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Abstract

We discuss generalizations of the Langlands program, from reductive groups to the local
and automorphic spectra of spherical varieties, and to more general representations arising
as “quantizations” of suitable Hamiltonian spaces. To a spherical G-variety X , one asso-
ciates a dual group LGX and an L-value (encoded in a representation of LGX ), which con-
jecturally describe the local and automorphic spectra of the variety. This sets up a problem
of functoriality, for any morphism LGX !

LGY of dual groups. We review, and gener-
alize, Langlands’ “beyond endoscopy” approach to this problem. Then, we describe the
cotangent bundles of quotient stacks of the relative trace formula, and show that transfer
operators of functoriality between relative trace formulas in rank 1 can be interpreted as a
change of “geometric quantization” for these cotangent stacks.
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1. Integral representations of L-functions

1.1. Classical periods
1.1.1. In his legendary 1859 paper [66], Riemann proved the functional equation

of the zeta function by representing it as the Mellin transform of a theta series
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The proof used the functional equation of the latter with respect to the substitution y$ y�1,
previously established by Jacobi and based on the Poisson summation formula.

About 90 years later, Iwasawa, in a short announcement [37], and Tate, in his
thesis [83], reformulated this integral in the language of the adeles. The new formulation
could be directly applied to the generalizations of the zeta function to arbitrary Dirichlet
characters (by Dirichlet), or number fields (by Dedekind) and Grössencharacters (by Hecke),
and clarified the meaning of the Euler factors of the zeta function, as Mellin transforms of
Schwartz functions on the p-adic completions of Q. Namely, we have an identity
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where, for finite primes p, �p.s/ D .1 � p�s/�1 and p̂ D 1Zp , the characteristic function
of the p-adic integers, is what we will call the basic Schwartz function on Qp; the same inter-
pretation extends to the “Archimedean factor” �1.s/D �
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2
/ of the functional equation,

with Q1 D R, and ˆ1 the Gaussian e��x2 .

1.1.2. Meanwhile, in 1936–1937, Hecke [34] introduced what is today called the
L-function of a modular form, generalized to nonholomorphic automorphic forms by Maass
in 1944 [56]. Recast in the adelic language by Jacquet and Langlands in their seminal 1970
work [41], these L-functions, with appropriate Archimedean factors, can be represented as
Mellin transforms Z

k�nA�
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a
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!
jajs d�a;

where k denotes a number field, A its ring of adeles, and f is a cuspidal automorphic form
on GL2.k/nGL2.A/.

Shortly after Hecke, Rankin [65] and Selberg [80] discovered an integral represen-
tation for the L-function that carries their names, which today is seen as a special case of a
Langlands L-function, attached to the tensor product representation

LG D GL2 �GL2
˝
�! GL4

of the Langlands dual of the group G D GL2 �GL2. This integral is, on the surface, very
different from the Mellin transforms of Riemann and Hecke, as it involves a pair of cusp
forms and an Eisenstein series:Z

GL2.A/
f1.g/f2.g/E.g; s/ dg:
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1.2. The theta series of spherical varieties
1.2.1. The aforementioned works, and their adelic reformulations, led to an explo-

sion of research around L-functions from the 1970s onward, with numerous new integral
representations discovered by Godement, Jacquet, Rallis, Piatetski-Shapiro, Gelbart, Sha-
lika, Waldspurger, Ginzburg, Bump, Friedberg, Garrett, and others [19], combining elements
from all of the methods above, such as the theta series (from Riemann), the “period integrals”
over subgroups (from Hecke), and the Eisenstein series (from Rankin and Selberg).

A uniform approach to many of these methods was proposed in [68]; it relies on the
following ingredients:

• A (suitable) affine spherical variety X for a group G over a number field k; that
is,X is a normal, affineG-variety, with a dense orbit for the Borel subgroup ofG.
This space is X D A1 for G D Gm in Riemann–Iwasawa–Tate theory, X D GL2
for G D GL1 � GL2 in Hecke–Jacquet–Langlands theory, and X D V �GLdiag

2

.GL2�GL2/, where V is the standard representation of GL2, in Rankin–Selberg
theory.

• A suitable space of “Schwartz functions” F .X.kv// for every completion kv of k;
at almost every place, it contains a distinguished vector ˆ0;v , giving rise to a
restricted tensor product F .X.A// D

N0

v F .X.kv//. When X is smooth and kv
is non-Archimedean with ring of integers ov , we have ˆ0;v D 1X.ov/.

• The X -theta series
‚ W F

�
X.A/

�
! C1

�
ŒG�

�
;

where ŒG�DG.k/nG.A/, given by‚ˆ.g/ WD‚.ˆ/.g/ WD
P

2X.k/ˆ.
g/. This

generalizes the Jacobi theta series used by Riemann, and many other series of clas-
sical analytic number theory, such as Poincaré series (if we allow X to stand for
the Whittaker model, which is not just a space but also a nontrivial “line bundle”
over it, see § 2.2.5), and Eisenstein series (after we pair a suitable theta series with
an automorphic form for some Levi subgroup).

The theta series (for varying inputs ˆ) are then integrated against automorphic
forms f , and, under some assumptions on the space X , the “period pairing”

hf;‚ˆi WD

Z
ŒG�

f .g/‚ˆ.g/ dg (1.1)

is expected to be related to a special value of an L-function of f . This relation will be
discussed in Sections 2.3.2–3.1.1.

1.2.2. While it is not the main focus of the present article, it should be mentioned
that the main point of the proposal of [68] was to include singular affine spherical varieties,
in which case the “basic function” ofX.kv/ is the “IC function,” obtained through the sheaf–
function dictionary from the intersection complex of a suitable geometric model of X.ov/,
see § 3.1.3. This was inspired by the work of Braverman–Kazhdan on the basic affine space
[14,16], which goes back to the geometric Langlands program [13] and ideas of Drinfeld.
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The conjecture was refined by Ngô [62] for a class of affine embeddings of reductive
groups; the IC function, for non-Archimedean local fields in equal characteristic, was defined
in [12], where Ngô’s conjecture was proven. In recent joint work with Jonathan Wang [78],
we have obtained similar results for the IC function of a broad class of spherical varieties,
including a straightforward generalization of the Hecke and Rankin–Selberg integral repre-
sentations to the LanglandsL-function associated to the n-fold tensor product representation
of the dual group

LG D GL2 � � � � � GL2„ ƒ‚ …
n times

˝
�! GL2n :

1.2.3. The elephant in the room, of course, is the global functional equation (and
meromorphic continuation), which is not available for these L-functions, yet. In favorable
cases, it should arise from a Poisson summation formula for a “Fourier transform”

F
�
X.A/

�
! F

�
X�.A/

�
;

where X� is the same variety X , with the G-action twisted by a Chevalley involution. Such
a Fourier transform and a Poisson summation formula are often available for smooth affine
spherical varieties, which are vector bundles over homogeneous spaces, but are quite myste-
rious in the singular case. For the moment, they are known for spaces of the form X D the
affine closure of ŒP;P �nG, whereP �G is a parabolic, by the work of Braverman–Kazhdan
[14,16] (and its refinement [33]). An extension toX D the affine closure of UP nG, where UP
is the unipotent radical of P , would give rise to the functional equation of normalized Eisen-
stein series, greatly simplifying and generalizing the theory ofL-functions obtained through
the Langlands–Shahidi method [50,81]. In recent work, Getz and his collaborators [31,32] have
proven a Poisson summation formula for a singular space Y which is not directly related to
Eisenstein series—the only example of this sort to date, to my knowledge.

In general, this “Fourier” transform may only be available at the level of trace
formulas—see [73,88], as well as the discussion of § 6.4 below.

1.2.4. The “period pairing” (1.1) between theta series coming from spherical vari-
eties and automorphic forms is not general enough to include all known integral representa-
tions of L-functions. At the very least, we need to replace the Schwartz space of a spherical
G-variety by more general quantizations of HamiltonianG-spaces. In the smooth case, those
are affine symplecticG-spacesM , equipped with a moment mapM ! g�, which generalize
the cotangent bundle T �X of a smooth spherical G-variety. The analog of the “spherical”
condition for a Hamiltonian G-spaceM is that it be coisotropic, that is, the Poisson algebra
k.M/G of G-invariant rational functions on M be Poisson-commutative.

An example of such a space, that is not the cotangent bundle of a spherical variety,
is a symplectic vector space M under the action of a Howe dual pair G; that is, G is, up to
central isogeny, equal to a product G1 � G2 of two subgroups of Sp.M/, where G1 is the
commutator ofG2, and vice versa. As “quantization” ofM we understand the Weil represen-
tation of the metaplectic group Mp.M/ associated with an additive character  , restricted
to (the metaplectic cover of) G. Theta series and the pairing (1.1) still make sense in this
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setting. More general examples mixing the Weil representation with periods are contained
in the influential conjectures of Gan, Gross, and Prasad [27].

In an ongoing work with Ben-Zvi and Venkatesh, we describe a class of coisotropic
Hamiltonian spaces M whose “quantizations” in the form of theta series are expected to be
related to special values of L-functions, and we demonstrate, by means of known examples,
that the L-value associated to such a space gives rise to a dual Hamiltonian space LM for the
Langlands dual group. In the context of the geometric Langlands program, this leads to a
hierarchy of conjectures, with connections to mathematical physics. We will encounter one
of these conjectures in our discussion of unramified L-factors in § 3.2 below.

1.3. Outline of this paper
In Section 2 we introduce the relative Langlands program, up to the conjectural

Euler factorization of the period pairings (1.1).
In Section 3 we discuss the relationship between the local unramified Euler factors

and special values of L-functions.
In Section 4 we discuss the “beyond endoscopy” approach to functoriality, general-

ized to the setting of the relative Langlands program.
Section 5 provides a new interpretation for the transfer operators of functoriality

studied in [74], based on the concept of quantization. (Proofs for the results of this section
will appear in an expanded version of this article on the arXiv.)

Finally, in Section 6 we discuss interesting research directions for the near future.

1.4. Notation and language
• In general, when a variety is defined over a local field F , and there is no danger

of confusion, we will use the same letter to denote its F -points, e.g., “a Schwartz
function on X” really means “on X.F /.”

• For a quasiaffine G-variety over a field F , we will denote by X=G the stack quo-
tient, and by X �G the invariant-theoretic quotient SpecF ŒX�G .

• A “complex line bundle” on the points of a smooth variety X over a local field F
will be

– whenF DR or C, a complex line bundle onX.F /, viewed as a smooth
(Nash) manifold;

– when F is non-Archimedean, a locally constant sheaf of complex
vector spaces (l-sheaf) on X.F /, for the p-adic (Hausdorff) topology,
with 1-dimensional stalks.

When no confusion arises, we will just say “line bundle” for a complex line
bundle; when we want to distinguish it from a line bundle on X in the sense
of algebraic geometry, we will say “algebraic line bundle” for the latter.
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• An algebraic line bundle L over a smooth F -variety X , where F is a local field,
together with a complex number s, give rise to a complex line bundle jLjs on
X.F /, by reduction of the corresponding Gm-torsor via the sequence of maps
Gm.F /

j�j
�! R�

C

x 7!xs

����! C�. (When F is non-Archimedean, the absolute value
map is discretely-valued, giving rise to the structure of a locally constant sheaf.)

• When L D detT �X , the line bundle of volume forms on X , the associated com-
plex vector bundle jLjs is known as the bundle of s-densities. We will, in general,
understand the field F as endowed with a Haar measure; this identifies densities,
i.e., sections of jLj, as measures on X.F /. When no confusion arises, we will
denote jdxj, the density attached to a volume form dx, simply by dx.

• The space of Schwartz functions on theF -points of a varietyX , whereX is a local
field, will be denoted by F .X.F //, the space of Schwartz measures by �.X.F //,
and the space of Schwartz half-densities by D.X.F //. These are smooth, com-
pactly supported sections of the corresponding bundles of s-densities, in the non-
Archimedean case. In the Archimedean case, they are smooth sections of rapid
decay, see [1]. We will also say “test functions/measures,” etc., for “Schwartz.”

• For an admissible, smooth, complex representation � of a reductive group over
a local field, we will denote by Q� its contragredient. When � is unitary, Q� is
identified with the complex conjugate N� .

• We will generally prefer to replace a hermitian pairing H between functions by
the associated bilinear pairing B.ˆ1; ˆ2/ D H.ˆ1; ˆ2/. When H is an inner
product, we will sometimes call B , by abuse of language, an “inner product.”

• WF will denote the Weil group of a local or global field, and LF will be the
“Langlands group,” whose representations should parametrize local and auto-
morphic L-packets. It is the Weil group for Archimedean local fields and global
function fields, the Weil–Deligne group for non-Archimedean local fields, and a
conjectural extension of the Weil group for number fields.

• We adopt the “Weil group” convention for L-groups of reductive groups,
LG D LG Ì WF ; the dual group LG is identified with the set of its complex points.

2. The relative Langlands conjectures

2.1. The local and global spectrum of a spherical variety
2.1.1. To understand the relationship between period pairings (1.1) and L-func-

tions, one needs to start by understanding the phenomenon of distinction, highlighted by the
groundbreaking work of Jacquet and his collaborators [38, 42]. A naive formulation of this
phenomenon goes as follows:
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The local and global spectrum of a spherical G-variety X only contain repre-
sentations with Langlands parameters in a certain subgroup LGX � LG of the
L-group of G.

To make sense of this statement, we need to explain “the local and global spectrum
of a G-variety.” Then, we need to talk about the L-group LGX . Finally, the statement needs
to be corrected, for some “nontempered” varieties X , replacing Langlands parameters by
appropriate Arthur parameters.

Let R denote either a local field, or the adelic points of a global field. In order to
define the local and global spectrum of aG-varietyX (defined over the corresponding field),
we will introduce the Plancherel formula and the relative trace formula. These decompose
certain distributions—or rather, generalized functions—on theR-points ofX �X , invariant
under the diagonal action ofG. For the purposes of the Langlands program, it turns out to be
more natural to think of them as generalized functions on the R-points of the quotient stack
X D .X �X/=Gdiag, which naturally includes “pure inner forms” of the pair .G;X/.

2.1.2. Let F be a local field. The space L2.X/ is the Hilbert space completion of
the space D.X/ of Schwartz half-densities on X.F /, with respect to the L2-inner product,
and furnishes a unitary representation of G. By the Plancherel decomposition, there are a
measure �X on the unitary dual OG of G and a measurable family of linear forms

J� W D.X �X/! C

such that:

• for �X -almost every � , J� factors as D.X �X/! � Ő N� ! C, and

• for all ˆ 2 D.X �X/, we haveZ
Xdiag

ˆ D

Z
OG

J�.ˆ/�X .�/: (2.1)

A linear form satisfying the first property above will be called a relative character.
The productJ��X , which can be thought of as a measure valued in the space of functionals on
D.X �X/, is uniquely defined. Moreover, the relative characters J� are invariant under the
diagonal action ofGDG.F /; thus, they factor through the coinvariant space D.X �X/G D

the quotient of D.X �X/ by the (closed, in the Archimedean case) subspace generated by
elements of the form f � g � f , where g � f denotes the action of g 2 G on f by diagonal
translation.

Let us assume that X carries a positive G-invariant measure dx, and use it
to identify functions, half-densities, and measures on X through the G-equivariant maps
ˆ 7! ˆ.dx/

1
2 7! ˆdx (and similarly on X � X ). Then, the coinvariant space

D.X � X/G ' �.X � X/G is more naturally understood as a subspace of the Schwartz
space of the quotient stack X WD .X � X/=G [71]. This Schwartz space is really a complex
of vector spaces, but here we will focus only on its zeroth cohomology, which has the explicit
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description

�.X/ D
M
˛

�.X˛ �X˛/G˛ : (2.2)

Here, ˛ runs over isomorphism classes ofG-torsors (parametrized by the Galois cohomology
set H 1.�F ; G/, where �F is the Galois group of a separable closure of F ); if R˛ is a
representative of a class ˛, we let G˛ D AutG.R˛/, and X˛ D X �G R˛ , a G˛-space. In
other words, G˛ is what is called a “pure inner form” of G, and X˛ can similarly be called
a “pure inner form” of X , if its set of F -points is nonempty.

The Plancherel formula (2.1) extends to �.X/, with a measure �X, on the right-
hand side, on the union of the unitary duals of the pure inner forms G˛ . The support …X

of this measure (avoiding redundancy—i.e., the support of the canonical linear form-valued
measure J��X) can be called the local (L2-)spectrum of the quotient stack X.

2.1.3. The global (automorphic) spectrum of X (or rather, again, of the stack
X D .X �X/=Gdiag) can be defined through the relative trace formula of Jacquet. This is a
generalization of the Arthur–Selberg trace formula, and an automorphic analog of the local
Plancherel formula. Its definition uses the theta series encountered in § 1.2.1, therefore we
assume here that X , defined over a global field k, is quasiaffine, so that X.k/ is discrete in
the adelic pointsX.A/. As before, we write ŒG�DG.k/nG.A/ for the automorphic quotient
space.

Roughly speaking, the relative trace formula is the Plancherel formula for L2.ŒG�/,
applied to the inner product of two theta series for X , i.e., decomposing the functional

RTFX W F
�
X.A/

�
˝ F

�
X.A/

�
3 ˆ1 ˝ˆ2 7! ‚ˆ1 ˝‚ˆ2

7!

Z
ŒG�

‚ˆ1.g/‚ˆ2.g/ dg 2 C: (2.3)

This naive point of view requires some caution:

• The inner product on the right-hand side of (2.3) does not, in general, converge,
and needs to be regularized. Depending on X , there may be a canonical way to
regularize it, described in [71, §6]. In many cases of interest, though, notably in the
case of the Arthur–Selberg trace formula (where X D H , a reductive group, and
G DH �H ), a canonical regularization is not available, and it takes the mastery
of Arthur’s work [6] to engineer an invariant expression. Such work has not yet
been done in the general setting of the relative trace formula.

• We can again choose a G-invariant measure on X.A/ (e.g., Tamagawa measure)
to identify functions with measures, and understand the G.A/diag-invariant func-
tional (2.3) as a functional on �.X �X.A//G.A/. As in the local case, this space
is a subspace of the global Schwartz space of the stack X D .X �X/=Gdiag,

�
�
X.A/

�
D

0O
v

�
�
X.kv/

�
;
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and the relative trace formula should be defined as a functional on the bigger
space,

RTFX D

X
˛

RTFX˛ ;

where now ˛ runs over isomorphism classes of G-torsors over the global field k.

Ignoring the regularization issue, if we could apply the Plancherel formula forL
˛ L

2.ŒG˛�/ to the pairing (2.3), we would obtain the spectral side of the relative trace
formula,

RTFX D

Z
J aut
� �aut

X .�/; (2.4)

where the product J aut
� �aut

X is a measure on the union
F
˛
cG˛aut of (L2-)automorphic spectra

of the pure inner forms of G, valued in linear forms on �.X.A//.
The global (automorphic) spectrum of X is defined as the support of J aut

� �aut
X .

Clearly, this definition is incomplete, as it relies on overcoming the aforementioned issues
of regularization, and developing a spectral decomposition for the relative trace formula.

2.2. The Langlands dual group
2.2.1. The local and global spectrum of a spherical variety X are conjecturally

governed by the L-group LGX of X . We owe this dual group to the insights developed by
Nadler in his thesis [60], and in his joint work with Gaitsgory [25]. They realized that the “little
Weyl group” of a spherical G-variety (defined by Brion in [18], and generalizing the little
Weyl group of a symmetric space) corresponds to a subgroup LGX � LG of the Langlands dual
group of G, and gives rise to a form of the geometric Satake isomorphism for the spherical
variety. In [77], it was proposed that this dual group comes equipped with a distinguished
morphism

LGX � SL2 ! LG (2.5)

that governs the harmonic analysis of X , in a way that will be described below. Since Gaits-
gory and Nadler did not fully identify their dual group LGX (constructed in a Tannakian way),
an independent description of a morphism (2.5) was achieved by Knop and Schalke [47]; we
can take this as the definition of the dual group, for what follows. Finally, for the purposes
of the Langlands program, we need an L-group, in the form of an extension

1! LGX !
LGX ! WF ! 1:

The correct definition of thisL-group, whenG is not split, is not completely understood yet,
although it is probably within reach. For what follows, we will assume such anL-group, and
an extension of the homomorphism (2.5) to the L-groups, in the sense that the conjectures
to be stated should hold for an appropriate definition of LGX .
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2.2.2. We briefly describe one way to characterize the root datum of the dual group
LGX : As in the case of reductive groups, the first step is to describe a canonical maximal torus,

which in turn is dual to an “abstract Cartan” group. Let A be the abstract Cartan group ofG;
it is canonically equal to the reductive quotient of any Borel subgroup ofG. Fix such a Borel
subgroup B , with unipotent radical N , and let Xı be the open B-orbit. On the quotient
Xı � N , B acts through a quotient AX of A; this is the Cartan group of X , and it can be
seen to be independent of B , in the sense that any two choices induce canonical tori up to a
canonical isomorphism. (These definitions assume that B is defined over the base field, but
by Galois descent the Cartan groups A and AX are defined over the field, even if B is not.)

The quotient A! AX gives rise to a morphism of dual tori LAX ! LA, which could
have nontrivial (finite) kernel. The image of this morphism is the canonical maximal torus
of the Gaitsgory–Nadler dual group LGX . (We caution the reader that in [77] the group LGX
was not necessarily defined as a subgroup of LG, and had LAX as its maximal torus.)

It is slightly harder to define the little Weyl groupWX . Once this is done, the coroots
of LGX , which will be called the normalized spherical roots of X , are uniquely determined
up to multiple, and that multiple is fixed by the following axiom:

A normalized spherical root is either a root of G, or the sum of two strongly
orthogonal roots, i.e., two roots whose linear span contains no other roots but
their multiples.

2.2.3. For the Weyl group, there are many equivalent definitions. Most relevant to
our purposes, when X is defined over a field F in characteristic zero, is the following one,
due to Knop [45]: We may assume thatX is smooth and that F is algebraically closed (since
LGX only depends on the open G-orbit over the algebraic closure). Consider the cotangent

space M D T �X , equipped with the moment map � W M ! g�. If a� denotes the dual
Lie algebra of the Cartan of G, Chevalley’s isomorphism identifies the invariant-theoretic
quotient g� �G with a� �W . The polarized cotangent bundle

OM WDM �a��W a�

is not, in general, irreducible. Knop describes a distinguished irreducible component OM ı

living over the dual Lie algebra a�
X � a� of AX , and shows that the map OM ı!M is gener-

ically a Galois cover with covering group a subquotient WX of the Weyl group; this is the
little Weyl group of X [45, §6].

For later use, we mention a related result of Knop, still in the homogeneous case.
Let g�

X D the normalization of the image of the moment map in M (i.e., the spectrum of
the integral closure of the image of F Œg�� in F ŒM�). The composition OM ı ! a�

X ! c�
X WD

a�
X �WX factors through a map �G W M ! g�

X ! c�
X , called the invariant moment map,

and identifies c�
X with the invariant-theoretic quotient M �G [45, Korollar 7.2].
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2.2.4. Finally, the restriction of the map (2.5) to SL2, which we will call the
“Arthur-SL2” of X , is determined by the conjugacy class of parabolics of the form

P.X/ D
®
g 2 G j Xıg D Xı

¯
;

where Xı is the open orbit for a Borel subgroup B . In the quasiaffine case, P.X/ is the
largest parabolic such that all highest weight vectors in kŒX� are P.X/-eigenvectors. To this
class is canonically associated a standard Levi subgroup LL.X/ of LG, and the Arthur-SL2 of
X is a principal SL2 ! LL.X/.

2.2.5. In order to keep the discussion that follows as simple as possible, let us
single out a convenient class of spherical varieties. We will say that a spherical G-variety
X is excellent if it is affine, homogeneous, and the kernel of the map A! AX is connected
(equivalently, the map LAX ! LA of dual tori is injective).

We also need to enlarge the class of spherical varieties, in order to include objects
such as the Whittaker model. The Whittaker model is the space NnG, where G is qua-
sisplit and N is a maximal unipotent subgroup, endowed with a nondegenerate character
 WN.F /!C�. This character defines, by induction, a complex line bundleL overNnG,
and the Whittaker model consists of sections of this line bundle. In the sequel, when we say
that Y is “the Whittaker model,” we will mean the spaceNnG together with this line bundle,
and we will be using the Schwartz space notation F .Y /, �.Y /, etc., to denote Schwartz sec-
tions (resp. measures) valued in this line bundle. For a more general discussion of “Whittaker
induction,” see [77, §2.6].

2.3. Conjectures
2.3.1. Let X be defined over a local field F , and let …X be the set of L2-distin-

guished representations of X and its pure inner forms, as in § 2.1.2. We assume, for sim-
plicity, that X carries an invariant measure, to identify measures with half-densities. The
“relative local Langlands conjecture” of my work with Venkatesh [77, §16] states:

Conjecture. Let �LGX be the natural measure on the set of tempered local Langlands
parameters into LGX . There is a decomposition of the inner product on D.X �X/,Z

Xdiag
ˆ D

Z
J�.ˆ/�LGX .�/; (2.6)

where the “stable relative characters” J� are linear combinations of relative characters for
representations belonging to Arthur packets with parameter

LF � SL2
��Id
���!

LGX � SL2
(2.5)
��!

LG: (2.7)

For the “natural measure” on such parameters, see [77, §16]. Comparing with the
Plancherel formula (2.1), the conjecture implies that the localL2-spectrum…X of X belongs
to the union of Arthur packets with parameters of the form (2.7). Developing a Plancherel
formula for X in terms of discrete-mod-center spectra of its “boundary degenerations,” as
in [22,77], reduces the conjecture to discrete spectra.
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When G is quasisplit, acts faithfully on X , and the map LAX ! LA is injective
(§ 2.2.2), one would expect the functionals J� of (2.6), after summing over all pure inner
forms of X , to be nonzero. In a broad range of individual cases, including the Gan–Gross–
Prasad conjectures [27] and other cases considered by D. Prasad [64] and C. Wan [87], we
have much more precise conjectures about how many and which elements in the given
Arthur packets are distinguished. A number of cases have been proven by Waldspurger,
Mœglin, Beuzart-Plessis, Gan, Ichino, and others [9,28,58,86], and by Mœglin–Renard [57]

for symmetric spaces over R.
Besides the question of L2-distinction, one can ask the question of smooth distinc-

tion: Which irreducible representations embed as � ,! C1.X/? The general answer to this
question is less understood.

2.3.2. Now, let X be defined over a global field k, and let…aut
X be the automorphic

spectrum of X, as in § 2.1.3. We recall that its definition is, in general, conditional on devel-
oping the spectral decomposition of the relative trace formula. Nonetheless, one can often
restrict to parts of the spectrum where the full relative trace formula is not needed; for exam-
ple, if � is a discrete automorphic representation where the period pairing (1.1) is absolutely
convergent, the corresponding functional-valued measure J aut

� �aut
X of (2.4), applied to a test

function ˆ1 ˝ˆ2 on .X �X/.A/, should have the meaning of

J aut
� .ˆ1 ˝ˆ2/�

aut
X .�/ D

X
f

�Z
ŒG�

‚ˆ1f

��Z
ŒG�

‚ˆ2
Nf

�
;

where f runs over an orthonormal basis of � .
A landmark in our understanding of these global relative characters was the paper

[36] of Ichino and Ikeda, generalizing the formula of Waldspurger [85] to a precise conjectural
Euler factorization of J aut

� , in the case of orthogonal Gross–Prasad periods. The conjectures
of Ichino and Ikeda gave rise to the realization that there was a general pattern in the Euler
factorization of automorphic periods, and were quickly adapted to other cases. Unlike the
orthogonal case, which remains open, the conjecture for unitary Gross–Prasad periods has
been proven in [8,10,90], its analog for Whittaker periods of metaplectic and unitary groups
was proven in [53,54,59], and there are significant partial results in many other cases.

A generalization of the Ichino–Ikeda conjecture to a wide range of spherical periods
(satisfying certain conditions) was proposed in [77]. As in the local case, it lacks the preci-
sion of conjectures known in special cases, hence leaving an open problem that should be
addressed in the near future. On the other hand, the conjecture of [77] makes clear the con-
nection between the (global) relative trace formula and the (local) Plancherel formula. I will
formulate a variant of this conjecture here, using the hypothetical notion of global Arthur
parameters, and being a bit vague on choices of measures (see [77, §17] for some hints). Its
formulation also relies on Conjecture 3.1.1 below, expressing the local Plancherel density
of the basic function ˆ0;v 2 F .X.kv// at almost every place v in terms of a local L-value
LX .�v/ WD L.�v; �X ; 0/, where �v is a local unramified Langlands parameter into LGX and
�X W

LGX ! GL.VX / is a certain representation of the L-group of X .
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Conjecture. There is a decomposition

RTFX D

Z
J aut
� �aut

X .�/;

where �aut
X is a measure on the set of global Arthur parameters which factor as

Lk � SL2
�
�!

LGX � SL2
(2.5)
��!

LG

(with � lying over the identity map for the projections to SL2), and J aut
� is a sum of rela-

tive characters �.X.A//! � Ő N� ! C for automorphic representations � belonging to the
corresponding Arthur packet.

Moreover, when X is stable, the restriction of J aut
� �aut

X .�/ to the most tempered
Arthur type (�.SL2/ D SL2), away from the poles of LX .�jLk

/ is equal to

1

jS� j

0Y
v

J�v � �LGX .�/; (2.8)

where �LGX is the natural measure on the set of such parameters, S� is the stabilizer of �
in LGX , and the factors J�v of the Euler product are the local Plancherel relative characters
of Conjecture 2.3.1.

“Stable,” here, means that the stabilizers of generic points have trivial Galois coho-
mology; one can drop this assumption, replacing RTFX by its (properly defined) stable
analog. The Euler product of the conjecture needs to be understood, outside of a finite set S
of places, as the partial L-value LSX .�/=L

S .�; LgX ; 1/, according to Conjecture 3.1.1 below.
The conjecture can be generalized to other quantizations of suitable Hamiltonian spaces,
such as the theta correspondence, where it was shown in [72] to follow from a version of
the Rallis inner product formula proven in [29,89]. The conjecture is compatible with earlier
results and methods for computing period integrals, such as the “unfolding” method [77, §18],
or the work of Jacquet and Feigon–Lapid–Offen on unitary periods [7,23,39].

3. The L-value of a spherical variety

3.1. Plancherel density of the basic function
3.1.1. It is a very interesting problem to relate the Euler factors of (2.8)—that

is, the local Plancherel densities—to special values of local L-functions at every place,
including ramified and Archimedean ones. However, we will confine ourselves here to the
calculation of the local Plancherel density of the basic function ˆ0 2 F .X.F //, for a local
non-Archimedean field F . We assume thatG;X are defined over the integers o of F , withG
reductive, and recall that the basic function is equal to 1X.o/, when X is smooth and affine;
in general, it is the “IC function,” see § 3.1.3 below. We assume that the map LAX ! LA is
injective (§ 2.2.2).

For simplicity of presentation, we will assume that G is split, so that the maximal
compact subgroup LA1X � LAX is identified with the group of unramified unitary characters
of AX . The unramified representations appearing in Conjecture 2.3.1 are those obtained by
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unitary induction of those characters from the parabolic P.X/ (§ 2.2.4) through the quo-
tient P.X/ ! AX , and the “natural measure” of the conjecture, restricted to unramified
parameters (i.e., to LA1X=WX ), reads

� LGX
.�/ D

L.�; LgX= LaX ; 1/

L.�; LgX= LaX ; 0/
dHaar�:

Conjecture. Let X be an affine spherical variety satisfying the conditions above, with a
good model over o, andˆ0 its basic function. There is a representation �X W LGX!GL.VX /
such that, setting LX .�/ D L.�; �X ; 0/, the Plancherel decomposition of ˆ0 reads

kˆ0k
2
D

Z
LA1X=WX

LX .�/

L.�; LgX ; 1/
� LGX

.�/: (3.1)

We refrain from giving details on the precise normalization of Haar measures, or the
precise meaning to “good model;” at a minimum, the conjecture should be valid at almost
every place for any global model. This, in particular, will identify almost every Euler factor
of Conjecture 2.3.2 as a quotient of special values of local L-functions. Note that the “true”
point of evaluation of LX is not 0, but is encoded in �X , which is a representation of the
full L-group. Here, this representation would factor through the unramified quotient, and
the “true” point of evaluation depends on the action of Frobenius.

The relation between localL-values and Plancherel densities is a fascinating one. On
the surface, it is just the outcome of a local integral. For example, whenX.o/DH.o/nG.o/,
the value J�.1X.o// is given by the following Ichino–Ikeda local period, in the so-called
strongly tempered cases where it is convergent:

J�.1X.o// D

Z
H

m�.h/dh;

where m� is the zonal spherical function (D unramified matrix coefficient with value 1 at
the identity) for the unramified representation with Satake parameter �. This calculation,
however, has a conceptual meaning, in terms of both harmonic analysis and geometry. We
will only attempt to give a flavor of the richness of the topic here.

3.1.2. The study of the Plancherel density of the basic function is a topic with a long
history. The mainstream method for calculating it is the Casselman–Shalika method [20,21],
and it is essentially equivalent to the problem of calculating eigenvectors for the unramified
(spherical) Hecke algebra H .G.F /;G.o// on the space C1.X.F //.

The calculation was related to the structure theory of spherical varieties in [70], for
G split. Here, we will formulate the result in the special case whenX is an excellent spherical
variety (§ 2.2.5) with LGX D LG. Fix a Borel subgroup B � G, with unipotent radicalN . The
important geometric invariants determining the L-value are the colors of the spherical vari-
etyX : those are theB-stable prime divisors onX , over the algebraic closure. For simplicity,
we will assume all those divisors to be defined over F . Each such divisor D induces a val-
uation on the function field F.X/, which we restrict to the multiplicative group of nonzero
B-eigenfunctions. This gives rise to a homomorphism factoring as

F.X/.B/ ! X�.AX /! Z;
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i.e., an element LvD 2 X�.AX /, the character group of the dual torus LAX (which here is equal
to LA). By [78, Corollary 7.3.4], the weights LvD are all minuscule. Let VX be the smallest self-
dual (algebraic) representation of LG which contains all those weights (with multiplicity, if
some of the LvD’s coincide). For an alternative interpretation of this representation, in terms
of the structure of the Hamiltonian space T �X , see Theorem 6.2.2 below. The following was
proven in [70] under some assumptions, and in [78] in general:

Theorem. The Plancherel density of the basic function 1X.o/ is given by

J�.1X.o/ ˝ 1X.o//� LG
.�/ D

L.�; VX ;
1
2
/

L.�; Lg; 1/
� LG
.�/: (3.2)

Note that, for simplicity, we have assumed that LGX D LG. The point 1
2

of evaluation
changes in the general case.

3.1.3. The case of singular affine varieties X was undertaken in [78], for the cases
with LGX D LG. As mentioned, here one needs to work in a geometric setting, assuming that
F is a local field in equal characteristic, F ' Fq..t//, with G;X defined over Fq . (There
are ad hoc ways to transfer the results to mixed characteristic, but it would be nice to see
a direct geometric approach.) The basic function ˆ0 is then defined as the Frobenius trace
on the stalks of the intersection complex of finite-dimensional formal models of LCX , the
formal arc space of X [12].

Let us discuss the special case when X is the affine closure Spec FqŒX�� of its open
G-orbitX�. Colors, here, do not need to be minuscule, but one can still define VX as before.
We have the following generalization of Theorem 3.1.2:

Theorem. There is a representation V 0
X of LA, with the same weights as VX andW -invariant

multiplicities, such that the Plancherel density of the basic function ˆ0 is

J�.ˆ0 ˝ˆ0/� LG
.�/ D

L.�; V 0
X ;

1
2
/

L.�; Lg; 1/
� LG
.�/: (3.3)

Of course, we expect that V 0
X D VX . This is automatic in the minuscule case. For

example [78, Example 1.1.3], there is a family of varieties Xn, n 2 N, which gives rise to the
generalization of the Hecke and Rankin–Selberg integrals, mentioned in § 1.2.2.

3.2. Derived Satake equivalence for spherical varieties
Ongoing joint work with Ben-Zvi and Venkatesh has revealed deeper relations

between periods andL-functions; currently, those can be formulated over function fields and
their completions. In the local setting, F ' Fq..t//, Conjecture 3.1.1 should be obtained by
applying the sheaf–function dictionary to a categorical statement, along the following lines:

We retain the assumptions of the previous subsection, withX andG defined over Fq ,
and also assume X to be smooth. We denote formal loop and arc spaces by L, resp. LC,
so that LX.Fq/ D X.F /, LCG.Fq/ D G.o/. For appropriate measures, the left-hand side
of (3.1), and, more generally, the pairing of two G.o/-invariant functions f , g obtained
via the sheaf–function dictionary from objects F ; G in the bounded derived category
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Shv.LX=LCG/ of constructible `-adic étale sheaves on LX=LCG can be computed as
the (alternating) trace of geometric Frobenius on a derived homomorphism complex:Z

X.F /

f .x/g.x/dx D tr
�
Frobq;Hom.F ;DG /�

�
;

where D D Verdier dual. The pairing is really a finite sum, and makes sense over Q`.
The right-hand side of (3.1), through a simple application of the Weyl integration

formula, can be interpreted as the Frobenius trace on

CŒVX �
LGX D CŒ LM�

LG ;

where VX is the space of the representation �X , and we have set
LM D VX �

LGX LG:

The empirical observation is that the space LM has a natural symplectic structure, and, more-
over, that the assignmentM D T �X ! LM is involutive, although, to make sense of this, one
needs to allow for more general coisotropic Hamiltonian spaces, as mentioned in § 1.2.4. For
the categorical analog of Conjecture 3.1.1, we need to shear the ring CŒ LM� into a dg-algebra
CŒ LM�(, with zero differentials, in degrees related to the action of Frobenius in �X .

Conjecture. Fix an isomorphism CDQ`. There is an equivalence of triangulated C-linear
categories

Shv.LX=LCG/
�
�! D(

per.
LM= LG/;

where D(
per. LM= LG/ denotes the full triangulated subcategory, generated by perfect com-

plexes, of the category of LG-equivariant differential graded CŒ LM�(-modules localized by
quasi-isomorphisms.

This generalizes the derived Satake equivalence of Bezrukavnikov–Finkelberg [11];
it should be compatible with it, under the action of Shv.LCGnLG=LCG/ on the left, and
the moment map LM ! Lg� on the right. There is a similar, categorical version of the global
Conjecture 2.3.2, for which I defer to the upcoming article.

4. Beyond endoscopy

4.1. Relative functoriality
4.1.1. Let X; Y be two spherical varieties (for possibly different groups G; G0),

and let r be a morphism of theirL-groups, r W LGX ! LGY . According to the relative local
Langlands conjecture of § 2.3.1, it should give rise to a map

¹X -distinguished L-packetsº ! ¹Y -distinguished L-packetsº;

at least for L-packets distinguished in the L2-sense.
A basic tenet of Langlands’ “beyond endoscopy” proposal [51], generalized to the

relative setting, states that the resulting map of stable relative characters JX�1 7! J Y�2 should
be realized as the adjoint of a “transfer operator” between spaces of stable test measures,

T W �.Y/st ! �.X/st; (4.1)
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where Y denotes the stack .Y � Y /=G0, and X D .X �X/=G. In most cases, one can take
“stable” to mean the image of the canonical pushforward map

�.X/! Measures
�
.X �X/ �G

�
:

When the map �.X/! �.X/st is an isomorphism (e.g., for the Kuznetsov formula), we will
be dropping the exponent “st.”

In the group case, this operator has been studied by Langlands [52] and Johnstone
[43] when X is a torus and Y is GLn. Understanding these transfer operators could be con-
sidered as the basic problem of functoriality, at least in the local setting.

4.1.2. In the global setting, one would have to find a way to employ these transfer
operators in a comparison of relative trace formulas. Langlands’ proposal, generalized to
our setting, is to extract the part of the automorphic spectrum of Y that is in the image of
the functorial lift from X from the (stable) relative trace formula for Y by means of poles of
L-functions.

The question of whether it is possible to identify the spectrum of X by orders of poles
ofL-functions has been studied and is known to have a negative answer, in general [5]. Other
difficulties with this proposal include the isolation of the tempered part of the spectrum; a lot
of hard work has gone into this problem, already for the case of GL2 [2–4,24].

4.2. An example: symmetric square lift
4.2.1. Rather than speculating on how to overcome these difficulties, it may be

more instructive to look at a variant of the idea, which was applied successfully in the thesis
of Venkatesh [84], and to understand what the structure of local transfer operators can tell
us about the global problem. Here, X D T is a 1-dimensional torus over a global field k
(the kernel of the norm map for a quadratic etale algebra E=k whose quadratic idele class
character we will denote by �), and Y is the Whittaker model of the group G D Gm � SL2,
so that LGY D LG. There is a morphism of L-groups r W LT ! LG, whose image stabilizes a
vector under the product of the standard representation of Gm with the adjoint representation
of PGL2 (that is, the symmetric-square representation of GL2, as it factors through GL2 !
LG D Gm � PGL2 ! GL3). Let Z=2 act on T by inversion. The local transfer operator for

this morphism was computed in [76]:

Theorem. Let G; T as above be defined over a local field F . There is a transfer operator

T W �.N; nG=N; /! �.T /Z=2;

such that the pullback of every unitary character of T is the Kuznetsov relative character of
its functorial lift. In natural coordinates .r; t/ for NnG �N ' Gm �A1, it is given by

.da/�1T f .a/ D .dt/�1�.�;  /

Z
r

Z
x

f

�
r;
t

x

�
�.xrt/ .x/ dx; (4.2)

where a 2 T and t D t .a/ is its image through an isomorphism T � .Z=2/ ' A1 '

NnSL2 �N , and �.�;  / is a constant.
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What does this theorem tell us about how to extract from the relative trace formula
of Y (that is, the Kuznetsov formula ofG) the part of the spectrum that is due to the torus T ?
Venkatesh [84] performs this extraction in two steps, a Poisson summation formula followed
by taking the pole of a zeta integral. As explained in [76, §10], the adelic reformulation of
the first step is the Poisson summation formula for the Fourier transform corresponding to
the inner integral of (4.2), while the second step is a global version of the Mellin transform
represented by the outer integral.

4.2.2. Thus, we see that understanding the local transfer operators can guide our
steps for the global “beyond endoscopy” comparisons of trace formulas. Another example
of such a comparison is that between the Kuznetsov formula of G D GL2 and the Selberg
trace formula for the same group. The local transfer operator for this comparison was com-
puted in [75, §4], and is given by a simple Fourier tranform (see Theorem 5.3.5). Restricted
to holomorphic cusp forms, this global comparison via a Poisson summation formula was
performed in the thesis of Zeev Rudnick [67], about 10 years before Langlands’ “beyond
endoscopy” proposal. A generalization of this comparison to the full Kuznetsov formula,
and for GLn with n arbitrary, is the object of ongoing joint work with Chen Wan.

4.2.3. It has hopefully become clear that understanding the transfer operators is of
paramount importance for the problem of functoriality. In [74], I showed that these operators
have a very uniform form, for spherical varieties of rank 1. In the remainder of this paper,
I would like to propose a reinterpretation of this work, which provides an understanding of
those transfer operators as “change of Schrödinger model/geometric quantization” associated
to a symplectic group scheme.

5. Transfer operators and quantization

The goal of this section is to recast the transfer operators of functoriality, studied
in [74], in the language of quantization. The idea that quantization should have something to
do with functoriality is not new; V. Lafforgue suggested it several years ago (private com-
munication), in order to interpret the Rankin–Selberg method, and the functoriality kernels
of L. Lafforgue [49]. Here, however, we apply this idea in a different setting: the setting of
“beyond endoscopy,” and of the quotient stacks showing up in the relative trace formula—the
hope being that these operators of functoriality will always exist in this setting, even if they
do not exist for the spaces “upstairs.”

Geometric quantization was introduced by Kostant and Souriau [48, 82], following
the work of Kirillov on the orbit method [44]. Since the notion of quantization for measures on
stacks that we need has not been developed yet, we will take a phenomenological approach,
with ad hoc definitions that provide the desired reformulation of the results of [74].

5.1. Cotangent space of the RTF stack
5.1.1. The groundbreaking work of Friedrich Knop has shown that, although spher-

ical varieties can be very different from each other, their cotangent bundles are quite similar.
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This will be the basis of our considerations, when we try to relate cotangent bundles of
different quotient stacks of the form .X �X/=G.

For the rest of this paper we will assume, for simplicity, that all groups are split,
defined over a field F in characteristic zero. The results of Knop, then, recalled in § 2.2.3,
hold verbatim over F . We assume that X is smooth and quasiaffine, and set again � WM D
T �X ! g� for the cotangent bundle and its moment map.

The ring of regular functions F ŒM� has a Poisson structure. Knop has studied
the subalgebra F ŒM�G of G-invariants; when X is spherical, this subalgebra is Poisson-
commutative, and can be naturally identified with the algebra of regular functions on the
affine space c�

X , defined in § 2.2.3. Hence, regular functions on c�
X pull back to a Poisson-

commuting algebra of G-invariant functions (“Hamiltonians”) on M . One can ask whether
the corresponding Hamiltonian vector fields can be integrated to the action of an abelian
group scheme JX (over c�

X ) of G-automorphisms of M , and Knop has answered this in the
affirmative [46].

5.1.2. More precisely, JX is “the group scheme of regular centralizers in the split
reductive group GX dual to LGX .” When LGX is adjoint, so that GX is simply connected, the
group scheme JX has an explicit description as

.Resa�
X=c

�
X
T �AX /

WX (5.1)

(see [61, §2.4]), where Resa�
X=c

�
X

denotes Weil restriction of scalars from a�
X to c�

X .
In general, the group scheme JX acting onM is an open subgroup scheme of (5.1),

which depends not only on the pair .AX ;WX /, but also on the root datum ofX . Knop defines
a slightly different root datum than ours in [46, §6], giving the maximal possible subgroup
scheme acting on M . For our purposes, we will be content with taking JX D the open sub-
group scheme of (5.1) that corresponds to the set of normalized spherical roots, see § 2.2.2.
This can be described as the regular centralizer group scheme ofGX , and is the complement
of a divisor in (5.1), see [46, Theorem 7.7], [61, §2.4].

5.1.3. Let us discuss the rank-1 cases. Consider first the case LGX D PGL2, so that
AX D Gm, WX D Z=2, and the normalized spherical root is twice the generator of the
character lattice. (The isomorphism AX ' Gm is canonical, if we require positive roots to
correspond to positive powers.) Then, JX D JSL2 is given by the restriction of scalars (5.1),
which can explicitly be described as follows: Identify a�

X D g�
m with the affine line, with

coordinate � D the differential of the identity cocharacter, and set � D �2, a coordinate
on c�

X . We can write
JX D SpecF Œt0; t1; ��=.t20 � �t

2
1 � 1/;

so that the canonical base change map

JX � a�
X ! T �AX D T

�Gm D Gm � g�
m;

where by � we denote fiber product over c�
X , is given by .t0; t1; �/ 7! .t0 C �t1; �/.
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The symplectic form is given by

! D
dt1 ^ d�

2t0
D
dt0 ^ d�

2�t1
D dt0 ^ d.t

�1
1 /:

It is immediate to check that this is regular and nondegenerate everywhere on JX .
On the other hand, when the normalized root datum of X is that of PGL2 (i.e., the

normalized spherical root is a generator of the character lattice), the fiber of (5.1) over the
nilpotent point 0 2 c�

X is isomorphic to Ga � ¹˙1º, but the fiber of JX is just Ga.

5.1.4. Returning to the general case, the Lie algebra of JX is canonically isomor-
phic to the cotangent space of c�

X . Thus, the Hamiltonian vector fields associated to F Œc�
X �

give rise to a homomorphism from Lie.JX / to G-invariant vector fields along the fibers of
M ! g�

X (notation as in § 2.2.2). Knop has shown [46] that these vector fields integrate to
an action of JX on M D T �X over g�

X , commuting with the action of G.
Moreover, over a dense open subset Vc�

X � c�
X , the mapM ! g�

X is a JX -torsor, and
the action of JX arises from the stabilizers of points of g�

X , or even of g�, in G, i.e., the
stabilizer Gz of a generic point z 2 g� in the image of the moment map acts transitively on
the fiber through a map Gz ! JX .

5.1.5. In order to study the relative trace formula for a stack of the form XD .X �

X/=G, I propose to use its cotangent stack

T �X D .T �X �g� T �X/=G:

(Strictly speaking, the fiber product over g� should taken with respect to the moment map
and its negative, .�;��/, so that the quotient above corresponds to symplectic reduction
with respect to the diagonal action of G. We apply multiplication by �1 on the fibers of one
factor, in order to have fiber product with respect to .�; �/, which is notationally simpler.)

The fiber product, here, should be taken in the derived sense, turning this quotient
into a symplectic derived stack. Although the derived features are likely to be important in
the future, for the purposes of the current paper we will ignore them. Then, the fiber product
over g� coincides with the fiber product over g�

X over a dense open Vc�
X � c�

X , which we will
take small enough so that it also has the properties of § 5.1.4.

Knop’s theory, now, gives a very satisfactory description of a dense substack.
Namely, consider the diagonal embedding T �X ,! T �X �g� T �X , which by the action
of JX on the first variable gives rise to

JX � T
�X ! T �X �g� T �X; (5.2)

where again by � denotes �c�
X

. Given that T �X ! g� is generically a JX -torsor over its
image, this map is birational into an irreducible component of the right hand side.

Taking quotients by the G-action in (5.2), and using the invariant moment map
T �X ! c�

X , we obtain a correspondence

JX  .JX � T
�X/=G ! T �X D .T �X �g� T �X/=G: (5.3)
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Over the dense open subset Vc�
X , the right arrow is an isomorphism, and the left arrow

is an isomorphism if we ignore stabilizers. We would like to think of (5.3) as saying that the
symplectic stack T �X is “birational” to the symplectic group scheme JX . Of course, this
is a very naive notion of birationality since, even over a good open dense subset, we are
ignoring stacky and derived structures in T �X. Nonetheless, even this weak correspondence
is quite remarkable, since JX depends only on the dual group of X . It is not too far-fetched
to imagine that this correspondence plays a key role in functoriality.

5.2. Rank 1 spherical varieties
5.2.1. We will now specialize to spherical varieties X D HnG with G and H

split reductive groups, whose dual group is LGX D PGL2 or SL2. The group scheme JX was
described in § 5.1.3.

In this setting, [74] gave explicit formulas for transfer operators (4.1) between
Y D the Kuznetsov stack for the group with dual group LGX (see § 5.2.2 below), and
X D .X � X/=Gdiag. These operators transfer spaces of test measures to each other, but
in a number of cases, studied in [30,75,76], properties such as the transfer of characters or the
appropriate fundamental lemma are also known; thus, there is enough evidence to believe
that these are the “correct” operators of functoriality for these comparisons.

The simplest form of transfer operators appears when the normalized root datum of
X is simply connected, i.e., LGX D PGL2. For some varieties, this is possible to achieve by
passing to a finite cover; the only cases where this can be done lead to the following spaces:

X D SO2n�1 nSO2n; Spin7 nSpin8; G2 nSpin7 : (5.4)

We will call them “cases of type G,” because the base case is the group variety
SO3 n SO4 ' SL2. (Here, the SO7 n SO8 ' Spin7 n Spin8 ' G2 n Spin7 as varieties, but
with the action twisted by the triality automorphism of Spin8, for the second, and restricted
to the subgroup Spin7, for the third.)

The remaining cases of spherical varieties satisfying our assumptions are

X D GLn nPGLnC1; SO2n nSO2nC1; Sp2n�2 �Sp2 nSp2n (with n � 2);

Spin9 nF4; SL3 nG2: (5.5)

We will call them “cases of type T ,” because in the base case Gmn PGL2 the stabilizer is a
torus. (Again, SL3 nG2 ' SO6 nSO7, but with the action restricted to G2 � SO7.)

In those cases, the normalized root datum ofX is that of PGL2, and, as we will see,
it will be necessary to “lift” our description of transfer operators to the root datum of GL2.

5.2.2. Let X be as above. Let G0 be the split reductive group with the same dual
group as X , that is, G0 D SL2 for the varieties of (5.4) and G0 D PGL2 for the varieties
of (5.5). Let N � G0 be the upper triangular unipotent subgroup, identified with the addi-
tive group Ga, fix a nontrivial character  of F , and let Y be the Whittaker model of G0

with respect to .N;  /, § 2.2.5. Let Y � be the Whittaker model with respect to the inverse
character,  �1.
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We will symbolically write Y D .Y � Y �/=G0 for the “Kuznetsov stack,” but we
will really treat it not as an abstract quotient stack, but as one equipped with the line bundle
defined by the Whittaker character. More precisely, this symbol will only find a rigorous
meaning in its Schwartz space �.Y/, which we define to be the G0 diag-coinvariant space of
the space �.Y � Y �/ of Whittaker Schwartz measures.

Having identifiedN with Ga, we letM 0D .f Cn?/�N G0 be the Whittaker cotan-
gent bundle, where f is a nilpotent element of .g0/� that is equal to the identity functional
on n D Ga. The corresponding bundle for Y � is M 0 � D .�f C n?/ �N G0. Both come
equipped with natural moment maps to g0 �, which we will indiscriminately denote by�. We
now define the Kuznetsov cotangent stack as

T �Y D
�
M 0
��;g0 �;.��/M

0 �
�
=G0
' .M 0

��;g0 �;�M
0/=G0:

Note that the invariant-theoretic quotient g0 �G0 is canonically identified with c�
X ,

and the group scheme of regular centralizers in G0 is canonically identified with JX . It is
well known that M 0 is a JX -torsor over the regular subset of g0 �; in fact, a Kostant section
provides a section for this torsor. Therefore, the same considerations that led us to (5.3) hold,
but here we have an exact isomorphism

JX ' T
�Y: (5.6)

Our hope, now, is to demonstrate the following idea:

The cotangent stacks T �X and T �Y being roughly isomorphic to JX (by (5.3),
(5.6)), there is a transfer operator of functoriality

T W �.Y/! �.X/st;

corresponding to a “change of geometric quantization” for JX .

5.2.3. Quantization, of course, is as much of a science as an art, and the reader
should not expect a rigorous formulation of this hope in this article. In particular, the type
of geometric quantization that we need (suitable for encoding measures on stacks) has not,
to my knowledge, been developed, yet. Therefore, the real content of the results that follow
is already contained in [74]; but we will dress them up in an ad hoc language of quantization,
in order to exhibit some deeper structure that seems to be lying behind them.

We will also assume, from now on, that our base field is F D R, in order to use
the language of line bundles with connection, and will write the chosen additive character
as  .x/ D ei„x , where „ is a nonzero real constant. The final results, contained in The-
orems 5.3.5 and 5.4.3, are valid and were proven in [74] over an arbitrary local field in
characteristic 0, just by an obvious translation of the formulas. We will only care to describe
transfer operators up to an absolute scalar; therefore, we will feel free to choose measures
that only modify the result by a scalar, without commenting on those choices.

5.3. Geometric quantization for type G

5.3.1. The process of geometric quantization on a (real) symplectic manifold
.M; !/ consists in fixing a (complex) Hermitian vector bundle L, equipped with a con-
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nection r whose curvature is i„!, as well as a Lagrangian foliation F , such that the space
of leaves M=F is a Hausdorff manifold. Then, one attaches to these data the vector space
DF .M;L/ of smooth half-densities on M=F valued in the space of sections of L over M
that are constant along the foliation F (with respect to the connection). This space has a
canonical inner product (namely, the L2-inner product over M=F ), giving rise to a Hilbert
space, by completion.

To reformulate the results of [74] in this language, we will now recast the space
�.X/st of stable test measures for the relative trace formula as a space of half-densities on
the quotient of the group scheme JX by a Lagrangian foliation, valued in a line bundle LX .

5.3.2. Fix a rank-1 space X “of type G,” i.e., in the list (5.4).
Consider the composition of maps

JX � T
�X ! T �X �g� T �X ! X �X (5.7)

induced from (5.2). There is a natural scaling Gm-action on the left-hand side, under which
this composition is invariant, and if we consider the “projectivization” of the space on the
left (D remove the zero section in T �X and divide by Gm), it was shown in [74, §3] that the
resulting map

P
�
JX � T

�X
�
! X �X (5.8)

is generically an isomorphism. More precisely, in the type-G cases it is an isomorphism over
P .J ı

X � T
�X/, where J ı

X � JX is the complement of the divisor given by the homogeneous
equation t1 D 0. (This is a combination of Propositions 3.3.2, 3.5.1 in [74], and the fact that
those spaces have an involutive G-automorphism.)

The invariant-theoretic quotient X � X ! .X � X/ � G is an affine line, and its
composition with (5.7) is the map JX � T �X ! JX ! A1 that remembers only t0 from
the triple .t0; t1; �/ [74, Proposition 3.4.2]. We notice that the level sets of t0 on J ı

X form a
Lagrangian foliation; we will call this foliation “vertical,” and denote it by Fver.

5.3.3. Let d D dimX . The short version of the story that follows is that we replace
the element f 2 �.X/st (a measure in the variable t0) by

f .t0/.dt0/
� 1
2 jt1j

� d
2 C1; (5.9)

obtaining a half-density on J ı
X=Fver valued in the line bundle LX whose sections are func-

tions on J ı
X=Fver multiplied by the factor jt1j�

d
2 C1. More precisely, LX will be identified

with the trivial line bundle on J ı
X , but endowed with a connection

r
X
D r

0
C d log jt1j

d
2 �1
� i„t�11 dt0 D r

0
C

�
d

2
� 1

�
t�11 dt1 � i„t

�1
1 dt0; (5.10)

with curvature i„!, where r0 is the standard flat connection, so that its parallel sections
along the vertical foliation are as described.

Presented this way, this connection is completely unmotivated. In § 5.3.6 below, we
will discuss a more natural description of the pair .LX ;rX /. Continuing, for now, in this ad
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hoc fashion, (5.9) defines a map

�.X/st ! Dhor.J
ı
X ; LX /; (5.11)

whereDhor (with regular font) denotes continuous (not necessarily Schwartz, or even smooth)
“horizontal” half-densities valued in LX (i.e., half-densities on J ı

X=Fver valued in the
descent of LX by parallel transport). The image of this map will be denoted by D.X/.

5.3.4. We consider another Lagrangian foliation Fhor on J ı
X , which we will call

“horizontal”: its leaves are the level sets of t1. For the line bundle with connection .LX ;rX /,
as above, flat sections along horizontal leaves are simply functions of t1¤ 0, multiplied by the
factor . t0

t1
/; note that this description is independent of the dimension d used to definerX .

We now propose to think of the space of test measures �.Y/ for the Kuznetsov
formula as a subspace D.Y/ � Dver.J

ı
X ; LX /, where Dver denotes continuous “vertical”

half-densities (i.e., half-densities on J ı
X=Fhor) valued in LX . First of all, consider the map

JX �M
0 �
�!M 0

�g0 � M 0;

with notation as in § 5.2.2, where the action of JX is again on the first copy of M 0.

Lemma. The composition of the map above with M 0 �g0 � M 0 ! Y � Y ! .Y � Y / � G
is the map that only remembers the coordinate t1 of JX .

This is the reason why the foliation Fhor is relevant to the Kuznetsov formula.
There is a natural pullback from Whittaker functions on Y � Y � to scalar-valued

functions onM 0 �g0 � M 0, as follows: Thinking of elements of F .Y / (that is, Whittaker func-
tions) as sections of a line bundle L over Y D NnG0 (and similarly for Y �, just replacing
 by  �1), we note that the line bundle L �L �1 is canonically trivial over the diagonal
Y diag � Y � Y �. There is now a unique trivialization of its pullback to JX �M 0 which coin-
cides with the canonical one over the diagonal, and is equivariant with respect to the action
of JX �G0. More explicitly, if we use a Kostant section to identify T �Y ' c�

X �G
0, and the

negative of that section for Y �, we pull back Whittaker functions to scalar-valued functions
on T �Y via the projection toG0, and then restrict to T �Y ��;g0 �;.��/ T

�Y � 'M 0 �g0 � M 0.
The short version of the story, now, is that we fix a G0-invariant measure on NnG0,

use it to identify Schwartz (Whittaker) measures on Y � Y � with Schwartz (Whittaker)
functions, pull them back to scalar-valued functions on J ı

X �M
0 ' J ı

X � G
0, and integrate

them against a chosen Haar measure onG0. This gives functions on J ı
X that, as can be easily

confirmed, correspond to sections of LX , flat along the leaves of Fhor; further multiplying
them by the factor jt1j

1
2 dt

1
2

1 gives rise to an element of Dver.J
ı
X ; LX /. This descends to an

injective map

�.Y/! Dver.J
ı
X ; LX /; (5.12)

whose image will be denoted by D.Y/. Again, the factor jt1j
1
2 dt

1
2
1 seems unmotivated, and

we will attempt to explain it in § 5.3.9 below, after formulating the main theorem.
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5.3.5. To recap, we have defined a line bundle LX on J ı
X , endowed with a connec-

tion rX with curvature i„!, “vertical” and “horizontal” foliations Fver, Fhor on J ı
X , and

have identified the spaces �.X/st, �.Y/ of test measures for the corresponding quotients with
spaces D.X/, D.Y/ of “horizontal” and “vertical” half-densities for .LX ; J ı

X /. The main
result [74, Theorem 1.3.1] for the transfer operator in this case can now be formulated as follows:

Theorem. There is an injective operator

T W D.Y/! D.X/

given by integration along the leaves of the vertical foliation:

Dver.J
ı
X ; LX / ⇢ Dhor.J

ı
X ; LX /;

T '.j / D

Z
Fver;j

Tj;j 0

�
'.j 0/

�ˇ̌
!.j 0/

ˇ̌ 1
2 ;

(5.13)

where Fver;j denotes the leaf of Fhor through the point j , and Tj;j 0 denotes parallel transport
from the fiber of LX over j 0 to the fiber over j 0 along this leaf.

Its inverse T �1, valued in an enlargement D�
LX
.Y/ �D.Y/ described in [74, §1.3],

is given by integration along the leaves of the horizontal foliation:

Dhor.J
ı
X ; LX / ⇢ Dver.J

ı
X ; LX /;

Note that a horizontal half-density on J ı
X , multiplied by the half-density j!j 12 , gives

rise to a vertical half-density valued in the bundle of densities on the leaves of Fhor; thus,
it makes sense to integrate it along these leaves, obtaining a half-density on J ı

X=Fhor. This,
of course, is completely analogous to the canonical intertwiners for the Schrödinger models
quantizing a symplectic vector space [55].

5.3.6. The line bundleLX , with its connection, admits a more natural description as
the dual to a line bundle of half-densities on the fibers of the invariant moment map
�G WM D T

�X ! c�
X . The map (5.11), then, admits a more natural description as descend-

ing, up to a choice of invariant measure on X , from a map from Schwartz half-densities on
X �X ,

D.X �X/! Dhor.J
ı
X ; LX /: (5.14)

Let us see how this works.
It will be convenient to choose a section s of the invariant moment map �G . Such

a section exists in the cases X D HnG of (5.4) when G andH are split; it suffices to check
the case of SO2n�1 n SO2n, and we refrain from attempting to give an abstract argument.
See § 5.4.7 for a further discussion of this issue.

Obviously, the section s has image in the smooth locus of the map�G , which implies
that the fibers of this map are transversal to the section. If O� denotes the fiber over � 2 c�

X ,
let DX be the algebraic line bundle over c�

X whose fiber over � is the determinant of the
tangent space of O� at s.�/. Let LX D jDX j

1
2 , a complex line bundle whose fiber over �

is dual to the space of Haar half-densities on this tangent space. By pullback, we will also
consider LX as a line bundle over JX .
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For � ¤ 0, the fibers of the invariant moment map�G areG-orbits, therefore the tan-
gent space of O� is g=gs.�/, and the fiber of LX over � is the complex line
j det g˝ det g�

s.�/
j
1
2 . Its dual is the line of invariant half-densities on O� .

There is a natural way to trivialize the bundle LX , up to a scalar. It uses the fact that
the stabilizersGs.�/, for � ¤ 0, are isomorphic over the algebraic closure. Thus,G-conjugacy
gives canonical isomorphisms between the complex line bundles j det gs.�/j, and this allows
us to uniformly fix an invariant measure d Pg on all orbits O� , for � ¤ 0, see [74, §4]. Then, by
[74, Theorem 4.0.3]:

Proposition. For a suitable choice of d Pg as above, and the canonical measure dz on T �X

induced by the symplectic form, we have the integration formulaZ
T �X

ˆ.z/dz D

Z
c�
X

j�j
d
2 �1

Z
O�

ˆ
�
s.�/ Pg

�
d Pg d�:

Hence, the family of Haar half-densities � 7! .j�j
d
2 �1d Pg/

1
2 on the orbits O� , for

� ¤ 0, extends to a nonvanishing half-density on the fiber over 0. We now use this family
(depending up to a constant on our choice of d Pg) to trivialize L�

X , hence also LX , i.e., we
have an isomorphism

LX ' C (5.15)

with the trivial line bundle. Moreover, the proposition above shows that a nonzero element
of the fiber of L�

X over 0 corresponds to a unique half-density on O0, obtained as the limit
of G-invariant half-densities over the fibers O� with � ¤ 0. Hence, each element in the total
space of L�

X gives rise to a half-density on the corresponding fiber of �G .

5.3.7. We can now define the map (5.14). Let ' 2 D.X � X/. The product ' �
.dt0/

� 1
2 restricts to a half-density on each fiber of the smooth locus of the invariant-theoretic

quotient X �X ! .X �X/ �G. The idea is to integrate this half-density, but for that pur-
pose we need to turn it into a measure. We will do so after pulling it back to J ı

X via the maps

J ı
X � .T

�X XX/! P .J ı
X � T

�X/! X �X;

where the second arrow is (5.8), an isomorphism onto its image.
For every j 2 J ı

X with image �.j / 2 c�
X , the map (5.7) restricts to a map

¹j º � O�.j / ! X �X that is, by (5.8), an isomorphism onto its image (up to removing the
zero section of T �X , if �.j / D 0). Thus, the pullback of ' � .dt0/�

1
2 induces a half-density

on O�.j /. Multiplying by the half-density corresponding to an element of the fiber of L�
X

over �.j / gives rise to a measure, which we can integrate. This way, we get a canonical map

D.X �X/.dt0/
� 1
2 � L�

X ! C;

where L�
X denotes the total space of the line bundle L�

X over J ı
X . This corresponds to a map

D.X �X/.dt0/
� 1
2 ! �.J ı

X ; LX /; (5.16)

where the right-hand side denotes (continuous) sections of LX over J ı
X .
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5.3.8. The image of ' � .dt0/�
1
2 under this map has an invariance property: namely,

its values at different points j with the same value of t0 “coincide.” To make sense of this,
we need to endowLX with a connection, whose parallel sections along vertical Lagrangians
descend to duals of half-densities on the corresponding G-orbits on X � X . To explicate
this, consider the integration formula of [74, Theorem 4.0.2]:

Proposition. For a function ˆ and an invariant measure dx on X �X , we haveZ
X�X

ˆ.x/ dx D

Z
.X�X/�G

jt20 � 1j
d
2 �1

Z
Ot0

ˆ. Pg/ d Pg dt0: (5.17)

Here, we have denoted by Ot0 the preimage of t0 2 .X �X/ �G in X �X , using
similar notation as for the preimages of points of c�

X in T �X . The reason is that, as above,
for j 2 J ı

X with �.j / ¤ 0, we can identify the G-orbit O�.j / with the image of ¹j º �O�.j /

in X � X , which is equal to Ot0.j /. The measure d Pg in the Proposition, then, is the same
measure on O�.j / as that used to trivialize the bundle LX in § 5.3.6.

The proposition above tells us that, if for every j with �.j / ¤ 0 we multiply
'.dt0/

� 1
2 by the half-density .jt20 .j / � 1j

d
2 �1d Pg/

1
2 , the integral will depend only on the

function t0.j / of j . On the other hand, the trivialization (5.15) of LX uses the half-density
.j�j

d
2 �1d Pg/

1
2 . The quotient of the two is jt1j

d
2 �1. We conclude that the map (5.16), com-

posed with the trivialization (5.15), gives rise to functions f on J ı
X such that jt1j

d
2 �1f is

constant along fibers of t0. This explains the definition of rX in (5.10), and completes the
construction of the map (5.14).

5.3.9. In a similar way, we define a line bundle LY on JX , pulled back from c�
X ,

as the dual of the line bundle of G0-invariant half-densities on the fibers of M 0 D T �Y !

c�
X . Here, the fibers are G0-torsors, hence fixing a Haar half-density on G0 gives rise to a

trivialization

LY
�
�! C: (5.18)

Through the trivializations (5.15) and (5.18), the line bundles LX and LY are identified.
Recall from § 5.3.4 that the description of “vertical” half-densities for

.LX ;r
X / is the same in every case (does not depend on the dimension d of X ). We can

now define a map

D.Y � Y �/! Dver.J
ı
Y ; LY /; (5.19)

in a completely analogous way to (5.14), using also the scalar-valued pullback from Whit-
taker functions on Y � Y � to scalar-valued functions on M 0 �g0 � M 0, described in § 5.3.4.
To describe it explicitly, consider the integration formula for functions on Y 2, analogous
to (5.17), Z

Y�Y

ˇ̌
ˆ.y/

ˇ̌
dy D

Z
.Y�Y /�G0

jt1j

Z
G0

ˇ̌
ˆ. Qt1g/

ˇ̌
dg dt1 (5.20)
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(where Qt1 denotes any lift of t1 to Y � Y ). Symbolically, we can write the G0 �G0-invariant
measure dy on Y � Y as dg � jt1jdt1. Similarly, we can write the spaces of Schwartz mea-
sures and half-densities as

�.Y � Y / D F .Y � Y / �
�
dg � jt1jdt1

�
;

D.Y � Y / D F .Y � Y / �
�
dg � jt1jdt1

� 1
2 :

Choosing the half-density .dg/ 12 to define the trivialization (5.18), the image of a Schwartz
half-densityˆ � .dg � jt1jdt1/

1
2 under (5.19) is precisely the image of the Schwartz measure

ˆ � .dg � jt1jdt1/ described in the definition of (5.12), giving a natural meaning to that
definition.

5.4. Geometric quantization for type T

5.4.1. In the cases (5.5) of “type T ,” the analog of Theorem 5.3.5 does not directly
hold. In turns out, however, that there is a similar interpretation of transfer operators, if we
pass from JX , the group scheme of regular centralizers in PGL2, to QJX D the group scheme
of regular centralizers in GL2. It lives over QcX�

WD gl�
2 � GL2.

If we write GL2 D .SL2 �Gm/=�2, use coordinates .t0; t1; �/, as before, for JSL2 ,
and coordinates .z; �/ for T �Gm D Gm � g�

m, we obtain

QJX D SpecF
�
t0; t1; �; z

˙1; �
��2
=.t20 � �t

2
1 � 1/;

where �1 2 �2 acts by .t0; t1; �; z; �/ 7! .�t0;�t1; �;�z; �/. The map to JX D JPGL2 is
then obtained by symplectic reduction modulo Gm, and the symplectic form on QJX reads

! D dt0 ^ d.t
�1
1 /C d�z ^ d�;

where the notation is d�z WD d log z D dz
z

.

5.4.2. To motivate the passage to QJX , we should first look at the simple case
X D Gmn PGL2. This space is a quotient of QX D GmnGL2, where Gm is embedded as
the general linear group of a 1-dimensional subspace, and one can think of �..X �X/=G/

as the Gm-coinvariants of the space �.. QX � QX/= QG/, where Gm stands for the center of
QG D GL2,

�
�
.X �X/=G

�
D �

�
. QX � QX/= QG

�
Gm
:

In this setting, one can easily study a transfer operator

T W �. QY/! �. QX/;

where QXD . QX � QX/= QG, and QY is the “Kuznetsov quotient stack” of GL2, via the “unfolding”
method. The “unfolding” method [77, §9.5] gives rise to an explicit morphism of Schwartz
half-densities

U W D. QY /! D. QX/ (5.21)

(where QY denotes the Whittaker model of GL2), which extends to an L2-isometry.
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We can repeat the earlier constructions to identify the spaces of test measures above
with spaces of “vertical,” resp. “horizontal,” half-densities on QJX

ı
D the complement of

t1 D 0, valued in a line bundle LX (with connection). Here, the corresponding foliations are
determined by the following:

Lemma. The invariant-theoretic quotient . QX � QX/ � QG D GmnGL2 �Gm is a two-dimen-
sional affine space. One can choose the coordinates .x; y/ so that the resulting map

QJX ! QJX � T
� QX ! T � QX �Qg� T � QX ! . QX � QX/ � QG

(the first arrow again by choosing a section of T � QX ! QcX
�) is given by

.t0; t1; �; z; �/ 7!
�
x D z�1.t0 � � t1/; y D z.t0 C � t1/

�
: (5.22)

The invariant-theoretic quotient for the Kuznetsov formula of GL2, composed with
the analogous map from QJX ,

QJX ! QJX � T
� QY ! Nn QG �N

is the map that remembers all even-order monomials in the coordinates t1 and z˙1.

Note that the map QJX ! . QX � QX/ � QG is smooth, when restricted to QJX
ı
D the

complement of the divisor t1 D 0. The “vertical” foliation Fver is defined as the set of fibers
of this map. The “horizontal” foliation Fhor on QJX

ı is defined by the level sets of .t1z; z2/.

Remark. The passage to .X �X/ �G D A1 is given by the coordinate

.x; y/ 7! c WD xy D t20 � �
2t21 D .� � �

2/t21 C 1: (5.23)

5.4.3. Still in the case of QX D GmnGL2, defining line bundles LX , LY over QJX
ı

exactly as before, we can repeat the constructions of the maps (5.14) and (5.19) for QG, to
identify test measures as spaces

D. QX/ ,! Dhor. QJX
ı
; LX /;

D. QY/ ,! Dver. QJX
ı
; LY /

of “horizontal,” resp. “vertical,” half-densities valued in those line bundles.
With the appropriate identificationLX 'LY over QJX

ı (which we will present for the
general case in § 5.4.4), we can now descend the unfolding map (5.21), applied to D. QY /˝

D. QY �/, to coinvariants for the diagonal action of QG, obtaining a transfer operator, which
can be explicitly described, along the lines of [69, Theorem 5.4]:

Theorem. The transfer operator
QT W D. QY/

�
�! D. QX/

is the operator of integration along the leaves of the vertical foliation:

Dver. QJX
ı
; LX / ⇢ Dhor. QJX

ı
; LX /:

The transfer operator
T W D.Y/! D.X/

is the descent of QT to Gm-coinvariants.
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5.4.4. Let, now, X be a general space from the list (5.5). The idea is to generalize
the statement of Theorem 5.4.3 for the transfer operator T , even though the spaceX does not,
in general, admit a cover such as QX . (Such a cover exists, more generally, for
X D GLn nPGLnC1, and can be used to motivate some of the definitions that follow.)

An important feature of the general case is that we will extend the map JX !
.X � X/ � G ' A1 to a map QJX ! A1, given by the same coordinate c, (5.23), as in the
case of GmnGL2, and will define the vertical and horizontal foliations on QJX

ı as in § 5.4.2,
e.g., the vertical foliation consists of level sets of the pair of functions .x; y/ of (5.22). We
define the complex line bundle LX over c�

X as in § 5.3.6, and extend it to a line bundle LX
on QcX�, by pullback along the map

QcX
�
3 .�; �/ 7! � � �2 2 c�

X : (5.24)

By pullback from QcX
�, this also becomes a line bundle over QJX . We endow it with the same

trivialization (5.15) as before.
Roughly speaking, now, if we fix a Haar measure on F �, the map (5.24) allows us

to pull back elements of Dhor.J
ı
X ; LX / to Gm-invariant elements of Dhor. QJX

ı
; LX /, thus

obtaining maps

D.X �X/! Dhor.J
ı
X ; LX /! Dhor. QJX

ı
; LX /

Gm : (5.25)

(Fixing a Haar measure on F � allows the switch from the coinvariants of Theorem 5.4.3
to invariants.) However, there is one more twist, which is not seen in the cases of X D
GLn n PGLnC1, but is needed in the general case. Namely, instead of Gm-invariants, one
needs twisted invariants with respect to a character of Gm (that is, of F �).

5.4.5. To introduce this final piece of the puzzle, we recall from [74] that the space
X � X has two closed G-orbits of codimension larger than 1: the diagonal Xdiag (whose
codimension we keep denoting by d ), and a second closed G-orbit, whose codimension we
will denote by d 0. We define a character of Gm by �d 0 W z 7! jzj�

d 0

2 C1. We will then under-
stand the space of test densities for .X �X/=G as a subspace of the .Gm; �d 0/-equivariant
elements of Dhor. QJX

ı
; LX /, by composing (5.25) with multiplication by

jyj�
d 0

2 C1
D jz.t0 C � t1/j

� d 0

2 C1;

obtaining a map

D.X �X/! Dhor. QJX
ı
; LX /

.Gm;�d 0 /: (5.26)

The image D.X/ is identified, as before, with the space �.X/st of stable test measures, if we
fix an invariant measure onX �X . To summarize, the map �.X/st!D.X/ takes a measure
f .c/ to

f .c/.dc/�
1
2 jyj�

d 0

2 C1
jt1j

� d
2 C1.d�z/

1
2 ; (5.27)

in the trivialization (5.15), where y; c are given by (5.22) and (5.23).

Remark. The most convincing argument for the relevance of the character �d 0 is [74, Propo-

sition 6.1.5], describing orbital integrals in the neighborhood of c D xy D 0 in terms of
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Gm-orbital integrals on the .x; y/-plane, twisted by this character. However, a more concep-
tual understanding of it would be highly desirable.

5.4.6. We also replace half-densities for the Kuznetsov formula of G0 D PGL2 by
half-densities for GL2 with central character �d 0 , namely, we define an embedding

D.Y/ ,! Dver. QJX
ı
; LX /

.Gm;�d 0 /

simply by multiplying the embedding D.Y/ ,! Dver.J
ı
X ; LY / of § 5.3.9 by the factor

jzj�.
d 0

2 �1/.d�z/
1
2 , and use the same trivialization (5.18) to identify LY ' C ' LX .

The main result [74, Theorem 1.3.1] for the transfer operator in this case can now be
formulated as follows:

Theorem. There is an injective operator

T W D.Y/! D.X/

given by integration along the leaves of the vertical foliation:

Dver. QJX
ı
; LX / ⇢ Dhor. QJX

ı
; LX /:

Its inverse T �1, valued in an enlargement D�
LX
.Y/ �D.Y/ described in [74, §1.3],

is given by integration along the leaves of the horizontal foliation:

Dhor. QJX
ı
; LX / ⇢ Dver. QJX

ı
; LX /;

5.4.7. I finish this section with a brief discussion of a case where a section c�
X !

T �X does not exist. LetX D T nPGL2, where T is a nonsplit torus, splitting over a quadratic
extension E=F . In this case, the transfer operator

T W �.Y/! �.X/

was computed in [69], and can be described as follows:
Instead of defining QJX to be the group scheme of regular centralizers in GL2, define

it to be the Gal.E=F /-twist of that, determined by the automorphism .t0; t1; �; z; �/ 7!

.t0; t1; �; z
�1;��/; that is, QJX will be isomorphic to the group scheme of regular centralizers

in the quasisplit unitary groupU2. The transfer operator, now, it obtained as in Theorem 5.4.3,
by descending the operator of integration along the leaves of the corresponding “vertical”
foliation on QJX to U1-coinvariants.

Both the Schwartz space and the descent to U1-coinvariants, here, need to be under-
stood in a sophisticated, “stacky” way. Namely, the full space �.X/ includes a “pure inner
form” as in (2.2),

�.X/ D �.X �X/G ˚ �.X˛ �X˛/G˛ ;

where X˛ ' T nG˛ , with G˛ D PD�, the projective multiplicative group of the quater-
nion division algebra. Similarly, the U1-coinvariants of Dver. QJX

ı
; LX /, Dhor. QJX

ı
; LX /

need to be understood in a stacky way. Explicitly, recall that in the split case the space
Dhor. QJX

ı
; LX / was the space of half-densities on the .x; y/-plane (in coordinates (5.22)),

with Gm acting as z � .x; y/ D .z�1x; zy/. In the nonsplit case, the .x; y/-plane becomes
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the space V D ResE=F Ga, and instead ofU1-coinvariants of the space D.V .F //, one needs
to consider the direct sum

D
�
V.F /

�
U1
˚D

�
V 0.F /

�
U1
;

where V 0 is the twist of V by the nontrivial U1-torsor. The same interpretation is needed
for “stacky” U1-coinvariants of the space Dver. QJX

ı
; LX / (with the coordinates a D zt1,

bD z�1t1 for the leaves of the horizontal foliation interchanged by the Galois action), and the
operator of “integration along vertical half-densities”—essentially, a Fourier transform from
the Galois-twisted .x; y/-plane to the Galois-twisted .a�1; b�1/-plane—naturally descends
to give the transfer operator T of [69, Theorem 5.1].

6. Problems for the near future

6.1. The relative Langlands conjectures
The relative Langlands conjectures presented in Sections 2.3.1–2.3.2 do not have

the precision of the local conjectures of Gan–Gross–Prasad [27], or the global conjectures of
Ichino–Ikeda [36]. Moreover, an extension of those conjectures to Arthur packets not appear-
ing in the L2-decomposition is required, as in [26].

It is therefore an important problem to refine the existing conjectures. It is also a
fascinating one: as always, finding a way to blend several known cases into a uniform theory
can lead to new insights about the nature of the problems. The geometric relative Langlands
conjectures proposed in joint work with Ben-Zvi and Venkatesh can probably assist in this
direction, providing a geometric spectral answer to automorphic problems, which can then
be translated to number theory by decategorifying.

6.2. Transfer operators in higher rank
The most important problem “beyond endoscopy,” in my view, is to understand

transfer operators in higher rank, and for morphisms of L-groups LGX ! LGY that are not
isomorphisms. Regarding the latter, despite the traditional emphasis on the Arthur–Selberg
trace formula, it might be better, as first observed by Sarnak [79], to try to compare Kuznetsov
formulas, which, according to the results of [74], seem to be the “base cases” for every com-
parison. This can be “explained” by the simple structure (5.6) of the Kuznetsov cotangent
stack.

If the ideas discussed in this paper have any merit, understanding transfer operators
in terms of “quantization” would involve several steps, including the following:

6.2.1. Develop a theory of “geometric quantization” for derived symplectic stacks,
whose output includes the Schwartz spaces of stacks defined in [71]. The cases presented
here, and in particular the construction of the maps (5.14) and (5.26), could provide some
hints on how to do that, but the various twists involved need to be better understood.

6.2.2. Obtain a better understanding of the structure of coisotropic Hamiltonian
spaces and the cotangent stacks appearing in the relative trace formula. The diagram (5.3),
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arising from the work of Knop, which was interpreted as a “birational” description of T �X,
does not capture the difference between T �X, and the Kuznetsov cotangent stack with the
same L-group. This difference seems to be significant for the structure of transfer operators
and for spaces of test measures. For example, the enlarged spaces ��

LX
.Y/ of test measures

for the Kuznetsov formula in Theorems 5.3.5 and 5.4.3 should be seen as quantizations of
T �X, which is strictly larger than the Kuznetsov stack T �Y. This difference can also explain
“Galois twists” of transfer operators, as in the example of § 5.4.7, where T �X failed to admit
an analog of a Kostant section.

A baby case of the idea that embeddings of Hamiltonian spaces correspond to
enlarged Schwartz spaces is Iwasawa–Tate theory, where the embedding T �Gm ,! T �A1

corresponds to the enlargement �.F �/ ,! �.F /. This can be generalized to toric stacks,
as described in [63, §5.2]. For a torus A, a collection of coweights � W Gr

m ! A defines a
stack A� WD Ar= ker.�/ with an action of A. The dual Hamiltonian space of such a stack is
defined as the symplectic LA-vector space LM with weights ¹˙�º.

To give an example of the descriptions of Hamiltonian spaces envisioned here, in
an ongoing joint work with Ben-Zvi and Venkatesh we take a step beyond Knop’s theory,
modeling the most regular locus of M D T �X , up to codimension 2, on a the analog of a
“toric stack” for the group scheme JX . Our result confirms an observation of V. Lafforgue,
shared in private communication several years ago. For example, for spherical varieties X
with LGX D LG and LAX D LA, our description uses the toric stack AX corresponding to the
dual Hamiltonian space LM D VX of the spherical variety, described in terms of its colors in
§ 3.1.2.

Theorem. In the setting above, there is an action ofWX on the toric cotangent stack T �AX ,
and an open dense subset c�

X
0
� c�

X , whose complement has codimension � 2, such that
the restriction M 0 � M to the image of c�

X
0 under a Kostant section � W c�

X ! g� admits a
JX -equivariant symplectomorphism

M 0
' .Resa�

X=c
�
X
T �AX /

WX �c�
X

c�
X

0
:

6.2.3. Use cotangent spaces to understand transfer operators. As we saw in the
discussion of cases of type T in § 5.4, a “naive” change of geometric quantization on JX
did not give the correct transfer operators; instead, one has to pass to the group scheme QJX
associated with the root datum of GL2, producing a 2-dimensional Fourier transform.

Ongoing joint work with C. Wan, comparing the Kuznetsov to the Arthur–Selberg
trace formula for GLn, suggests that, in higher-rank cases, the transfer operator for a compar-
ison to a Kuznetsov quotient with the same dual group might be given by an r-dimensional
integration, where r is, roughly, half the dimension of the nonzero weight spaces of the rep-
resentation VX (§ 3.1.1) of the dual group. In view of the discussion of § 6.2.2, this seems to
be closely related to the structure of T �X. For example, in the setting of Theorem 6.2.2 (such
as in the case of Gan–Gross–Prasad periods), one could speculate that the transfer operator to
the Kuznetsov formula is somehow a “descent” of a Fourier transform in dim LM

2
-dimensions.

In this “dream,” the following three objects would be closely related: the L-value LX asso-
ciated to a spherical variety (encoded in a dual Hamiltonian space LM ), the fine structure of
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the Hamiltonian spaceM D T �X (whose quantization is the space of test measures on X ),
and the transfer operator between the relative trace formula ofX and the Kuznetsov formula
with the same dual group.

6.3. Poisson summation formula
Understanding the local transfer operators should be followed by a global compar-

ison of trace formulas. For example, comparing the relative trace formula for any spherical
variety X with the Kuznetsov formula with the same dual group should amount to commu-
tativity of the diagram

��
LX
.Y.A//

T //

RTFY
$$

�.X.A//st

RTFX
{{

C

; (6.1)

where ��
LX
.Y.A// is a suitable enlarged space of test measures for the Kuznetsov formula,

related to the L-value LX of X .
Having a formula for the transfer operator in terms of Fourier transforms (as in The-

orems 5.3.5 and 5.4.3) gives hope of employing the Poisson summation formula to establish
commutativity of (6.1). However, this is far from straightforward, as the spaces of stable test
measures are nonstandard. In Altuğ’s work [2], the approximate functional equation was used
for the trace formula ofX D GL2, obtaining an expression similar to the Kuznetsov formula
(in particular, containing Kloosterman sums), but not quite equal to it.

A different approach was introduced in [73], for the case X D T nPGL2. It is based
on the idea of deforming spaces of test measures and transfer operators in analytic families
depending on a parameter s (which moves the point of evaluation of LX ), so that in some
domain for s the Poisson summation formula is valid. It is likely that this method can be
applied more generally, but it requires a better understanding of the idea of deforming spaces
of test measures (orbital integrals).

6.4. Hankel transforms
In the recent literature on automorphic forms, the term “Hankel transforms” has

been used to describe two distinct conjectural notions:

• The nonlinear Fourier transforms ��.G.F //! ���.G.F // between nonstandard
spaces of Schwartz functions (or measures) on a reductive group over a local
field, adapted to a representation � of its dual group, and its dual. These spaces
and operators would generalize Fourier transform on the space �.Matn.F //
of Godement–Jacquet theory, for the case � D the standard representation of
LG D GLn, and would similarly give rise to the local functional equation for the
L-functions associated to �. They were introduced by Braverman and Kazhdan
[15,17], and advanced in the work of Ngô [63].
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• The descent of such transforms to spaces of test measures for the Arthur–Selberg
trace formula, or for the Kuznetsov formula. In the latter case, those would be
operators

H� W ��.Y/! ���.Y/

between enlarged spaces of measures for the Kuznetsov formula, such as those
encountered in Theorems 5.3.5 and 5.4.3.

The two notions are closely related, but it is the latter that we would like to focus on
here. It is natural to ask the question of whether one can describe H� explicitly, and prove a
Poisson summation formula, globally, in the sense that the diagram

��.Y.A//
H� //

RTFY $$

���.Y.A//

RTFYzz
C

(6.2)

should commute. This would lead to an independent proof of the functional equation of the
pertinent L-functions.

Such Hankel transforms have been described by Jacquet [40] for � D the standard
representation of GLn (the paper [35] is closely related), and by me [76] for �D the symmetric
square representation of GL2. It would be interesting to examine if these formulas admit an
interpretation in terms of quantization, like the transfer operators in this paper.

It seems counter to the strategy of the Langlands program to seek such a proof of the
functional equation, independent of functoriality. On the other hand, the similarity between
diagrams (6.1) and (6.2) is enticing. More fundamentally, trace formulas with nonstandard
test functions, such as those in Langlands’ original “beyond endoscopy” proposal, or the
Kuznetsov formula appearing in (6.1), have the L-functions embedded into them. Obtaining
the spectral decomposition of those formulas will likely require more than “brute force” ana-
lytic number theory, and a Poisson summation formula of the form (6.2) could help resolve
the problem. This idea was successfully employed in [73] for a new proof of Waldspurger’s
formula for toric periods in PGL2 via a nonstandard comparison of the form (6.1). There-
fore, it might be that, in the “beyond endoscopy” program, functoriality and the functional
equation of L-functions should be studied hand-in-hand.
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