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Abstract

Homological stability has shown itself to be a powerful tool for the computation of homo-
logy of families of groups such as general linear groups, mapping class groups, or auto-
morphisms of free groups. We survey here tools and techniques for proving homolog-
ical stability theorems and for computing the stable homology, and illustrate the method
through the computation of the homology of Higman–Thompson groups.
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1. Introduction

Homology is an invariant that comes in many flavors. We will here mostly be con-
cerned with group homology, but the story we will tell can be told in other contexts as well.
Like many invariants, while easy to define, homology is often difficult to compute. What
homological stability has shown to us over the years is that in some situations, it is easier to
compute infinitely many homology groups at once than computing a single one by itself. We
will in this paper illustrate this through examples, and try to give the reader a sense of how
to do homological computations using stability methods, and a sense of when such methods
are likely to work.

Many mathematical objects come in families. We will here be interested in fami-
lies of groups like the symmetric groups †n, the braid group Bn, the general linear groups
GLn.R/ over a ring R, or automorphism groups Aut.Fn/ of free groups. These examples
are more than collections of groups: they all have an additional structure in the form of maps

˚ W †n � †m ! †nCm;

˚ W Bn � Bm ! BnCm;

˚ W GLn.R/ � GLm.R/ ! GLnCm.R/;

˚ W Aut.Fn/ � Aut.Fm/ ! Aut.FnCm/;

by “block sum” of permutations, braids or matrices, or juxtaposition of automorphisms.
Another important flavor of example for us will be families of mapping class groups of
surfaces or 3-manifolds with sum ˚ an appropriate boundary connected sum.

Taking m D 1 in the above and evaluating the maps ˚ at the identity element in
†1; B1;GL1.R/, or Aut.F1/ gives sequences of groups

†1 ! †2 ! †3 ! � � � ;

B1 ! B2 ! B3 ! � � � ;

GL1.R/ ! GL2.R/ ! GL3.R/ ! � � � ;

Aut.F1/ ! Aut.F2/ ! Aut.F3/ ! � � � :

We are here interested in the following property of such sequences of groups:

Definition 1.1. A sequence of groups G1 ! G2 ! � � � satisfies homological stability if the
associated sequence of homology groups

Hi .G1/ ! Hi .G2/ ! Hi .G3/ ! � � � (1.1)

is eventually constant for each i , that is, if Hi .Gn/
Š
�! Hi .GnC1/ for n large enough with

respect to i .

Unless explicitly otherwise stated, homology here means homology with integral
coefficients,H�.�/ D H�.�IZ/. Typical stability bounds are linear, of the form n � ki C a,
for k the slope of stability.

Definition 1.1 clearly makes sense in other contexts, with the groups and group
homology replaced by some other type of object and associated homology theory. Much of
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what we will present here is known to generalize to sequences of spaces, and, to some level,
sequences of algebras. We will focus here on the case of groups for simplicity, and because
it is already very rich.

All the examples of families of groups mentioned above are known to satisfy homo-
logical stability. In the 1960s, Nakaoka computed the homology of the symmetric groups
†n in [53] and observed that

Hi .†n/
Š
�! Hi .†nC1/ for i �

n

2
:

Arnold computed in [1] that the same holds for the homology of the braid groups, and around
the same time Quillen, interested in algebraic K-theory [59] (see also [66]), showed, for exam-
ple, that, for a field F ¤ F2,

Hi

�
GLn.F/

� Š
�! Hi

�
GLnC1.F/

�
for i � n:

Harer showed in the 1980s that also mapping class groups of surfaces satisfy homological
stability [29], a result that was extended to nonorientable surfaces by the author [71]. For the
automorphisms of free groups, the first proof goes back toHatcher [30], while Hatcher and the
author proved a very general stability theorem for mapping class groups of 3-manifolds [34]:
ifM;N are any orientable 3-manifolds such that @M ¤ ;, then the map �0Diff.M#N #n/ !

�0 Diff.M#N #nC1/ extending diffeomorphisms by the identity on the added summand N ,
induces an isomorphism on Hi for i �

n�2
2
. And many more stability results for families of

groups are known!

Quillen’s stability argument. Quillen devised a strategy for proving homological stabil-
ity using a spectral sequence associated to the action of the groups on appropriate spaces:
To apply Quillen’s strategy to a family of groups ¹Gnºn�0, one needs to find a family of
simplicial objects ¹Wnºn2N , with Gn acting on Wn, satisfying (roughly) the following:

(1) the action is transitive on vertices, and has “manageable” sets of orbits of
p–simplices for every p;

(2) the stabilizer of a p-simplex is a previous group in the sequence, e.g., Gn�p�1;

(3) each Wn is highly connected.

From this data, one can construct a spectral sequence with E1-term

E1
p;q D

M
�p

Hq

�
Stab.�p/I Z�

�
;

where the sum runs over representatives of the orbits of p-simplices �p in Wn. The spectral
sequence, together with conditions (1)–(3) and a few minor additional assumptions, allows
then for an inductive argument. (See Section 2.2 for some more details.)

Variants and extensions of this strategy have been applied in a variety of contexts. In
addition to the examples already mentioned, stability has been shown using this strategy for
GLn.R/ for many rings R [44,69], for other classical groups like symplectic groups, orthog-
onal groups, unitary groups, see, e.g., [9,52,64,70], and many other groups. The strategy was
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also adapted to prove homological stability for moduli spaces of manifolds and configuration
spaces [26,56,62], or for certain families of algebras [6,37]. So many stability theorems have
been proved using this method that it is difficult to mention them all.

Stable homology. Let

G1 WD

1[
nD1

Gn D colim
n!1

Gn

be the limit of the sequence of groups. Homological stability can be reformulated as saying
that the map Gn ! G1 induces an isomorphism

Hi .Gn/
Š
�! Hi .G1/

in an increasing range of degrees i � b.n/ for b.n/ a bound depending on n. The limit homol-
ogy H�.G1/ is called the stable homology. The power of homological stability comes from
the fact that often the stable homology is easier to compute because it most often belongs
to the world of spectra, where methods of homotopy theory come into play. We give here
known stable computations for the examples of families of groups described above.

The Barratt–Priddy–Quillen theorem identifies the stable homology H�.†1/ of
the symmetric groups with that of the basepoint component �1

0 S of the infinite loop space
of the sphere spectrum S. Galatius showed that the same holds for the stable homology of
automorphisms of free groups. Combining these results with the best known homological
stability ranges gives

Theorem 1.2 ([2,20,31,53]). For all i �
n
2
, Hi .†n/ Š Hi .�

1
0 S/ Š Hi .Aut.FnC3//.

A direct consequence is that the stable rational homology of Aut.Fn/ is trivial. The
result also gives that the inclusion †n ,! Aut.Fn/ induces a homology isomorphism in the
range i �

n�3
2
, a fact we only know through the above stable homology computation.

For the braid groups Bn, the corresponding result is

Theorem 1.3 ([1,12]). For all i �
n
2
, Hi .Bn/ Š Hi .�

2
0S2/.

F. Cohen completely computed homology of the right-hand side, see [12, Paper III,

App A], yielding a full computation of the stable homology of the braid groups.
For GLn.R/, the relevant spectrum is the K-theory spectrum, and here the flow of

information has gone the other way around compared to the above examples: In the case
where R D Fpr is a finite field, the homology H�.GL.Fpr /I F`/ was completely computed
by Quillen for any prime ` ¤ p, a computation he used to deduce information about the
K-theory spectrum [60]. When ` D p, only the stable homology is fully known:

Theorem 1.4 ([21, 59, 60, 66]). 1 Hi .GLn.Fpr /I Fp/ D 0 for all i � n C r.p � 1/ � 3 if
pr ¤ 2, and for all i < 2n�2

3
if pr D 2.

A similar result holds for symplectic, orthogonal, and unitary groups, see [18,66].

1 Note that the paper [21] uses a different stability method than Quillen’s, see Section 3.
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For mapping class groups of surfaces, the stable homology was computed by
Madsen andWeiss, in a breakthrough work that lead to much progress in manifold topology:
Denoting by †g;b an orientable surface of genus g with b boundary components, and by
Sh;b a nonorientable surface of genus h with b boundary components, and combining the
Madsen–Weiss theorem with the best known ranges for homological stability, as well as the
unoriented versions of these theorems, we have

Theorem 1.5 ([4,46,62,71]).

Hi

�
�0 Diff.†g;b/

�
Š Hi

�
�1

0 MTSO.2/
�
; i �

2g � 2

3
;

Hi

�
�0 Diff.Sh;b/

�
Š Hi

�
�1

0 MTO.2/
�
; i �

h � 3

3
:

Here MTSO.2/ or MTO.2/ are the Thom spectra of the orthogonal bundle to the
universal bundle over the Grassmannian of oriented or nonoriented 2-planes in R1, respec-
tively. A direct consequence is that the stable rational homology of these groups are the
polynomial algebras QŒ�1; �2; : : : � and QŒ�1; �2; : : : �, respectively, where j�i j D 2i and
j�i j D 4i . In the oriented case, this rational computation had been a conjecture of Mum-
ford. This result was generalized to higher dimensional manifolds of even dimension by
Galatius and Randal-Williams [25, 26] and to odd-dimensional handlebodies by Botvinnik
and Perlmutter [5, 57]. This has since been used to compute, e.g., homotopy groups of the
diffeomorphisms of discs, or give a totally new approach to pseudoisotopy theory [40,42].

In Section 4, we will explain such a theorem for the Higman–Thompson groups, see
Theorem 4.1, which computes, as a corollary, the full homology of Thompson’s group V .
And we will explain in Section 3 why one should not be surprised to see double or infinite
loop spaces in the above statements.

Content of the paper. In this article, we want to address the following questions:

(1) When can one expect that homological stability holds?

(2) How does one find appropriate Gn-space for Quillen’s stability argument?

(3) How does one compute the stable homology?

Let us though make clear from the start that we will, of course, not give full answers to any
of the three questions.

A priori one only needs a sequence of groups G1 ! G2 ! � � � to talk about homo-
logical stability. Following the article [63] and its generalization [39], Sections 2 of the present
paper shows that having the additional data of a “block sum,” as exhibited above for the
groups †n; Bn;GLn.R/, or Aut.Fn/, is enough input to run Quillen’s argument in the fol-
lowing sense: in Section 2.1, we construct a canonical space of destabilizations Wn when
the sum operation is braided, and Theorem 2.9 in Section 2.2 states that homological sta-
bility holds whenever these spaces are sufficiently connected. In Section 2.3, we explain
how homological stability with abelian and polynomial coefficients automatically also holds
under the same assumption, see Theorems 2.12 and 2.13.
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In Section 3 we will see that the braiding forces the stable homology, through the
“group completion theorem,” to be that of a double loop space, or an infinite loop space
when the braiding is a symmetry.

In Section 4, we will then explain how all these ideas were used in [68] to show that
the homology of Thompson’s group V is trivial, via a stability theorem and stable computa-
tion for the more general Higman–Thompson groups.

The article ends with a short section addressing the wider perspective.

2. A general framework for Quillen’s stability argument

In this section, we describe a framework in which Quillen’s strategy for proving
homological stability can always be implemented.

Recall that a groupoid G is a category whose morphisms are all invertible. Amonoi-
dal groupoid is a groupoid G equipped with a sum

˚ W G � G ! G

that is associative and unital. It is braided if it is in addition equipped with an isomor-
phism �A;B W A ˚ B ! B ˚ A for every pair of objects, satisfying the braid identity
�A;B�A;C �B;C D �B;C �A;C �A;B W A ˚ B ˚ C ! C ˚ B ˚ A and such that

A ˚ B
�A;B

//

f ˚g

��

B ˚ A

g˚f

��

C ˚ D
�C;D

// D ˚ C

commutes whenever it is defined, see, e.g., [45]. The groupoid is symmetric monoidal if the
braiding squares to the identity.

There are many examples of braided and symmetric monoidal groupoids. Stan-
dard examples of interest to us are the groupoid of sets with disjoint union, the groupoid of
R–modules with direct sum, the groupoid of groups with free or direct product, the groupoid
of vector spaces equipped with a symplectic or Hermitian form with the direct sum, or the
groupoid of manifolds of a given dimension with an appropriate connected sum operation.
Each of these examples are actually the groupoid of isomorphisms in a braided or symmetric
monoidal category. For us only the isomorphisms will play a role.

From groups to groupoids. If we start with a family of groups ¹Gnºn2N and defined
G D

`
n Gn to be the groupoid with objects the formal sums X˚n for n 2 N of a generating

objectX , and only nontrivial morphismsGn WDAutG .X˚n/, then amonoidal structure onG ,
extending the sum in N, is the data of an associative “sum” operation Gn � Gm

˚
�! GnCm,

and a braiding is the data of a homomorphism � W Bn ! Gn from the braid group, such that
the block braid bn;m satisfies that �.bn;m/.g ˚ g0/�.bn;m/�1 D g0 ˚ g for each g 2 Gn and
g0 2 Gm (see Figure 1). The groupoid is symmetric precisely if the homomorphism � factors
through the symmetric group †n.
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Figure 1

Block braid b3;2.

For example, applying this construction to the symmetric groups ¹†nºn2N with
the block sum of permutations yields the following: the objects are the natural numbers,
where we can think of n as representing a set Œn� with n elements, and the automorphism
group of Œn� is †n. As Œn C m� Š Œn� t Œm�, we see that the monoidal sum corresponds
to the disjoint union of sets. The resulting groupoid is a skeleton of the groupoid of finite
sets of Example 2.1 below. If we instead start with the general linear groups ¹GLn.R/ºn2N ,
we can think of the object n in the resulting groupoid as representing Rn D R˚n, whose
automorphism group is GLn.R/. The monoidal product then correspond to the direct sum
of R-modules, yielding a subcategory of the category of R-modules of Example 2.2 below.

From groupoids to groups. If we start instead with a monoidal groupoid G D .G ; ˚/, for
any two objects A; X in G , we get a sequence of groups G1 ! G2 ! � � � by setting

Gn D AutG
�
A ˚ X˚n

�
with

Gn D AutG
�
A ˚ X˚n

� _˚idX
����! GnC1 D AutG

�
A ˚ X˚n

˚ X
�
:

We think of Gn as the automorphism group of “A stabilized n times in the X direction.”

Example 2.1. LetG DSetsiso denote the groupoid of finite sets and bijections, withmonoidal
structure ˚ D t given by disjoint union. It is a symmetric monoidal groupoid with the sym-
metry the standard bijection A t B

Š
�! B t A. Taking A D ; and X D ¹�º in the above

yields Gn D †n the symmetric group on n letters, with †n ! †nC1 the standard inclusion
as the subgroup of permutations fixing the last element.

Example 2.2. Let R be a ring and let G D R–Mod denote the groupoid of R-modules
and their isomorphisms, with monoidal product the direct sum ˚ of modules. This is
again a symmetric monoidal groupoid with symmetry given by the standard isomorphism
M ˚ N

Š
�! N ˚ M . Taking A D 0 and X D R, we get Gn D GLn.R/, the automorphism

group of the module R˚n, with the map GLn.R/ ! GLnC1.R/ adding a 1 in the bottom
corner of the matrix. If we take A to be any R-module, the group Gn D GL.A ˚ R˚n/ is
the automorphism group of the module A stabilized n times.

Example 2.3. Let G D Groupsiso be the groupoid of groups with free product as monoidal
structure. This is again a symmetric monoidal groupoid with symmetry the natural isomor-
phism G � H ! H � G. If we take A D hei to be the trivial group and X D Z, we get
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Gn DAut.Fn/, the already considered automorphism group of the free groupFn. ForA D H

and X D G any group, the group Gn D Aut.H � G � � � � � G/ is the automorphism group
H free product with n copies of G, whose stability is studied in [13,34].

Modules over monoidal groupoids. Let G D .G ; ˚/ be a monoidal groupoid. A category
C is a right module over G if C is equipped with a unital and associative action

C � G
˚
�! C

of G . (See [39, Sect. 7.1].) Taking A 2 C and X 2 G , we can again define Gn D

AutC .A ˚ X˚n/, and this yields just as above a sequence of groups G1 ! G2 ! � � �

with the map _ ˚ idX W Gn ! GnC1 adding the identity on the extra copy of X .
The sequence of groups Gn obtained above from a monoidal groupoid G only is the

special case when C D G , considering G as a module over itself. Most of our examples will
be of that form, but there are examples from, e.g., manifolds [26,34], or Coxeter groups [36],
that require the more general setup of a module over a groupoid. (See also [39] for examples
in the context of homological stability for topological spaces.)

2.1. The space of destabilizations
Recall from the introduction that to apply Quillen’s strategy for proving homologi-

cal stability, one needs for each n a simplicial object Wn on which the group Gn acts, with
appropriate transitivity, stabilizer, and connectivity properties. The spacesWn used in homo-
logical stability are most typically one of three types: simplicial complexes, (semi)simplicial
sets, or posets. We will here only discuss spaces of the first two types.

Ad hoc simplicial objects Wn associated to families of groups Gn have been defined
in very many situations to prove stability statements; in fact, most homological stability the-
orems for families of groups have been so far proved using Quillen’s strategy. Following [63]

and its generalization [39], we construct here the smallest such semisimplicial set Wn for any
family of groups of the form Gn D AutC .A ˚ X˚n/ arising as above from the action of a
braided monoidal groupoid G on a groupoid C ; the definition of the face maps in Wn will
use the braiding of G . We also define an associated simplicial complex Sn.

Fix C a module over a braided monoidal groupoid G , with A an object of C , and X

an object of G as above.

Definition 2.4 ([63, Def. 2.1], [39, Def. 7.5]). The space of destabilizations Wn.A; X/� is the
semisimplicial set with set of p-simplices

Wn.A; X/p D
®
.B; f / j B 2 Ob.C/ and f W B ˚ X˚pC1

! A ˚ X˚n in C
¯
=�

where .B; f / � .B 0; f 0/ if there exists an isomorphism g W B ! B 0 in C satisfying that
f D f 0 ı .g ˚ idX˚pC1/. The face map di W Wn.A; X/p ! Wn.A; X/p�1 is defined by
di ŒB; f � D ŒB ˚ X; di f � for

di f W B ˚ X ˚ Xp
idB ˚b�1

X˚i ;X
˚id

X˚p�i

��������������! B ˚ X˚i
˚ X ˚ X˚p�i f

��! A ˚ X˚n;

for b�1
X˚i ;X

W X ˚ X˚i ! X˚i ˚ X coming from the braiding in G .
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The group Gn D AutC .A ˚ X˚n/ acts on Wn.A; X/� by postcomposition. The
following holds for the action:

(local cancelation) If Y ˚ X˚pC1
Š A ˚ X˚n

H) Y Š A ˚ X˚n�p�1;

then Gn acts transitively on Wn.A; X/p: (2.1)

(injectivity) If the stabilization Gn�p�1 ! Gn taking f to f ˚ idXpC1 is injective,

then there is an isomorphism Gn�p�1 Š Stab.�p/ for of any p-simplex �p:

(2.2)

A direct consequence is that, under these two mild conditions on the G -module C , the set of
p-simplices Wn.A; X/p of the space of destabilizations is isomorphic to Gn=Gn�p�1. As
we will see in Section 4 in an example, local cancelation can actually be forced by changing
the definition of C and G , declaring in particular A ˚ X˚n and A ˚ X˚m for n ¤ m to be
nonisomorphic. If the second condition is not satisfied, Wn.A; X/ needs to be replaced by a
semisimplicial space in Quillen’s argument, see [39, Sect. 7.3].

Remark 2.5. In the case of a groupoid G D C acting on itself, the set of p-simplices of
Wn.A; X/ can be interpreted as the set of morphisms from X˚pC1 to A ˚ X˚n in a cate-
gory hG ; G i constructed from the action, see Appendix A. The face maps are then given by
precomposition with standard morphisms X˚p ! X˚pC1 in that category.

From Wn.A; X/, one can also define a simplicial complex Sn.A; X/ as follows:

Definition 2.6. Let Sn.A;X/ be the simplicial complex with the same vertices asWn.A;X/.
A set of vertices ¹x0: : : : ; xpº spans a p-simplex in Sn.A; X/ if and only if they are the
vertices of a p-simplex of Wn.A; X/.

We will see in Section 2.2 that it is often equivalent, and more convenient, to work
with Sn.A; X/ instead of Wn.A; X/ for connectivity questions.

Example 2.7. As in Example 2.1, consider .G ; ˚/ D .Setsiso; t/ the symmetric monoidal
groupoid of finite sets, seen as amodule over itself, withA D ; andX D ¹�º, givingGn D †n

the symmetric group. A p-simplex ŒB; f � of Wn.;; ¹�º/ is determined by the restriction of
the bijection f W B t Œp C 1� ! Œn� to Œp C 1�. So a p-simplex of Wn.;; ¹�º/ is an ordered
tuple of p C 1 elements of Œn� D ¹1; : : : ; nº. The i th boundary map forgets the .i C 1/st
element. This semisimplicial set is known as the complex of injective words, and it is known
to be .n � 2/-connected [17] (see also [63, Sect. 5.1]). The simplicial complex Sn.;; ¹�º/ has
the same vertices as Wn.;; ¹�º/, namely the elements of Œn�, and p C 1 such elements form
a simplex in Sn.;; ¹�º/ precisely when there exist an injective word in these letters, i.e., if
they are distinct. Hence Sn.;; ¹�º/ identifies with the .n � 1/-simplex �n�1.

Example 2.8. Let .G ; ˚/ D .R–Mod; ˚/ be the symmetric monoidal groupoid of
R-modules acting on itself, with A D 0 and X D R, giving Gn D GLn.R/ as in Exam-
ple 2.2. A p-simplex ŒB; f � in Wn.A; X/, with f W B ˚ RpC1 Š

�! Rn, is determined by
the pair .f .B/ < Rn; f jRpC1 W RpC1 ,! Rn/. The simplicial complex Sn.A; X/ thus has
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vertices pairs .H; f / with H < Rn and f W R ,! Rn so that Rn D H ˚ f .R/, and vertices
..H0;f0/; : : : ; .Hp;fp// form ap-simplex if together the maps .f0 ˚� � �˚fp/ WRpC1 !Rn

form an injective map with a complement H such that each Hi D H ˚
L

j ¤i fj .R/. This
complex is very closely related to complexes studied by van der Kallen [69] and Charney
[10] and is n�a

2
-connected for a a constant depending on the stable rank of R (see [63, Lemma

5.10]). The fact that simplices are not just split injective homomorphisms, but rather split
homomorphisms with a choice of complement H , makes the simplicial complex more intri-
cate to study, but it forces the stabilizer of a p-simplex to be exactly GL.H/, instead of an
affine version of the group, which would be the case if complements had not been chosen.

The simplicial complex Sn.A; X/ has appeared in the literature in many examples
long before it was defined in the above generality. Here are a few additional examples: for the
automorphisms of free groups Aut.Fn/, it is essentially the complex of split factorizations
of Hatcher and Vogtmann [32] (see [63, Sect. 5.2.1]), for mapping class groups of surfaces
with genus stabilization, this identifies with the tethered arc complex of the same authors
[33] (see [63, Sect. 5.6.3]), while the poset of simplices of Wn.A; X/ in the case of unitary
groups already appeared in [52] (see [63, Sect. 5.4]).

2.2. Homological stability
Let C be a module over a braided monoidal groupoid G as above, with A and X

objects of C and G , respectively. We have so far associated a sequence of groups
Gn D AutC .A ˚ X˚n/ to this data, together with a collection of associated Gn-spaces
Wn D Wn.A; X/ and Sn D Sn.A; X/. We will now use this as an input for Quillen’s strategy
for proving homological stability for the groups Gn. It turns out that Wn is best suited for
the spectral sequence argument.

The spectral sequence in Quillen’s argument is obtained as follows. Let E�Gn be
a free resolution of Z as a ZGn-module, and let QC�.Wn/ denote the augmented cellular
complex ofWn. Tensoring these two objects together, we get a first quadrant double complex

C�;� D E�Gn ˝Gn
QC�.Wn/:

Filtering C�;� in the first direction gives a spectral sequence whose E1-page is trivial in
a range under the assumption that Wn is highly connected, from which it follows that the
spectral sequence coming from filtering in the second direction must converge to zero in a
range. By transitivity of the action and Shapiro’s lemma, this latter sequence has E1-term

E1
p;q D Hq

�
Stab.�p/

�
Š Hq.Gn�p�1/

under the local cancelation and injectivity assumption of Section 2.1, where there are no
twisted coefficients because the stabilizer of a p-simplex in Wn always fixes the simplex
pointwise. This spectral sequence allows for an inductive argument. This argument has been
written in full details many places, see [63, Thm. 3.1] for the case where Wn is precisely the
complex of destabilization considered here, or, e.g., [34, Thm. 5.1] for a version adaptable to
more general simplicial objects Wn.
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Theorem 2.9 ([63, Thm. 3.1]). Let Gn D AutC .A ˚ X˚n/ for C ; G ; A and X as above sat-
isfying (2.1) and (2.2), and assume that for all n � 0, there is a k � 2 such that the space
Wn.A; X/ is n�2

k
-connected. Then the stabilization map

Hi .Gn/ ! Hi .GnC1/

is an isomorphism for i �
n�1

k
and a surjection for i �

n
k

.

Remark 2.10. The paper [63] has two additional assumptions on G : it should have no zero
divisors and the unit has no nontrivial isomorphisms, but, as pointed out by Krannich in [39,

Sect. 7.3], these two assumptions are not actually necessary. Indeed, these assumptions ensure
that AutG .A ˚ X˚n/ Š AutU G .A ˚ X˚n/ for U G D hG ; G i a certain category associated
to the groupoid G (see Section A), but in fact stability just holds for both groups whether
they are equal or not, with the same proof. The paper [63] also only formulates the result for
the case of G acting on itself, but the proof generalizes with no significant change, as noted
in [39].

Remark 2.11 (Stability slope). The slope k of stability given by the theorem depends on
the slope of connectivity of the spaces Wn.A; X/, though with the constrain that the best
possible slope is slope 2. This last restriction is due to the structure of the spectral sequence.
To obtain a better slope than slope 2 with the spectral sequence described here, one needs
additional information about the groups or differentials appearing in the spectral sequence;
such better slopes do not follow from a direct inductive argument.

It is an open question whether stability holds if and only if the spaces Wn.A; X/ are
highly connected, see [63, Conj. C].

Connectivity of buildings. Stability can only be proved using the above argument under
the condition that the spaces Wn (the above defined spaces of destabilizations or some other
appropriate buildings) are highly connected. This is a place where work that depends on
the groups in question comes in. Under mild conditions, the connectivity of Wn.A; X/ is
controlled by that of the associated simplicial complex Sn.A; X/, and Sn.A; X/ will also
typically be (weakly) Cohen–Macaulay, a very useful property in connectivity arguments,
see [63, Sect. 2.1].

There are a few general useful facts and tricks that are good to know when working
on connectivity questions for such simplicial complexes or semisimplicial sets, see, e.g., [33,
Sect. 2], [15, Sect. 2,4,5], or [34, Sect. 3], for expositions of tools and techniques. For an example
of how such arguments look like, the survey paper [72] gives a proof of high connectivity of
simplicial complexes of arcs relevant for the stability of themapping class groups of surfaces,
assembling tricks and techniques from the literature.

2.3. Twisted coefficients
Homological stability is also often considered in the context of homology with

twisted coefficients: Given a sequence of groups G1 ! G2 ! � � � , and a sequence of mod-
ules M1 ! M2 ! � � � such that Gn acts on Mn and the map Mn ! MnC1 is equivariant
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with respect to the map Gn ! GnC1, one can ask whether the resulting sequence

Hi .G1; M1/ ! Hi .G2; M2/ ! Hi .G3; M3/ ! � � �

stabilizes. We explain briefly here how the same assumptions as Theorem 2.9 yield that
stability also holds for certain types of “abelian” and “polynomial”coefficients.

Abelian coefficients. Suppose that M is a G1-module. Then we can consider M as a
Gn-module via the maps Gn ! G1 D

S
n Gn. If we let Mn be this module, this gives an

example of a compatible family of coefficients for the groups Gn. We say that M is abelian
if the action of G1 factors through its abelianization H1.G1/.

Theorem 2.12 ([63, Thm. 3.4]). Let Gn D AutC .A ˚ X˚n/ be as in Theorem 2.9 and assume
that for all n � 0, there is a k � 3 such that the space Wn.A; X/ is n�2

k
-connected. Then for

any H1.G1/-module M , the stabilization map

Hi .GnI M/ ! Hi .GnC1I M/

is an isomorphism for i �
n�k

k
and a surjection for i �

n�kC2
k

.

The simplest example of such an abelian coefficient system is M D ZH1.G1/.
Because untwisted homological stability gives that H1.G1/ Š H1.Gn/ for n large enough,
we have that the twisted homology in that case computes the homology of the commutator
subgroup. A direct corollary is thus that, under the same hypothesis as Theorem 2.9 (with
k � 3), homological stability also holds for the commutator subgroups G0

n: the stabilization
map also induces isomorphisms

Hi

�
G0

n

� Š
�! Hi

�
G0

nC1

�
for i �

n�k
k

and a surjection for i �
n�kC2

k
. This gives, for example, homological stability

for alternating groups (D commutator subgroups of symmetric groups), or special automor-
phism groups of free groups (D commutator subgroups of Aut.Fn/).

Note that the best possible slope given by the statement is now slope 3. This is
optimal as stated because we know from [35, Prop. B] that slope 3 is optimal for alternating
groups, despite the fact that the spaces Wn.A; X/ in this case are slope 2 connected.

Polynomial coefficients. Twisted coefficients classically used in homological stability have
been of “polynomial type,” as introduced by Dwyer in [14] in the case of general linear
groups. It turns out that polynomiality in the sense of Dwyer makes sense in our current
general framework of groups of the form Gn D AutC .A ˚ X˚n/, as we explain now.

To define a coefficient system for the groups Gn, we need the data of a module Mn

over Gn for each n, and a map Mn ! MnC1 compatible with the actions. We will here
encode this data in a functor from a category built from the G -module C , in similar fashion
as the spaces Wn.A; X/ were build from G and C2: Let CA;X be the category with objects
A ˚ X˚n and morphisms from A ˚ X˚m to A ˚ X˚n empty unless m � n, in which case

2 This is again an example of a bracket construction for categories, as described in Section A.
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a morphism is an equivalence class of maps f W A ˚ X˚n ! A ˚ X˚n in C , with f � f 0

if there is an isomorphism g W X˚n�m ! X˚n�m in G such that f D f 0 ı .id ˚ g/.
A functor M W CA;X ! R–Mod defines a coefficient system in the above sense,

by setting Mn WD M.A ˚ X˚n/. Because of the equivalence relation in the definition of
the morphisms in CA;X , such coefficient systems have the particularity that AutG .X˚m/

acts trivially on the image of the map Mn ! MnCm; they are in fact characterized by this
property [63, Prop. 4.2].

Using the braiding of G , we can define a functor

†X W CA;X ! CA;X

that adds a copy of X “to the left,” taking A ˚ X˚n to A ˚ X˚nC1, and a morphism f to
the composition .idA ˚ bX;X˚n/ ı .f ˚ idX / ı .idA ˚ b�1

X;X˚n/. This functor comes with a
natural transformation �X W id ) †X (see [63, 4.2]). For M W CA;X ! R–Mod, we define its
suspension

†M D M ı †X W CA;X ! R–Mod:

It comes with a natural transformation M ! †M induced by �X .
A finite degree coefficient system is defined inductively as follows: the trivial coeffi-

cient system M � 0 is by definition of degree �1, and a coefficient system M is of degree r

if the natural transformation M ! †M has trivial kernel, and cokernel of degree r � 1 [63,

Def. 4.10]. For example, constant coefficient systems are of degree 0, and all finitely presented
FI-modules are coefficient systems of finite degree for the symmetric groups [63, Prop. 4.18].
The Burau representation of the braid group is an example of a coefficient system of degree 1
[63, Ex. 4.15].

Theorem 2.13 ([63, Thm. A]). Under the same hypothesis as Theorem 2.9, if ¹Mnºn2N is a
polynomial coefficient system of degree r , then

Hi .GnI Mn/ ! Hi .GnC1I MnC1/

is an isomorphism for i �
n
k

� r � 1 and a surjection for i �
n
k

� r .

3. Group completion and the stable homology

The fact that the groupoid G is braided or symmetric monoidal has direct impli-
cations for the stable homology of the groups Gn D AutC .A ˚ X˚n/ we have been con-
sidering here. We briefly discuss here the case of automorphism groups Gn D AutG .X˚n/

in G , and refer to [63, Sect. 3.2] for more details, and for some words about the case Gn D

AutG .A ˚ X˚n/.

En-algebras. A (topological) En-algebra is an algebra over the little n-disc operad. When
n D 1, such an object goes also under the nameA1-algebra; it is a space with amultiplication
that is associative “up to all higher homotopies”.When n � 2, themultiplication is in addition

2916 N. Wahl



homotopy commutative, with “more andmore” homotopies as n grows, all theway to anE1-
algebra that is commutative up to all higher homotopies. In particular, any En-algebra is a
topological monoid, that is homotopy commutative whenever n � 2. (See, e.g., [3,48].)

These algebraic structures are relevant for us for the following reason: the geometric
realization jG j of the nerve of a monoidal, braided monoidal, or symmetric monoidal cate-
gory G is respectively an E1-, E2-, or E1-algebra, see, e.g., [47], [19, Sect. 8]. When C is a
module over a braided monoidal groupoid G , then jC j is an E1-module over the E2-algebra
jG j in the sense of [39].

The primary example of an En-algebra is the n-fold loop space �nX D

Maps�.Sn;X/ of a spaceX . For n D 1, an1-loop space is an n-fold loop space Y D �nXn

for every n, where the spaces Xn together form a spectrum X. Loops have the partic-
ularity that they possess homotopy inverses with respect to concatenation, which is the
monoid structure underlying their En-algebra structure. The recognition principle for iter-
ated loop spaces says that, after “group completion,” i.e., after adding homotopy inverses, any
En-algebra is an n-fold loop space [48] (see also [3, 65]). Explicitly, the group completion
of a topological monoid .M; ˚/ is the space �B˚M , where B˚ denotes the bar construc-
tion, a simplicial space constructed from M and the sum ˚. The group completion theorem
states that, if .M; ˚/ is homotopy commutative, then H�.�B˚M/ Š H�.M1/ for M1 an
appropriate “limit” space defined from M , see [50,61].

Applying this to the realization jG j of a braided monoidal groupoid, we get that its
group completion �B˚jG j is a double loop space �2X , or an infinite loop space �1X if G

was actually symmetric. For G of the form G D
`

n�0 Gn with Gn D AutG .X˚n/, the limit
space jG j1 identifies with Z � BG1 for G1 D

S
n Gn D colim.G0 ! G1 ! G2 ! � � � /,

and the group completion theorem thus takes the form H�.�B˚jG j/ Š H�.Z � BG1/.
Equivalently, it gives that the stable homology of the groups Gn has the following form:

H�.G1/ Š H�.�0B˚jG j/ Š

´
H�.�2

0X/ if G is braided,

H�.�1
0 X/ if G is symmetric,

for some space X , respectively spectrum X, just as in the examples we have seen so far,
namely Theorems 1.2–1.5. The work in identifying the stable homology of a family of groups
thus comes down, through these classical results, to the question of identifying certain double
or, most often, infinite loop spaces arising as classifying spaces of groupoids. Considered
very broadly, this is the subject of K-theory. In Section 4, we sketch one such computation.

“Higher” stability and the Ek-splitting complex. The stabilization maps we study here
only use a very small part of the E2- or E1-structures we have at hand: taking the sum ˚X

just uses part of the underlyingE1-module structure. The space of destabilizationsWn.A;X/

associated to the E1-module jC j over the E2-algebra jG j and the elements A 2 jC j and
X 2 jG j, can be thought of as a form of resolution of the space

`
n BGn as E1-module

generated by A over the E2-algebra generated by X .
One can ask whether there are interesting “higher” stabilization maps, summing for

example with higher dimensional homology classes, or whether the whole Ek-structure can
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tell us more about the homology of the family of groups. The answer is yes, and is the subject
of the body of work [21–24] (see also [51] in the context of representation stability). Consider-
ing the fullEk-structure has turned out to be powerful, and these papers manage to go further
than with the classical arguments, including to obtain information about the homology past
the stable range. (See also the related paper [38].) The authors define Ek-splitting complexes
that resolve the full Ek-structure. For a relationship between the connectivity of the spaces
Wn.A; X/ defined here and that of the E1-splitting complex, see [38, Thm. 13.2].

4. Higman–Thomson groups

Sometimes homological stability is useful in unexpected situations, as turned out to
be the case in the study of the homology of Thompson’s group V . Thompson’s groups come
in three flavors:F < T < V whereF is a subgroup of the piecewise-linear homeomorphisms
of the interval, T a subgroup of those of the circle, and V of the homeomorphisms of the
Cantor set. The homology of F and T was computed in the 1980s by Brown–Geoghegan
and Ghys–Sergiescu in [8, 27]. Brown proved a few years later that the rational homology
of Thompson’s group V was trivial, and conjectured that it was also integrally trivial [7].
Brown’s conjecture was proved 25 years later by Szymik and the author in [68] using the
following unexpected strategy:

(1) V D V1 is part of a family of groups V1 ! V2 ! V3 ! � � � that satisfies homo-
logical stability;

(2) The homology H�.V / is entirely stable, i.e., H�.V / Š H�.V1/;

(3) The stable homology identifies with that of a trivial infinite loop space.

In fact, we will see below that each group Vn in the sequence is isomorphic to V , but the
maps Vn ! VnC1 are only isomorphisms after passing to homology. The strategy works
more generally to compute the homology of the Higman–Thompson groups, so we describe
it now in more details in that context.

The Higman–Thompson group Vk;n is the group of self-maps of a disjoint union of
n intervals I tn obtained by choosing k-ary subdivisions of the source and target, subdivid-
ing the interval into k equal sized subintervals and repeating on some of the intervals thus
obtained, and matching the resulting subintervals by a chosen bijection. (See [68, Sect. 1.2],
and Figure 2 for an example when k D 2 and n D 1.) Thompson’s group V D V2;1 is the
group obtained this way from binary subdivisions of a single interval. Fixing some k � 2,
we can think of Vk;n as the automorphism group of an object X˚n D I tn in a groupoid
Vk D

F
n�0 Vk;n, just as we have considered in this paper. Juxtaposition of intervals induces

maps
Vk;n � Vk;m ! Vk;nCm
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Figure 2

An element of Thompson’s group V D V2;1 obtained from a binary subdivision of the source and target interval,
and a choice of permutation of the subintervals.

that make the groupoid Vk symmetric monoidal, with the symmetries coming for block
permutations of the intervals. Hence we can try to apply the stability machine described
in the present paper to prove homological stability for the groups ¹Vk;nºn�0.

Note that there are group isomorphisms Vk;n Š Vk;nC.k�1/ induced by subdividing
an interval into k subintervals, but these isomorphisms are not encoded in the groupoid Vk .
For the purpose of homological stability, it is convenient to have a rank function, that is,
to know what “n” is at all times. Ignoring these isomorphisms also gives, by construction,
the local cancelation property (2.1) which was necessary for the transitivity of the action on
the associated complex of destabilization Wn. So from the point of view of the groups, the
objects I and I tk are isomorphic, but we will consciously suppress that information in the
first part of our argument.

Let Wn D Wn.0; I / be the space of destabilizations associated to the symmetric
monoidal groupoid Vk (acting on itself) and the objects 0 and I , and let Sn D Sn.0; I / be
its associated simplicial complex, as defined in Section 2.1. The group Vk;n can be defined
as the automorphism group of an object called the free Cantor algebra Ck.n/ of arity k

on n generators (see [68, Def. 1.1]), and a p-simplex in Wn corresponds to an embedding
Ck.p C 1/ ,! Ck.n/ with complement isomorphic to Ck.n � p � 1/. It is shown in [68,

Cor. 3.4] that Sn, and hence also Wn (by [63, Thm. 2.10]), is at least .n � 3/-connected for all
n � 2. The complex Sn has dimension n � 1 and the idea of the proof of connectivity is
to work with its .n � 2/-skeleton, as simplices that are not maximal correspond to embed-
dings that have a complement of rank at least 1, i.e., at least as big as Ck.1/. But there are
isomorphisms Ck.1/ Š Ck.1 C .k � 1// Š Ck.1 C 2.k � 1// Š � � � so that in practice,
a nontrivial complement is actually a complement that is “as large as one likes,” which is
useful for coning off simplices.

Applying Theorem 2.9, we immediately get that the stabilization map
Vk;n ! Vk;nC1 that adds the identity on the new interval, induces an isomorphism
Hi .Vk;n/

Š
�! Hi .Vk;nC1/ in a range increasing with n. Coupling this with the fact that

the isomorphisms Vk;n Š Vk;nC.k�1/ Š Vk;nC2.k�1/ Š � � � can be chosen compatibly with
the stabilization maps, we get that the rank n can be assumed as large as one like, so that the
isomorphism Hi .Vk;n/

Š
�! Hi .Vk;nC1/ actually holds without any bound.
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It remains to compute the stable homology. From the results described in Section 3,
given that Vk is a symmetric monoidal groupoid, we know that the stable homology of the
groups is that of an infinite loop space. Now here it turns out to be more convenient to do
the computation using a different symmetric monoidal groupoid whose group completion
also yields the stable homology of the groups Vk;n, namely the groupoid Vk where we now
remember the isomorphism I ! I tk or, equivalently, the isomorphisms of Cantor algebras
Ck.n/ Š Ck.n C .k � 1//. Theorem 5.4 of [68] says that

H�.Vk;1/ Š H�.�0B˚jVkj/:

As Vk is symmetric monoidal, we again have that its group completion is an infinite loop
space and what remains is to find out what the corresponding spectrum is.

So nowwe are in the world of symmetric monoidal categories, and the idea is simply
to find a symmetric monoidal category that is equivalent to Vk as symmetric monoidal cat-
egory, and hence group completes to the same infinite loop space, but whose associated
spectrum is easier to recognize. Our search was guided by the following observation: the cat-
egory Vk resembles the category of finite sets and isomorphisms, to which one has declared
one extra isomorphism, namely that Œ1� is now isomorphic to Œk�, or, after group completion,
Œ0� is isomorphic to Œk � 1�. As already mentioned in the introduction, the spectrum asso-
ciated to the category of finite sets (or, equivalently, to the symmetric groups) is the sphere
spectrum S. In homotopy theory, we trivialize by taking cofibers, and the cofiber of the map
S

.k�1/
����! S multiplying by .k � 1/ is a well-known spectrum Mk�1 called the Moore spec-

trum.Making this idea precise, formulating it on the level of symmetric monoidal categories,
and combining it with the homological stability result described above, led to the following
result

Theorem 4.1 ([68]). There are isomorphisms

H�.Vn;k/ Š H�

�
�1

0 Mk�1

�
:

Specializing to the case k D 2 yields that H�.V / D 0 for � > 0 as the spectrum
M1 D cofiber.S

id
�! S/ is trivial.

Note that the homology of �1
0 Mk�1 for k � 3 is tractable, and we have many tools

available to compute it. For example, it is immediate that the rational homology is trivial,
but also that the integral homology is not. We confirm, for instance, in [68, Sect. 6] that
H1.Vk;n/ D Z=2 for k odd and show that the first nontrivial homology group in the k even
case is H2p�3.Vk;n/ D Z=p for p the smallest prime dividing k � 1.

5. Perspectives

Many stability results have been proved over the past decades, and one is left to
wonder how far homological stability methods can reach. We have highlighted here the idea
that braidings seem to be relevant. This is, however, neither a necessary nor a sufficient
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condition. We give here some examples that tests the limits of stability, as well as a hint to
the wider context homological stability can be considered in.

No braiding D no stability? Such a statement is not going to ever be literally true, but here
are some standard types of examples that are good to have in mind: The full braid groups
Gn D Bn satisfy homological stability, but not the pure braid groups Kn D ker.Bn ! †n/.
Likewise, the general linear groups Gn D GLn.R/ satisfy stability for many rings R but not
the congruence subgroups Kn D GLn.R; I / D ker.GLn.R/ ! GLn.I //. There are in fact
many examples of that form with a family of groups Kn < Gn with the groupoid G D

F
Gn

braided monoidal while the groupoid K D
F

Kn is monoidal but not braided, and with the
family Gn stabilizing but not the family Kn. It turns out that such families ¹Knºn�0 often
satisfy instead a form of representation stability in the sense of [11], see also [16,55].

Braiding 6) stability. There are very few examples of braided monoidal categories where
we know that homological stability for the associated groups Gn does not hold. One such
example, constructed by Patzt [54], is the following: consider the category of sets, but using
the product � instead of the disjoint union as monoidal structure. This is a symmetric
monoidal groupoid, and if we pick A D Œ1� and X D Œ2�, we get Gn D †2n is the sym-
metric group on 2n elements. The resulting space Wn.A; X/ is, however, disconnected in
this case! And indeed, even though the symmetric groups satisfy homological stability, the
stabilization maps in this case do not induce isomorphisms; the induced map on first homol-
ogy is instead the zero map. So the existence of a braiding does not imply stability, which in
hindsight is probably not surprising.

There are in addition plenty of exampleswherewe have a braidedmonoidal groupoid
at hand but we do not know that stability holds. For example, the category of R-modules
over any ring R is symmetric monoidal, but stability for the groups GLn.R/ is essentially
only known under the condition that the ring has finite Bass stable range [69]. But examples
of rings for which we know that stability for GLn.R/ does not hold are surprisingly rare;
see [41] for one example of a ring for which H1.GLn.R// does not stabilize. For mapping
class groups or diffeomorphism groups of manifolds, we essentially know stability in full
generality in dimension 2 and 3, but in higher dimension, homological stability for the clas-
sifying spaces of diffeomorphism groups is only known for stabilization by connected sums
with certain products Sp � Sq [5,26]. Similarly, homological stability for the automorphism
groups of vector spaces equipped with a form (symplectic, unitary, or orthogonal groups),
is mostly known in the particular case of stabilizing with the hyperbolic form, see, e.g., [66].
In the other cases, we just do not know the connectivity of the complex of destabilizations.

Homological stability in other contexts. We have already mentioned a number of stability
results for sequences of spaces. The most classical examples are configuration spaces, going
back to the work of McDuff, Segal and F. Cohen in the 1970s [12,49,65]. In other contexts,
examples seem to be more rare so far, but there is currently a growing interest in stability in
the homology of families of algebras, see, e.g., [6,37,67], and there exist, e.g., some results
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for bounded cohomology of groups [43]. These results are of a very similar flavor as what
we have described in the present paper.

A. Adding complements categorically

The semisimplicial sets Wn.A; X/ of Section 2.1 and the categories CA;X used to
define polynomial coefficients in Section 2.3, were constructed using equivalence classes of
maps in the groupoid C . Both these constructions are related to a categorical construction,
first considered by Quillen in the context of K-theory [28, p. 219]. We recall this construction
here and give a few examples. The resulting categories will be natural “homes” of the spaces
Wn.A; X/, and for the polynomial twisted coefficients, which gives some insights.

Let M be a category, that is, a left module over a monoidal groupoid .G ; ˚/. We
define a category hG ; Mi as follows: hG ; Mi has the same objects as M, and morphisms
from A to B are defined as equivalence classes of pairs .X; f / with X an object of G and
f W X ˚ A ! B a morphism ofM, where .X;f / � .X 0; f / if there is a commuting diagram

X ˚ A

g˚id
��

f
// B

X 0 ˚ A

f 0

;;

in M. (If C is a right module instead, a category hC ; G i is defined analogously.) When M is
a groupoid, as will be the case in our examples, the maps f are isomorphisms and the object
X can be thought of as a choice of complement for A inside B .

We will here only consider the case where M D G is a monoidal groupoid acting
on itself, and denote by U G D hG ; G i the resulting category.

Example A.1. Let .G ; ˚/ D .Setsiso; t/ be the monoidal groupoid of finite sets and bijec-
tions of Example 2.1, with the monoidal structure induced by disjoint unions. ThenU G D FI
is the category of finite sets and injections. Indeed, any injection f W A ,! B has, up to iso-
morphism, a unique complement X D Bnf .A/.

Example A.2. Let .G ;˚/ D .R–Mod;˚/ be the groupoid ofR-modules and isomorphisms
of Example 2.2, with the monoidal structure given by direct sum. ThenU G is closely related
to the category sometimes called VIC, with the same objects asR–Mod and with morphisms
from M to N given by pairs .H; f / with f W M ! N a split injective homomorphism and
H a choice of complement in N of the image, N D H ˚ f .M/ (see, e.g., [58]).

If the monoidal groupoid .G ; ˚/ is braided, one can define a monoidal structure on
U G as follows: on objects the monoidal structure ˚ is that of G , and for ŒX; f � a morphism
from A to B and ŒY; g� a morphism from C to D, we set

ŒX; f � ˚ ŒY; g� D
�
X ˚ Y; f ˚ g ı idX ˚ b�1

A;Y ˚ idC

�
W A ˚ C ! B ˚ D
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where we use the braiding to switch A and Y in X ˚ Y ˚ A ˚ C to be able to apply the
morphism f ˚ g. The category U G is not in general braided (see the next example), though
it is symmetric when .G ; ˚/ is a symmetric monoidal groupoid, see [63, Prop. 1.8].

Example A.3. The braid groups Bn form together a groupoid B D
F

n Bn, that is, the free
braided monoidal groupoid on one element, where the monoidal structure comes from the
juxtaposition of braids. The categoryU B can be described in terms of braids with free ends:
a morphism from m to n for m � n in U B is an equivalence class of braid in Bn where the
braid has n � m free ends that can freely pass under, but not over, any other strand, see
[63, Sect. 1.2]. (It can alternatively be defined in terms of embeddings of punctured discs, see
[63, Sect. 5.6.2].) The category U B is not braided monoidal, but only prebraided in the sense
of [63, Def. 1.5].

Remark A.4. The forgetful map Bn ! †n from the braid groups to the symmetric groups
induces a map U B ! FI D U.Setsiso/. Because B is the free braided monoidal category
on one object, it encodes all the structure we have when we picked objects A and X in
the groupoids C and G in Section 2. As pointed out in [39, Remark 2.8], the reason we can
construct a semisimplicial set Wn.A; X/ comes from the following: A semisimplicial set is
a functor �

op
inj ! Sets for �inj the category of finite ordered sets and ordered injections. One

can consider �inj as a subcategory of the category FI of finite sets and injections. Now while
the forgetful map U B ! FI does not admit a splitting, it does admit a partial splitting, in
the form of a functor �inj ! U B, and this partial splitting is what rules the semisimplicial
structure of the space of destabilization Wn.A; X/.
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