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1. Introduction

Categorification, in the broad sense, refers to the realization of amathematical object
as the Grothendieck group of certain category. Lie theory is a domain with many interesting
examples of categorifications. An important family among them consists of categorification
of quantum groups and their representations.

Let g be a Kac–Moody Lie algebra, Uv.g/ be its quantized enveloping algebra, and
UC

v be the positive part. The first categorification of UC
v was constructed by Lusztig [41,42]

using perverse sheaves on the moduli stack of quiver representations. It reveals some deep
structures of UC

v , including the existence of a remarkable basis called the canonical basis.
It is defined as the classes of intersection complexes in the Grothendieck group. Kashiwara
[29] also gave a construction of this basis using a different method.

A (naive) categorical g-action on an exact category C consists of pairs of exact
adjoint endofunctors Ei ,Fi onC such that the Grothendieck group ofC is a g-representation
with the Chevalley generators in g acting by the operators induced by Ei , Fi . A famous
example is the categorical action of the affine Lie algebra bslp on the category of representa-
tions over a field of characteristic p of the symmetric groups of all ranks. The functors Ei ,
Fi are given by some i -restriction and i -induction functors. Categorifical actions also had
remarkable applications to representation theory of affine Hecke algebras and their cyclo-
tomic quotients. Ariki [1] proved that the category of modules over affine Hecke algebras of
typeA at an eth root of unity categorifies the positive half of bsle , and the category of modules
over cyclotomic Hecke algebras categorifies an integrable irreducible bsle-representation,
with the classes of simple modules corresponding to the dual canonical basis. This result
confirms a conjecture by Lascoux–Leclerc–Thibon [39] and provides character formulae for
simple modules over cyclotomic Hecke algebras.

In 2008, a seminal work of Chuang–Rouquier [17] brought some new perspectives on
categorifications. They introduced an enhanced notion of sl2-categorical action, whose input
requires not only exact adjoint endofunctorsE ,F as above, but also some natural transforma-
tions x 2 End.E/, � 2 End.E2/ satisfying the defining relations for nil-affine Hecke algebras.
They showed that many previously known examples of categorifications in Lie theory can
be enhanced. The enhancement has two important advantages among others. First, it guar-
antees that the categorification of a simple integrable sl2-representation is unique. Second,
it provides derived self-equivalences between different blocks, categorifying the Weyl group
action on the underlying representation. As an application, Broué’s abelian defect group
conjecture for symmetric groups was proved.

To extend this powerful theory from sl2 to arbitrary Kac–Moody Lie algebra g, one
needs correct substitutions for the nil-affine Hecke algebras. This is provided by a new family
of Z-graded algebras introduced by Khovanov–Lauda [33] and independently by Rouquier
[53], called quiver Hecke algebras (also known as KLR algebras). The category of graded
projective modules over these algebras gives a categorification of UC

v in purely algebraic
terms. Moreover, by work of Rouquier [55] and Varagnolo–Vasserot [65], it is equivalent to
Lusztig’s categorification. Integrable simple g-representations also admit categorifications
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by representations of cyclotomic quotients of quiver Hecke algebras by Kang–Kashiwara
[25]. Moreover, Rouquier [53] proved the unicity of categorifications for these simple repre-
sentations.

Quiver Hecke algebras have captured a tremendous amount of interest in the last
decade and many important progress have been made. We do not intend to give a complete
survey of the subject. Instead, we will focus on some new equivalences of categorifications
and some recent applications to representation theory. Here is an outline of this report.

In Section 2 we review Lusztig’s categorification of UC
v , quiver Hecke algebra, its

realization as extension algebra of some `-adic complexes, the theory of standard modules
for quiver Hecke algebras and their relations to PBW basis. We also mention the monoidal
categorification of the quantum cluster algebra structure on the quantum coordinate ring AC

v

by Kang–Kashiwara–Kim–Oh [27].
In Section 3 we discuss categorifications of quantized loop algebras. By the theory

of K-theoretical Hall algebras, there is a natural categorification of the positive part of
quantized loop algebras in terms of coherent sheaves on the cotangent dg-stacks of quiver
representations. For a quiver of finite type, since the loop algebra is part of the corresponding
affine Lie algebra, it can also be categorified using representations of quiver Hecke algebras.
It is natural to ask whether these two categorifications are equivalent. An equivalence of this
kind was given for sl2 in [61]. It also gives an interesting comparison between two monoidal
categorifications of the quantum cluster algebra structure on a quantum unipotent coordinate
ring for bsl2, one in terms of quiver Hecke algebras as mentioned above and the other in terms
of perverse coherent sheaves on affine Grassmannians, constructed by Cautis–Williams [15].

In Section 4 we discuss some recent applications of categorical actions to repre-
sentation theory, including those of rational double affine Hecke algebras and those of finite
reductive groups of classical types. We also discuss how to use categorical actions to con-
struct representations of current algebras on the center of the underlying categories. As an
application, we obtain an isomorphism between the center of cyclotomic quiver Hecke alge-
bras and the singular cohomology of Nakajima quiver varieties in finite types. In a parallel
context, we get an explicit computation of the cohomology of Gieseker moduli spaces.

2. Quiver Hecke algebras

2.1. Notation
For an exact (resp. triangulated) category C , its Grothendieck group ŒC � is the

quotient of the freeZ-module spanned by the isomorphism classes of objects inC by the rela-
tions ŒM � D ŒM 0� C ŒM 00� whenever there is a short exact sequence M 0 ! M ! M 00(resp.
distinguished triangle). Abelian categories are naturally exact categories. Additive categories
can be viewed as exact categories with short exact sequences being the split ones.

An exact category C is graded if it is equipped with an exact autoequivalence
h1i W C ! C . For such a category, the Grothendieck group ŒC � is a ZŒv˙1�-module with
vŒM� D ŒM h1i�. Here v is a formal variable. In particular, for an object M 2 C and

3040 P. Shan



a.v/ D
P

r arvr 2 NŒv˙1�, we write a.v/M D ˚rM hri˚ar . We set

Hom�
C .�; �/ D

M
r2Z

HomC .�; �hri/:

A standard example of graded category is the category of graded vector spaces over a field
k with .M h1i/n D MnC1. Its Grothendieck group is isomorphic to ZŒv˙1�, with the class
of M D

L
n2Z Mn mapping to its graded dimension gdim.M/ D

P
n2Z.dimk Mn/vn.

An exact categoryC is monoidal if it is equippedwith an exact bifunctorC � C ! C

satisfying certain associativity constraints. Such a bifunctor yields a ring structure on the
abelian group ŒC �. If C is graded monoidal, then ŒC � becomes a ZŒv˙1�-algebra.

Let k be a field. For a graded k-algebra A, let Mod.A/ be the category of graded
A-modules. Let mod.A/, proj.A/, fmod.A/ be respectively the full subcategories consisting
of finitely generated gradedA-modules, finitely generated graded projectiveA-modules, and
graded A-modules which are finite dimensional over k.

2.2. The quantized enveloping algebra
Let I be a finite set. Fix a Cartan datumwith a symmetric generalized Cartan matrix

A D .aij /i;j 2I , a set of simple roots ¹˛i j i 2 I º, a weight latticeP , and a symmetric bilinear
formP � P ! Q, .�;�/ 7! � � � such that ˛i � j̨ D aij and!i � j̨ D ıij , where ¹!i j i 2 I º

are the fundamental weights. Let g D gA be the associated Kac–Moody Lie algebra. Let
Q D

L
i2I Z˛i be the root lattice. Set QC D

L
i2I N˛i and P C D

L
i2I N!i . Let ˆ be

the set of roots, and ˆC the set of positive roots. Let n � g be the Lie subalgebra spanned
by positive root spaces.

For n 2 N, 1 6 l 6 n, define the following quantum integers in ZŒv˙1�:

Œn� D
vn � v�n

v � v�1
; Œn�Š D

nY
rD1

Œr�;
� n

l

�
D

Œn�Š

Œl �ŠŒn � l �Š
:

The positive part 0UC
v of the quantized enveloping algebra is the unital Q.v/-algebra gener-

ated by Ei for i 2 I , subject to defining relationsX
sCrD1�aij

.�1/sE
.s/
i Ej E

.r/
i D 0; for i ¤ j 2 I;

where E
.n/
i D En

i =Œn�Š. It is a QC-graded algebra with deg.Ei / D ˛i . There is a coproduct

� W
0UC

v !
0UC

v ˝
0UC

v ; Ei 7! Ei ˝ 1 C 1 ˝ Ei ; 8i 2 I;

such that 0UC
v is a twisted1 bialgebra. There is a unique nondegenerate symmetric bilinear

form .�; �/v on 0UC
v determined by .1; 1/v D 1, .Ei ; Ej /v D ıi;j =.1 � v2/, and .ab; c/v D

.a ˝ b; �.c//v for a; b; c 2 0UC
v , where .a ˝ b; c ˝ d/v D .a; c/v.b; d/v on 0UC

v ˝ 0UC
v .

1 Here and below, twisted means the multiplication on 0UC
v ˝ 0UC

v is .a ˝ b/.c ˝ d/ D

v� deg.b/�deg.c/ac ˝ bd for homogeneous elements a; b; c; d 2 0UC
v .
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Let UC
v be the ZŒv˙1�-subalgebra of 0UC

v generated by E
.n/
i for i 2 I , n > 1. It is

a ZŒv˙1�-form for 0UC
v , and its specialization at v D 1 is an integral form for the universal

enveloping algebra of n. The dual form

AC
v D

®
x 2

0UC
v j .x; y/v 2 Z

�
v˙1

�
; 8y 2 UC

v

¯
is called the quantum unipotent coordinate ring. Its specialization at v D 1 is an integral
form for the coordinate ring of the unipotent group associated with n.

2.3. Quivers and Ringel’s Hall algebra
A quiver � D .I; H/ is an oriented graph with vertices set I and arrows set H . For

h W i ! j 2 H , we write h0 D i , h00 D j . Let hij be the total number of arrows from i to j .
Assume that � has no edge loops, then it determines a symmetric generalized Cartan matrix
A D .aij /i;j 2I given by ai i D 2 and aij D �hij � hj i for i ¤ j . Write g� D gA. We say
� is of finite type if g� is finite dimensional.

Fix a field F . A �-representation over F is a pair .x; V /, where V D
L

i2I Vi is
an I -graded F -vector space, and x D .xh/h2H is a collection of linear maps
xh W Vh0 ! Vh00 . Its dimension is the element

P
i2I dimF .Vi /˛i inQC. Amorphism of repre-

sentations .x;V / ! .x0;V 0/ is a family of linear maps ai W Vi ! V 0
i such that ah00xh D x0

h
ah0

for all h 2 H . Fix ˇ D
P

i2I di ˛i 2 QC, the space of �-representations of dimension ˇ is

Xˇ D

M
h2H

HomF .Fdh0 ; Fdh00 /:

The groupGˇ D
Q

i2I GLdi
acts onXˇ by .gx/h D gh00xhg�1

h0 for all h 2 H , g D .gi / 2 Gˇ .
Two representations are isomorphic if and only if they are in the same Gˇ -orbits. So the
quotient stack Xˇ D ŒXˇ =Gˇ � parametrizes the isomorphism classes of �-representations.
For each i 2 I , there is a unique simple �-representation Si of dimension ˛i with x D 0. All
simple �-representations are of this form. For a sequence � D .�1; �2; : : : ; �m/ of elements
in QC whose entries sum up to ˇ, let QX� be the moduli stack of flags of �-representations
�� D .�1 � � � � � �m/ such that �r=�r�1 2 X�r for 1 6 r 6 m. We have a proper morphism

f� W QX� ! Xˇ ; �� 7! �m: (2.1)

Let Xnil
ˇ
be the union of the image of f� for all possible �. Representations in Xnil

ˇ
are called

nilpotent. If � has no oriented cycles, then Xˇ D Xnil
ˇ

for all ˇ.
Let F D Fq be a finite field. The space QŒXnil

ˇ
� of Q-valued functions on the

finite set Xnil
ˇ

is spanned by the characteristic functions 1� for � 2 Xnil
ˇ
. The Hall algebra

H.�; q/ D
L

ˇ2QC QŒXnil
ˇ

� is an associative algebra with the multiplication given by

1�1 � 1�2 D

X
�2XˇC

c�

ˇ̌
f �1

� .�/ \ p�1
� .�1; �2/

ˇ̌
1� ;

for�1 2 Xˇ ,�2 2 X . Here � D .ˇ;/, c� is some structural constant andp� is themorphism

p� W QX� ! Xˇ � X ; .�0
� �/ 7! .�0; �=�0/: (2.2)
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Theorem 2.1 ([52]). The assignments Ei 7! 1Si
for i 2 I defines a QC-graded algebra

embedding
0UC

v jvDq�1=2 ,! H.�; q/:

It is an isomorphism when � is a quiver of finite type.

We recall some properties of Xˇ in two special examples which will be used later.

Example 2.2. Assume � is a quiver of finite type. Let F D Fq . By a theorem of Gabriel,
there is a bijection between ˆC and the set of isomorphism classes of indecomposable
�-representations, sending ˛ to M˛ . There exists a total order on ˆC such that ˛0 � ˛

if Hom�.M˛; M˛0/ D 0. Fix such an order, then Gˇ -orbits on Xˇ are in bijection with
descending sequences of elements in ˆC whose entries sum up to ˇ. Such sequences are
called Kostant partitions. We denote by …ˇ the set of all Kostant partitions of ˇ.

Example 2.3. Let F D Fq . Consider the quiver O� D .0 � 1/ associated with the affine
Lie algebra bsl2. The path algebra of O� is isomorphic to the self-extension algebra of the
tilting bundle T D OP1 ˚ OP1.1/ on the projective line P 1. Thus there is an equivalence
of derived categories

Ext�.T ; �/ W Db Coh.P 1/ ' Db Rep. O�/:

It sends the line bundle OP1.k/ for k > 0 to the indecomposable preprojective O�-represen-
tation of dimension ˛1 C kı. Since any vector bundle on P 1 is isomorphic to a direct sum
of line bundles, the isomorphism classes of rank r vector bundles are in bijection with the
decreasing sequences in Zr . For ˇ D r˛1 C nı, let

ƒˇ D
®
.�1 > � � � > �r / 2 Nr

j �1 C � � � C �r D n
¯
: (2.3)

Let BunC

ˇ
be the stack of vector bundles parametrized byƒˇ . Let Yˇ be the open substack of

Xˇ consisting of preprojective representations. Then the derived equivalence above yields
an isomorphism of stacks BunC

ˇ
' Yˇ .

2.4. Lusztig’s categorification
Based on Ringel’s construction andGrothendieck’s sheaf–function correspondence,

Lusztig constructed the following categorification of UC
v . Let F D Fq and k D Q`. Let

Db
c .Xˇ / be the bounded derived category of constructible `-adic sheaves on Xˇ . The cate-

gory
Db

c .X/ D

M
ˇ

Db
c .Xˇ /

admits a monoidal structure given by the convolution product

F1 � F2 D f��p�
� .F1 � F2/Œ�ˇ � �; for F1 2 Db

c .Xˇ /; F2 2 Db
c .X /;

where � D .ˇ; / and p� , f� are the morphisms defined in (2.1) and (2.2). For i 2 I , let
Li D kX˛i

Œ�1� be the (shifted) constant sheaf on X˛i
. For � D .�1; : : : ; �n/ 2 I n, we have

L�1 � � � � � L�n ' f��.k QX�
Œdim. QX�/�/:
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Denote this complex by L� . Note that by the decomposition theorem, it is a direct sum of
intersection complexes on Xˇ up to some shifts. Let I ˇ be the subset of I n consisting of
sequences � whose entries sum up to ˇ. Set Lˇ D

L
�2I ˇ L� .

Lusztig defined a full additive subcategory UC

ˇ
of Db

c .Xˇ / which is generated by
the indecomposable summands of Lˇ and closed under the shifts by Œ1�. The sum UC DL

ˇ2QC UC

ˇ
is stable under convolution. Hence it is a graded monoidal subcategory of

Db
c .X/. We have an isomorphism of ZŒv˙1�-algebras

ŒUC� ' UC
v

with ŒLi � 7! Ei for i 2 I and Œ1� 7! v.
A basis of ŒUC� as a ZŒv˙1�-module is given by the isomorphism classes of inde-

composable objects in UC modulo shifts. Let Bˇ be the set of isomorphism classes of
intersection complexes which appear as direct summands of Lˇ up to some shift. Then
B D

F
ˇ2QC Bˇ is a basis of ŒUC�, called the canonical basis.

2.5. Quiver Hecke algebras
Let k be a field. For i; j 2 I , set Qij .u; v/ D .�1/hij .u � v/�aij for i ¤ j and

Qi i D 0. For ˇ 2 QC of height n, the symmetric group Sn acts on the set I n by permutation.
The subset I ˇ is stable under this action. Write sk D .k; k C 1/ 2 Sn for 1 6 k 6 n � 1.

Definition 2.4 ([33,53]). For ˇ 2 QC of height n, the quiver Hecke algebra Rˇ is the unital
k-algebra generated by x1; : : : ; xn, �1; : : : ; �n�1 and e� for � 2 I ˇ , subject to the following
defining relations:

xkxl D xlxk ; xke� D e�xk ; e�e�0 D ı�;�0e� ;
X

�2I ˇ

e� D 1;

�le� D esl .�/�l ; �k�l D �l�k if jk � l j > 1; �2
k e� D Q�k ;�kC1

.xk ; xkC1/e� ;

.�kC1�k�kC1 � �k�kC1�k/e� D ı�k ;�kC2

Q�k ;�kC1
.xk ; xkC1/ � Q�kC2;�kC1

.xkC2; xkC1/

xk � xkC2

e� ;

.�kxl � xsk.l/�k/e� D

8̂̂<̂
:̂

�e� ; if l D k; �k D �kC1;

e� ; if l D k C 1; �k D �kC1;

0; otherwise.

It admits a Z-grading with deg.e�/ D 0, deg.xk/ D 2, and deg.�le�/ D �a�l ;�lC1
.

Remark 2.5. Quiver Hecke algebras are also defined for symmetrizable Cartan datum and
for more general choices of parameters Qij . These generalizations are important as they
provide new categorification results beyond those with geometrical origins. But to simplify
exposition, we will not discuss them in this survey.

Example 2.6. For any i 2 I , the algebra Rn˛i
is isomorphic to the nil-affine Hecke algebra

NHn. Consider the polynomial ring Poln D kŒx1; : : : ; xn�. LetZn be the subring of symmet-
ric polynomials. Recall that Poln is a free graded Zn-module of rank v

n.n�1/
2 Œn�Š. We have

an algebra isomorphism � W NHn ! EndZn.Poln/ such that �.xk/ is the multiplication
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by xk and �.�l / D
sl �1

xl �xlC1
is the Demazure operator. So NHn is a matrix algebra over Zn.

It has a unique indecomposable self-dual grade projective module Pn D v�
n.n�1/

2 Poln, and
NHn ' Œn�ŠPn as graded NHn-modules.

Example 2.7. Let Hn;q be the affine Hecke algebra of type A. It is generated by
X˙1

1 ; : : : ; X˙1
n , T1; : : : ; Tn�1 subject to usual defining relations. Assume q ¤ 1. Fix a

finite subset I in k�, define a quiver �q with vertices set I and arrows i ! qi . Its connected
components are either of type A or of affine type A. Let Mod.Hn;q/I be the category of
Hn;q-modules over which X1; : : : ; Xn acts locally finitely with eigenvalues in I . Brundan–
Kleshchev [12] and Rouquier [53] proved that Mod.Hn;q/I is equivalent to the category of
Rn-modules over which x1; : : : ; xn act nilpotently, where Rn D

L
jˇ jDn Rˇ is the quiver

Hecke algebra for �q .

For ˇ,  2 QC, the element eˇ; D
P

�2I ˇ ;�02I  e��0 is an idempotent in RˇC .
There is a natural algebra embedding Rˇ ˝k R ! eˇ; RˇC eˇ; . For M 2 Mod.Rˇ /,
N 2 Mod.R /, the induction

M ı N D RˇC eˇ; ˝Rˇ ˝kR .M ˝k N /:

yields a monoidal structure on Mod.R/ D
L

ˇ2QC Mod.Rˇ /. The restriction Resˇ; .�/ D

eˇ; .�/ is right adjoint to the induction. Both functors are exact and preserve the subcat-
egories mod.R/, proj.R/, and fmod.R/. So the Grothendieck groups of these categories
become twisted bialgebras.

There are also duality functors ~ and ] on fmod.Rˇ / and proj.Rˇ /, given respec-
tively by M ~ D Homk.M; k/, P ] D HomRˇ

.P; Rˇ /, both viewed as left Rˇ -modules via
the unique antiinvolution onRˇ fixing the generators. They induce involutions on Œfmod.R/�

and on Œproj.R/� such that v 7! v�1.

Theorem 2.8 ([33]). There are unique isomorphisms of twisted ZŒv˙1�-bialgebras�
proj.R/

�
' UC

v ; ŒR˛i
� 7! Ei ; i 2 I;�

fmod.R/
�

' AC
v ;

such that .ŒP �; ŒN �/v D gdimHomR.P ]; N / for P 2 proj.R/ and N 2 fmod.R/.

The following theorem shows that quiver Hecke algebras provide a purely algebraic
description of Lusztig’s category UC.

Theorem 2.9 ([55,65]). There is an isomorphism of graded algebras

Rˇ ' Ext�
Db

c .Xˇ /
.Lˇ ; Lˇ /op: (2.4)

The functor ˚ˇ Ext�
Db

c .Xˇ /
.Lˇ ; �/ yields an equivalence of graded monoidal categories

UC
' proj.R/;

which sends B to the classes of indecomposable self-dual projective modules.
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Remark 2.10. This theorem was extended to the setting F D C and k a field of positive
characteristic by Maksimau [44].

Remark 2.11. Kang–Kashiwara–Park [28] introduced quiver Hecke algebras for quivers
with edge loops and established the analog of isomorphism (2.4) in this setting.

2.6. Representations of geometric extension algebras
Consider an arbitrary algebraic variety X over F D Fq equipped with an action

of a reductive group G and a G-equivariant proper morphism f W QX ! X from a smooth
variety QX . Assume that X , G, f are defined over Fq . Let X D ŒX=G� and QX D Œ QX=G�. Let
k D Q`. The push-forward of constant sheafLf D f�k QX Œdim. QX/� is a self-dual semisimple
complex in Db

c .X/. The main player of this section is the Yoneda algebra

Af D Ext�
Db

c .X/
.Lf ; Lf /op:

Many interesting algebras in representation theory arise in this way. We have just seen that
quiver Hecke algebras are of this kind. Historically, Lusztig first gave such a realization
for degenerate affine Hecke algebras using the Springer resolutions. There are many other
examples, including Schur algebras, degenerate double affine Hecke algebras, and the math-
ematical definition of Coulomb branch by Braverman–Finkelberg–Nakajima.

In [32], Kato studied homological properties of Af . Assume G acts on X with
finitely many orbits ¹O�º�2„, and every point in X has a connected stabilizer in G. Then
each orbit supports a unique G-equivariant simple perverse sheaf IC� given by the interme-
diate extension of kO�

ŒdimO�� to X . By the decomposition theorem, we have

Lf D

M
�2„f

IC� ˝L�;

whereL� are self-dual graded vector spaces and„f D ¹� 2 „ j L� ¤ 0º. The set ¹L�º�2„f

is a complete collection of nonisomorphic self-dual simple graded Af -modules. For each �,
the Af -module P� D Ext�

Db
c .X/

.Lf ; IC�/ is a projective cover of L�. Let j� W O� ! X be
the natural embedding, define the standard module as

�� D Ext�
Db

c .X/

�
Lf ; j��

�
kO�

ŒdimO��
��

: (2.5)

We equip „ with the partial order � given by the closure relations on the orbits.

Theorem 2.12 ([32]). Assume that „f D „ and that

(1) the algebra Af is pure of weight zero,

(2) the complex IC� is pointwise pure for every � 2 „.

Then the category .mod.Af /; ¹��º�2„; �/ is a polynomial highest weight category.

The notion of polynomial highest weight categorywas introduced byKleshchev [36].
Being of polynomial highest weight means that in mod.Af / the projective module P� is
filtered by standard modules �� with � � � and �� appears only once as a quotient, and
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that End�
Af

.��/ is a polynomial ring over which�� is a finitely generated freemodule, for all
� 2 „. In this case, the algebra Af has finite global dimension and the following generalized
BGG reciprocity holds:

ŒP� W ���v D Œ�� W L��v; (2.6)

where �� D �� ˝End�
Af

.��/ k is called a proper standard module, and Œ� W ��v stands for
the graded multiplicities.

Remark 2.13. A version of Theorem 2.12 for F D C and k a field of positive characteristic
was established by McNamara [48], where purity conditions are replaced by parity condi-
tions.

The theorem is applicable to quiver Hecke algebras when � is of finite type. Thus
mod.Rˇ / is a polynomial highest weight category in these cases. In fact, for any quiver, the
stabilizer of a point in Xˇ is connected, and the purity assumption (1) is satisfied. However,
the finite type assumption is crucial to guarantee that„f D „ is finite. The purity assumption
(2) is proved by Lusztig [42] for finite type quiver, but unknown in general. In the affine case,
one needs to modify mod.Rˇ / to get a similar result. Here is an example.

Example 2.14 ([61]). Let O� be the Kronecker quiver. Let Yˇ be the open substack of pre-
projective representations in Xˇ defined in Example 2.3. Recall that the points in Yˇ are
indexed by the finite set ƒˇ . Let jˇ W Yˇ ! Xˇ be the natural embedding. Set

Sˇ D Ext�
Db

c .Yˇ /

�
j �

ˇ .Lˇ /; j �
ˇ .Lˇ /

�op
: (2.7)

Then the category mod.Sˇ / is polynomial highest weight. In this case, the purity assump-
tion (2) is proved using the isomorphism Yˇ ' BunC

ˇ
and the fact that BunC

ˇ
admits an affine

paving.

2.7. Standard modules and PBW bases
There is also an algebraic approach for standard modules over quiver Hecke alge-

bras, which works for symmetrizable generalized Cartan matrices as well.
Assume that g� is of finite type. A convex order on ˆC is a total order � such that

if ˛ � ˇ and ˛ C ˇ is a root, then ˛ � ˛ C ˇ � ˇ. For each positive root ˛, and any n 2 N, a
finitely generated Rn˛-module L is called semicuspidal if Res�;�.L/ ¤ 0 implies � is a sum
of roots� ˛ and� is a sum of roots� ˛. Semicuspidal modules form an abelian subcategory
in mod.Rn˛/ which is equivalent to mod.NHn/ in Example 2.6. In particular, it contains a
unique self-dual simple module Ln˛ . Let �n˛ be its projective cover inside this subcategory
of semicuspidal modules. Then�ın

˛ D Œn�Š�n˛ andLn˛ D v
n.n�1/

2 Lın
˛ . Recall that a Kostant

partition � is of the form .ˇ
m1

1 ; : : : ; ˇ
mk

k
/ with ˇ1 � � � � � ˇk . Set

�� D �m1ˇ1
ı � � � ı �mkˇk

; �� D Lm1ˇ1
ı � � � ı Lmkˇk

:

Let …ˇ be the set of Kostant partitions of ˇ, and equip it with the bilexicographic order.
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Theorem 2.15 ([13]). Assume that g� is of finite type.

(1) The category mod.Rˇ / is polynomial highest weight with ¹��º�2…ˇ
being the

standard modules, and ¹��º�2…ˇ
being the proper standard modules.

(2) For each � , the module �� has a unique simple quotient L� . The set ¹L�º�2…ˇ

is a complete collection of nonisomorphic self-dual simple graded Rˇ -modules.

Note that if the convex order on ˆC satisfies the property given in Example 2.2,
then the standard module �� here coincide with the geometrical one in (2.5).

Remark 2.16. Part (2) gives a new parametrization of simple Rˇ -modules. It generalizes
Zelevinsky’s parametrization of simple modules for affine Hecke algebras of type A in terms
of multi-segments.

For each choice of a reduced expression for the longest element w0 D si1 � � � siN in
the Weyl group, we have a convex order ˛1 � � � � � ˛N on ˆC with ˛k D si1 � � � sik�1

.˛ik /.
Lusztig [43] defined the PBW basis for UC

v as follows. The root vectors are
E˛k

WD Ti1 � � � Tik�1
.Eik / in UC

v , where Ti are certain braid group operators. The dual
root vectors are E�

˛ D .1 � v2/E˛ 2 AC
v . The PBW basis is ¹E� D E

.m1/

ˇ1
� � � E

.mk/

ˇk
j

� 2 …º, and the dual PBW basis for AC
v is ¹E�

� D vs� E
�m1

ˇ1
� � � E

�mk

ˇk
j � 2 …º, where

s� D
Pk

rD1 mr .mr � 1/=2 and… D
F

ˇ2QC …ˇ . Under the isomorphisms Œproj.R/� ' UC
v

and Œfmod.R/� ' AC
v , we have Œ�� � D E� , Œ�� � D E�

� . In particular, the homological prop-
erty (2.6) implies that the transfer matrix between the PBW basis and the canonical basis
is unitriangular with off-diagonal entries belong to vNŒv�. This confirms a conjecture of
Lusztig.

This theory has been extended to symmetric affine type by McNamara [49] and
Kleshchev–Muth [37]. For a real positive root ˛, the category of semicuspidal Rn˛-modules
is again equivalent to mod.NHn/. The new ingredient is a classification of semicuspidal rep-
resentations for the imaginary roots. Once these representations are constructed, one can
proceed as above to define �� , �� indexed by (generalized) Kostant partitions. They give
categorifications for the PBW basis and the dual PBW basis defined by Beck [3]. There is a
similar positivity on the coefficients of the transfer matrix.

An important difference in the affine case is that the category mod.Rˇ / is no more
polynomial highest weight, and its global dimension may be infinite. However, it has an
interesting monoidal subcategory Dˇ with nice properties. Namely, let Og be the affine Lie
algebra associated with a finite Lie algebra g. Let Ô CC be the subset of real roots ˛ C kı

such that ˛ 2 ˆC, k > 0. We can choose a preorder on the set Ô of affine roots such that
Ô CC � Ô

�ı . Let …C

ˇ
be the set of Kostant partitions of ˇ which are supported on Ô CC.

Then the subcategory Dˇ of mod.Rˇ / generated by L� for � 2 …C

ˇ
is a polynomial highest

weight category. In particular, it has finite global dimension. So the category of projective
objects in Dˇ and the derived category Db.Dˇ / have the same Grothendieck group. Put
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D D
L

ˇ2QC Dˇ . We have �
Db.D/

�
' Uv

�
nŒz�

�
: (2.8)

Example 2.17. For the Kronecker quiver in Example 2.3, the closure relation on the orbits
in Yˇ is compatible with the convex preorder ˛0 � ˛0 C ı � � � � � Zı � � � � � ˛1 C ı � ˛1.
We have an equivalence of categories Dˇ ' mod.Sˇ /, where Sˇ is the algebra in (2.7). We
have seen in Example 2.14 that this category is polynomial highest weight. The algebraic
standard modules again coincide with the geometric ones.

Remark 2.18. The algebra Sˇ is a semicuspidal algebra for the category Dˇ . The semicus-
pidal algebra for the imaginary part was studied by Klechshev–Muth [37] and Maksimau–
Minets [45].

2.8. Monoidal categorification of quantum cluster algebras
For a symmetric Kac–Moody algebra g and any element w in its Weyl group, Geiß–

Leclerc–Schröer [23] showed that the quantum unipotent coordinate ring Av.n.w// is a
quantum cluster algebra, where n.w/ D

L
˛2ˆC\w�1.ˆ�/ n˛ . A cluster algebra is a sub-

ring of the fraction field of a quantum torus, with some special elements called cluster
variables, which are grouped into some overlapping subsets called clusters. The clusters
are obtained from an initial one by a combinatorial procedure called mutations. A product
of elements inside the same cluster is called a cluster monomial. It was conjectured that the
cluster monomials in Av.n.w// all belong to the dual canonical basis, see Kimura [35]. This
conjecture was proved by Kang–Kashiwara–Kim–Oh [27] using a monoidal categorification
of Av.n.w// by modules over quiver Hecke algebras, see Kashiwara’s ICM talk [30] for a
nice survey on this subject.

A key ingredient in this construction is the study of products of real simple objects.
A simple Rˇ -module L is called real if L ı L is simple. It was shown in [26, 27] that if
either M or N is a real simple object, then HomR.M ı N; N ı M/ D kr, where
r W M ı N ! N ı M is a nonzero map given by a construction called renormalized
r-matrix. Moreover, the image of r is simple, isomorphic to the head of M ı N , and the
socle of N ı M (with grading ignored). In [27] it was shown that given the presence of
a quantum cluster structure on the Grothendieck ring of a monoidal category, how renor-
malized r-matrices reduce the existence of iterated mutations to the existence of one step
mutation.

Renormalized r-matrices naturally show up in other contexts, including finite-
dimensional representations of quantum affine algebras (which was studied before quiver
Hecke algebras), as well as in representations of p-adic groups, see, e.g., [38]. Recently,
Cautis–Williams [15] constructed renormalized r-matrices for perverse coherent sheaves on
affine Grassmannians, and used them to construct a monoidal categorification of a quantum
coordinate ring for bsl2.
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3. Coherent categorification of quantized loop algebras

3.1. K -theoretical Hall algebra
We have explained the categorifications of UC

v by perverse sheaves on the stack of
quiver representations, and its algebraic counterpart by modules over quiver Hecke algebras.
Now, we discuss a categorification of the quantized loop algebra via coherent sheaves.

Let � D .I; H/ be a quiver, g D g� and let n be the positive part in g. The loop
algebra nŒz˙1� (with z being a formal variable) is a Lie algebra with bracket Œxzm; yzn� D

Œx; y�zmCn for x; y 2 n.

Definition 3.1 (Drinfeld). The quantized enveloping algebra 0 QUC
v for nŒz˙1� is the

Q.v/-algebra generated byEi;n with i 2 I , n 2 Z, subject to the following defining relations:

(1) for i , j 2 I , we have .vaij z � w/Ei .z/Ej .w/ D .z � vaij w/Ej .z/Ei .w/,

(2) for i ¤ j , put l D 1 � aij , we have the Serre relation

Symz

lX
rD0

.�1/r
�

l
r

�
Ei .z1/ � � � Ei .zr /Ej .w/Ei .zrC1/ � � � Ei .zl / D 0:

Here z, w, z1; : : : ; zl are variables, Ei .z/ D
P

n2Z Ei;nz�n, the operator Symz is averaging
with respect to the commutator Œa; b�z D ab � zba.

Let QUC
v be the ZŒv˙1�-subalgebra of 0 QUC generated by the quantum divided powers

E
.r/
i;n with i 2 I , n 2 Z, r > 1.We explain now its relationshipwithK-theoretical Hall algebra.

Let N� be the quiver obtained from � by adding an arrow Nh W h00 ! h0 for each h 2 H .
For ˇ 2 QC, let NXˇ be the space of representations of N� of dimension ˇ. Then we have a
natural isomorphism NXˇ ' T �Xˇ . The action ofGˇ on NXˇ is Hamiltonian with the moment
map given by

�ˇ W NXˇ ! gˇ ; .xh; x Nh/h2H 7!

X
h2H

Œxh; x Nh�:

We impose C�-actions on NXˇ and on gˇ by dilations of weight 1 and weight 2, respec-
tively. Set Gc

ˇ
D Gˇ � C�. Then �ˇ is Gc

ˇ
-equivariant. The cotangent dg-stack of Xˇ is the

quotient stack
T �Xˇ D

�
NXˇ �

R
gˇ

¹0º=Gc
ˇ

�
:

Here NXˇ �R
gˇ

¹0º is the derived fiber of �ˇ at zero. In concrete terms, NXˇ �R
gˇ

¹0º D

Spec.Aˇ /, where Aˇ D S. NXˇ / ˝ S.gˇ Œ1�h2i/ is a graded dg-algebra with the differen-
tial given by the contraction by �ˇ 2 S2. NXˇ / ˝ g�

ˇ
h�2i. Here h1i is the degree shift for the

internal grading induced by the C�-action.
Let Db Coh.T �Xˇ / be the derived category of coherent sheaves on the dg-stack

T �Xˇ . Equivalently, it is the derived category of graded Aˇ Ì Gˇ -modules whose coho-
mology is finitely generated over H 0.Aˇ /. There is a convolution product on

Db Coh.T �X/ D

M
ˇ2QC

Db Coh.T �Xˇ /;
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so that it becomes a graded monoidal triangulated category. The ZŒv˙1�-algebra
ŒDb Coh.T �X/� is called the K-theoretical Hall algebra. We also consider a triangulated
monoidal subcategory Db Coh.T �X/nil consisting of complexes with cohomology sup-
ported on a closed substack of nilpotent elements.

Example 3.2. Consider� D �, the quiver for sl2. Then nŒz˙1� ' CŒz˙1�. WriteQC D N˛.
Since � has no arrow, we have Xr˛ D NXr˛ D ¹0º and T �Xr˛ D Œ¹0º �R

glr
¹0º=GLc

r �. Hence
Ar˛ is the exterior algebra S.glr Œ1�h2i/ with zero differential. By Koszul duality, we have

Db Coh.T �Xr˛/ ' Db Coh
��

glr=GLc
r

��
:

For each irreducible GLr -representation V.�/ of highest weight �, set O.�/r˛ D

Oglr
˝ V.�/. Let !1; : : : ; !r be the fundamental weights. Then O.n!r /r˛ with r > 1

and n 2 Z generate
L

r>0 Db Coh.Œglr= GLc
r �/ as a monoidal triangulated category. We

have an isomorphism of ZŒv˙1�-algebrasM
r>0

�
Db Coh

��
glr=GLc

r

���
' QUC

v ;
�
O.n!r /r˛

�
7! E.r/

˛;n:

Now, assume that � is an arbitrary quiver with no edge loop. Then for each i 2 I ,
we have Xr˛i

D Œ¹0º=GLr � and the vector bundles O.n!r /r˛i
2 Coh.T �Xr˛i

/ as defined
above. We have the following theorem.

Theorem 3.3 ([66]). There is a unique surjective ZŒv˙1�-algebra homomorphism

� W QUC
v !

�
Db Coh.T �X/nil

�
; E

.r/
i;n 7!

�
O.n!r /r˛i

�
:

Moreover, � is an isomorphism if � is of finite or affine type except A
.1/
1 . In particular,

Db Coh.T �X/nil gives a categorification of QUC
v .

Remark 3.4. K-theoretical Hall algebras are constructed more generally for quivers with
potential by Padurariu [51] using a category of singularities. Conjecturally, they are isomor-
phic to the positive part of Okounkov–Smirnov quantum affine algebras.

3.2. Equivalence of constructible and coherent categorifications
If g is of finite type, its affine Lie algebra Og is a central extension of the loop algebra

gŒz˙1�. The Kac–Moody positive part On and the loop algebra nŒz˙1� shares a common Lie
subalgebra, which is nŒz�.

Recall that for quiver Hecke algebras Rˇ of type Og, we have introduced the category
D which categorifies Uv.nŒz�/, see (2.8). On the other side, QUC

v is categorified by coherent
sheaves on T �X, andUv.nŒz�/ is the subalgebra generated by divided powersE

.r/
i;n for i 2 I ,

n > 0, r > 1. Let Db Coh.T �X/C be the triangulated subcategory of Db Coh.T �X/ gen-
erated by O.n!r /r˛i

for i 2 I , n > 0, r > 1. It also categorifies Uv.nŒz�/. It is natural to
ask whether these two categorifications are equivalent.
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Question 3.5. Is there an equivalence of triangulated graded monoidal categories

Db.D/ ' Db Coh.T �X/C

which induces the identity on the Grothendieck group?

In [61], a version of such an equivalence was given for g D sl2. On the quiver
Hecke side, we consider the category Dˇ attached to the Kronecker quiver in Example 2.17.
The simple objects in this category are parametrized by the finite set ƒˇ in (2.3). For ˇ D

r˛1 C nı, let Db Coh.Œglr=GLc
r �/ˇ be the triangulated subcategory of Db Coh.Œglr=GLc

r �/

generated by O.�/r˛ for � 2 ƒˇ , see Example 3.2. We conjecture that in this case there is
an equivalence of graded monoidal categories

Db.Dˇ / ' Db Coh
��

glr=GLc
r

��
ˇ

:

Note that both categories can be viewed as categories over glr==GLr . The fiber at zero on the
coherent side isDb Coh.ŒNr=GLr �/ˇ , whereNr � glr is the nilpotent cone. It has a perverse
coherent t -structure defined by Arinkin–Berzukavnikov [2], whose heart PCoh.ŒNr=GLc

r �/ˇ

is the category of equivariant perverse coherent sheaves onNr . The fiber at zero on the quiver
Hecke side is a subcategory D

]

ˇ
of Dˇ with the same simple objects as in Dˇ .

Theorem 3.6 ([61]). For ˇ D r˛1 C nı with r > 1, there is an equivalence of graded trian-
gulated categories2

Dperf.D
]

ˇ
/ ' Dperf Coh

��
Nr=GLc

r

��
ˇ

;

which induces an equivalence of graded abelian categories

D
]

ˇ
' PCoh

��
Nr=GLc

r

��
ˇ

:

Further, this equivalence is compatible with the proper stratified structures on both sides.

The proof of this theorem uses a derived equivalence between Dˇ and the category
of constructible sheaves on the stack of preprojective representations Yˇ ' BunC

ˇ
in Exam-

ple 2.3, the derived geometric Satake equivalence between Db Coh.Œglr= GLc
r �/ and the

equivariant derived category of constructible sheaves on the affine Grassmannian for GLr

established by Bezrukavnikov–Finkelberg [8], and a version of Radon transform between
BunC

ˇ
and the affine Grassmannian.

Remark 3.7. This theorem has a similar flavor as the equivalence between two categorifi-
cations of affine Hecke algebras established by Bezrukavnikov [6].

Remark 3.8. For w D .s0s1/N in the affine Weyl group of bsl2, by [27] the quantum cluster
algebra Av.w/ has a monoidal categorification by a subcategory in D . Cautis–Williams [15]
constructed another monoidal categorification using equivariant perverse coherent sheaves
on the affine Grassmannian for GLN . The theorem above combined with a functor of
Finkelberg–Fujita [22] yields a faithful functor between these two categorifications, which is
expected to be an equivalence.

2 Here “perf” refers to the subcategory of perfect complexes.
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4. Categorical representations and applications

4.1. Categorical representations
The categorified quantum group is a monoidal k-linear 2-category U with objects

being elements in the weight lattice P , the set of 1-morphisms generated by Ei , Fi for i 2 I ,
and 2-morphisms generated by x 2 End.Ei /, � 2 End.Ei Ej /, �i W 1 ! Fi Ei , "i W Ei Fi ! 1,
subject to a list of relations. Khovanov–Lauda [34] and Rouquier [53] independently intro-
duced a definition of U, with different sets of generators and relations for 2-morphisms.
Brundan [11] proved that they are equivalent.

A categorical U-representation is a 2-functor from U to the 2-category of k-linear
categories. In concrete terms, it consists of a collection of k-linear categories ¹C�º�2P

equipped with adjoint functors Ei W C� ! C�C˛i
, Fi W C�C˛i

! C�, and natural trans-
formations x, � , "i , �i satisfying the defining relations in U. In this case, we also say that
C D

L
�2P C� carries a categorical g-action.
For g of type A or affine type A, a categorical g-action on an abelian and Artinian

category C is equivalent to the following data (see [53]):

• a decomposition C D
L

�2P C�,

• a pair of biadjoint endofunctors E , F on C ,

• natural transformations X 2 End.E/, T 2 End.E2/,

such that X acts on E , F with eigenvalues in I , the generalized eigenfunctors Ei , Fi for
i 2 I yield a g-action on the Grothendieck group ŒC � such that ŒC�� is the �-weight space,
and X , T satisfy defining relations for affine Hecke algebras.

Many representation categories carrie such actions, including those of symmetric
groups, cyclotomic Hecke algebras, the category O for gln, etc. By Chuang–Rouquier [17],
the existence of such a categorical action implies that the categories C� for � lying in the
same Weyl group orbit are derived equivalent. They also constructed a crystal structure on
the set of simple objets in C . In [58], it is proved that the classes of these simple objects form
a perfect basis in the Grothendieck group, which has nice unicity properties.

4.2. Minimal categorification
Let g be any symmetrizable Kac–Moody algebra. For a dominant weight � 2 P C,

the irreducible g-representation of highest weight � has an integral form Vv.�/, which is a
quotient of UC

v . Let V�
v.�/ be the dual form.

Definition 4.1. The cyclotomic quiver Hecke algebra R�
ˇ
is the Z-graded algebra defined as

the quotient of Rˇ by the two-sided ideal generated by
P

�2I ˇ x
��˛�1
1 e� .

Kang–Kashiwara [25] proved that Vv.�/ is categorified by C� D proj.R�
ˇ

/ for
� D � � ˇ, with Fi W proj.R�

ˇ
/ ! proj.R�

ˇC˛i
/ given by R�

ˇC˛i
eˇ;i ˝R�

ˇ
�, and the adjoint

functor given by Ei .�/ D eˇ;i .�/ viewed as left R�
ˇ
-modules. The 2-morphisms x, � are

given by multiplying with the same named generators in Rˇ . The representation V�
v.�/ is
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categorified by
L

ˇ2QC fmod.R�
ˇ

/. This result generalizes Ariki’s [1] categorification theo-
rem for cyclotomic Hecke algebras. Rouquier [53] proved that the categorification of Vv.�/

by k-linear additive categories is unique.

4.3. Applications to representations of rational double affine Hecke algebras
Cyclotomic rational double affine Hecke algebra (DCRDAHA) is a special family

of symplectic reflection algebras introduced by Etingof–Ginzburg [21]. They are associated
with complex reflection groups G.l; 1; n/ and some parameters. They have a category O,
which is a highest weight cover of the category of finitely generated modules over cyclo-
tomic Hecke algebras. This representation category can be viewed as a generalization of the
q-Schur algebra, and provides an important example of category O associated with quan-
tization of symplectic resolutions. The Grothendieck group of these category O (summed
over n) can be naturally identified with the Fock space Fv of level l . The latter is a combina-
torial model which gives a concrete realization of integrable bsle-representations. Rouquier
[54] conjectured that the classes of simple modules in O correspond to the dual canoni-
cal basis in Fv . This yields character formulae for these simple modules in terms of affine
Kazhdan–Lusztig polynomials.

In [58], a categorical bsle-action on O was constructed using the induction and
restriction functors defined by Bezukavnikov–Etingof [7]. Varagnolo–Vasserot [64] con-
structed a categorical bsle-action on an affine type A parabolic category O, and conjectured
it should be equivalent to that for CRDAHA. This conjecture was proved independently
by Losev [40] and Rouquier–Shan–Varagnolo–Vasserot [56]. As a consequence, Rouquier’s
conjecture was confirmed. Further, by [59], the parabolic affine category O admits a Koszul
grading. By the equivalence above, this transfers to a Koszul grading on the category O of
CRDAHA. Moreover, its Koszul dual is the category O of another CRDAHA. This confirms
a conjecture of Chuang–Miyachi [16]. The Koszul duality categorifies the level–rank duality
on the Fock space.

On the Fock space, there is also an interesting Heisenberg algebra action. A cate-
gorification of this action was constructed in [62] and it was used to prove a conjecture of
Etingof [20] on the number of finite dimensional representations of these CRDAHA.

4.4. Applications to representations of finite reductive groups
Categorical actions are also constructed on the category of unipotent representa-

tions of classical finite algebraic groups, over a field of characteristic ` different from the
defining characteristic. For G D GLn.Fq/, this was done by Chuang–Rouquier [17]. For
finite unitary groups and finite classical groups of type B , C , it was constructed by Dudas–
Varagnolo–Vasserot [18, 19]. In all these cases, the functors E and F are given by Harish-
Chandra restriction and induction functors. The underlying Grothendieck group is a level
one Fock space in the case of GLn.Fq/, and some explicit level 2 Fock spaces for the other
classical types. As a consequence, Broué’s abelian defect group conjecture is proved for
unipotent `-blocks of these groups at linear prime `.
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4.5. Applications to the study of center and cohomology
Let C be a graded k-linear category. Denote the identity functor by 1C . The center

ofC is the graded k-algebraZ�.C/ D End.1C /. Given a pair of biadjoint endofunctors E;F

and x 2 End.E/, Bernstein [5] introduced the following operator:

ZE.x/ W Z�.C/ ! Z�.C/;

z 7! . 1C

� // F 1C E
F zx // F 1C E

"0
// 1C /;

where � and "0 are the unit and counit in the biadjunction.
WhenC carries a categorical g-action, it is equipped with a family of biadjoint func-

tors Ei ,Fi and an endomorphism x 2 End.Ei / ' End.Fi /
op. So we get a family of operators

xC

i;r D ZFi
.xr /, x�

i;r D ZEi
.xr / for i 2 I , r > 0. By Beliakova–Habiro–Lauda–Webster [4]

and Shan–Varagnolo–Vasserot [60], these operators define an action of the current algebra
Lg on Z�.C/. If g is of type ADE, then Lg D gŒz� and the operators xC

i;r , x�
i;r correspond

to Ei ˝ zr , Fi ˝ zr , respectively.
This construction applied to the minimal categorification in Section 4.2 allows to

establish an isomorphism between the center of cyclotomic quiver Hecke algebras and the
singular cohomology of quiver varieties. Quiver varieties are a family of complex symplectic
varieties M�

ˇ
introduced by Nakajima [50]. Here � 2 P C, ˇ 2 QC. Nakajima defined a g-

action on the sum over ˇ of the middle cohomology of M�
ˇ
with coefficient in k. Varagnolo

[63] extended this to an Lg-action on the total cohomology ˚ˇH�.M�
ˇ

/.

Theorem 4.2 ([4,60]). Assume g is of type ADE. Fix � 2 P C. There is an isomorphism of
Lg-modules M

ˇ2QC

Z�.R�
ˇ / '

M
ˇ2QC

H�.M�
ˇ /; (4.1)

which respects QC-grading and intertwines the product on the center and the cup product
on the cohomology.

This isomorphism is canonical in the following sense. It is not hard to show that
the center of Rˇ is canonically isomorphic to H�.Œpt =Gˇ �/. The quotient map Rˇ ! R�

ˇ

induces a map on the center �a W Z�.Rˇ / ! Z�.R�
ˇ

/, whichmay not be surjective in general.
On the geometrical side, the quiver variety M�

ˇ
admits an open embedding into Œpt =Gˇ �.

The pull-back gives the so-called Kirwan map �g W H�.Œpt=Gˇ �/ ! H�.M�
ˇ

/. McGerty and
Nevins [47] proved that �g is surjective for any quiver, including those with edge loops. The
isomorphism (4.1) fits into the following diagram:

Z�.Rˇ /
� //

�a

��

H�.Œpt =Gˇ �/

�g

��
Z�.R�

ˇ
/

(4.1) // H�.M�
ˇ

/:

Remark 4.3. Quiver varieties carry a symplectic G�-action and an additional C�-action
rescaling the symplectic form. The theorem admits a G�-equivariant version by consid-
ering cyclotomic quiver Hecke algebras defined over the ring H �

G�
.pt/. However, adding
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C�-equivariance on the geometrical side changes the Lg-action to a Yangian action. It is
not known how to realize the Yangian action on the center side.

Remark 4.4. There is also a similar isomorphism between the cocenter Tr�.R�
ˇ

/ of R�
ˇ
and

the Borel–Moore homology of a Langrangian subvariety inM�
ˇ
. Moreover, in [4] it is proved

that for g of type ADE, the cocenter of the 2-category U is an idempotent version of Lg.
For general type of Kac–Moody algebra g, it is proved in [60] that Tr�.R�/ D ˚ˇ Tr�.R�

ˇ
/

is always a cyclic gŒz�-module.

There is an interesting variation of this result for the Jordan quiver � dd .
In this case, the quiver variety Mr

n is the Gieseker moduli space parametrizing
framed rank r torsion-free sheaves on P 2 with the second Chern class equal to n. It car-
ries an action of GLr � GL2, where GLr acts on the framing and GL2 acts on P 2. Let
Gr DGLr �C�, withC� D diag.t; t�1/ in GL2. Let k DHGr .pt/ D kŒ„�Œy1; : : : ; yr �Sr and
k0 be its fraction field. Maulik–Okounkov [46] and Schiffmann–Vasserot [57] independently
proved that for fixed r , there is an affineW-algebra action on the (localized) equivariant coho-
mology Mr D ˚nH�

Gr
.Mr

n/ ˝k k0, confirming a version of the AGT conjecture concerning
pure N D 2 gauge theory for the group SUr . The quiver Hecke algebra Rn associated with
the Jordan quiver is the degenerate affine Hecke algebra over the ring k. Define its cyclo-
tomic quotient Rr

n D Rn=.x1 � y1/ � � � .x1 � yr /. The quotient map induces a morphism
�r

n W Z�.Rn/ ! Z�.Rr
n/, which is only surjective after localization.

Theorem 4.5 ([60]). Fix r > 1. There is an action of the affine W-algebra onM
n2N

Z�.Rr
n/ ˝k k0

constructed using Bernstein operators. The module obtained is isomorphic to Mr . Moreover,
there is a ring isomorphism

im.�r
n/ ' H�

Gr
.Mr

n/; 8n 2 N:

In particular, since the ring im.�r
n/ has a presentation by generators and relations

given by Brundan [10], this theorem gives an explicit description for the ring structure on
H�

Gr
.Mr

n/. It also generalizes the results of Göttsche–Soergel [24] and Vasserot [67] for
Hilbert scheme of n points on C2, which is M1

n.

Remark 4.6. A similar description for the equivariant cohomology of Calogero–Moser
spaces was established in [9].

Remark 4.7. S. Cautis, A. Lauda, A. Licata, and J. Sussan [14] showed that the cocenter of
Khovanov’s Heisenberg category is a quotient of the W -algebra above.
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