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1. Introduction

1.1. Quantum groups
According to Drinfeld and Jimbo, a quantum group U D Uv.g/ is the quantum defor-

mation (as Hopf algebras) of the universal enveloping algebra U.g/, for a semisimple or
Kac–Moody Lie algebra g. Since their inception in 1985, quantum groups have found numer-
ous applications to diverse areas, including mathematical physics, representation theory,
algebraic combinatorics, and low dimensional topology.

We offer a (personal) Top Ten List of highlights in quantum groups, viewed as a part
of Lie theory, as follows:

(1) Definition [27,31]

(2) (Quasi-)R-matrix [27,55]

(3) Canonical basis [53–55] [32]

(4) Quantum Schur duality [31]

(5) Super type A Kazhdan–Lusztig theory [18] [22] [19]

(6) Hall algebra [60] [17]

(7) Current presentation of affine quantum groups [27] [14,23]

(8) Braid group action [53,55]

(9) Categorification [34,61]

(+) ı ı ı ı ı ı

We apologize beforehand for omitting many important constructions for quantum groups in
the above list, and your favorite construction may likely fall into the black holes in Item (+).
Also, the references listed above are mostly samples of the original contributions, and there
are often dozens or hundreds of additional works which are not cited.

The list (1)–(9) is so arranged that the topics are to be matched with the {-generali-
zations which we shall describe later in the same ordering.

1.2. Quantum symmetric pairs
Recall that a symmetric pair .g; g� / consists of a semisimple Lie algebra g and

an involution � on g. The classification of irreducible symmetric pairs is equivalent to the
classification of real forms of complex simple Lie algebras (which goes back to É. Cartan);
for example, they can now be classified in terms of Satake diagrams.

Let U D Uv.g/ be a quantum group (of finite type) with comultiplication� in (2.2).
According to Gail Letzter [39–41], a quantum symmetric pair .U;U{/ consists of a Drinfeld–
Jimbo quantum group U and its (right) coideal subalgebra U{ (i.e.,� W U{ ! U{ ˝ U) which
specializes at v 7! 1 to U.g� /. Starting with the Satake diagrams, Letzter constructed the
corresponding quantum symmetric pairs. The U{ comes with parameters, which reflects the
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fact that there is a family of (explicit) embeddings of U{ into U; see (2.4). A generalization
of quantum symmetric pairs of Kac–Moody type was carried out by Kolb in [35], now a
standard reference in the subject; Kolb’s conventions are compatible with those in Lusztig’s
book [55]. As we may deal with U{ alone, we shall call U{ an {quantum group.

Letzter’s foundational work on quantum symmetric pairs was motivated by har-
monic analysis on quantum symmetric spaces, generalizing earlier examples given by Koorn-
winder, Gavrilik–Klimyk, Noumi, and others. Letzter’s work was ahead of her time.

1.3. Goal
We take the view that {quantum groups are a vast generalization of quantum groups

(as real reductive groups are a generalization of compact or complex reductive groups).

Example 1.1 (Quantum groups as {quantum groups). Consider the diagonal symmetric pair
.g � g;g4/, where g4 is a diagonal copy of g. Similarly, we have a quantum symmetric pair
of diagonal type .U ˝ U;U/; the embedding is given by .! ˝ 1/� W U ! U ˝ U (see [8]),
where one checks that the image of U is a coideal subalgebra of U ˝ U.

The goal of this report is to survey some recent advances on quantum symmetric
pairs and {quantum groups, generalizing Items (1)–(9) above. The {-analogs of the construc-
tions in Items (2)–(5) were initiated by Huanchen Bao and the author in [9], where it was
proposed that all fundamental (algebraic, geometric, categorical) constructions in quantum
groups should be generalized to {quantum groups.

The good news is that all Items (1)–(9) admit genuine {-generalizations, while
the bad news, or the exciting news for an optimist, is that many {-generalizations are not
yet in full generality. A reader might well be tempted to try one’s hands in developing
these {-generalizations in greater generality. He or she is encouraged to pick his or her
own favorite construction in quantum groups in Item (+); even better, to supply its missing
{-generalization.

All the known constructions indicate that the {-generalizations (when done right!)
look natural and inevitable, though proofs are often much lengthier and challenging. The
complications in {quantum groups are often caused by

(i) absence of triangular decompositions;

(ii) presence of many rank 1 types and parameters;

(iii) presence of nonuniform Serre-type relations;

(iv) hidden (nonobvious) integral forms.

1.4. A quick overview
A Serre-type presentation for an {quantum group U{ is due to Letzter [40] in the

finite type setting, and has been generalized since then to Kac–Moody type in various forms
(cf. [2,20,24,35,38]). This can be viewed as an {-analog of the construction in Item (1).

Let us provide some details on the constructions in Items (2)–(5).
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As a generalization of Jimbo–Schur duality [31], an {Schur duality between a quasi-
split type AIII {quantum group U{ and type B Hecke algebra was formulated in [9] (and
[4,11]). Recently, the Jimbo–Schur duality and quasisplit {Schur duality have been uniformly
generalized using a general {quantum group of type AIII by Yaolong Shen and the author
in [62]. This has led unexpectedly to quasiparabolic Kazhdan–Luszig bases associated to
(possibly nonparabolic) reflection subgroups of the type B Weyl group, extending the classic
constructions of Kazhdan–Lusztig [33] and Deodhar [25].

The {canonical basis and {Schur duality (in quasisplit type AIII setting) were moti-
vated by and played a key role in formulating a super type B Kazhdan–Lusztig theory (which
was a decades old open problem) [9]; see also Bao [4] for a super type D formulation. Our
approach was inspired by Brundan–Kazhdan–Lusztig conjecture in the super type A setting
[18] and its proof by Cheng, Lam, and the author [22].

The {-analog of quasi-R-matrix, known as quasi-K-matrix nowadays, was formu-
lated by Bao and the author in [9] as a key step in the construction of {canonical bases, and
a proof for its existence in great generality has been given by Balagovic–Kolb in [3]; see
Appel-Vlaar [1] for a more recent reformulation and generalization. The quasi-K-matrix fur-
ther leads to a construction of the K-matrix [3,9], which was shown in [3] to provide solutions
to the reflection equation.

As an extension of Lusztig’s approach [53,54], a theory of {canonical bases arising
from quantum symmetric pairs has been systematically developed by Bao and the author in
[8,10]. The {canonical bases on based U-modules (viewed as U{-modules) and on the mod-
ified {quantum groups are established; also see [5, 43] and [29] for a geometric approach in
type AIII setting. The {canonical basis in split rank 1, also known as {divided powers [9,16],
has found applications in the works with Xinhong Chen and Ming Lu [20,21,52]. H. Watan-
abe [65, 66] has developed a crystal approach (à la Kashiwara [32]) to {canonical bases of
U{-modules, for some quasisplit finite types.

Motivated by earlier constructions of Bridgeland [17] and then M. Gorsky [30]

(extending the foundational work of Ringel [60]), Lu–Peng and Lu developed semiderived
Hall algebras associated to 1-Gorenstein algebras (see [44] and [50, Appendix A]). Lu and the
author introduced in [50, 52] the {Hall algebras, i.e., semiderived Hall algebras associated
to the {quiver algebras, to realize the (universal) {quantum groups QU{ . This is a conceptual
{-analog of (6), generalizing [17].

In [49], Lu and the author have formulated a Drinfeld-type presentation for affine
{quantum groups of split ADE type; this has been generalized to split BCFG type by Weinan
Zhang [67]. This provides an {-analog of (7). Lu and Ruan are developing {Hall algebras of the
weighted projective lines [45] to realize the affine {quantum groups in the new presentation,
generalizing the rank-1 construction in [46].

The braid group actions associated to relative Weyl groups on (mostly quasisplit)
finite type U{ were obtained by Kolb–Pellegrini in [37] (via computer computation), where
the existence of such an action on an arbitrary {quantum group of finite type was conjectured.
Relative braid group actions on QU{ (of quasisplit Kac–Moody type) were obtained in [47] via
reflection functors in {Hall algebras, and it becomes clear that the universal {quantum groups
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provide a conceptual framework for braid group actions. We announce an intrinsic approach
developed by W. Zhang and the author in [64] to relative braid group action on QU{ of arbitrary
finite type (and on U-modules) with explicit formulas, providing a conceptual {-analog of (8).
The quasi-K-matrix plays a basic role in our formulation.

This survey is organized as follows. The {-counterparts of the quantum group high-
lights (1)–(8) will be formulated in Sections 2–9 below. In Section 10, we discuss additional
topics in {quantum groups including the {-analog of (9), and list some open problems.

2. Quantum symmetric pairs: definition

2.1. Quantum groups
We mostly follow notations in the book [55]. Denote by N the set of nonnegative

integers. Let .Y; X; h�; �i; : : : / be a root datum of type .I; �/; cf. [55]. The quantum group U
associated with this root datum .Y;X; h�; �i; : : : / is the associative Q.v/-algebra generated by
Ei , Fi for i 2 I and K� for � 2 Y , subject to standard relations which can be found in [55].
LetW denote the Weyl group generated by simple reflections si for i 2 I. The Q.v/-algebra
U admits a Chevalley involution ! such that

!.Ei / D Fi ; !.Fi / D Ei ; !.K�/ D K��; for i 2 I; � 2 Y: (2.1)

For any i 2 I, we set vi D v
i �i
2 . For i 2 I, n; s 2 N with 0 � s � n, we define Œn�i D

vn
i �v�n

i

vi �v�1
i

and Œs�Ši D
Qs

kD1Œk�i , and
�

n
s

�
i

D
Œn�Ši

Œs�Ši Œn�s�Ši
.

Let UC, U0, and U� be the Q.v/-subalgebra of U generated by Ei .i 2 I/,
K�.� 2 Y /, and Fi .i 2 I/, respectively. Let A D ZŒv; v�1�. We let AU� (respectively,
AUC) denote the A-subalgebra of U� (respectively, UC) generated by all divided powers
F

.a/
i D F s

i =Œs�
Š
i (respectively, E.a/

i ). With QK˙i WD K
˙ i �i

2 i , the coproduct � W U ! U ˝ U
is given by

�.Ei / D Ei ˝ 1C QKi ˝Ei ; �.Fi / D 1˝ Fi C Fi ˝ QK�i ; �.K�/ D K� ˝K�:

(2.2)

Let XC D ¹� 2 X j hi; �i 2 N;8i 2 Iº be the set of dominant integral weights.
By � � 0 we shall mean that the integers hi; �i for all i are sufficiently large. The Verma
module M.�/ of highest weight � 2 X has a unique simple quotient U-module L.�/ with
a highest weight vector ��. We define a U-module !L.�/, which has the same underlying
vector space as L.�/ but with the action twisted by the Chevalley involution ! in (2.1); then
!L.�/ is simple of lowest weight ��with lowest weight vector denoted by ���. For � 2XC,
we let AL.�/ D AU��� and !

A
L.�/ D AUC��� be the A-submodules of L.�/ and !L.�/.

There is a canonical basis B on U�, inducing a canonical basis on UC via the
standard isomorphism U� Š UC. For each � 2 XC, there is a subset B.�/ of B so that
¹b��� j b 2 B.�/º forms a canonical basis of L.�/. For w 2 W , let �w� denote the unique
canonical basis element of weight w�.

Let PU D
L

�2X
PU1� be the modified quantum group and A

PU be its A-form. Then PU
admits a canonical basis PB D ¹b1}�b2 j .b1; b2/ 2 B � B; � 2Xº, compatible with canonical
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bases on !L.�/ ˝ L.�/, for �; � 2 XC; cf. [55, Part IV]. For any I� � I, let UI�
be the

Q.v/-subalgebra of U generated by Fi , Ei , and Ki .i 2 I�/. Let BI�
be the canonical basis

of U�
I�

.

2.2. Satake diagrams and admissible pairs
Let � be an involution of the Cartan datum .I; �/; we allow � D Id. We further

assume that � extends to an involution on X and an involution on Y , respectively, such that
the perfect bilinear pairing is invariant under the involution � . Given a finite type I� � I,
let WI�

D hsi j i 2 I�i be the parabolic subgroup of W with longest element w�, and let ��

(and �_
� ) be the half-sum of all positive roots (and coroots) in the root system R� (and R_

� ).
Set Iı D InI�. A pair .I D I� [ Iı; �/ is called admissible (cf. [35, Definition 2.3]) if
�.I�/D I�, the actions of � and �w� on I� coincide, and h�_

� ; j
0i 2 Z whenever �j D j 2 Iı.

We regard admissible pairs as a synonyms for Satake diagrams.
Note that � D �w� ı � is an involution of X and Y . For any � 2 X (or Y ), we shall

write �� D �.�/, �� D �.�/. Following [8], we introduce the {-weight and {-root lattices

X{ D X= MX; where MX D
®
� � ��

j � 2 X
¯
;

Y {
D
®
� 2 Y j ��

D �
¯
:

For � 2 X , we denote its image inX{ by �. The involution � of I induces an isomorphism of
the Q.v/-algebra U, denoted also by � , which sendsEi 7! E�i , Fi 7! F�i , andK� 7!K��.

2.3. Quantum symmetric pairs
We review the definition of quantum symmetric pair .U;U{/, where U{ is a coideal

subalgebra of U, following [35]; also see [2,3,8]. Letzter’s convention is a little different.
An {quantum group U{ is the Q.v/-subalgebra of U generated by

Bi WD Fi C &iTw�
.E�i / QK�1

i C �i
QK�1

i .i 2 Iı/; K�.� 2 Y {/; Fi ; Ei .i 2 I�/; (2.3)

where &i 2 Q.v/�, �i 2 Q.v/, for i 2 Iı, are parameters, and Tw D T 00
w;C1 denotes a

braid group operator as in [55]. Denote by U{0 the Q.v/-subalgebra of U{ generated by K�

.� 2 Y {/, and denote the embedding via (2.3) by

{ W U{
! U; x 7! x{ : (2.4)

The parameters &i ; �i are required to satisfy Conditions (2.5)–(2.6):

�i D 0 unless “� i D i;
˝
i; j 0

˛
D 0 8j 2 I�;&

˝
k; i 0

˛
2 2Z 8�k D k D w�k 2 Iı”I

(2.5)

&i D &�i if i � �.i/ D 0: (2.6)

Conditions (2.5)–(2.6) ensure the quantum Iwasawa decomposition and hence U{ have the
expected size [35,40]. By definition, the algebra U{ contains UI�

as a subalgebra.
In the remainder of this paper, we shall impose the following additional conditions

on parameters besides (2.5)–(2.6), as required for the construction of quasi-K-matrix and
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{canonical basis:

&i ; �i 2 Z
�
v; v�1

�
; for i 2 Iı; (2.7)

�i D �i ; &�i D .�1/h2�_
� ;i 0iv

�hi;2��Cw��i 0i

i &i : (2.8)

Conditions in (2.8) appeared in [3].
The nontrivial Serre presentation of U{ was given by Letzter [40] in finite type

setting, and further generalized in different forms [2, 20, 35, 38]. Certain Serre–Lusztig (or
higher-order Serre) relations for U{ have been obtained in [21] via {divided powers (see
Example 4.3).

Example 2.1. We call U{ quasisplit if I� D ; and split if, in addition, � D Id. A split {quan-
tum group U{ is the subalgebra of U generated by Bi D Fi C &iEi

QK�1
i C �i

QK�1
i .i 2 I/;

often �i D 0 thanks to (2.5). Relations in split U{ are given in (9.1)–(9.2) (with Ki D �v2
i &i )

for ADE type and in (9.9)–(9.10) (with k D l D 0) for BCFG type.

3. (Quasi) K-matrices

As predicted in [9] and established in [2,36] (also cf. [20]), there is a unique antilinear
bar involution of the Q-algebra U{ , denoted by  { , such that  {.v/ D v�1 and

 {.Bi / D Bi .i 2 Iı/;  {.Fj / D Fj ;  {.Ej / D Ej .i 2 I�/;

 {.K�/ D K�� .� 2 Y {/:

The formulation of the quasi-K-matrix ‡ below (called an intertwiner earlier) was
due to Bao and the author [9]; its existence in great generality has been established in [3]

(also cf. [8, Remark 4.9]) with additional technicality removed in [10,36]. The quasi-K-matrix
for a quantum symmetric pair of diagonal type reduces to the quasi-R-matrix (cf. [55]).

Theorem 3.1 ([3,8,9]). There exists a unique family of elements‡� 2 UC
� , for � 2 NI, such

that ‡0 D 1 and ‡ D
P

�2NI ‡� satisfies the following identity:

 {.u/‡ D ‡ .u/; for all u 2 U{ : (3.1)

Moreover, ‡� D 0, unless �� D �� 2 X . (Recall that � D �w� ı � .)

A quasi-K-matrix was originally introduced in order to construct a new bar invo-
lution and then {canonical bases on based U-modules (see Section 4 below). On the other
hand, a suitable twisting of‡ by elements in U{0 provides certain U{-module isomorphisms
[9, §2.5], [3] (also see [8, §4.5] for a different formulation), nowadays known as the K-matrix. It
is shown in [3] that the K-matrix provides solutions to the reflection equation, an {-analog of
the Yang–Baxter equation. There has been a reformulation of quasi-K-matrix in [1] without
referring explicitly to the bar involution of U{ ; this has the advantage of making sense of
quasi-K-matrices with general parameters satisfying (2.5)–(2.6).
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4. Canonical bases arising from quantum symmetric pairs

4.1. Based modules
The quasi-K-matrix ‡ in (a completion of) UC induces a Q.v/-linear map

‡ W M ˝ L.�/ ! M ˝ L.�/, for any � 2 XC and any weight U-module M with weights
bounded above. A U{-moduleM equipped with an antilinear involution  { is called {-invo-
lutive if  {.um/ D  {.u/ {.m/, for all u 2 U{ , m 2 M . Let .M;B/ be a based U-module
[55, IV] with weights bounded above. We denote the bar involution on M by  . Then M is
an {-involutive U{-module with involution (see [9])

 { WD ‡ ı  :

Assume that .M; B/ is a based U-module with weights bounded above such that
‡ preserves the A-submodule AM . Then the Q.v/-linear map  { D ‡ ı  (and sub-
sequently, ‡ ) preserves the A-submodule AM ˝A AL.�/, for any � 2 XC; see [10]. In
particular, the involution  { on the {-involutive U{-module L.�1/˝ � � � ˝ L.�`/ preserves
the A-submodule AL.�1/˝A � � � ˝A AL.�`/, where �i 2XC for 1� i � `. For .U;U{/ of
finite type, a stronger statement holds [10], namely ‡� 2 AUC, for each �. This generalizes
the integrality of quasi-R-matrix of finite type due to Lusztig [55, 24.1.6].

Define a partial order � on the weight lattice X such that � � �0 if and only if
�0 � � 2 NI. For an element x in U or in a U-moduleM of weight� 2X , we write jxj D �.

Theorem 4.1 ([8,10]). Let .M;B/ be a based U-module with weights bounded above. Assume
that the involution  { D ‡ of M preserves the A-submodule AM . Then,

(1) the U{-module M admits a unique basis (called {canonical basis)
B { WD ¹b{ j b 2 Bº which is  {-invariant and of the form

b{
2 b C

X
b02B;jbj<jb0j

v�1ZŒv�1�b0
I

(2) B { forms an A-basis for the A-lattice AM (generated by B), and forms a
ZŒv�1�-basis for the ZŒv�1�-lattice M (generated by B).

In particular, L.�1/ ˝ � � � ˝ L.�`/, where �i 2 XC for all i , admits an {canoni-
cal basis. Theorem 4.1 was further generalized in [10, 12] to provide an {canonical basis on
N ˝ L.�/, for a based U{-module N and � 2 XC.

4.2. Canonical bases on modified {quantum groups
Following [55, IV], we can define a modified {quantum group PU{ (an associative

Q.q/-algebra structure without unit) such that PU{ D
L

�2X{
U{1�; see [10]. In contrast to

quantum groups, the A-form of PU{ is far from being obvious (even for rank 1).
For �; � 2 XC and w 2 W , denoting ��

�
WD �w��, we introduce the following

U-submodule:

L{.�; �/ WD U.�w�� ˝ ��/ � L.�/˝ L.�/;
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which can be shown to be a based U-module and hence admits an {canonical basis by The-
orem 4.1. Let � D w��C � and �{ D �. The following hold [8,10]:

F The {canonical basis of L{.�; �/ is of the form B{.�; �/ D ¹.b1}�{
b2/

{
w��;�

j

.b1; b2/ 2 BI�
� Bºn¹0º, where .b1}�{

b2/
{
w��;�

is  {-invariant and lies in

.b1}�b2/.�
�
� ˝ ��/C

X
jb0

1jCjb0
2j�jb1jCjb2j

v�1Z
�
v�1

�
.b0

1}�b
0
2/.�

�
� ˝ ��/:

F We have a projective system ¹L{.�C �� ; �C �/º�2XC of U{-modules, where

��C�1;�1 W L{.�C ��
C ��

1 ;�C � C �1/! L{.�C �� ;�C �/; �; �1 2 XC;

is the unique homomorphism of U{-modules mapping ��

�C�� C��
1

˝ ��C�C�1 to
��

�C�� ˝ ��C� . The K-matrix [3,8,9] plays a role here.

The following theorem generalizes [55, Chap. 25]. For quantum symmetric pairs of
diagonal type in Example 1.1 or a trivial pair .U;U/, it reduces to Lusztig’s setting.

Theorem 4.2 ([8] [10, Theorem 7.2]). Let �{ 2 X{ and .b1; b2/ 2 BI�
� B .

(1) There is a unique element u D b1}{
�{
b2 2 PU{ such that

u.��
� ˝ ��/ D .b1}�{

b2/
{
w��;� 2 L{.�; �/;

for all �;� � 0 with w��C � D �{ :

(2) The element b1}{
�{
b2 is  {-invariant.

(3) The set PB{ D ¹b1}{
�{
b2 j �{ 2X{ ; .b1; b2/ 2 BI�

�Bº forms a Q.v/-basis of PU{ .

Example 4.3 ({Divided powers). Consider the quantum symmetric pair of split rank 1
.U; U{/ D .Uv.sl2/; Q.v/ŒBi �/ associated to I D ¹iº, via the embedding U{ ! U,
Bi 7! Fi C &iEiK

�1
i . It is a new phenomenon of {quantum groups [9] that there are

two different modified forms of U{ , denoted by PU{1 N0 and PU{1 N1, depending on a parity
X{ D ¹N0; N1º, which are compatible with the parity of highest weights of finite-dimensional
simple U-modules.

We define the {divided powers of B to be

B
.m/

i; N1
D

1

Œm�Ši

8<:Bi

Q`
j D1.B

2
i � vi&i Œ2j � 1�2i / if m D 2`C 1;Q`

j D1.B
2
i � vi&i Œ2j � 1�2i / if m D 2`;

B
.m/

i; N0
D

1

Œm�Ši

8<:Bi

Q`
j D1.B

2
i � vi&i Œ2j �

2
i / if m D 2`C 1;

B2
i

Q`�1
j D1.B

2
i � vi&i Œ2j �

2
i / if m D 2`:

These formulas (with parity swapped) appeared first in [9, Conjecture 4.13] (in terms of Bi

in (2.3) with �i D 1, &i D v�1
i ); see [20] for application to Serre relations for {quantum

groups.
Set the parameter &i D v�1

i . Then B N0 WD ¹B
.m/

i; N0
j m � 0º (and respectively,

B N1 WD ¹B
.m/

i; N1
j m � 0º) forms the {canoical basis for the modified {quantum group PU{1 N0
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(and respectively, PU{1 N1). Let L.n/ be the simple U-module of highest weight n 2 N with
highest weight vector �. Then, for n even, B N0�D ¹B

.m/

i; N0
� j n �m � 0º forms the {canonical

basis for L.n/ and B.m/

i; N0
� D 0, for m > n; similar claims hold for L.n/ with n odd and B N1;

see [16].

5. Quantum Schur dualities

5.1. Quasi-parabolic Kazhdan–Lusztig bases
Let Wd be the Weyl group of type Bd generated by simple reflections si , for

0 � i � d � 1. It contains the symmetric group Sd as a subgroup generated by si , for
1 � i � d � 1. For p 2 vZ, the Hecke algebra HBd

of type Bd is a Q.v/-algebra generated
by Hi .0 � i � d � 1/ such that .H0 C p�1/.H0 � p/ D 0, .Hi C v�1/.Hi � v/ D 0

for i � 1, and braid relations hold; HBd
admits a bar involution N such that v D v�1 and

Hi D H�1
i , for all i .
For x 2 R andm 2 N, we denote Œx::xCm�D ¹x;xC 1; : : : ; xCmº. For a 2 Z�1,

we denote by Ia D Œ1�a
2
::a�1

2
�. For r; m 2 N (not both zero), we introduce a new notation

Irjmjr WD I2rCm to indicate a fixed set partition, Irjmjr D I�
ı [ I� [ IC

ı , where

IC
ı D

�
mC 1

2
::r C

m � 1

2

�
; I� D

�
1 �m

2
::
m � 1

2

�
; I�

ı D �IC
ı : (5.1)

We view f 2 Id
rjmjr

as a map f W ¹1; : : : ; dº ! Irjmjr , and identify f D .f .1/; : : : ; f .d//.
We define a right action of Wd on Id

rjmjr
such that, for f 2 Id

rjmjr
and 0 � j � d � 1,

f � sj D

8̂̂<̂
:̂
.: : : ; f .j C 1/; f .j /; : : : /; if j > 0;

.�f .1/; f .2/; : : : ; f .d//; if j D 0; f .1/ 2 I�
ı [ IC

ı ;

.f .1/; f .2/; : : : ; f .d//; if j D 0; f .1/ 2 I�:

Let p 2 vZ. Consider the Q.v/-vector space V D
L

a2Irjmjr
Q.v/ua. Given

f D .f .1/; : : : ; f .d// 2 Id
rjmjr

, we denote Mf D uf .1/ ˝ uf .2/ ˝ � � � ˝ uf .d/. We shall
call f a weight and ¹Mf j f 2 Id

rjmjr
º the standard basis for V ˝d . There is a right action

of the Hecke algebra HBd
on V ˝d as follows (see [62]):

Mf �Hi D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

Mf �si
C .v � v�1/Mf ; if f .i/ < f .i C 1/; i > 0;

Mf �si
; if f .i/ > f .i C 1/; i > 0;

vMf ; if f .i/ D f .i C 1/; i > 0;

Mf �si
C .p � p�1/Mf ; if f .1/ 2 IC

ı ; i D 0;

Mf �si
; if f .1/ 2 I�

ı ; i D 0;

pMf ; if f .1/ 2 I�; i D 0:

A weight f 2 Id
rjmjr

is called antidominant if m�1
2

� f .1/� f .2/� � � � � f .d/; in
this case we havef .j /2 I�

ı [ I�, for all j . Denote I
d;�
rjmjr

D¹f 2 Id
rjmjr

jf is antidominantº.
Decompose V ˝d into a direct sum of cyclic submodules generated by Mf , for antidomi-
nant weights f : V ˝d D

L
f 2I

d;�
rjmjr

Mf , where Mf D Mf HBd
. Denote by Of the orbit
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of f under the action of Wd on Id
rjmjr

. The HBd
-module Mf admits a standard basis

¹Mg j g 2 Of º.
The stabilizer subgroup of f 2 I

d;�
rjmjr

in Wd is of the form

Wf D Wm1 � � � � �Wmk
� SmkC1

� � � � � Sml
;

with allmi > 0 andWm1 � � � � �Wmk
corresponding to the components of f in I�. Note that

the stabilizer subgroupWf is not a parabolic subgroup ofWd when k � 2. This phenomenon
does not occur in the setting of [9,12]. We call the summands Mf of V ˝d quasipermutation
modules. Clearly, for f;f 0 2 I

d;�
rjmjr

, we have Mf Š Mf 0 , ifWf DWf 0 . IfWf is not parabolic,
Mf is in general not an induced module as those considered in parabolic KL setting [25].

Let f 2 I
d;�
rjmjr

. Denote by fW the set of minimal length right coset representatives
in Wf nWd . We define a Q-linear map  { on the module Mf (which has a basis Mf �� , for
� 2 fW ) by  {.v/ D v�1,  {.Mf �� / D Mf

NH� , 8� 2 fW . It can be shown [62] (more
difficult than the parabolic case in [25]) that the map  { on Mf is compatible with the bar
operator on the Hecke algebra, i.e., {.xh/D {.x/h, for all x 2 Mf , h2 HBd

. In particular,
 2

{ D Id. We shall call  { the bar involution on Mf .

Theorem 5.1 ([62]). Suppose p 2 vZ and let f 2 I
d;�
rjmjr

. Then for each � 2 fW , there exists
a unique element C� 2 Mf such that

 {.C� / D C� and C� 2 Mf �� C

X
w2f W;w<�

v�1Z
�
v�1

�
Mf �w :

Similarly, there exist elements C �
� 2 Mf , for � 2 fW , characterized by

 {.C
�
� / D C �

� and C �
� 2 Mf �� C

P
w2f W;w<� vZŒv�Mf �w . The basis ¹C� j � 2 fW º

is called a quasiparabolic KL basis for Mf ; the basis ¹C �
� j � 2 fW º is called a dual quasi-

parabolic KL basis for Mf . Depending on the choice of f , the canonical basis can be type
B or type A parabolic KL basis [25,33], or neither.

5.2. A type B {Schur duality
Set n D

m
2

2
1
2
N. We consider the quantum group U D Uv.sl2rCm/ of type

A2rCm�1, where I WD Œ1 � n � r::nC r � 1�. We view V as a natural representation of U,
and so V ˝d is a U-module via the comultiplication �. We consider the Satake diagram
of type AIII with m � 1 D 2n � 1 black nodes and r pairs of white nodes, and a diagram
involution � :

ı

�n � r C 1

� � � ı

�n

�

�nC 1

� � � �

n � 1

ı

n

� � � ı

nC r � 1

(In case n D 0, the black nodes are dropped; the nodes n and �n are identified and fixed
by � .) The involution � on I sends i 7! �.i/ D �i , for all i , and it induces an involution
of U, denoted again by � , by permuting the indices of its generators Ei ; Fi ; K

˙1
i .
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Let I� D Œ1� n::n� 1� be the set of all black nodes in I and Iı D InI�. Associated
to the Satake diagram .I D I� [ Iı; �/, we have a quantum symmetric pair .U;U{/ of type
AIII. Recall that p 2 vZ. We shall fix the parameters to be8<: &i D 1 .for i ¤ ˙n/;

&n D .�1/m�1vmp�1; &�n D p; if m D 2n 2 Z�1;
(5.2)8<: &0 D v�1; &i D 1 .for i ¤ 0/;

�0 D .p � p�1/=.v � v�1/; if m D 0:
(5.3)

It can be shown [62] that the actions of U{ and HBd
on V ˝d commute with each

other:
U{ ‰Õ V ˝d ˆÕ HBd

:

Moreover,‰.U{/ andˆ.HBd
/ form double centralizers in End.V ˝d /. This duality has been

called {Schur duality (which goes back to [9] in a quasisplit case).
There exists a unique antilinear bar involution  { W V ˝d ! V ˝d such that

 {.Mf / D Mf , for f 2 I
d;�
rjmjr

, and it is compatible with the bar involutions on HBd
and

U{ , that is, for u 2 U{ , v 2 V ˝d , and h 2 HBd
,  {.uvh/ D  {.u/ {.v/ Nh. Recall that V ˝d

is a direct sum of the quasipermutation modules Mf of HBd
. The union of the (dual)

quasiparabolic KL bases on the summands Mf provides a (dual) quasiparabolic KL basis
on V ˝d .

Theorem 5.2 ([62]). The (dual) {canonical basis on V ˝d (viewed as a U{-module) coincides
with the (dual) quasiparabolic KL basis on V ˝d D

L
f Mf (viewed as an HBd

-module).

The quasiparabolic KL polynomials are by definition the transition matrix entries
from the quasiparabolic KL to the standard basis. An inversion formula for parabolic KL
polynomials (theorems of Kazhdan–Lusztig and Douglass) can be generalized to the quasi-
parabolic cases.

Remark 5.3. In case when r D 0, {Schur duality reduces to Jimbo–Schur duality [31]

between U and Hecke algebra of type A, and Theorem 5.2 goes back to a result of Frenkel–
Khovanov–Kirillov. In case whenmD 0;1, it reduces to the quasisplit {Schur duality [4,9,11],
which has applications to Kazhdan–Lusztig theory of classical type.

6. Application to super Kazhdan–Lusztig theory

6.1. The BGG category
Consider the BGG category O of g-modules, where g D n� ˚ h ˚ n is a simple

or reductive Lie (super)algebra over C. There is a duality functor _ W O ! O sending
M D

L
�2h� M� to M_ WD

L
�2h� M �

� . Let M.�/ be the Verma module with highest
weight � and L.�/ be its unique irreducible quotient. It is known that a simple module L.�/
and a tilting module T .�/ (of highest weight �) are self-dual with respect to _.
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For semisimple Lie algebras, the linkage is controlled by the dot action of the Weyl
group, and the BGG category O admits a block decomposition according to the central char-
acters. For a (or any) regular block O0, its Grothendieck group is identified with the Weyl
group algebra. If we further identify the Verma module basis in ŒO0� with the standard basis
in the Hecke algebra (specialized at v D 1), then the Kazhdan–Lusztig conjecture (a theorem
of Beilinson–Bernstein and Brylinski–Kashiwara) states that the simple module basis corre-
sponds to the dual canonical basis (and the tilting module basis corresponds to the canonical
basis).

For general linear or orthosymplectic Lie superalgebras, the linkage in the BGG
category is no longer controlled by the Weyl group, and so the formulation of Kazhdan–
Lusztig theory via Hecke algebras breaks down.

6.2. Super type BCD character formulas
Let us treat the super type B case, g D osp.2mC 1j2n/, in detail. With respect to

a standard Dynkin diagram

  
N

  (H � � � � � �

�1 ��1 C �2 ��m C ı1 �ı1 C ı2 �ın�1 C ın

we have the Weyl vector

� D
1

2
�1 C

3

2
�2 C � � � C

�
m �

1

2

�
�m �

�
m �

1

2

�
ı1 �

�
m �

3

2

�
ı2 � � � � �

�
m � nC

1

2

�
ın:

There exists a �-shift bijection for the set of integer weights

Xmjn
WD

mM
iD1

Z�i ˚

nM
j D1

Zıj
Š

���!
�-shift

�
1

2
C Z

�mCn

; � 7! f�;

where f� is defined via �C �D
Pm

iD1 f�.i/�i C
Pn

j D1 f�.mC j /ıj . Similarly, there exists
a bijection for the set of half-integer weights

X
mjn
1
2

WD

mM
iD1

�
1

2
C Z

�
�i ˚

nM
j D1

�
1

2
C Z

�
ıj

Š
�����!
��-shift

ZmCn; � 7! f�:

Denote by O
mjn

b (respectively, O
mjn

b; 1
2

) the BGG category which contains the Verma mod-
ules M.�/, tilting modules T .�/ and simple modules L.�/, parametrized by the weights
� 2 Xmjn (respectively, � 2 X

mjn
1
2

).
Recall from Section 5.2 the quasisplit quantum symmetric pair .Uv.slN /;U{/ of

type AIII, where we fix p D v in (5.2)–(5.3). Recall the natural representation V with basis
¹ui j i 2 Œ1�N

2
::N �1

2
�º, for N even and odd, allowing N D 1 with parity! Then we can

identify the indexing set Œ1�N
2
::N �1

2
�with 1

2
C Z forN D 1 (even), and with Z forN D 1

(odd).
By Theorem 4.1, the Uv.sl1/-module V ˝m ˝ V �˝n (regarded as U{-module with

p D v) admits an {canonical basis, denoted by ¹C {
f

º, and a dual {canonical basis, denoted
by ¹L{

f
º, where f 2 .1

2
C Z/mCn or ZmCn, respectively.
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Define the following Z-module isomorphisms:

‰b W
�
O

mjn

b

�
! V ˝m

Z ˝ V �˝n
Z ;

�
M.�/

�
7! Mf�

.� 2 Xmjn/;

‰b; 1
2

W
�
O

mjn

b; 1
2

�
! V ˝m

Z ˝ V �˝n
Z ;

�
M.�/

�
7! Mf�

.� 2 X
mjn
1
2

/: (6.1)

A basic fact here [9] is that the generators Bi in U{ act on ŒOmjn

b � and ŒOmjn

b; 1
2

� by transla-
tion functors, and the above Z-module isomorphisms become U{

Z-module isomorphisms at
v D 1. (A similar observation on translation functors and Bi is valid for p D 1 [4], and it
was made independently in [28] in the nonsuper setting.)

Theorem 6.1 ([9]). The Z-module isomorphism ‰b (respectively, ‰b; 1
2
) in (6.1) sends�

L.�/
�

7! L{
f�
;

�
T .�/

�
7! C {

f�
; for � 2 Xmjn (and respectively, � 2 X

mjn
1
2

).

Remark 6.2 (Super type A Kazhdan–Lusztig theory). Consider the BGG category Omjn of
modules over the general linear Lie superalgebra g D gl.mjn/ of integer weights. We have
an almost identical Z-module isomorphism ‰ W ŒOmjn� ! V ˝m

Z ˝ V �˝n
Z as in (6.1), which

match the Verma basis with the standard basis. Then Brundan–Kazhdan–Lusztig conjec-
ture [18] (proved by Cheng, Lam, and the author in [22]) states that the simple module basis
(respectively, tilting module basis) is mapped by ‰ to Lusztig dual canonical basis (respec-
tively, canonical basis). There has been a second proof in [19] using ideas of categorification.

Example 6.3. Take n D 0 and m D 1, so that g D so3 Š sl2. If the standard basis
(D canonical basis) ¹ui j i 2 Zº for V is indexed by Z, then V admits an {canonical basis
¹u0;u�i ;ui C v�1u�i j i 2 Z>0º and a dual {canonical basis ¹u0;u�i ;ui � vu�i j i 2 Z>0º.

Theorem 6.1 can be adapted to the type D Lie superalgebra g D osp.2mj2n/, by
setting the parameter p D 1 (instead of p D v) in (5.2)–(5.3) (see Bao [4]). Thanks to Theo-
rem 5.2, Theorem 6.1 formD 0 amounts to a reformulation for the type B Kazhdan–Luszitg
conjecture [33]. For further extension to Kazhdan–Lusztig theory for super parabolic BGG
categories, see [12].

7. Hall algebras

The Drinfeld double quantum group QU D QU.g/ is the Q.v/-algebra generated by
Ei ; Fi ;Ki ;K

0
i .i 2 I/ subject to relations in [50, (6.1)–(6.5)] similar to those in U. Denote the

Cartan matrix for g by .cij /i;j 2I . Following [50], we define the universal {quantum group QU{

associated to a Satake diagram .I D I� [ Iı; �/ as the Q.v/-subalgebra of QU generated by
QUI�

and ¹Bi ; Qki j i 2 Iıº, with identifications

Bi 7! Fi C QTw�
.E�i /K

0
i ;

Qki 7! KiK
0
�i ; i 2 Iı: (7.1)

Denote the embedding by { W QU{ ! QU, x 7! x{ . One checks that QU{ is a right coideal subal-
gebra of QU. The {quantum group U{ (with Y D NI) can be obtained from QU{ via a central
reduction.

3093 Quantum symmetric pairs



In the remainder of this section, we shall only consider QU{ of quasisplit types, i.e.,
I� D ;. Let Q D .Q0; Q1/ be a virtually acyclic quiver; see [52, Def. 4.4]. This is a mild
generalization of acyclic quivers, allowing a generalized Kronecker subquiver. Throughout
the paper, we shall identifyQ0 D I. An {quiver .Q;�/ consists of a (virtually acyclic) quiver
Q and an involution � of Q; we allow the trivial involution Id. We work over a finite field
Fq . An involution � ofQ induces an involution of the path algebra FqQ, also denoted by � .

LetQ be a new quiver obtained fromQ by adding a loop "i at the vertex i 2 Q0 if
� i D i , and adding an arrow "i W i ! � i for each i 2Q0 if � i ¤ i ; the "i are in purple color
below. The {quiver algebra ƒ{ associated to .Q; �/ can be defined in terms of the quiver Q
with relations, cf. [50, Prop. 2.6], that is,ƒ{ Š FqQ=I , where I is generated by "i"�i for each
i 2 Q0 and "i˛ � �.˛/"j for each arrow ˛ W j ! i in Q1.

Rank 1 or 2 subquivers of the quiver Q associated to a general virtually acyclic
quiver Q look like as follows (where Q is obtained from Q by adding arrows "’s):

i
-
-� � �

˛1

˛a

j
	 	

"1 "2 i � i

˛a
˛1 ˇ1

ˇa
���

A
A
A
AU

A
A
A
AU

�
�
�
��

���

�
�

�
��

j

-�
"1

"3

"2

I

i

"1

!!
˛r //
˛1
��� //

� iˇ1
oo

"2

`` ˇr
���oo

Denote by modnil.ƒ{/ the category of finite-dimensional nilpotent ƒ{-modules.
Denote by Si the 1-dimensional ƒ{-module supported at i 2 I, and Ki the 2-dimensional
module “supported at "i .” The algebraƒ{ is a 1-Gorenstein algebra and hence admits favor-
able homological properties. In particular, the subcategory P �1.ƒ{/ of modnil.ƒ{/ consist-
ing of modules of projective dimension at most 1 admits clean characterization.

Let H .ƒ{/ be the Ringel–Hall algebra of modnil.ƒ{/ over Q.
p
q/, that is, the

Q.
p
q/-vector space whose basis is formed by the isoclasses ŒM � of objectsM 2 modnil.ƒ{/,

with multiplication defined by ŒM � ˘ ŒN � D
P

ŒL�2Iso.mod.ƒ{//
jExt1.M;N /Lj

jHom.M;N /j
ŒL�. Then, the

semiderived Hall algebra �DH .ƒ{/ of ƒ{ is defined in terms of localization of a quotient
algebra of the Ringel–Hall algebra H .ƒ{/ with respect to P �1.ƒ{/, and the {Hall algebra
QH .FqQ; �/ is defined to be �DH .ƒ{/ with a new multiplication via twisting by an Euler

form; see [50, Appendix A] [52] for precise definitions.
Let I� be a set of representatives of the � -orbits on Iı.

Theorem 7.1 ([50,52]). Let .Q; �/ be a virtually acyclic {quiver. Then there exists a Q.
p
q/-

algebra monomorphism e W QU{
jvD

p
q

! QH .FqQ; �/, which sends

Bj 7!
�1

q � 1
ŒSj �; if j 2 I� ; Qki 7! �q�1ŒKi �; if � i D i 2 I;

Bj 7!

p
q

q � 1
ŒSj �; if j … I� ; Qki 7!

p
q

�ci;� i
2 ŒKi �; if � i ¤ i 2 I:

This theorem for diagonal {quivers .Q tQ; swap/ specializes to Bridgeland’s Hall
algebra realization of Drinfeld double quantum groups in [17]. The above monomorphism
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becomes an isomorphism for Dynkin {quivers. Reflection functors on {Hall algebras provide
a conceptual approach to braid group actions on QU{ (of quasisplit type); see [47,48].

8. Relative braid group actions

Let . QU; QU{/ be the universal quantum symmetric pair associated to a Satake diagram
.I D I� [ Iı; �/. It is shown in [64] that there exists a quasi-K-matrix e‡ associated to . QU; QU{/

satisfying an intertwining relation like (3.1). For i 2 Iı, denote by e‡ i the quasi-K-matrix
associated to the rank-1 Satake subdiagram I�;i WD I� [ ¹i; � iº in the setting of . QU; QU{/.

Let W�;i be the parabolic subgroup of the Weyl group W of g generated by si ,
for i 2 I�;i , with longest element w�;i . Define ri 2 W�;i by ri D w�;iw�; it is clear that
ri D r�i . Recall that I� denotes a set of representatives of the � -orbits on Iı. The relative
Weyl group associated to the symmetric pair is identified with the subgroup W D hri j i 2 I� i

ofW . There is a notion of the relative braid group associated to W . The existence of such a
relative braid group action on an {quantum group U{ was conjectured in [37]. The conjecture
was verified therein via a computation for (mostly quasisplit) finite type; for an alternative
approach via {Hall algebras, see [47,48].

There is a braid group action associated to W on the Drinfeld double QU (see [48]),
a variant of the braid group action on U in [55]. We shall need a suitably rescaled variant,
denoted by QT �1

i , for i 2 I, which again satisfies the braid group relations. In particular, an
automorphism QT �1

ri
of QU, for i 2 I� , is defined. We announce a new conceptual approach

developed by W. Zhang and the author to relative braid group actions.

Theorem 8.1 ([64]). Let . QU; QU{/ be a universal quantum symmetric pair of arbitrary finite
type. Then there exists an automorphism QT�1

i of QU{ , for i 2 I� , which satisfies the intertwining
relation

QT�1
i .x/ e‡ i D e‡ i

QT �1
ri
.x{/; for all x 2 QU{ :

Moreover, the automorphisms QT�1
i , for i 2 I� , satisfy the relative braid group relations.

The approach in [64] has additional consequences. Explicit compact formulas for
the action of QT�1

i on the generators of QU{ are obtained. The relative braid group action on
QU{ gives rise to compatible relative braid group actions on U{ and U-modules (viewed as
U{-modules). Along the way, we prove the conjecture of Dobson–Kolb [26] on factorization
of quasi-K-matrices of arbitrary finite type.

9. A current presentation of affine type

In this section, we consider universal {quantum groups QU{ of split affine type, that
is, I� D ;, � D Id, and the Cartan matrix .cij /i;j 2I is of untwisted affine type. By definition,
QU{ is a subalgebra of QU; alternatively, QU{ is the Q.v/-algebra generated by Bi ;K˙1

i .i 2 I/,
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subject to the following relations: Ki are central, and

BiBj � BjBi D 0; if cij D 0; (9.1)

B2
i Bj � Œ2�iBiBjBi C BjB

2
i D �v�1

i Bj Ki ; if cij D �1: (9.2)

We omit here the more complicated Serre-type relations between Bi ; Bj for cij D �2;�3;
they can be read off from setting k D l D 0 in (9.9)–(9.10) below. The Ki (which is natural
from {Hall algebra viewpoint) is related to Qki used earlier by Ki D �v2

i
Qki .

Associated to the affine Lie algebra g, we denote by g0; I0; X0; W0 the underlying
semisimple Lie algebra, its simple roots, weight lattice, and finite Weyl group. Recall the
(extended) affine Weyl groupW e DW0 ËX0. There are automorphisms QTi of QU{ , for i 2 I,
which arise naturally from {Hall algebras [47, 48]; also see Section 8. They give rise to the
action of an affine braid group associated to W e for the affine Lie algebra g. In particular,
we have automorphisms QTw of QU{ , for w 2 W e .

Define a sign function o.�/ W I0 ! ¹˙1º such that o.i/o.j /D �1whenever cij < 0.
Define v-root vectors Bi;k ; K‚i;m; ‚i;m in QU{ for i 2 I0, k 2 Z and m � 1 by [49,67]

Bi;k D o.i/k QT�k
!i
.Bi /;

K‚i;m D o.i/m

 
�Bi;m�1

QT!0
i
.Bi /C v2

i
QT!0

i
.Bi /Bi;m�1

C .v2
i � 1/

m�2X
pD0

Bi;pBi;m�p�2K�1
i Kı

!
;

‚i;m D K‚i;m �

b m�1
2 cX

aD1

.v2
i � 1/v�2a

i
K‚i;m�2aKaı � ım;evv

1�m
i K m

2 ı :

A version of the v-root vectors for U{ in affine rank-1 case (known as q-Onsager algebra)
was constructed earlier in [13].

Let Dr QU{ be the Q.v/-algebra generated by K˙1
i ,C˙1,Hi;m, andBi;l , where i 2 I0,

m 2 Z�1, l 2 Z, subject to the following relations, for m; n 2 Z�1 and k; l 2 Z:

Ki ; C are central, ŒHi;m;Hj;n� D 0; Ki K
�1
i D 1; CC�1

D 1; (9.3)

ŒHi;m; Bj;l � D
Œmcij �i

m
Bj;lCm �

Œmcij �i

m
Bj;l�mC

m; (9.4)

ŒBi;k ; Bj;lC1�v
�cij
i

� v
�cij

i ŒBi;kC1; Bj;l �v
cij
i

D 0; if i ¤ j; (9.5)

ŒBi;k ; Bi;lC1�v�2
i

� v�2
i ŒBi;kC1; Bi;l �v2

i

D v�2
i ‚i;l�kC1C

kKi � v�4
i ‚i;l�k�1C

kC1Ki C v�2
i ‚i;k�lC1C

lKi

� v�4
i ‚i;k�l�1C

lC1Ki ; (9.6)

ŒBi;k ; Bj;l � D 0; if cij D 0; (9.7)
2X

sD0

.�1/s

"
2

s

#
i

B2�s
i;k Bj;lB

s
i;k D �v�1

i Bj;lKiC
k ; if cij D �1; (9.8)
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3X
sD0

.�1/s

"
3

s

#
i

B3�s
i;k Bj;lB

s
i;k D �v�1

i Œ2�2i .Bi;kBj;l � Bj;lBi;k/KiC
k ; if cij D �2;

(9.9)
4X

sD0

.�1/s

"
4

s

#
i

B4�s
i;k Bj;lB

s
i;k

D �v�1
i

�
1C Œ3�2i

�
.Bj;lB

2
i;k C B2

i;kBj;l /KiC
k

C v�1
i Œ4�i

�
1C Œ2�2i

�
Bi;kBj;lBi;kKiC

k
� v�2

i Œ3�2i Bj;lK
2
i C

2k ; if cij D �3;

(9.10)

where ‚i;m are related to Hi;m by

1C

X
m�1

.vi � v�1
i /‚i;mu

m
D exp

�
.vi � v�1

i /
X
m�1

Hi;mu
m

�
:

(The Dr QU{ is denoted by Dr QU{
red in [67].)

Below is an {-analog of the Drinfeld presentation of affine quantum groups [27]

(proved in [14,23]).

Theorem 9.1 ([49,67]). There is a Q.v/-algebra isomorphism ˆ W Dr QU{ ! QU{ , which sends

Bi;k 7! Bi;k ; Hi;m 7! Hi;m; ‚i;m 7! ‚i;m; Ki 7! Ki ; C 7! Kı ;

for i 2 I0, k 2 Z, m � 1.

Remark 9.2. More involved Serre relations among Bi;k ; Bj;l ; Bi;k0 generalizing the rela-
tions (9.8)–(9.9) are available; see [49,67]. They can be shown to be equivalent to (9.8)–(9.9),
when combined with other relations (9.3)–(9.7) above.

It is straightforward to pass the v-root vectors and Drineld-type presentation of QU{

to U{ with arbitrary parameters by central reduction. This current (or Drinfeld-type) presen-
tation will be extended beyond split types in a future work.

10. Open problems

“There’s no use trying, one can’t believe i... things.”
“Why, sometimes I’ve believed as many as six i... things before breakfast.”

—Alice in Wonderland

The open problems in the following six (interconnected) directions on {quantum
groups look most appealing to us:

(1) Positivity of {canonical basis
Positivity of {canonical basis holds in the (affine) type AIII setting [29, 43].
We conjecture that the {canonical bases arising from the {quantum groups of
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(quasi)split ADE type (with parameters suitably specified; see Example 4.3)
exhibit various positivity properties. Recently Lusztig extended his earlier con-
struction of total positivity to symmetric spaces in [56]. It would be interesting to
strengthen this construction by connecting to {canonical basis (with positivity).

(2) {Quiver varieties and geometric realizations of {quantum groups
Geometric realizations of quantum groups are obtained in [15, 57, 58, 63]. The
works [5, 29] can be regarded as the {-generalizations of [15]. Li [42] provides
an {-analog of some Nakajima quiver varieties. We observe, however, that the
diagram involutions used in that work are in line with Vogan diagrams instead
of Satake diagrams. A fresh start is needed to construct general {quiver vari-
eties (allowing Satake diagrams with black nodes and non-Dynkin types). The
geometric realization of {quantum groups à la [57, 58, 63] remains to be car-
ried out. Lu and the author provided in [51] a realization of QU{ via Nakajima–
Keller–Scherotzke quiver varieties, generalizing F. Qin’s approach for quantum
groups [59].

(3) {Categorification
There has been a KLR-type categorification of one family of modified {quantum
groups of type AIII by Bao, Shan, Webster, and the author [7]. The categorifica-
tion of the split rank-1 {quantum group (see Example 4.3) will be a fundamental
new step, allowing the {categorification to move forward. The {categorification
shall have applications to modular representation theory.

(4) {Hall algebra
So far, the {Hall algebras can only realize the quasisplit {quantum groups; see
[52]. It is desirable to extend the {Hall algebras to a greater generality allow-
ing Satake diagrams with black nodes, and also to understand categorically the
embedding QU{ ! QU, as well as the coideal structure (� W QU{ ! QU{ ˝ QU).

(5) Representations of affine {quantum groups
There have been numerous results in finite-dimensional representations of affine
quantum groups and connections to other areas, presented by V. Chari and many
others. One hopes that the Drinfeld-type presentation of affine {quantum groups
(see [49,67]) can stimulate the development of their finite-dimensional represen-
tations.

(6) {Quantum groups at roots of 1
Building on Lusztig’s constructions for quantum groups at roots of 1, Bao and
Sale [6] have taken a first step in formulating small quantum symmetric pairs.
More can be expected in this direction in light of Lusztig’s program.

It is hoped that {quantum groups may find more applications in mathematical
physics, geometric and modular representation theory, quantum topology, and algebraic
combinatorics.
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Just as generalizing the study of compact or complex Lie groups to real Lie groups
and symmetric spaces, we hope to have convinced the reader that it is good to generalize
various fundamental constructions from quantum groups to {quantum groups.

It is time for the reader to come up with his or her own favorite item (+) in the list of
highlights for quantum groups in the Introduction, and supply its missing {-generalization!
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