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Abstract

The theory of theta correspondence, initiated by R. Howe, provides a powerful method of
constructing irreducible admissible representations of classical groups over local fields.
For archimedean local fields, a principle of great importance is the orbit method intro-
duced by A. A. Kirillov, and it seeks to describe irreducible unitary representations of a
Lie group by its coadjoint orbits. In this article, we examine implications of Howe’s theory
for the orbit method and unitary representation theory, with a focus on a recent work of
Barbasch, Ma, and the authors on the construction and classification of special unipotent
representations of real classical groups (in the sense of Arthur and Barbasch-Vogan).
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1. Theta lifting: the basic construction

Classical invariant theory, as expounded by H. Weyl [40], is the study of the polyno-
mial invariants for an arbitrary number of (contravariant or covariant) variables for a standard
classical group action. A related theme is the study of the isotypic decomposition of the
full tensor algebra for such an action. It is well known that Weyl’s approach to classical
invariant theory yields in particular a full description of all irreducible rational representa-
tions of a classical group. See [16] and [11, 18] for a modern treatment. The theory of theta
correspondences, initiated by R. Howe in the 1970s, is a transcendental version and a pro-
found generalization of classical invariant theory [14, 17]. The theory includes both global
and local aspects, and has been investigated extensively and by many authors. We will focus
on the archimedean local aspect and will thus be concerned with admissible representations
of classical Lie groups.

Let W be a finite-dimensional real symplectic vector space with symplectic form
h�; �iW W W �W ! R. Denote by � the anti-involution of EndR.W / specified by

hx � u; viW D
˝
u; x�

� v
˛
W
; u; v 2 W; x 2 EndR.W /:

Then the symplectic group is Sp.W /D ¹x 2 EndR.W / j x�xD 1º. Let .A;A0/ be a pair of � -
stable semisimple R-subalgebras of EndR.W / that are mutual centralizers of each other. Put
G WDA\ Sp.W / andG0 WDA0 \ Sp.W /, which are closed subgroups of Sp.W /. Following
Howe [14], the pair of groups .G;G0/ is called a reductive dual pair in Sp.W /. The dual pair
.G;G0/ is said to be irreducible if the algebra A (or equivalently, A0) is either simple or the
product of two simple algebras that are exchanged by � .

Every reductive dual pair is uniquely a product of irreducible dual pairs, and com-
plete classification of irreducible reductive dual pairs has been given by Howe [14, 28], as
described in what follows. Let .D; �0/ be one of the following seven pairs so that D is an
R-algebra and �0 is an anti-involution of D:

.R; identity map/; .C; identity map/; .C; /; .H; /;�
R � R; .x; y/ 7! .y; x/

�
;

�
C � C; .x; y/ 7! .y; x/

�
;

�
H � H; .x; y/ 7! . Ny; Nx/

�
;

where H denotes the algebra of Hamiltonian quaternions, and indicates the complex or
quaternionic conjugation.

Let �D ˙1. Let V be an �-Hermitian right D-module, namely a free right D-module
of finite rank, equipped with a nondegenerate R-bilinear map

h�; �iV W V � V ! D

such that

hua; viV D hu; viV a; hu; viV D �
�
hv; uiV

��0
; for all u; v 2 V; a 2 D:

This R-bilinear map is called the �-Hermitian form on V . The isometry group G.V / is a
classical Lie group, namely, a real orthogonal group, a real symplectic group, a complex
orthogonal group, a complex symplectic group, a unitary group, a quaternionic symplectic
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group, a quaternionic orthogonal group, a real general linear group, a complex general linear
group, or a quaternionic general linear group.

Let V 0 be an �0-Hermitian right D-module, equipped with the �0-Hermitian form
h�; �iV 0 , where ��0 D �1. LetW WD HomD.V;V

0/, equipped with the symplectic form h�; �iW

given by
hT; SiW WD TrR.T

�S/; T; S 2 HomD.V; V
0/,

where TrR.T
�S/ is the trace of T �S as a R-linear transformation, and T � 2 HomD.V

0; V /

is the adjoint of T defined by˝
T v; v0

˛
V 0 D

˝
v; T �v0

˛
V
; for all v 2 V , v0 2 V 0. (1.1)

There is a natural homomorphism: G.V / � G.V 0/ ! Sp.W / given by

.g; g0/ � T D g0Tg�1 for T 2 HomD.V; V
0/, g 2 G, g0 2 G0:

If both V and V 0 are nonzero, then G.V / and G.V 0/ are both identified with subgroups of
Sp.W /, and .G.V /;G.V 0// is an irreducible reductive dual pair in Sp.W /. Moreover, all
irreducible reductive dual pairs arise in this way.

Now we return to the general setting so that .G; G0/ is an arbitrary reductive dual
pair in Sp.W /. Write H.W / WD W � R for the Heisenberg group with group multiplication

.u; t/ � .u0; t 0/ D
�
uC u0; t C t 0 C

˝
u; u0

˛
W

�
; u; u0

2 W; t; t 0 2 R:

Its center is obviously identified with R. Fix a nontrivial unitary character  W R ! C�.
Recall the Stone–von Neumann Theorem which asserts that up to isomorphism, there exists
a unique irreducible unitary representation of H.W / with central character  .

Let QG and QG0 be a pair of reductive Lie groups together with surjective Lie group
homomorphisms QG ! G and QG0 ! G0. The group QG � QG0 acts on the Heisenberg group
H.W / as group automorphisms through its obvious action onW . Using this action, we define
the Jacobi group

J WD . QG � QG0/ Ë H.W /:

Suppose that J has a unitary representation b! whose restriction b!jH.W / to H.W / is
irreducible with central character  . All such representations, if they exist, are isomorphic
to each other up to twisting by unitary characters. We fix one such b! and write ! for the
space of smooth vectors of b!jH.W /, which is J -stable and is a smooth representation of J .
We will refer to ! as a smooth oscillator representation.

Remark. A typical pair . QG; QG0/ is obtained by taking the inverse image of .G;G0/ in eSp.W /,
where eSp.W / is the real metaplectic group, namely the unique double cover of Sp.W / that
is nonsplit whenever W is nonzero. It is well known that smooth oscillator representations
exist in this setting [14,39]. For the related issue of splittings, see [23].

Let � be a Casselman–Wallach representation of QG, whose contragredient rep-
resentation is denoted by �_. (We refer the reader to [38, Chapter 11] for generalities on
Casselman–Wallach representations.) The full theta lift of � is defined to be

‚
QG0

QG
.�/ WD .!b̋�_/ QG ;
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which is a Casselman–Wallach representation of QG0. Here and henceforth, b̋ indicates the
completed projective tensor product, and a subscript group indicates the Hausdorff coin-
variant space. The theta lift � QG0

QG
.�/ of � is defined to be the largest semisimple quotient of

‚
QG0

QG
.�/. The following result is one formulation of Howe’s duality theorem.

Theorem 1.1 ([17]). Suppose that � is irreducible. Then � QG0

QG
.�/ is irreducible or zero.

By reversing the role of QG and QG0, Theorem 1.1 implies that the theta lift is injective
in the following sense: for any irreducible Casselman–Wallach representations �1 and �2

of QG, if � QG0

QG
.�1/ Š �

QG0

QG
.�2/ ¤ ¹0º, then �1 Š �2.

2. Theta lifting via matrix coefficient integrals and

preservation of unitarity

Let V be an �-Hermitian right D-module as in Section 1. Fix a maximal compact
subgroupKV of G.V /. Recall that an element g 2 G.V / is said to be hyperbolic if the linear
operator g ˝ 1 W V ˝R C ! V ˝R C is diagonalizable and all its eigenvalues are positive
real numbers. Denote by ‰V the function of G.V / satisfying the following conditions:

• it is both left and right KV -invariant;

• for all hyperbolic elements g 2 G.V /,

‰V .g/ D

Y
a

�
1C a

2

�� 1
2

;

where a runs over all eigenvalues of g ˝ 1 W V ˝R C ! V ˝R C, counted with
multiplicities.

Note that 0 < ‰V .g/ 6 1 for all g 2 G.V /.
Denote by „V the bi-KV -invariant Harish-Chandra’s „ function on G.V /. (For a

convenient reference, see [37].) Put

�V WD rankD.V / �
2 dimR¹t 2 D j t�0 D �tº

dimR.D/
:

If G.V / is noncompact, then �V is the smallest real number such that

‰
�V

V �„�1
V is bounded:

Given � 2 R, a positive function‰ on G.V / is said to be �-bounded if there is a real number
r > 0 such that

‰.kak0/ 6
�
log

�
3C TrR.a/

��r
�‰�

V .a/ �„V .a/

for all k; k0 2 KV and all hyperbolic elements a 2 G.V /.
In the rest of this section, we assume that G D G.V /, G0 D G.V 0/,

W D HomD.V; V
0/, and both V and V 0 are nonzero so that .G; G0/ is an irreducible dual

pair in Sp.W /. Let QG ! G, QG0 ! G0, J , b!, and ! be as in Section 1.
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Definition 2.1. A Casselman–Wallach representation � of QG is said to be �-bounded if there
exist a �-bounded positive function‰ onG and continuous seminorms j � j� and j � j�_ on �
and �_, respectively, such thatˇ̌

h Qg � u; vi
ˇ̌

6 ‰.g/ � juj� � jvj�_

for all u 2 � , v 2 �_, and Qg 2 QG, where g denotes the image of Qg under the homomorphism
QG ! G.

For a complex vector space E, denote by NE its complex conjugate. Thus NE is a
complex vector space equipped with a conjugate linear isomorphism E ! NE, v 7! Nv. In the
setting of Section 1, N! is a smooth representation of J in the obvious way, and the inner
product on b! induces a J -invariant continuous bilinear form

h�; �i W ! � N! ! C:

WriteZ for the kernel of the homomorphism QG!G, and denote by�Z the unitary character
of Z by which Z acts on !.

Let � be a Casselman–Wallach representation of QG. Assume that � is genuine,
namely Z acts on � by the character �Z .

Definition 2.2. The Casselman–Wallach representation � of QG is convergent for‚ QG0

QG
if it is

�-bounded for some � > �V � rankD.V
0/.

Suppose that � is convergent for ‚ QG0

QG
. Then the integral

! � �_
� N! � � ! C;

.�; v0; �0; v/ 7!

Z
G

˝
Qg � �; �0

˛
�
˝
Qg � v0; v

˛
dg;

(2.1)

is absolutely convergent [6] and defines a continuous multilinear map, where dg is a fixed
Haar measure onG, and Qg 2 QG is an element whose image under the homomorphism QG !G

equals g.
The map (2.1) yields a continuous bilinear map

.!b̋�_/ � . N!b̋�/ ! C: (2.2)

Define
N�

QG0

QG
.�/ WD

!b̋�_

the left kernel of (2.2)
: (2.3)

This is a quotient of ‚ QG0

QG
.�/, and hence a Casselman–Wallach representation of QG0.

Remark. The idea of studying theta lifting by matrix coefficient integrals, as in (2.3), first
appeared in Li’s work [25,26].

Definition 2.3. The Casselman–Wallach representation � of QG is overconvergent for‚ QG0

QG
if

it is �-bounded for some � > �ı
V � rankD.V

0/, where

�ı
V WD

8̂̂<̂
:̂
�V C 1; if G is a real or complex odd orthogonal groupI

�V C
1
2
; if G is a quaternionic symplectic or quaternionic orthogonal groupI

�V ; otherwise:
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The idea that one could produce interesting sets of unitary representations from
theta lifting is due to Howe [15]. The following result gives a sufficient condition for the
preservation of unitarity (see [12,13,25,26] for some earlier results along the same direction).

Theorem 2.4 ([6]). Assume that rankD.V
0/ > �ı

V , and � is overconvergent for ‚ QG0

QG
. If � is

unitarizable, then so is N�
QG0

QG
.�/.

Remark. Given that N�
QG0

QG
.�/ is unitarizable, it is clearly a semisimple quotient of‚ QG0

QG
.�/. If,

in addition, � is irreducible and N�
QG0

QG
.�/¤ ¹0º, then the fundamental result of Howe implies

that � QG0

QG
.�/ D N�

QG0

QG
.�/ and is irreducible.

Conjecture 2.5. Suppose that � is irreducible and convergent for ‚ QG0

QG
. Then � QG0

QG
.�/ D

N�
QG0

QG
.�/ as quotients of ‚ QG0

QG
.�/.

Remark. When � is not convergent for ‚ QG0

QG
, by the doubling method and by taking the

leading coefficient of the local zeta integral ([32] and [24, Section 3]), we may still define a
continuous bilinear map as in (2.2), and therefore N�

QG0

QG
.�/. We expect that the statement of

Conjecture 2.5 remains true for any irreducible � , whether or not it is convergent for ‚ QG0

QG
.

It will be interesting to establish a version of Theorem 2.4 in this more general setting.

3. Algebraic theta lifting and bound via moment maps

We continue with the notation of Section 2, and further assume that the homomor-
phisms QG ! G and QG0 ! G0 are finite fold covering maps. We fix a choice of maximal
compact subgroupsK of G andK 0 of G0, compatible with a given choice of maximal com-
pact subgroup U of Sp.W /. Let � � ! be the Harish-Chandra module associated to U ,
which is naturally a .g � g0; QK � QK 0/-module. Here and as usual, g and g0 denote the com-
plexified Lie algebras of G and G0, respectively, and QK � QG and QK 0 � QG0 are respectively
the preimages of K and K 0.

Let … be a .g; QK/-module of finite length, whose Harish-Chandra dual is denoted
by …_. The (algebraic) full theta lift of … is defined to be

‚V 0

V .…/ WD .�˝…_/g; QK (the coinvariant space).

The .g0; QK 0/-module ‚V 0

V .…/ is of finite length [17].
We will be concerned with the so-called associated cycles of ‚V 0

V .…/.

3.1. The associated cycle map
We recall basic notions from the theory of associated varieties [35]. The theory is a

key part of Vogan’s formulation of the orbit method for reductive Lie groups [34,36].
Write VC WD V ˝R C, which is a right D ˝R C-module. The R-bilinear map h�; �iV W

V � V ! D extends to a C-bilinear map h�; �iVC W VC � VC ! D ˝R C. Write GC for the
isometry group of .VC; h�; �iVC /, which is a complexification of G. Write KC and QKC for
the complexifications of the compact groups K and QK, respectively. The space V 0

C and the
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groupsG0
C ,K 0

C , and QK 0
C are similarly defined. We identify g with its dual space g� by using

the trace form

g � g ! C; .x; y/ 7! the trace of the C-linear endomorphism xy W VC ! VC:

Likewise, g0 is identified with g0�.
Let NilGC .g/ be the set of nilpotent GC-orbits in g. Suppose that O 2 NilGC .g/.

We say that a finite length .g; QK/-module … is O-bounded if the associated variety of the
annihilator ideal in U.g/ (the universal enveloping algebra of g) is contained in the Zariski
closure O of O. Denote by

g D k ˚ p

the complexified Cartan decomposition fixed by our choice of the maximal compact sub-
group K of G, and by NilKC .p/ the set of nilpotent KC-orbits in p. It follows from [34,

Theorem 8.4] that… is O-bounded if and only if its associated variety AV.…/ is contained in
O \ p. Let MO.g; QK/ denote the category of O-bounded finite length .g; QK/-modules, and
write KO.g; QK/ for its Grothendieck group.

Under the adjoint action of KC , the complex variety O \ p is a union of finitely
many orbits, each of dimension dimC O

2
. For any KC-orbit O � O \ p, let KO. QKC/ denote

the Grothendieck group of the category of QKC-equivariant algebraic vector bundles on O ,
and KC

O .
QKC/ the submonoid generated by the QKC-equivariant algebraic vector bundles.

Taking the isotropy representation at a point X 2 O yields an identification

KO. QKC/ D R
�
. QKC/X

�
;

where the right-hand side denotes the Grothendieck group of the category of algebraic rep-
resentations of the stabilizer group . QKC/X .

Put
KO. QKC/ WD

M
O is a KC -orbit in O \ p

KO. QKC/

and
KC

O
. QKC/ WD

M
O is a KC -orbit in O \ p

KC
O .

QKC/:

There is a partial order � on KO. QKC/ defined by

E1 � E2 , E2 � E1 2 KC

O
. QKC/; E1;E2 2 KO. QKC/:

According to Vogan [34, Theorem 2.13], we have a canonical homomorphism, called
the associated cycle map:

ACO W KO.g; QK/ ! KO. QKC/:

For a .g; QK/-module of finite length…which is O-bounded, we call ACO.…/ the associated
cycle of …. This is a fundamental invariant attached to ….
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3.2. The moment maps
Put W D HomD˝RC.VC;V

0
C/DW ˝R C. Recall we have the moment maps [10,22]

g W
Moo M0

// g0

that are given by
M.�/ D ��� and M0.�/ D ���:

Here �� denotes the adjoint map as in (1.1).
As in [6, Section 3], we may find “Cartan transforms” L on VC , L0 on V 0

C , and L

on W which will induce compatible Cartan involutions on G, G0, and Sp.W /, respectively.
Then KC D GL

C (the centralizer of L) and K 0
C D .G0

C/
L0 .

We decompose
W D X ˚ Y (3.1)

where X and Y are
p

�1 and �
p

�1 eigenspaces of L, respectively. We have the following
two algebraic maps [30]:

p X
MDMjXoo

M 0DM0jX // p0;

��� �
�oo � // ���:

These two maps M and M 0 are also called the moment maps. They are both KC � K 0
C-

equivariant. HereK 0
C acts trivially on p,KC acts trivially on p0, and all the other actions are

the obvious ones.
Put

Wı
WD

®
� 2 W j the image of �� is nondegenerate with respect to h�; �iVC

¯
and

Xı
WD X \ Wı:

Lemma 3.1 ([6]). Let O 0 be a K 0
C-orbit in p0. Suppose that O 0 is contained in the image of

the moment map M 0. Then the set

.M 0/�1.O 0/ \ Xı (3.2)

is a singleKC �K 0
C-orbit. Moreover, for every element � in .M 0/�1.O 0/\ Xı, there is an

exact sequence of algebraic groups,

1 ! .KC/� !
�
KC �K 0

C

�
�

the projection to the second factor
�������������������!

�
K 0

C

�
e0 ! 1;

where e0 WD M 0.�/ 2 O 0, and a subscript element indicates the stabilizer group of the ele-
ment.

In the notation of Lemma 3.1, write

r.O 0/ WD the image of the set (3.2) under the moment map M ,

which is a KC-orbit in p. This is called the descent of O 0. It is an element of NilKC .p/ if
O 0 2 NilK0

C
.p0/.
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Now suppose that we have a G0
C-orbit O0 � g0, which is contained in the image of

the moment map M0. Similar to the first assertion of Lemma 3.1, the set

.M0/�1.O0/ \ Wı (3.3)

is a single GC �G0
C-orbit. Write

r.O0/ WD the image of the set (3.3) under the moment map M,

which is a GC-orbit in g. This is called the descent of O0. It is an element of NilGC .g/ if
O0 2 NilG0

C
.g0/.

3.3. Geometric theta lift
We are in the setting of Section 3. We assume that the choice of X in (3.1) is com-

patible with �, as follows. As a module for the Lie algebra h.W /, � is the submodule of !
generated by !X (the invariant space of X, which is one-dimensional). Write QU ! U for
the double cover of U induced by the metaplectic double cover eSp.W / ! Sp.W /. Recall
that � is naturally an .sp.W/; QU/-module. Recall also from [6, Section 5.1] that QKC � QK 0

C

acts on !X by a character, henceforth denoted by �.
We are now back in the setting of Lemma 3.1, with O 0 2 NilK0

C
.p0/. Write O WD

r.O 0/, and let e WD M.�/.
Let E be a QKC-equivariant algebraic vector bundle over O . Its fiber Ee at e is an

algebraic representation of the stabilizer group . QKC/e , which is the preimage of .KC/e . We
also view it as a representation of the group . QKC � QK 0

C/� via the pull-back through the
homomorphism �

KC �K 0
C

�
�

the projection to the first factor
�����������������! .KC/e:

We may thus view Ee ˝ � as a representation of . QKC � QK 0
C/� and, by taking the coinvari-

ant space .Ee ˝ �/. QKC/�
, we get an algebraic representation of . QK 0

C/e0 . Write E 0 WD L#O0

O .E/

for the QK 0
C-equivariant algebraic vector bundle over O 0 whose fiber at e0 equals this coin-

variant space representation. In this way, we get an exact functor L#O0

O from the category of
QKC-equivariant algebraic vector bundle over O to the category of QK 0

C-equivariant algebraic
vector bundle over O 0. This exact functor induces a homomorphism of the Grothendieck
groups:

L#O0

O W KO. QKC/ ! KO0

�
QK 0

C

�
:

The above homomorphism is independent of the choice of � in Lemma 3.1.
Now let O WD r.O0/, where O0 2 NilG0

C
.g0/. We define the geometric theta lift to

be the homomorphism
L#O0

O W KO. QKC/ ! KO0

�
QK 0

C

�
such that

L#O0

O .E/ D

X
O0 is a K 0

C -orbit in O0 \ p0, r.O0/ D O

L#O0

O .E/;

for any KC-orbit O in O \ p, and any QKC-equivariant algebraic vector bundle E over O .
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A basic result in algebraic theta lifting is the following theorem.

Theorem 3.2 ([6]). Suppose that O WD r.O0/ and O0 is regular for r (see [6, Definition 7.6]).
Let … be an O-bounded .g; QK/-module of finite length. Then ‚V 0

V .
L…/ is O0-bounded, and

ACO0

�
‚V 0

V .
L…/

�
� L#O0

O

�
ACO.…/

�
:

Remark. Earlier results on the associated cycles of ‚V 0

V .
L…/ appeared in [27,29,31].

4. Combinatorial parameters for special unipotent

representations

In [33], Vogan proposed that the orbit method (introduced by A. A. Kirillov [19];
see also [21] for an extension in geometric terms) should serve as a unifying principle in
the description of the unitary duals of reductive Lie groups. Furthermore, the quantization
problem (attaching irreducible unitary representations to coadjoint orbits) should involve
three steps in accordance with the Jordan decomposition of the element representing an
(co)adjoint orbit, and in the order of the nilpotent step, the elliptic step, and the hyperbolic
step. The elliptic and hyperbolic steps are implemented by cohomological and parabolic
induction, respectively, and are well understood. The nilpotent step is the most difficult, and
is the theory of unipotent representations [34,35], which is still in development. We refer the
reader to [36] for a comprehensive account of Vogan’s conception of the orbit method for
reductive Lie groups.

We will be concerned with special unipotent representations, which originated in
Arthur’s work [3,4] and are defined by Vogan and Barbasch [2,8]. It will turn out that all spe-
cial unipotent representations of classical Lie groups can be constructed via iterated theta
lifts, supplemented by irreducible unitary parabolic inductions. We take even real orthog-
onal groups and real symplectic groups as examples, and will construct a (combinatorially
defined) parameter set which underlies the special unipotent representations of both groups.

For every Young diagram {, write Ri .{/ and Ci .{/ (i 2 NC, the set of positive
integers), respectively, for its i th row length and i th column length. Let LO be a nonempty
Young diagram which satisfies the following good parity condition (for type D and C ):

All nonzero row lengths of LO are odd. (4.1)

Put

m WD j LOj WD

1X
iD1

Ri . LO/ and l WD C1. LO/:

We define a pair .{ LO
; | LO

/ of Young diagrams such that the nonzero column lengths are given
by 8̂̂<̂

:̂
Ci .{ LO

/ D
R2i . LO/C 1

2
; 1 6 i 6

l � 1

2
;

Ci .| LO
/ D

R2i�1. LO/ � 1

2
; 1 6 i 6

l C 1

2
;
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if l is odd, and 8̂̂<̂
:̂

Ci .{ LO
/ D

R2i�1. LO/C 1

2
; 1 6 i 6

l

2
;

Ci .| LO
/ D

R2i . LO/ � 1

2
; 1 6 i 6

l

2
;

if l is even.
For any Young diagram {, we introduce the set BOX.{/ of boxes of { as the following

subset of NC � NC:

BOX.{/ WD
®
.i; j / 2 NC

� NC
j j 6 Ri .{/

¯
:

We introduce five symbols �, s, r , c, and d , and make the following definition.

Definition 4.1. A painting on a Young diagram { is a map

P W Box.{/ ! ¹�; s; r; c; dº

with the following properties:

• P �1.S/ is the set of boxes of a Young diagram when S D ¹�º; ¹�; sº; ¹�; s; rº, or
¹�; s; r; cº;

• when S D ¹sº or ¹rº, every row of { has at most one box in P �1.S/;

• when S D ¹cº or ¹dº, every column of { has at most one box in P �1.S/.

Definition 4.2. Define PBP. LO/ to be the set of all pairs .P ;Q/, where P and Q are paintings
on { LO

and | LO
, respectively, subject to the following conditions:

• P �1.�/ D Q�1.�/;

• the image of P is contained in8<: ¹�; r; c; dº; if l is odd;

¹�; s; r; c; dº; if l is even:

• the image of Q is contained in8<: ¹�; sº; if l is odd,

¹�º; if l is even:

Let � D .P ;Q/ 2 PBP. LO/. We associate a classical group G� as follows.
If l is odd, define G� WD Spm�1.R/.
If l is even, define the signature .p� ; q� / by counting the various symbols appearing

in .{ LO
;P /, .| LO

;Q/: 8<:p� WD .#�/C 2.#r/C .#c/C .#d/;

q� WD .#�/C 2.#s/C .#c/C .#d/:
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Here

#� WD #
�
P �1.�/

�
C #

�
Q�1.�/

�
.# indicates the cardinality of a finite set/;

and the other terms are similarly defined. Define G� WD O.p� ; q� /. In addition, define "� 2

Z=2Z such that "� D 0 if and only if the symbol d occurs in the first column of P or Q.
If l > 1, we define LO0 to be the Young diagram obtained from LO by removing the

first row. The descent map
r W PBP. LO/ ! PBP. LO0/

is defined in [6, Section 2] and plays a crucial role in our construction of special unipotent
representations.

Example. Let

LO D :

Then

.{ LO
; | LO

/ D

0BBBB@ ;

1CCCCA
and

LO0
D :

Also let

� D .P ;Q/ D

0BBBB@
� �

� s

� s

r d

;

� �

�

�

1CCCCA 2 PBP. LO/:

Then G� D O.11; 13/, "� D 1, and

r.�/ D .P 0;Q0/ D

0BBBB@
�

�

�

d

;

� s

�

�

1CCCCA 2 PBP. LO0/:

Define PP. LO/ to be the set of all i 2 NC such that

Ri . LO/ > RiC1. LO/ > 0 and i � l .mod 2/:

Put
PBPext. LO/ WD PBP. LO/ �

®
} � PP. LO/

¯
:

For each .�; }/ 2 PBPext. LO/, we will construct a representation ��;} of G� .
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5. Special unipotent representations of classical Lie

groups

As in Section 4, let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1) and .�; }/ 2 PBPext. LO/. Let G WD G� , whose complexification GC equals
Spm�1.C/ or Om.C/, respectively, when l is odd or even. The Langlands dual of GC is
defined to be Om.C/. Identify LO with the corresponding nilpotent Om.C/-orbit in om.C/.
Take an sl2-triple . Le; Lh; Lf / in om.C/ such that Le 2 LO. Then 1

2
Lh is a semisimple element of

om.C/, which determines a character �. LO/ W U.g/GC ! C in the usual way [4,8]. By a well-
known result of Dixmier [9, Section 3], we know that there is a unique maximalG-stable ideal
of U.g/ that contains the kernel of �. LO/. Write I LO

for this ideal. The associated variety of
I LO

is the closure of a nilpotent orbit O 2 NilGC .g/which is called the Barbasch–Vogan dual
of LO. Following Barbasch and Vogan [2,8], an irreducible Casselman–Wallach representation
� ofG is said to be special unipotent attached to LO if I LO

annihilates � . Write Unip LO
.G/ for

the set of isomorphism classes of irreducible Casselman–Wallach representations of G that
are special unipotent attached to LO.

Put

Unip. LO/ WD

8<: Unip LO
.Spm�1.R//; if l is odd;F

p;q2N;pCqDm Unip LO
.O.p; q//; if l is even:

We have the following result on the counting of special unipotent representations.

Theorem 5.1 ([6, 7]). Let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1). Then

#
�
Unip. LO/

�
D

8<: #.PBPext. LO//; if l is odd;

2#.PBPext. LO//; if l is even:

For each .�; }/ 2 PBPext. LO/, we shall now construct an irreducible Casselman–
Wallach representation ��;} of G by induction on l . First assume that l D 1, namely the
Young diagram LO has only one row. Then G D Spm�1.R/, and the set PBPext. LO/ has a
unique element. In this case, we define ��;} to be the trivial representation of G.

Now assume that the Young diagram of LO has at least two rows. Write � 0 WD r.�/ 2

PBP. LO0/, and define

}0
WD

®
i 2 NC

j i C 1 2 }
¯

� PP. LO0/:

Write m0 WD j LO0j and G0 WD G� 0 . Note that G and G0 form a reductive dual pair in Sp.W /,
whereW is a real symplectic space of dimension .m� 1/m0 orm.m0 � 1/, respectively, when
l is odd or even. Let J D .G � G0/ Ë H.W / and let ! be as in Section 1. If G is an even
orthogonal group, we assume G acts trivially on the one-dimensional space !X (the coin-
variant space of X ), for every G-stable Lagrangian subspace X of W . Similar assumption
is made when G0 is an even orthogonal group.
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By induction hypothesis, we have an irreducible Casselman–Wallach representation
�� 0;}0 of G0. We define

��;} WD

8<:‚G
G0.�

_
� 0;}0 ˝ det"} /; if l is odd;

‚G
G0.�

_
� 0;}0/˝ .1

C;�
p� ;q�

/"� ; if l is even:
(5.1)

Here 1C;�
p� ;q�

denotes the character of O.p� ; q� / whose restriction to O.p� / � O.q� / equals
1˝ det (1 stands for the trivial character), and "} denote the element in Z=2Z such that

"} D 1 , 1 2 }:

It turns out that the representation ��;} remains unchanged if we replace ‚G
G0 by �G

G0 or N�G
G0

in (5.1).

Theorem 5.2 ([6]). Let LO be a nonempty Young diagram which satisfies the good parity
condition (4.1).

(a) For every .�;}/ 2 PBPext. LO/, the representation ��;} ofG� is irreducible, uni-
tarizable, and special unipotent attached to LO.

(b) Suppose that l is odd so that G D Spm�1.R/. Then the map

PBPext. LO/ ! Unip LO
.G/;

.�; }/ 7! ��;}

is bijective.

(c) Suppose that l is even, and p;q are nonnegative integers with pC q Dm. Then
the map®

.�; }/ 2 PBPext. LO/ j .p� ; q� / D .p; q/
¯

� Z=2Z ! Unip LO

�
O.p; q/

�
;

.�; }; �/ 7! ��;} ˝ det�

is bijective.

We remark that the unitarizability of ��;} in part (a) of Theorem 5.2 follows from
the preservation of unitarity (Theorem 2.4). Furthermore the computation of the associated
cycles of ��;} , in particular Theorem 3.2, plays a critical role in the proof of Theorem 5.2.
By Theorem 5.2, we have explicitly constructed all special unipotent representations in
Unip LO

.G/, when all row lengths of LO are odd. If some row lengths of LO are even, then these
even row lengths must come in pairs. In this case, the set Unip LO

.G/ of the special unipo-
tent representations attached to LO is similarly defined, and via irreducible unitary parabolic
inductions, the construction of representations in Unip LO

.G/ is reduced to the case when all
row lengths of LO are odd (see [7]). In the same approach, we may parameterize and construct
all special unipotent representations of the real classical groups GLn.R/, GLn.C/, GLn.H/,
U.p; q/, O.p; q/, Sp2n.R/, O�.2n/, Sp.p; q/, On.C/, Sp2n.C/, as well as all metaplectic
special unipotent representations of eSp2n.R/ and Sp2n.C/. See [5] for the notion of meta-
plectic special unipotent representations.
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We thus have the following result which confirms the Arthur–Barbasch–Vogan con-
jecture [2, Introduction] for real classical groups.

Theorem 5.3 ([6]). All special unipotent representations of the real classical groups are
unitarizable; all metaplectic special unipotent representations of eSp2n.R/ and Sp2n.C/ are
also unitarizable.

Remark. The unitarizability of special unipotent representations for quasisplit classical
groups is independently due to Adams, Arancibia Robert, and Mezo [1].

The authors would like to conclude by noting the prescient remark of A. A. Kir-
illov in a survey article on the orbit method in 1999 [20]: Howe duality – a new branch of
representation theory where the orbit method has not yet been used to the fullest.

Acknowledgments

We thank Roger Howe for sharing his mathematical insight and for his encouragement.

Funding

B. Sun was supported in part by National Key R&D Program of China
(2020YFA0712600), National Natural Science Foundation of China (11688101,
11621061), and Kunpeng program of Zhejiang Province.

C.-B. Zhu was supported in part by MOE AcRF Tier 1 grant R-146-000-314-114, and
Provost’s Chair grant C-146-000-052-001 in NUS.

References

[1] J. Adams, N. Arancibia Robert, and P. Mezo, Equivalent definitions of Arthur
packets for real classical groups. 2021, arXiv:2108.05788.

[2] J. Adams, D. Barbasch, and D. A. Vogan, The Langlands classification and irre-
ducible characters for real reductive groups. Progr. Math. 104, Birkhäuser, 1991.

[3] J. Arthur, On some problems suggested by the trace formula. In Lie group rep-
resentations, II (College Park, Md.), pp. 1–49, Lecture Notes in Math. 1041,
Springer, 1984.

[4] J. Arthur, Unipotent automorphic representations: conjectures. In Orbites unipo-
tentes et représentations, II, Astérisque 171–172 (1989), 13–71.

[5] D. Barbasch, J.-J. Ma, B. Sun, and C.-B. Zhu, On the notion of metaplectic
Barbasch–Vogan duality. 2020, arXiv:2010.16089.

[6] D. Barbasch, J.-J. Ma, B. Sun, and C.-B. Zhu, Special unipotent representations of
real classical groups: construction and unitarity. 2021, arXiv:1712.05552.

[7] D. Barbasch, J.-J. Ma, B. Sun, and C.-B. Zhu, Special unipotent representations of
real classical groups: counting. 2022, https://blog.nus.edu.sg/matzhucb/research/.

[8] D. Barbasch and D. A. Vogan, Unipotent representations of complex semisimple
groups. Ann. of Math. 121 (1985), 41–110.

3076 B. Sun and C.-B. Zhu

https://arxiv.org/abs/2108.05788
https://arxiv.org/abs/2010.16089
https://arxiv.org/abs/1712.05552
https://blog.nus.edu.sg/matzhucb/research/


[9] W. Borho, Recent advances in enveloping algebras of semisimple Lie-algebras.
Séminaire Bourbaki, Exp. No. 489, (1976/77), 1–18.

[10] A. Daszkiewicz, W. Kraskiewicz, and T. Przebinda, Nilpotent orbits and complex
dual pairs. J. Algebra 190 (1997), no. 2, 518–539.

[11] R. Goodman and N. R. Wallach, Symmetry, Representations, and Invariants.
Grad. Texts in Math. 255, Springer, 2009.

[12] H. He, Unitary representations and theta correspondence for type I classical
groups. J. Funct. Anal. 199 (2003), no. 1, 92–121.

[13] H. He, Unipotent representations and quantum induction. 2007,
arXiv:math/0210372.

[14] R. Howe, � -series and invariant theory. In Automorphic forms, representations
and L-functions, pp. 275–285, Proc. Sympos. Pure Math. 33, Amer. Math. Soc.,
1979.

[15] R. Howe, Small unitary representations of classical groups. In Group representa-
tions, ergodic theory, operator algebras, and mathematical physics, pp. 121–150,
Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987.

[16] R. Howe, Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313
(1989), 539–570.

[17] R. Howe, Transcending classical invariant theory. J. Amer. Math. Soc. 2 (1989),
535–552.

[18] M. Kashiwara and M. Vergne, On the Segal–Shale–Weil Representations and Har-
monic Polynomials. Invent. Math. 44 (1978), 1–48.

[19] A. A. Kirillov, Unitary representations of nilpotent Lie groups. Uspekhi Mat.
Nauk 17 (1962), no. 4, 57–110.

[20] A. A. Kirillov, Merits and demerits of the orbit method. Bull. Amer. Math. Soc. 36
(1999), no. 4, 433–488.

[21] B. Kostant, Quantization and unitary representations. In Lectures in modern nal-
ysis and applications III, pp. 87–208, Lecture Notes in Math. 170, Springer, 1970.

[22] H. Kraft and C. Procesi, On the geometry of conjugate classes in classical groups.
Comment. Math. Helv. 57 (1982), 539–602.

[23] S. S. Kudla, Splitting metaplectic covers of dual reductive pairs. Israel J. Math. 87
(1994), 361–401.

[24] E. Lapid and S. Rallis, On the local factors of representations of classical groups.
In Automorphic representations, L-functions and applications: progress and
prospects, pp. 309–359, Ohio State Univ. Math. Res. Inst. Publ. 11, de Gruyter,
Berlin, 2005.

[25] J.-S. Li, Singular unitary representations of classical groups. Invent. Math. 97
(1989), 237–255.

[26] J.-S. Li, Theta lifting for unitary representations with nonzero cohomology. Duke
Math. J. 61 (1990), no. 3, 913–937.

[27] H. Y. Loke and J.-J. Ma, Invariants and K-spectrums of local theta lifts. Compos.
Math. 151 (2015), no. 1, 179–206.

3077 Theta correspondence and the orbit method

https://arxiv.org/abs/math/0210372


[28] C. Moeglin, M.-F. Vigneras, and J.-L. Waldspurger, Correspondances de Howe
sur un corps p-adique. Lecture Notes in Math. 1291, Springer, 1987.

[29] K. Nishiyama, H. Ochiai, K. Taniguchi, H. Yamashita, and S. Kato, Nilpotent
orbits, associated cycles and Whittaker models for highest weight representations.
Astérisque 273 (2001), 1–163.

[30] K. Nishiyama, H. Ochiai, and C.-B. Zhu, Theta lifting of nilpotent orbits for sym-
metric pairs. Trans. Amer. Math. Soc. 358 (2006), 2713–2734.

[31] K. Nishiyama and C.-B. Zhu, Theta lifting of unitary lowest weight modules and
their associated cycles. Duke Math. J. 125 (2004), no. 3, 415–465.

[32] I. Piatetski-Shapiro and S. Rallis, � factor of representations of classical groups.
Proc. Natl. Acad. Sci. USA 83 (1986), no. 13, 4589–4593.

[33] D. A. Vogan, Representations of reductive Lie groups. In Proceedings of the Inter-
national Congress of Mathematicians (Berkeley, California), pp. 245–266, Amer.
Math. Soc., 1986.

[34] D. A. Vogan, Unitary representations of reductive Lie groups. Ann. of Math. Stud.
118, Princeton University Press, 1987.

[35] D. A. Vogan, Associated varieties and unipotent representations. In Harmonic
analysis on reductive groups (Bowdoin College, 1989), edited by W. Barker and
P. Sally, pp. 315–388, Progr. Math. 101, Birkhäuser (Boston–Basel–Berlin), 1991.

[36] D. A. Vogan, The method of coadjoint orbits for real reductive groups. In Repre-
sentation theory of Lie groups (Park City, UT, 1998), pp. 179–238, IAS/Park City
Math. Ser. 8, Amer. Math. Soc., 2000.

[37] N. R. Wallach, Real Reductive Groups I. Academic Press, Inc., 1988.
[38] N. R. Wallach, Real Reductive Groups II. Academic Press, Inc., 1992.
[39] A. Weil, Sur certain group d’operateurs unitaires. Acta Math. 111 (1964),

143–211.
[40] H. Weyl, The Classical Groups. Princeton University Press, 1939.

Binyong Sun

Institute for Advanced Study in Mathematics, Zhejiang University, Hangzhou, China, and
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,
China, sunbinyong@zju.edu.cn

Chen-Bo Zhu

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge
Road, Singapore 119076, matzhucb@nus.edu.sg

3078 B. Sun and C.-B. Zhu

mailto:sunbinyong@zju.edu.cn
mailto:matzhucb@nus.edu.sg



	1. Theta lifting: the basic construction
	2. Theta lifting via matrix coefficient integrals and preservation of unitarity
	3. Algebraic theta lifting and bound via moment maps
	3.1. The associated cycle map
	3.2. The moment maps
	3.3. Geometric theta lift

	4. Combinatorial parameters for special unipotent representations
	5. Special unipotent representations of classical Lie groups
	References

