the context of cHF:

Theorem 1.3 ([21, 22]). If .M; z/ is a closed, connected, oriented, and pointed 3-manifold
with z 2 @M ' T 2, there is a well-defined invariant cHF.M;z/ 2 F .@M � z/, which satisfiescHF.M1 [T 2 M2; z/ ' Hom

�cHF.M1; z/; cHF.M2; z/
�
:

In this context, the fact that cHF satisfies an exact triangle analogous to that of The-
orem 1.2 (proved by Ozsváth and Szabó in [43]) is a consequence of the fact that the lines of
slope 0; 1, and 1 in T 2 form an exact triangle in the Fukaya category. This argument is due
to Lipshitz, Ozsváth, and Thurston [39].

The invariant cHF.M/ can be effectively computed in many examples; for example,
by the work of F. Ye [54], it is known for all but 9 of the 286 orientable 1-cusped hyperbolic
manifolds in the SnapPy census of hyperbolic 3-manifolds built from 5 or fewer tetrahedra
[11,27].

Some examples of cHF for simple 3-manifolds are shown in Figure 3. Each curve in
the figure lives in an infinite cylinder obtained by identifying the dashed lines on the left- and
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right-hand sides. To pass to the invariant in T 2 � z, we divide out by the obvious Z action.
Part (d) shows the pairing between cHF.MT / and cHF.S1 �D2/ corresponding to C1 surgery
on the trefoil. There is a single intersection point, which matches the fact that cHF.P /Š Z=2.

Figure 3

Heegaard Floer invariant bHF of some simple manifolds, including (a) S1 �D2, (b) the exterior of the right-hand
trefoil, and (c) the exterior of the figure-eight knot. The dots indicate punctures.

We close this section with a question about instanton Floer homology. Kronheimer
and Mrowka have defined [36] an invariant I ].Y / which is an instanton analog of cHF.Y /
and is conjectured to be isomorphic to it. It is thus very natural to ask:

Question 1.4. Is there an instanton analog of the invariant cHF.M/, and, if so, can it be
related directly to XSU2.M/?

It is probably too much to ask for a direct relation with the character variety in every
case, but one might still hope for it in some simple examples. (See [22] for something along
these lines using the Seiberg–Witten moduli space.)

In the sections that follow, we will briefly explain how the bordered Floer homol-
ogy of a manifold with torus boundary can be reinterpreted to define the invariant cHF.M/,
describe some applications of the theorem, and discuss generalizations and further direc-
tions.

2. Construction and properties of the invariant

2.1. The Fukaya category
We begin with a brief and imprecise account of the Fukaya category. For more care-

ful discussions, we refer the reader to [4,51,52]. Suppose that .M; !/ is an exact symplectic
manifold. Taken naively, objects of the Fukaya category F .M/ are Lagrangian submani-
folds Li � M , and Hom.L1; L2/ D HF.L1; L2/ is Lagrangian Floer homology—the other
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sort of homology invented by Floer. The Floer chain complex is generated by intersections
between L1 and L2, and the differential is given by counting J -holomorphic disks with
respect to a compatible almost-complex structure. This is an oversimplification for many
reasons: first, F .M/ is an A1-category, with higher morphisms given by counts of holo-
morphic polygons with higher numbers of sides; and second, F .M/ is triangulated, so a
typical object is actually a twisted complex—an iterated mapping cone built out of geomet-
ric Lagrangians.

All this extra structure may seem daunting to the newcomer, but it has its advantages.
Although there are usually infinitely many different Lagrangians in M , in many cases it is
possible to show that every object of F .M/ is isomorphic to a twisted complex built up
out of a finite number of Lagrangians L1; : : : ; Ln. In this case the Li are said to generate
the Fukaya category. This is easiest to arrange in the case where both M and the Li are
noncompact. In fact, M should be a Liouville manifold, so that near infinity it looks like
the symplectization of a contact manifold N . In this situation, we need to be more careful
about what is meant by Hom.Li ;Lj /. The correct answer turns out to be the wrapped Floer
homology, in which we replace Li by its image under a flow determined by the Reeb flow
on N . More generally, we can consider the partially wrapped Floer homology [4] in which
the flow is stopped on some X � N .

If L1; : : : ; Ln generate, we define L D
L

i Li , and consider the A1 algebra
A D End.L/. If L is an object of F .M/, we can consider ML D Hom.L; L/, which
is an A1 module over A. By the Yoneda embedding lemma, L and ML carry the same
information [2].

2.2. Bordered Floer homology
Next, we discuss the work of Lipshitz, Ozsváth, and Thurston [39].

Definition 2.1. Let † be a closed, connected, and oriented surface. A parametrization P

of † is a minimal handle decomposition of †, together with a choice of basepoint z on
the boundary of the 2-handle. A bordered 3-manifold .M;P / is a compact, connected, and
oriented 3-manifold M , together with a parametrization P of @M .

Up to isotopy, P is specified by the position of the 2-handle and the cocores of its
1-handles. These form a system of disjoint arcs ˛1; : : : ; ˛2g � † with ends on the boundary
of the 2-handle. To a parametrized surface .†;P /, Lipshitz, Ozsváth, and Thurston asso-
ciate an explicit A1 algebra A.P /. (In fact, A.P / is a dga: �i D 0 for all i > 2.) They
also define the notions of Type D and Type A structures over A.P /. In the language of Sec-
tion 2.1, a (bounded) Type D structure is essentially a twisted complex over the category
determined by A.P /. The Type A structure corresponding to a Type D structure D is essen-
tially Hom.A;D/. Thus the relation between Type D and Type A structures is the same as
the relation betweenL and ML in the Fukaya category. The main theorem of bordered Floer
homology is:
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Theorem 2.2 ([38, 39]). A bordered 3-manifold .M; P / determines a Type D structure
bCFD.M;P / over A.P / which is well defined up to quasiisomorphism. If Y D M1 [† M2

and P is a parametrization of †, then cHF.Y / Š Hom.bCFD.M1;P /; bCFD.M2;P //.

Suppose † is a parametrized surface, and let †0 � † be the complement of the
2-handle. If I D ¹i1; : : : ; igº is a g-element subset of ¹1; : : : ; 2gº, we define LI to be the
image of ˛ii � � � � � ˛ig in Symg†0. The LI are noncompact Lagrangian submanifolds of
M D Symg†0. In addition, the point z 2 @†0 determines a stopXz forM . Auroux proved:

Theorem 2.3 ([2, 3]). The LI generate FXz .Symg.†0//, and A.P / Š End L, where
L D ˚LI .

Hence bCFD.M;P / determines an object of FXz .Symg.†0//. A priori, this object
is neither compact nor geometric—it is a twisted complex built up out of noncompact
Lagrangians.

2.3. The torus
Up to isotopy, the torus T 2 has a unique parametrization, P , as shown in Figure 4.

The corresponding algebra A.T 2/ D A.P / is a quotient of the quiver algebra generated
by the quiver below by the quadratic relations �2�1 D �3�2 D 0. Geometrically speaking,
the arrows in the quiver correspond to the labeled arcs in on the boundary of the punctured
torus, as shown in Figure 4. Composition is given by concatenation (when possible) and is
0 otherwise. We write �1�2 D �12, etc.

�0�0 �1

�1

�2

�3

A Type D structure over A.T 2/ can be represented by a decorated graph, whose vertices are
labeled by idempotents of A (we use � for L0, and ı for L1) and whose edges are labeled
by morphisms. The labels on the edges determine the differential D in the twisted chain
complex, which must satisfy D2 D 0. Here is an example of a twisted complex built out of
three objects—one copy of L0 and two of L1:

�3

�1

�23

� ı

ı

The key step in the proof of Theorem 1.3 is an algebraic structure theorem, which
shows that every Type D structure over A.T 2/ is homotopy equivalent to that with a partic-
ularly nice form.

Definition 2.4. A Type D structure over is a loop if its underlying graph (forgetting labels
and orientations) is a cycle. More generally, a Type D structure with graph G is a loop with
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Figure 4

Parametrization of T 2, showing the 2-handle (large circle), ˛ arcs (labeled L0 and L1), and basepoint.

a local system of dimension k if there is a loop L and a map � W G ! L which preserves the
labels edges and vertices and is a k-to-1 covering map away from one edge of L.

The torus algebra is a quotient of a slightly larger algebra eA, which is obtained by
adding in a generator �0 corresponding to the arc that runs over the basepoint z, and setting
any word that contains two copies of �0 to 0, as well as the usual quadratic relations. An
important result due to Lipshitz, Ozsváth, and Thurston is that if @M D T 2, then bCFD.M/

is extendable, that is, we can add in additional arrows labeled by elements of eA so that

D2
D

3X
j D0

�j�j C1�j C2�j C3;

where the subscripts are to be interpreted modulo 4. The main technical result of [21] is:

Theorem 2.5. An extendable Type D structure over A is homotopy equivalent to a disjoint
union of loops with local systems.

The first theorem of this type was proved by Haiden, Katzarkov, and Kontsevich [19],
who showed that any twisted complex over A.T 2/ (or more generally, the algebra associated
to the Fukaya category of a higher genus surface) is a direct sum of loops with local systems
and chains. The key role that such loops play in the study of bordered Floer homology was
first observed by Hanselman and Watson in [23]. In [21] we give an effective algorithm for
reducing an arbitrary extendable Type D structure to a disjoint union of loops. Alternately,
one can appeal to [19], and then use the fact that the Type D structure is extendable to rule
out the presence of any chains.

The final step in the proof of Theorem 1.3 is to associate a geometric loop 
D (a
closed curve in T 2 n z) to a loop-type Type D structure D , and show that

Hom.D1;D2/ Š HF.
D1
; 
D2

/:

Here the left-hand side is Hom in the category of Type D structures, and the right-hand side
is an appropriately formulated version of Floer homology in T 2 � z; �D is constructed by
taking a straight line segment for each object in the loop, and joining the ends of consecutive
objects according to the label on the arrow that joins them. There are two ways to do this.
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In [19], the authors use the noncompact Lagrangians L0;L1, and join them by arcs along the
boundary. In [21] we take a dual approach, using the compact arcs coming from the cores of
the 1-handles and joining them by curves along the boundary of the 0-handle.

2.4. Spinc structures and the Alexander polynomial
In this section, we review three basic properties of cHF for closed 3-manifolds, and

explain their generalization to manifolds with torus boundary. First, it is well known thatcHF.Y / can be decomposed according to the set of Spinc structures on Y :cHF.Y / D

M
s2Spinc.Y /

cHF.Y; s/:

The same statement is true when M has torus boundary:cHF.M/ D

M
s2Spinc.M/

cHF.M; s/;

where now the direct sum is taken in the Fukaya category, where it is given by disjoint union
of curves. More interestingly, each summand cHF.M; s/ can be lifted to a covering space of
@M � z. To be precise, let TM be the covering space of TM D @M whose fundamental group
is the kernel of the composite map �1.@M/ ! H1.@M/ ! H1.M/. Let T ı

M D @M � z,
and define T ı

M to be its preimage in TM . It is shown in [21] that cHF.M; s/ lifts to T ı

M . For
example, if H1.M/ Š Z, T ı

M is a punctured cylinder like those shown in Figure 3. There
is a unique s 2 Spinc.M; @M/, and the curves shown in Figure 3 are cHF.M; s/ for their
respective M ’s.

Suppose Y D M1 [T 2 M2. By considering the pairing of the lifted curves forcHF.M1/ and cHF.M2/, together with the action of the deck group, one can recover the Spinc

decomposition on cHF.Y /. Figure 5(b) illustrates this computation for 0 surgery on the torus
knot T .2; 5/.

Second, cHF.Y / carries a natural Z=2 grading. For manifolds with torus boundary,
we have the following analog:

Proposition 2.6. IfM is a 3-manifold with torus boundary, then there is natural orientation
on cHF.M/. If Y D M1 [T 2 M2 and x is a generator of cHF.Y / corresponding to an inter-
section point of cHF.M1/ and cHF.M2/, then the Z=2 grading of x 2 cHF.M1/ \ cHF.M2/ is
given by the sign of intersection of cHF.M1/ and cHF.M2/ at x.

Finally, it is well known (going back to Casson [1]) that the Euler characteristic of
Floer homology is related to the Alexander polynomial. We describe this relation in our
context, restricting to the case where H1.M/ D Z for simplicity. Let � W TM ! @M be
the projection. The set ��1.z/ can be naturally identified with Z by the action of the deck
group. The space TM has two ends: a positive end to which the zn converge as n! 1 and a
negative end to which the zn converge as n ! �1. Let �n be a path from zn to the negative
end, and define an to be the signed intersection number of �n with cHF.M/. (Since cHF.M/

is compact, zn D 0 for n � 0.) Then we have:
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Figure 5

Some computations with the .2; 5/ torus knot: (a) bHF.MT .2;5//, (b) bHF of 0-surgery on T .2; 5/ has dimension 2
in each of the Spinc structures s�1;s0, and s1, and (c) bHFK.T .2; 5/; i/ has dimension 1 for i D �2;�1; 0; 1; 2.

Proposition 2.7 ([21]). If �.M/ 2 ZŒt˙1� is the Alexander polynomial, then
�M

1 � t
�

X
n2Z

ant
n:

Here both sides are to be interpreted as Laurent series, and � indicates equality up
to multiplication by some power of t . The quantity on the left-hand side is the Milnor torsion
of M . For example, by referring to Figure 3, one can easily compute that

�.T /

1 � t
� t�1

C t C t3 C t4 C t5 C � � � ;

corresponding to the well-known fact that �.T / D t�1 � 1C t .

2.5. Knot Floer homology
The definition of Heegaard Floer homology for closed 3-manifolds can be general-

ized to give an invariant of a pair K � Y , where K is a knot in Y . This invariant is called
knot Floer homology (written bHFK.K/), and was discovered by Ozsváth and Szabó [42] and
independently by the author [48]. Two basic properties of knot Floer homology are:

• If b1.Y / D 0, bHFK.K/ splits as a direct sum bHFK.K/ D
L

i2Z
bHFK.K; i/. The

grading i is called the Alexander grading and satisfiesX
i

�
� bHFK.K; i/

�
� t i � �K.t/:

• If b1.Y /D 0, there are two spectral sequences withE1 term bHFK.K/which con-
verge to cHF.Y /. In one sequence, the differentials decrease the Alexander grading,
while in the other they increase it.
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If @M D T 2 and ˛ is a simple closed curve on @M , we can form the Dehn filling
M.˛/ D M [� S

1 �D2, where ��.Œ@D
2�/ D Œ˛�. We consider the core knot

K˛ D S1
� 0 � S1

�D2
� M.˛/

whose complement is again M . Let L0
˛ be the (noncompact) Lagrangian in @M n z which

consists of a line of slope ˛ passing through z. Then we have, the following result, which is
essentially due to Lipshitz, Ozsváth, and Thurston:

Proposition 2.8. bHFK.K˛/' HF.cHF.M/;L0
˛/. Conversely, ifK � S3 and we understand

both sets of differentials on bHFK.K/, we can reconstruct cHF.MK/.

Since cHF.M/ is compact, the pairing HF.cHF.M/; L0
˛/ can still be computed by

taking the minimal number of intersections between the two curves. By way of comparison,
if L˛ is the compact line of slope ˛ in @M , then HF.cHF.M/;L0

˛/ Š cHF.M.˛//.
As in the previous section, we can understand the Alexander grading by passing to

the lift cHF.M; s/ � T
ı

M . For simplicity, we again restrict to the case where H1.M/ Š Z.
The Lagrangian L0

˛ is homeomorphic to an open interval, so the set of lifts to TM can be
labeled as L˛;i for i 2 Z. With an appropriate choice of labeling,

bHFK.K˛; i/ Š HF
�cHF.M/;L˛;i

�
:

From this perspective, the spectral sequences from bHFK.K˛/ to cHF.M.˛// arise
from the fact that if we push

S
i L

0
˛;i off of the preimage of z, we get ��1.L˛/. The fact

that there are two such sequences corresponds that we can push either to the left or to the
right. From a more algebraic point of view, as an object of the Fukaya category, ��1.L˛/ is
isomorphic to the filtered complex

� � �
�12
��! L0

˛;2

�12
��! L0

˛;1

�12
��! L0

˛;0

�12
��! L0

˛;�1

�12
��! L0

˛;�2

�12
��! � � �

whose associated grading is
L

i2ZL
0
˛;i .

3. Floer simple manifolds and the L-space gluing theorem

3.1. Floer simple manifolds
We say that Y is an L-space if Y is a rational homology sphere and dim cHF.Y;s/D 1

for each s 2 Spinc.Y /. Since �.cHF.Y;s/ D 1, this is as small as it can be, and L-spaces are
the closed manifolds with the simplest possible Floer homology. In this section, we discuss
the analogous notion for manifolds with torus boundary.

IfM is such a manifold, let Sl.M/ be the set of possible Dehn filling slopes onM .
Then Sl.M/ is naturally identified with the projective space on H1.@M I Z/. By choosing a
basis of H1.M I Z/, we can identify Sl.M/ with the rational projective space QP 1. Let

L.M/ D
®
˛ 2 Sl.M/ j M.˛/ is an L-space

¯
be the set of L-space Dehn filling slopes of M . With S. Rasmussen, we proved
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Theorem 3.1 ([49]). If @M Š T 2 and b1.M/ D 1, L.M/ is one of the following:

• the empty set,

• a single point

• a closed interval with rational endpoints in QP 1, or

• QP 1 n Œ`� where ` is the rational longitude.

Definition 3.2. Manifold M is Floer simple if L.M/ contains more than one element. In
this case we call L.M/ the L-space interval and write Lı.M/ for its interior.

IfM is Floer simple, cHF.M/ is easy to describe. If ˛ 2 Sl.M/, let n˛ D ˛ � ` and
consider the map p˛ W TM ! R=.n˛/ given by p˛.x/ D ˛ � x. For s 2 Spinc.M/, let 
M;s

be curve obtained by pulling cHF.M; s/ tight. Then we have:

Proposition 3.3 ([21]). ManifoldM is Floer simple with ˛ 2 Lı.M/ if and only if p˛ maps

M;s bijectively to R=.n˛/ bijectively for all s 2 Spinc.M/.

If M is Seifert fibered with b1 D 1, then M is Floer simple, and the class of the
fiber slope is in Lı.Y /. But many hyperbolic 3-manifolds are Floer simple as well. In [12],
Dunfield studied Burton’s census [9] of all 59,068 1-cusped hyperbolic 3-manifolds which
have b1 D 1 and admit an ideal triangulation with 9 or fewer tetrahedra. He found that 50,598
of them were Floer simple and 8,352 were not, leaving only 118 where he was unable to
decide. It is natural to ask if the condition of being Floer simple has any geometrical meaning.
By applying the fibration detection theorem of Ni [41], it is easy to see

Proposition 3.4. IfM is a Floer simple manifold withH1.M/Š Z, thenM fibers over the
circle.

Conversely, we could ask if there is a geometric characterization of a the monodromy
of a fibered Floer simple manifold. To make the question precise, write Modg;1 for the map-
ping class group of a genus g surface with one puncture. For � 2 Modg;1, let M� be the
mapping torus of �, and define F �g D ¹� 2 Modg;1 j M� is Floer simpleº.

Question 3.5. Describe F �g as a subset of Modg;1.

When g D 1, Mod1;1 Š SL2.Z/. Using Baldwin’s work on the Floer homology of
genus-one fibered manifolds [5], it is not difficult to see that

F �1 D
®
A 2 SL2.Z/ j trA � 1

¯
:

In other words,A 2 SL2.Z/ is a Floer simple monodromy ifA is elliptic or negatively hyper-
bolic or parabolic, but not if A is positively parabolic or hyperbolic. For g > 1, virtually
nothing is known. It would be interesting to know if g D 1 is typical (in the sense that F �g

forms a large subset of Modg;1) or atypical (in the sense that F �g is relatively sparse.)
In another direction, if M is Floer simple, L.M/ forms a distinguished interval in

the circle of slopes. If we know a single point of Lı.M/, the entire interval can be determined
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from the Turaev torsion ofM [49], but from a purely homological perspective, it is difficult to
say anything about L.M/. We have a distinguished slope given by the homological longitude
` which is not contained in L.M/, but otherwise Sl.M/ looks quite homogenous. If M
is Seifert fibered, then the fiber slope is a distinguished element of L.M/. When M is a
1-cusped hyperbolic manifold, there is also a lot more geometry available: the hyperbolic
metric on M naturally induces a flat metric (the cusp metric) on @M or, equivalently, on
H1.@M/, and we can talk about shortest geodesics, length of curves, the degeneracy slope,
etc.

Question 3.6. If M is hyperbolic, can L.M/ be related to the geometry of the induced
metric on the cusp?

In this direction, there is an interesting unpublished observation of T. Brown, who
pointed out that for many (but not all) manifolds in Burton’s census, `? (the slope orthogonal
to the homological longitude with respect to the cusp metric) is contained in L.M/.

3.2. L-space gluings
Our work on the immersed curve picture for Floer homology arose out of earlier

attempts [23,49] to understand the L-space conjecture of Boyer–Gordon–Watson and Juhász.
This conjecture posits a surprising relation between Heegaard Floer homology and the fun-
damental group. To be precise, we say that a nontrivial group G is left orderable if there is
a total order < on G satisfying gx < gy whenever x < y. (By convention, the trivial group
is not left orderable.)

Conjecture 3.7 (The L-space conjecture [7,31]). If Y is prime, the following statements are
equivalent:

• Y is an not an L-space,

• �1.Y / is left-orderable,

• Y admits a coorientable taut foliation.

The notion of the L-space interval, along with similar sets for fibered and non-left
orderable fillings, was first introduced by Boyer and Clay [6], who used it to study the L-space
conjecture for graph manifolds. Building on their work, we proved

Theorem 3.8 ([20,50]). The L-space conjecture holds for graph manifolds.

There are two independent proofs of this theorem—one of them by S. Rasmussen
[50], and the other by Hansel, Watson, and Rasmussen.2 Based on their work, we conjectured
the following L-space Gluing Theorem, which was proved in [21].

Theorem 3.9. Y DM1 [T 2 M2 is an L-space if and only if Lı.M1/[ Lı.M2/D Sl.T 2/.
(In particular, if Y is an L-space, both M1 and M2 must be Floer simple.)
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When M1 and M2 are Floer simple, partial results in this direction were obtained
in [23, 49], but the proof of the full result relies in an essential way on Theorem 1.3. As a
corollary, we were able to reprove the following result of Eftekhary:

Corollary 3.10 ([14]). An L-space homology sphere cannot contain an incompressible
torus.

4. Links, satellites, and sutures

The results of Theorem 1.3 can be extended without much difficulty to describe a
broad class of manifolds with sutured boundary. We describe an application of this method
to the knot Floer homology of satellite knots.

4.1. Sutured manifolds
Sutured Floer homology is a very important variant of Heegaard Floer homology

introduced by Juhasz [30]. A balanced sutured manifold is a compact, oriented 3-manifold
with boundary, together with a multicurve 
 (the suture) which divides @M into two parts
RC and R� such that (a) �.RC/ D �.R�/ and (b) each component of @M contains at least
one component of 
 . If .M; 
/ is a balanced sutured manifold, its sutured Floer homology
SFH.M; 
/ is a vector space over Z=2.

Both cHF and bHFK appear as special cases of SFH. If .Y; z/ is a connected, pointed
3-manifold, we define Y.1/ � Y to be the complement of a small ball in centered at z, and
let 
 � @Y be a simple closed curve on @Y . Then SFH.Y.1/; 
/ Š cHF.Y /. More generally,
if Y.n/ is the analogous manifold where we remove n balls, we have

SFH
�
Y.n/; 


�
Š cHF.Y /˝H�.S1/˝n:

Similarly, if K � Y has meridian �, we let MK � Y be the exterior of K and define 
� to
be two parallel copies of � in @MK . Then SFH.MK ; 
�/ Š bHFK.K/.

Zarev [55] extended the framework of bordered Floer homology to the class of bor-
dered sutured manifolds. Such a manifold consists of a compact oriented 3-manifold M
together with a decomposition @M D F [R, where F is the bordered (or glueable) part of
the boundary, and R is sutured, that is, it is equipped with a multicurve 
 which divides R
into two parts RC and R�. We do not impose a condition on the Euler characteristic of R˙,
but do require that each boundary component of R intersects both RC and R�.

Following Auroux, Zarev’s bordered sutured Floer homology can be interpreted as
defining an object in a partially wrapped Fukaya category of Symk.F / for some k, where
the set of stops used to define the wrapping is determined by the set of intersections of RC

with @R. The usual bordered Floer homology corresponds to the special case where R is a
small disk centered at z which is divided in half by a single arc.

Suppose thatF is a once punctured torus. WhenRC intersects @F in a single interval
and �.RC/ D �.R�/, the bordered sutured Floer homology can be interpreted as an object
of the partially wrapped Fukaya category of (a covering space of) F . Rather than discussing
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this situation in generality, we will focus on a special case. Suppose that @M ' T 2
a [ T 2

b
,

and giveM the bordered sutured where R D R� consists of all of T 2
b

, equipped with a pair
of parallel sutures of slope �, together with a disk in T 2

a which is divided in half by a single
suture. Then we have

Proposition 4.1. The pair .M;R�/ determines cHF.M;R�/, which is a compactly supported
object of F .T 2

a � z/. As in the closed case, cHF.M; R�/ can be represented by a union of
immersed closed curves equipped with local systems.

Zarev’s gluing theorem [55] then implies that ifM 0 is a manifold with torus boundary
and � W T 2

a ! @M is an orientation reversing diffeomorphism, then

HF
�cHF.M 0/; cHF.M;R�/

�
Š SFH.M 0

[� M;
�/˝H�.S1/: (4.1)

The extra factor of H�.S1/ appears because the sutured manifold obtained by gluing
.M; R�/ and .M 0; Rz/ together has three boundary components—there is an extra bubble
in the middle coming from the two sutured disks. To get M 0 [� M without the bubble,
we would need to use a bordered sutured manifold .M.�/; R�;�/ which is constructed by
choosing a framed path � from a point on 
� to z, removing a tubular neighborhood of �,
and using the framing to extend the sutures over the boundary of the tubular neighborhood.
The difference between .M;R�/ and .M.�/;R�;�/ is illustrated in Figure 6.

Figure 6

The bordered sutured manifolds .M;R�/ (on the left) and .M.�/;R�;�/ (on the right). The left- and right-hand
faces of the cubes are part of the boundary of M . All the other faces are in the interior of M .

4.2. Link complements
We now specialize to the situation whereM DML is the exterior of a 2-component

link L � S3, and � D �2 is the meridian of the second component of L. (We label the
meridians and longitude of Li by �i ; �i .) Let .ML; 
�1;�2/ be the sutured manifold with
meridinal sutures on both boundary components. Then

SFH.ML; 
�1;�2/ D bHFL.L/

is the link Floer homology defined by Ozsváth and Szabó in [45]. In the same way that we
can compute cHF.MK/ from bHFK.K/ (and the differentials on it) when K is a knot in S3,
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we can compute cHF.ML; R�2/ from bHFL.L/ (and the differentials on it) when L2 is the
unknot in S3.

We will describe some examples, but before doing so, we pause to discuss Spinc

structures and lifts. As before, the Floer homology decomposes ascHF.ML; R�/ D

M
s2Spinc.ML;R�/

cHF.ML; R�; s/:

Here Spinc.ML; R�/ is an affine set modeled on coker ia�, where ia� W �1.F / ! H1.ML/.
It is easy to see that coker ia� Š Z=n, where n is the linking number of L. Also as before,cHF.ML; R�; s/ lifts to the covering space T ı

M of T ı
M WD F given by �1.TM / D ker ia�.

Note that T ı

M is also determined by the linking number: it is the universal abelian cover of
T ı

M if n ¤ 0, but an infinite punctured cylinder if n D 0.

Figure 7

Curves when L is the Hopf link: bHF.ML; R�/ (left) and bHF.ML.�/; R�;�/ (right).

Example 4.2. If L is the Hopf link, then ML D T 2 � I . The linking number is 1, so there
is a unique Spinc structure and TM is the universal abelian cover of TM ; cHF.ML;R�/D 
1

is shown on the left-hand side of Figure 7. In this case there is a canonical choice of the
path �, namely z � I . With this choice, cHF.ML.�/; R�;�/ D 
2 is shown on the right. The
vector defined by the line segment is �1 D �2 (the homology class of the suture.) Note that

1 is obtained by “inflating” 
2 to form a figure-eight. It is not hard to see that HF.
; 
1/ D

HF.
; 
2/˝H�.S1/ for any closed curve 
 , as predicted by equation (4.1).

Example 4.3. If L is the .2; 4/ torus link, the linking number is 2, and there are 2 distinct
Spinc structures. In each case cHF.ML; R�; s/ consists of a single figure-eight obtained by
inflating a line segment. In one Spinc structure the segment represents the vector �1, and in
the other it represents the vector �1 C �1.

Example 4.4. IfL is the positive Whitehead link, the linking number is 0, so we have Spinc

structures si for i 2 Z. In s˙1, we have a single figure-eight representing �1, while in s0,
we have two figure-eights representing �1 C �1 and �1, respectively.

More generally, the we can make the same calculations whenL is a 2-bridge link. In
this case, both components of L are unknots (so we are in the situation where can compute
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cHF.M;R�/ from bHFL.L/), and L is alternating, so bHFL.L/ can be computed by a theorem
of Ozsváth and Szabó. We deduce:

Theorem 4.5. If M is the complement of a 2-bridge link L, then cHF.ML; R�/ is a collec-
tion of figure-eights determined by the multivariable Alexander polynomial, signature, and
linking number of L.

We expect that in this case there should be a natural choice of curve � for whichcHF.ML.�/;R�;�/ is a collection of line segments which are the “cores” of the figure-eights
in cHF.M;R�/.

4.3. Satellites
SupposeL� S3 is a 2-component link, whereL1 is the unknot. IfC � S3 is a knot,

we choose � W @ML1 ! @MC with ��.l1/D�C and ��.�1/D �C ThenMC [� ML1 Š S3,
so the image of L2 in this union is knot in S3. It is called the satellite knot C.P /, where C
is the companion and P WD L2 is the pattern.

There is a well-known formula for the Alexander polynomial of a satellite,

�C.P /.t/ D �C .t
n/�P .t/;

where n is the winding number of P (its homology class in the solid torus) and �P .t/ is
the single-variable Alexander polynomial of P � S3. It is thus very natural to ask whether
there is a formula for the knot Floer homology of C.P /.

The knot Floer homology of satellites has been studied extensively, starting with the
work of Eftekhary [13] and Hedden [25, 26], and including important contributions by Hom
[28] and Levine [37]. More recently, Chen [10] gave a very interesting method for computing
bHFK.K.P // when P is a component of a 2-bridge link.

The method described above gives an alternate approach to the same problem.
From equation (4.1) above, it is clear that to compute bHFK.C.P //, it suffices to understandcHF.ML; R�/. Hence if L is a 2-bridge link, Theorem 4.5 implies that there is a formula for
bHFK of the satellite, in the sense that there is a finite set of slopes ˛i 2 Sl.MK/ such that

bHFK
�
C.P /

�
Š

M
i

bHFK.K˛i
//:

The slopes ˛i are determined by the multivariable Alexander polynomial, signature, and
linking number of L.

Chen’s method also makes use of the curve invariant cHF.MK/, but in a rather dif-
ferent way. (For example, he is able to compute �.C.P //, which the method above does not
allow us to do.) It would be interesting to understand how the two approaches are related.

Ideally, one would like to compute the full curve invariant cHF.MC.P / rather than
just the knot Floer homology. It is unknown how to do this in general, but Hanselman and
Watson have given a very beautiful description of how to do this for cables [24].
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5. Further developments and questions

5.1. Tangles
There are other situations in which Zarev’s bordered Floer sutured homology gives

an invariant which lives in the Fukaya category of a surface. One of the most interesting
invariants corresponds to the case of 2-strand tangles. This situation has been studied by
Zibrowius, who proved

Theorem 5.1 ([58]). If T is a 2-strand tangle in B3, then there is a well-defined invariant
bHFT.T / which takes the form of a collection of immersed closed curves with local systems
in the 4-punctured sphere. If L D T1 [ T2, where T1 and T2 are such tangles, then bHFL.L/
can be computed by pairing the curves bHFT.T1/ and bHFT.T2/.

Other tangle invariants analogous to bordered Floer homology have been developed
by Ozsváth and Szabó [46] and Petkova and Vertesi [47].

Unlike the case of a manifold with torus boundary (where relatively few restrictions
on the form of the curve invariant are known), Zibrowius was able to prove some very strong
constraints on the form of the curves that appear in bHFT.T /. This enabled him to answer
a long-standing question about the effect of mutation on the total dimension of knot Floer
homology.

Theorem 5.2 ([57]). If K1 and K2 are mutant knots, then dim bHFK.K1/ D dim bHFK.K2/.

More recently, Kotelskiy, Watson, and Zibrowius have introduced some similar
interpretations of the Khovanov homology of a 4-ended tangle T [33]. At the level of
polynomials, the Jones polynomial of a 4-ended tangle is not so different from its sl.n//
HOMFLY-PT polynomial. (Both live in 2-dimensional vector spaces.) Hence it is natural to
ask:

Question 5.3. Can the sl.n/ homology of a 4-ended tangle be interpreted as a curve invari-
ant?

5.2. Cobordisms and extended TQFTs
Although we have not discussed it here, cHF fits into the structure of a (relative)

3C 1 dimensional TQFT, as established by Zemke [56]. A cobordism .W; �/ W .Y0; z0/ !

.Y1; z1/ induces a map FW;� W cHF.Y0; z0/ ! cHF.Y1; z1/. It is an important foundational
problem to show that the structure of bordered Floer homology can be extended to give a
(pointed) extended TQFT, so that we associate a category A.†; z/ to a pointed surface†, an
object of that category A.M; z/ to a pointed 3-manifoldM with @M Š †, and a morphism
A.M0; z/! A.M1; z/ to a cobordism with cornersW WM0 !M1. The lower-dimensional
parts of this structure have already been established by Lipshitz–Ozsváth–Thurston, and it is
not difficult to understand what the cobordism maps should be. The real work is in showing
that they are well defined and satisfy an appropriate gluing theorem.
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5.3. HF�

For closed 3-manifolds, cHF is part of a larger package that also includes the equiv-
ariant homologies HFC and HF�. One might hope to understand what these invariants mean
for a manifold with torus boundary. Lipshitz, Ozsváth, and Thurston are in the process of
developing a bordered theory for HF� (see [40] for a first installment), and it will be inter-
esting to see whether and how this can be interpreted in terms of curves and the Fukaya
category. Some ideas for knot Floer homology have already been developed by Hanselman.
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