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Abstract

Convex geometry and analysis have connections to many areas of the mathematical sci-
ences: PDEs, discrete geometry, optimization, theoretical computer science, and mathe-
matical economics. No article could even scratch the surface of all of these. Instead, we
shall begin by describing how the development of the subject was influenced over the last
50 years by two other fields, harmonic and functional analysis, and then discuss the subtle
and still somewhat mysterious way in which convex domains exhibit properties that we
normally expect to see within probability theory.

Mathematics Subject Classification 2020

Primary 52A20; Secondary 52A21, 42B99, 60F05, 46B07

Keywords

Convex geometry, isoperimetric inequality, harmonic analysis, probability, central limit
theorem, optimal transport

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 4, pp. 3104–3139
DOI 10.4171/ICM2022/65

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


Introduction

The task I was set in this article was to discuss convex geometry and analysis and
their connections to other fields. As pointed out in the abstract, it would be impossible to write
a readable article that even began to exhaust such a broad remit. Naturally, I have opted to
explain the connections between convex geometry and the areas that I am most familiar
with and, in order to make the article accessible to as large an audience as possible, I have
included a few pages of introduction describing the classical theory. The three main sections
cover the subject’s connections with harmonic analysis, functional analysis, and probability
theory, respectively. Some of the material goes back several decades but helps to provide a
context for the more recent material: again the aim is to make the article widely accessible
to nonspecialists.

It is natural to begin a discussion of convex geometry with the isoperimetric inequal-
ity: the statement that if you wish to enclose the largest volume with a given surface area,
the optimal shape is a Euclidean ball. Equivalently, if a set K � Rd is measurable then

dv
1=d

d
jKj

.d�1/=d
� j@Kj1

where vd is the volume of the Euclidean ball of radius 1. Formally, this is not a statement
involving convexity since it applies to all sufficiently nice sets, but it is clear that in spirit
we are talking about convex sets. It may not be any easier to give a formal proof that the
optimizers are convex than to prove the full inequality; but it is intuitively clear that if your set
has gaps, then you can push bits of it together so as to decrease its surface without changing
its volume.

Isoperimetric principles of one sort or another appear all over mathematics: in par-
ticular, their generalizations in the form of large deviation inequalities play a crucial role in
probability theory. Section 3 of this article discusses the influence of functional analysis on
convex geometry, and in this section we shall describe how deviation principles are used to
prove one of the most celebrated results in convex geometry, Dvoretzky’s Theorem, which
guarantees that all convex bodies have almost ellipsoidal sections of quite high dimension.
The section will also discuss the reverse Santaló inequality of Bourgain and Milman and
how this grew out of the interaction between functional analysis and geometry.

Quite early in the 20th century it was realized that the isoperimetric inequality can
be extended from sets to functions to give the Gagliardo–Nirenberg–Sobolev inequality. If
a measurable f W Rd ! R has a gradient almost everywhere then

dv
1=d

d

�Z
Rd

jf j
d=.d�1/

�.d�1/=d

�

Z
Rd

krf k2:

It is in this spirit that we shall look at links between convex geometry and harmonic anal-
ysis in Section 2 of the article. We shall discuss a convolution inequality of Brascamp and
Lieb that belongs firmly in harmonic analysis but which dovetails perfectly with a geometric

1 Throughout this article we shall use the modulus sign j � j to denote the volume measure of
the appropriate dimension.
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principle of Fritz John to prove the reverse form of the isoperimetric inequality found by
the present author. We shall also discuss the beautiful monotone transportation map of Bre-
nier and how Barthe used it to prove the Brascamp–Lieb inequality. Finally, we shall briefly
discuss the quite extensive recent work on the stability of the isoperimetric inequality, in
particular in the work of Fusco, Figalli, Jerison, Maggi, and Pratelli.

The final section, Section 4 of the article, focusses on a remarkable correspondence
between convex geometry and probability. In linking geometry and harmonic analysis, we
shall frequently switch between a convex domain and its indicator function. If the domain
has volume 1 then its indicator is automatically the density of a random vector in Rd . So at
a trivial level there is obviously a reinterpretation of geometry2 in terms of probability. But
probability theory is much more than just analysis with total measure 1. Central to it is the
concept of independence and a wealth of related ideas: filtrations, conditional expectations,
and so on. Over the last three decades, it has become increasingly clear that the uniform
measure on a convex domain exhibits properties that we would expect from the joint law of
independent random variables: for example, the central limit theorem for convex domains
that was conjectured by the present author and proved by Klartag. The background to these
developments was a collection of conjectures made in the late 1980s and early 1990s, and on
which quite a lot of progress has been made in the last 20 years. One of the motivations for
these conjectures is their relationship to a lovely problem in theoretical computer science: the
difficulty of computing volumes of convex sets. So we shall mention the algorithms of Dyer,
Frieze, Kannan, Lovász, Simonovits, Applegate, Vempala, and Lee, which depend upon the
rate at which Markov chains diffuse inside a convex body. This section also includes Paouris’
decay estimate for the Euclidean norm on a convex set, the stochastic localization technique
of Eldan and a very recent development by Chen. Being more recent, this material has not
yet been highly digested, and so this section is much less polished than the earlier ones.
Section 1 of the article will recall some standard facts from convex geometry that we shall
refer to throughout the article.

Since this article cannot touch on all of the many areas in which convex analysis
appears, we shall say nothing about the combinatorial theory of polytopes and its relation
to the topology of complex varieties and very little about the huge field of optimization. An
excellent starting point on polytopes is the article by Henk, Richter-Gebert, and Ziegler [67].
We shall also not mention the relationship between polyhedra and lattice points described in
loving detail in the book by Barvinok [16]. If my selection of topics has a unifying theme, it
is (as by now the reader will have guessed) the isoperimetric inequality.

1. The fundamentals of convex geometry

The aim of this section is to describe some of the most basic ideas in convex geom-
etry. The list is far from exhaustive: the topics are selected mainly so that I can refer to them
in the subsequent sections of the article.

2 Or at least the kind of geometry we are talking about.
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1.1. The Brunn–Minkowski inequality
The basic Sobolev inequality mentioned in the introduction is one way to generalize

the isoperimetric inequality, but there is another rather different generalization, which con-
stitutes the most fundamental relation between volume and the linear structure of space. For
a set A with a nice enough boundary, we can compute its surface area by considering the
volume of its neighborhoods

A" D
®
x W kx � yk � "; for some y 2 A

¯
:

We then compute the surface area as the “derivative” of volume

j@Aj D lim
"!0

jA"j � jAj

"
:

The "-neighborhood can be described in a different way as

A C B."/ D
®
x C u W x 2 A; u 2 B."/

¯
where B."/ is the Euclidean ball of radius ". Therefore the isoperimetric inequality will
follow from a sufficiently strong estimate from below for the volume of the sumset A C B."/.
The Brunn–Minkowski inequality provides such an estimate for the sum of any two (let us
say compact) sets.

Theorem 1 (Brunn–Minkowski). Suppose A and B are compact sets in Rd . Then

jA C Bj
1=d

� jAj
1=d

C jBj
1=d :

The inequality can be reformulated in terms of convex combinations of sets (rather
than sums). For compact sets A and B in Rd and � 2 .0; 1/,ˇ̌

.1 � �/A C �B
ˇ̌1=d

� .1 � �/jAj
1=d

C �jBj
1=d

and, by using the arithmetic/geometric mean inequality, we can deduce a multiplicative ver-
sion, which has a number of advantages,ˇ̌

.1 � �/A C �B
ˇ̌

� jAj
1��

jBj
�: (1.1)

Among other things, this formulation has a natural generalization to functions that was found
by Prékopa and Leindler (see, for example, [101]) and which can be very easily proved by
induction on the dimension d . (This induction argument seems to have appeared first in [30].)
The original inequality does not lend itself to such a proof because in order to deduce
the d -dimensional result for (indicator functions of) sets, you need to apply the .d � 1/-
dimensional result for more general functions.

Theorem 2 (Prékopa–Leindler). If f; g; m W Rd ! Œ0; 1/ are measurable, � 2 .0; 1/, and,
for each x and y,

m
�
.1 � �/x C �y

�
� f .x/1��g.y/�;

then Z
m �

�Z
f

�1���Z
g

��

:
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A function f W Rd ! Œ0;1/ is called logarithmically concave if its logarithm is con-
cave (with the usual convention regarding �1). Equivalently, f is logarithmically concave
if it satisfies

f
�
.1 � �/x C �y

�
� f .x/1��f .y/�

for all x; y 2 Rd and � 2 Œ0; 1�. The Prékopa–Leindler inequality ensures that if f is such
a function then its marginals are too, and from this it follows that convolutions of logarith-
mically concave functions are also logarithmically concave. The class of such functions thus
constitutes a natural extension of the class of indicator functions of convex sets, but which
is closed under the most common operations applied to densities in probability theory.

There is a rather odd consequence (or variant) of the Brunn–Minkowski inequality
found by Busemann in [33]. Suppose K is a symmetric convex body, or equivalently the
unit ball of a norm on Rd . For each unit vector � , look at the intersection of K with the
.d � 1/-dimensional subspace �? orthogonal to � . Then the function

� 7!
ˇ̌
K \ �?

ˇ̌�1

that measures the reciprocal of the .d � 1/-dimensional volume of the intersection, extends
to a norm on Rd . So this is a precise way to say that if you pick two nearby sections of K

then a section between them cannot have volume much smaller than they do. Busemann’s
Theorem has a simple, but surprisingly useful extension [9]:

Theorem 3 (Busemann–Ball). Let f W Rd ! Œ0; 1/ be an even logarithmically concave
function whose integral is finite and strictly positive. Then for each p � 1, the function

x 7!

 Z 1

0

f .rx/rp�1 dr

!�1=p

defines a norm on Rd .

By generating a norm (and hence a convex set) from a logarithmically concave func-
tion, the theorem automatically transfers information about convex sets to logarithmically
concave functions. Working with functions provides the flexibility to take marginals and
convolutions without much affecting what is true. Many of the well-known inequalities for
convex sets have analogues for logarithmically concave functions that can be proved in sim-
ilar ways.

1.2. Fritz John’s Theorem
In a famous paper [69] from 1948 on optimization problems, Fritz John gave an

example that turned out to be extremely prescient and which has become one of the standard
tools in understanding convex domains. The theorem characterizes the ellipsoid of largest
volume inside a convex domain in terms of the geometric structure of the contact points
between the ellipsoid and the surface of the body. There are two versions, one for symmetric
bodies and one for general ones. To get the feel of the theorem, we will just quote the simpler
symmetric version. (Throughout the article we will often quote results just for symmetric sets
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or even functions. In all cases they hold without the symmetry assumption, but the statements
are often more complicated and the proofs need no additional ideas.)

Theorem 4 (John). Let K be a symmetric convex body in Rd . Then K contains a unique
ellipsoid of largest volume. This ellipsoid is the standard Euclidean ball Bd

2 if and only if
the ball is indeed included in K and there are unit vectors u1; u2; : : : ; um on the surface of
K and positive weights c1; c2; : : : ; cm for which

mX
1

ci hui ; xi
2

D kxk
2 (1.2)

for every x 2 Rd .

The condition shows that the contact points behave somewhat like an orthogonal
basis. That forces their directions to be distributed in a well-spread-out way: they cannot all
lie too close to a subspace of dimension less than d . By applying the identity to an orthonor-
mal basis and summing, we get that X

ci D d: (1.3)

Plainly, K is included in the set®
x W

ˇ̌
hui ; xi

ˇ̌
� 1; for all i

¯
and hence for any x 2 K,

kxk
2

�

mX
1

ci D d:

Consequently, K not only includes the ball of radius 1 but is included in the ball of radius
p

d .
Thus John’s Theorem provides a way to use a linear map to make a convex body “as round
as possible”: choose the largest ellipsoid inside K and map that to the standard Euclidean
ball.

1.3. The Blaschke–Santaló inequality and symmetrization
A crucial role is played in functional analysis by duality. The theory extends from

symmetric convex bodies, the unit balls of norms on Rd , to more general convex sets. The
polar of a body K is

Kı
D
®
y W hy; xi � 1; for all x 2 K

¯
:

The fundamental fact here is the Blaschke–Santaló inequality [21] and [104].

Theorem 5 (Blaschke–Santaló). If K is a symmetric convex body then the product of the
volumes of K and its polar Kı is no more than that for the Euclidean balls v2

d
.

As it stands the statement cannot be true for arbitrary (nonsymmetric) sets because
if the origin is not inside the set, the polar will be unbounded. However, there is an extension
to general sets, in which one first shifts the set K to the optimal position in space before
taking the polar Kı.

3109 Convex geometry and probability



Figure 1

Symmetrizing a convex set

A classical and very lovely way to establish inequalities such as the isoperimetric
inequality is by means of Steiner symmetrization. If U is a 1-codimensional subspace of Rd

then we can symmetrize K with respect to U in the following way. For each line perpendicular
to U , consider its intersection with K. Now shift that line segment so that it sits symmetri-
cally either side of the subspace U ; see Figure 1. Plainly, the new set has the same volume
as K and Steiner showed that it has a smaller surface area. To establish the isoperimetric
inequality, you need to show that, by repeatedly symmetrizing a set in different subspaces,
you can (in the limit) turn it into a ball. This was done in a famous article by De Giorgi [41].

One can generalize this idea of symmetrization to subspaces of dimension other
than d � 1. If U is a subspace then we replace K by the set of all points of the form

u C .v � w/=2;

where u is a point in U , v and w are in the orthogonal complement U ?, and u C v and u C w

are in K. It was found by Saint-Raymond [103] that, by using this type of symmetrization,
one can give a proof of the Blaschke–Santaló inequality. (See also [9].) If you symmetrize
K and its polar in orthogonal subspaces then the polar of the symmetrization contains the
symmetrization of the polar. Therefore the product of the volumes goes up when you sym-
metrize. A lovely generalization of this argument to nonsymmetric sets was found by Meyer
and Pajor [87].

1.4. Lévy’s inequality
Isoperimetric inequalities hold in many manifolds although there are not too many

examples where the exact optimizers are known. One case in which the optimum is known
is that of the sphere Sd�1 in Euclidean d -dimensional space. We use the rotation-invariant
probability measure �d�1 on the sphere to measure “volume.” Lévy proved that among com-
pact subsets of the sphere with a given measure, those with the smallest boundary are the
spherical caps; see Figure 2.
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Figure 2

A spherical cap

The inequality can be extended. For each " > 0, the subset of Sd�1 of a given
measure whose "-neighborhood has smallest measure is a spherical cap. It was shown by
Benyamini that this can be proved by a kind of symmetrization argument: the so-called 2-
point symmetrization first introduced by Wolontis [110]. Benyamini’s argument is included in
the article [51]. The process is this. You start with a subset of the sphere. Choose a direction
(let us say downwards) and, for each line in that direction that meets the sphere, ask whether
the two points where it meets the sphere lie in the set. If both do, neither do, or just the bottom
one does, then leave them alone. But if just the top one belongs to the set, then move it to the
bottom. You thus compress the set as much as possible into the southern hemisphere. So this
is actually a “compression” argument rather than a “symmetrization” argument, but they are
clearly very similar in spirit.

Lévy’s inequality implies a deviation estimate on the sphere something like the fol-
lowing:

Theorem 6. Suppose A � Sd�1 and

�d�1.A/ � 1=2:

Then its "-neighborhood has probability at least

�d�1.A"/ � .1 � 2e�d"2=2/:

1.5. Differentiability
A classic and much loved text on convex analysis is that by Rockafellar [102]. His

book was written with optimization in mind and so proceeds in a very different direction from
this article, but we shall want one famous fact from that source. It contrasts appealingly with
the warning we impress upon our students in their second or third analysis courses, namely
that convergence of functions does not imply convergence of their derivatives.

Theorem 7. If � W Rd ! R is convex then f has a gradient almost everywhere. Indeed, the
gradient exists outside a set of Hausdorff dimension at most d � 1. If �k are convex functions
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converging locally uniformly to � then wherever the derivatives exist we also have

r�k ! r�:

In fact, much more is true. There are a number of ways to make sense of the idea that
convex functions are twice differentiable almost everywhere. It cannot be true in the classical
sense because the function might fail to be differentiable on a dense set. However, if we are
content to ask just for a second-order Taylor expansion instead of the existence of a classi-
cal second derivative then the Busemann–Feller–Alexandrov Theorem [1,34] guarantees its
existence almost everywhere. As you would expect, this Hessian of a convex function will be
a positive semidefinite map almost everywhere. An excellent account of the various forms
of twice differentiability, and several new arguments are contained in the article by Bianchi,
Colesanti, and Pucci [20].

2. Connections with harmonic analysis

The aim of this section is to describe a number of geometric principles that have
been established by using very precise inequalities from harmonic analysis and how these
methods then fed back into the study of the original inequalities. An important role is played
here by the monotone transport of Brenier which became a powerful tool in PDEs and a
subject of considerable attention in the late 1990s and early part of this century. A good
reference is the monograph of Villani [109].

2.1. The reverse isoperimetric inequality
In 1937 Behrend [18] asked a rather natural question about reversing the isoperimet-

ric inequality. If a set looks like a scattering of dust it can have huge surface area but very
small volume. Even if the set is convex there is no upper bound for the surface in terms of the
volume, because the set could be a pancake. Behrend’s question was this: suppose you are
allowed to apply a linear map to your convex set which preserves the volume but makes the
surface area as small as possible. For which convex set is the minimal surface area largest?
The natural conjecture is that in each dimension, the simplex is the solution to this max–min
problem.

In 1961 Petty [96] found a characterization of the optimal affine image for each
convex body.

Theorem 8 (Petty). A convex body K � Rd has the least surface area among all its affine
images of the same volume, if and only if for every x 2 Rd ,

d

j@Kj

Z
@K

hn; xi
2

D kxk
2; (2.1)

where the integral is taken with respect to the area measure on the boundary of K and n is
the unit normal at each point of the boundary.

The condition is clearly very similar to the Fritz John condition in Theorem 4 and,
in fact, there are a number of results with the same general “shape”; see [61]. In spite of
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this attractive characterization, Behrend’s question was not answered until 1990 [11], and it
turned out that the affine image which was best adapted to solving the problem was actually
the one characterized by John rather than the optimal one for surface area. It is an elementary
exercise to check that if a convex K � Rd includes the Euclidean ball of radius 1, then
j@Kj � d jKj with equality if K is a polytope whose facets all touch the ball (and in many
other cases). Since there is equality for a regular solid simplex, we can prove the reverse
isoperimetric inequality by showing that the regular simplex has the largest volume among
all bodies whose ellipsoid of maximal volume is the Euclidean unit ball. (Among symmetric
convex bodies, the cube has the largest volume ratio; the proof is similar but a bit simpler.)

Theorem 9 (Ball). Suppose K is a convex set in Rd , the ellipsoid of largest volume in K is
the Euclidean ball B.1/, and T is a regular simplex with the same maximal ellipsoid. Then

jKj � jT j;

and consequently,
j@Kj

jKj.d�1/=d
�

j@T j

jT j.d�1/=d
:

As mentioned in the introduction, the proof of this theorem depended upon a con-
volution inequality of Brascamp and Lieb. The famous inequality of Young for convolutions
states that if f; g; h W R ! Œ0; 1/ are measurable and 1=p C 1=q C 1=r D 2 thenZ

R
f � g � h � kf kpkgkqkhkr :

The inequality holds on any locally compact group using integrals with respect to Haar mea-
sure. On compact groups where constant functions belong to all Lp-spaces, the inequality
is sharp, but for the real line it is not. The sharp version was found for certain exponents by
Beckner [17] and in full generality by Brascamp and Lieb [29]. The extremal functions for the
inequality are Gaussian densities rather than constant functions.

The key to proving the reverse isoperimetric inequality, Theorem 9, was to recog-
nize that the Brascamp–Lieb inequality dovetails perfectly with Fritz John’s Theorem. The
appropriate formulation is this.

Theorem 10 (Brascamp–Lieb). Suppose that unit vectors .ui / in Rd and weights .ci / satisfy
the John condition

mX
1

ci hui ; xi
2

D kxk
2
2

for all x 2 Rd . Then if .fi / are nonnegative measurable functions on R,Z
Rd

mY
1

fi

�
hui ; xi

�ci
�

mY
1

�Z
R

fi

�ci

:

Some feel for the inequality can be gained by observing that there is obviously equal-
ity if the .fi / are identical Gaussian densities. If fi .t/ D e�t2 for each i thenY

fi

�
hui ; xi

�ci
D exp

�
�

X
ci hui ; xi

2
�

D e�kxk2
2
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by the Fritz John condition (1.2). The integral of this function is the same as the productY�Z
R

fi

�ci

D

�Z
e�t2

�d

by equation (1.3). There is something pleasingly counterintuitive about the fact that we prove
an inequality for which the simplex is extremal by using a result from harmonic analysis in
which Gaussian densities are extremal. The resolution of the paradox lies in the fact that the
Brascamp–Lieb inequality is sharp (whatever the fi ) if the vectors ui form an orthonormal
basis.

It is natural to conjecture an extension of the Brascamp–Lieb inequality in which
one replaces the rank-one projections x 7! hui ; xiui by orthogonal projections of higher
rank. This generalized inequality was proved by Lieb in a later article [81].

2.2. Monotone transport
A few years after the proof of the reverse isoperimetric inequality, Barthe [15] gave

an elegant new proof of the generalized Brascamp–Lieb inequality using the optimal trans-
portation map discovered by Brenier. A map T W Rd ! Rd transports a probability measure
� on Rd to a probability measure � if, for each measurable set A � Rd , we have

�
�
T �1.A/

�
D �.A/: (2.2)

Among all maps that do so, one can ask for the one that minimizes the total costZ
Rd

c.x; T x/ d�.x/

for some cost function c. (So c.x;y/ is the cost of moving unit measure from x to y.) Brenier
[32] realized that for one very specific cost function, c.x; y/ D kx � yk2, the square of
the Euclidean distance, the optimal map exists under only very weak hypotheses about the
measures and has a very special form: it is the gradient of a convex function. (This map
is called a monotone transport map by analogy with the 1-dimensional case in which the
derivative of a convex function is monotone.) A version for still more general measures was
found by McCann [86]. For our purposes, the following theorem, which has a very simple
proof [12], gives a good enough picture:

Theorem 11 (Brenier–McCann). If � and � are probability measures on Rd , � has compact
support and � assigns no mass to any set of Hausdorff dimension d � 1, then there is a convex
function � W Rd ! R, so that T D r� transports � to �.

The hypothesis on � corresponds precisely to the conclusion of the differentiability
Theorem 7 since we need � to be differentiable almost everywhere with respect to �.

Barthe’s proof of the Brascamp–Lieb inequality involves transporting the given den-
sities to Gaussian densities and checking that the integral of the product increases as a result.
The latter depends crucially upon the fact that the transportation map is the gradient of a
convex function and hence that its Hessian is positive semidefinite symmetric. So the argu-
ment constitutes a kind of symmetrization technique in which we do not know exactly what
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map we are using but we do have an inequality for its Hessian. We introduced monotone
transport because of Barthe’s proof of the Brascamp–Lieb inequality but it has an obvious
alternative point of contact with convex analysis: it involves the gradient of a convex func-
tion. The contact is actually much closer. If K � Rd is a convex body then, by Theorem 7, it
has a well-defined outward unit normal almost everywhere on its surface. By the divergence
theorem, the integral of this normal over the surface is zero. The Gauss map which takes
a point on the surface to the normal at that point, transports the surface area measure to a
measure � on the sphere satisfying Z

Sd�1

� d�.�/ D 0: (2.3)

A beautiful classical theorem of Minkowski goes in the other direction, just like Theorem 11.

Theorem 12 (Minkowski existence theorem). Suppose that � is a finite measure on Sd�1

for which equation (2.3) holds and whose support spans Rd . Then there is a convex body K

whose Gauss map transports its surface measure to �.

This theorem may look a bit different from Theorem 11 because in this case we
appear to build the surface measure at the same time as the convex set instead of being given
both measures to begin with. But in reality we are effectively given the surface measure,
namely it is .d � 1/-dimensional Hausdorff measure.

Another elegant approach to the Brascamp–Lieb inequality, this one using heat flow
methods, was found by Carlen, Lieb, and Loss [37] and Bennett, Carbery, Christ, and Tao [19].
In the latter article the formulation of the inequality that matches John’s Theorem is called
the “geometric form” of the inequality. Following Barthe’s argument, monotone transporta-
tion was also used to give very elegant proofs of a number of other geometric inequalities
(with best possible constants). For the purposes of this article, the obvious paper to mention
is that of Cordero-Erausquin, Nazaret, and Villani [40] where they study the Sobolev and
Gagliardo–Nirenberg inequalities. The original proofs of the best constants were found by
Aubin [6] and Talenti [108] and by Del Pino and Dolbeault [42].

2.3. Projections and surface area
If K is a symmetric convex body in Rd and for each unit vector � we consider the

.d � 1/-dimensional volume jP� .K/j of the projection of K onto the orthogonal comple-
ment of the span of � , then it is easy to see that the map

� 7!
ˇ̌
P� .K/

ˇ̌
extends to a norm on Rd . The unit ball of this norm has volume

VK D dvd

Z
Sd�1

1

jP� Kjd
d�d�1

and, unlike the surface area, this quantity is unchanged if we apply a linear map of determi-
nant 1 to K. On the other hand, the surface area of K is (apart from the obvious constant)
the average of the volumes of the projections

j@Kj D
dvd

vd�1

Z
Sd�1

jP� Kj d�d�1:
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So it is natural to ask whether there is a strong form of the isoperimetric inequality guaran-
teeing that VK is minimized over bodies of a given volume by the Euclidean ball. This is,
indeed, the case and was proved by Petty [97]. Petty’s projection inequality has been consider-
ably generalized in the work of Lutwak, Yang, and Zhang [83] and Haberl and Schuster [65].

The corresponding reverse question was solved by Zhang [111] who proved that VK is
maximized over bodies of a given volume by the simplex. Whereas Petty’s Theorem strength-
ens the isoperimetric inequality, Zhang’s Theorem does not follow from Theorem 9 with the
correct constant because for the simplex the volume jP� Kj is not constant as a function of � ,
and so there is strict inequality in the Hölder inequality that one would wish to invoke.

2.4. Stability
Whenever one has an important inequality like the isoperimetric inequality, it is nat-

ural to ask about its stability. If a set has small surface area, must it resemble a Euclidean
ball? Again, strictly speaking, this is not necessarily a problem about convex sets: the ques-
tion might well make sense for other sets, as long as we specify carefully what we mean by
“resemble.” The most famous classical result in this direction is that of Bonnesan [24] from
1924 which is, indeed, specific to convex sets. He proved that for a convex region C in the
plane with area A and perimeter P , there are concentric discs D1 and D2 with radii r1 and
r2 for which D1 � C � D2 and with

P 2
� 4�

�
A C .r2 � r1/2

�
:

Thus if C almost satisfies the isoperimetric inequality P 2 � 4�A with equality, its boundary
can be sandwiched between two very similar circles. This result was not extended to higher
dimensions until 1989 when Fuglede [55] showed that for a convex body K in Rd , the Haus-
dorff distance of K from the closest Euclidean ball can be estimated by a certain power of the
gap between j@Kj and the surface area of a ball of the same volume. This sort of conclusion
is clearly impossible without the convexity assumption since a general set could have a tiny
piece far from the rest of it, which contributes very little to either the volume or the surface
area.

However, if we choose to measure the distance of a set from a ball by the volume
of their symmetric difference then we can drop the convexity. In a couple of articles, in
particular [66], Hall proved the following:

Theorem 13 (Hall). For each d , there is a constant C.d/ so that if A is a measurable set in
Rd then there is a Euclidean ball B of the same volume as K for which

jA 4 Bj
4

� C.d/
�
j@Aj � j@Bj

�
:

Hall conjectured that the exponent 4 in this theorem was not optimal and that 2 was
the correct exponent. This was proved by Fusco, Maggi, and Pratelli in [57]. Normally, the
only reasonable way to prove a stability estimate for a sharp inequality is to take a proof of
the inequality and to “watch carefully” what it does, so as to track how much the quantities
on each side change as you run through the proof. (Since the stability result implies the
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original inequality, your argument had better give a proof of the original, so you might as
well start with such a proof.) Each of the stability results mentioned so far, tracks the Steiner
symmetrization proof of the isoperimetric inequality which was mentioned in Section 1.3.

Knöthe [76] found a different approach to the Brunn–Minkowski inequality and
(a fortiori) to the isoperimetric inequality. He used a measure transport map satisfying an
equation like (2.2), but whose derivative at each point is upper triangular rather than posi-
tive semidefinite symmetric. His argument works just as well with the Brenier map except
that to make it rigorous you need some regularity for the map, and this is more difficult to
establish in the case of monotone transport. (The main reference here is the subtle regu-
larity theory of Cafarelli [36] for the Monge–Ampére equation.) In their article [50], Figalli,
Maggi, and Pratelli obtain stability results by tracking the transportation proof of the isoperi-
metric inequality instead of the symmetrization proof. The main thrust of their article is
that the latter method works for “anisotropic” isoperimetric inequalities. It was pointed out
by Gromov [92] that Knöthe’s argument works even when you measure surface area in a
direction-dependent (anisotropic) way, whereas the symmetrization argument cannot possi-
bly work because the extremal cases are no longer Euclidean balls.

As a consequence of the Brunn–Minkowski inequality, we know that the map

" 7! jA C B."/j1=d

is concave in ". If we control the surface area of A then we control the derivative of the
map at 0 and hence its value at each ". Therefore one can strengthen the stability estimates
for the isoperimetric inequality by showing that A must look like a ball under the weaker
assumption that the volume jA C B."/j1=d is not too large. This was done by Figalli and
Jerison [49]. There are two very comprehensive surveys of all of these stability results, namely
by Fusco [56] and Maggi [84]. To some extent, the existence of these surveys, by authors
heavily involved in the developments, has prompted me to give relatively brief descriptions.

3. Applications of functional analysis

In the 1970s and 1980s researchers in geometric functional analysis began to focus
on quantitative problems in finite-dimensional normed spaces rather than problems in infinite
dimensions that were, at least in spirit, qualitative. The work led to many new results in
convex geometry and, perhaps most strikingly, the reverse Santaló inequality of Bourgain
and Milman. These developments really began with Dvoretzky’s Theorem about a decade
earlier.

3.1. Dvoretzky’s Theorem
We shall say that a symmetric convex body K is t -equivalent to an ellipsoid if for

some ellipsoid E ,
E � K � tE:

This is the same as saying that the normed space with unit ball K is isomorphic to Euclidean
space with a constant of isomorphism t . Dvoretzky [44] answered a question of Grothendieck
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by proving that high-dimensional convex bodies have fairly high-dimensional slices that are
almost indistinguishable from ellipsoids.

Theorem 14 (Dvoretzky). For each positive integer k and each " > 0, there is an integer d

so that any d -dimensional symmetric convex body has a k-dimensional slice that is .1 C "/-
equivalent to an ellipsoid.

This theorem was one of the earliest triumphs of the probabilistic method: the use of
probability theory to construct (or demonstrate the existence of) mathematical objects with
special properties. About 12 years later, Milman [89] found a different proof which gives the
optimal dependence of k on d . (The fact that it is optimal is shown, for example, by the
cube.)

Theorem 15 (Milman). For each " > 0, there is a constant c."/ > 0 so that any d -dimen-
sional symmetric convex body has a k-dimensional slice that is .1 C "/-equivalent to an
ellipsoid with

k � c."/ log d:

Milman’s proof is now the most familiar. It proceeds in several steps. Assume (by
applying a linear transformation) that the Euclidean unit ball is the ellipsoid of largest volume
inside the convex body K. Then if k � kK is the norm whose unit ball is K, we have that
kxkK � kxk2 for every x in Rd giving a bound on the Lipschitz constant of k � kK as a
function on the Euclidean sphere. Using the first step, you check that if kxkK is roughly
constant on a reasonably dense finite subset of the sphere in some k-dimensional subspace,
then it will be roughly constant on the whole sphere in that subspace. A simple argument
shows that the sphere in Rk has a fairly dense subset with only about 4k points. Now using
the Lipschitz property again and Levy’s isoperimetric inequality, Theorem 6, you show that
k � kK is roughly constant on a huge part of the Euclidean sphere in Rd . Now choose a space
at random from among all k-dimensional subspaces and conclude that with high probability
the norm, restricted to 4k points in this subspace, will be almost constant.

The proof seems complete, but a moment’s thought shows that there is a point
glossed over. We transformed K to make it as round as possible in the hope that there would
then be large sets on the sphere where k � kK is almost constant. However, so far we have only
used the fact that K includes the ball of radius 1. That would still be true if K were a huge set
with no similarity to a ball whatsoever. To make the details of the argument work, we need
to know that the average of the norm over the Euclidean sphere is not too small (using the
fact that the Euclidean ball is the ellipsoid of maximal volume). Thus we have a final step
using a result of Dvoretzky and Rogers which shows that if the ellipsoid of maximal volume
inside K is the Euclidean unit ball then for some c independent of d ,Z

Sd�1

k�kK d�d�1.�/ � c
p

log d:

Dvoretzky’s original argument is more complicated. Dvoretzky introduced the first
and last steps but did not apply the discretization. Instead, he showed “directly” that the
norm is almost constant on a k-dimensional subspace. As a result, instead of considering
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neighborhoods of substantial subsets of the sphere, he was forced to consider neighborhoods
of sets that meet a substantial proportion of the k-dimensional subspaces. Milman’s method
threw into sharper relief the idea that on a space like the sphere, which satisfies a deviation
principle, any Lipschitz function will be almost equal to its average on a huge part of the
space. This viewpoint led to a series of important results in the 1980s which will be discussed
in Section 3.3, but in the next short subsection we shall say a bit more about Euclidean slices.

3.2. Sections of `p balls
In 1974 Kašin [71] showed that the finite-dimensional L1 spaces, `d

1 , have Euclidean
subspaces of much higher dimension than is guaranteed by Dvoretzky’s Theorem.

Theorem 16 (Kašin). For each d , there is a subspace of `d
1 of dimension at least d=2 which

is 32-isomorphic to a Euclidean space.

He used the fact that the unit ball of Bd
1 D ¹.xi /

d
1 W
P

jxi j � 1º contains a Euclidean
ball of radius 1=

p
d whose volume is as large as 1=2d times the volume of Bd

1 . This remark-
able fact, that the unit ball of `d

1 has almost spherical slices of dimension proportional to d ,
was reproved in [51] using Milman’s approach to Dvoretzky’s Theorem.

A familiar phenomenon in functional analysis is that the Lp spaces for p < 2 behave
very differently from those for p > 2: several important identities in Hilbert space become
inequalities in Lp , in one direction for p < 2 but in the other direction for p > 2. Kašin’s
argument can be used to show that for p < 2 the space `d

p contains subspaces of proportional
dimension that are almost Euclidean. However, for p > 2 the correct dependence is d 2=p as
shown in [51]. This fact was the starting point for Bourgain’s remarkable solution to the ƒp

problem on subspaces of Lp spanned by trigonometric characters [26].

3.3. The reverse Santaló inequality
In 1939 Mahler asked a very natural question, prompted by applications in the geom-

etry of numbers. We already saw that the product of the volumes of a symmetric convex body
and its polar cannot be more than for the Euclidean ball v2

d
. Mahler asked whether the min-

imum occurs for the pair consisting of the cube and the so-called cross-polytope, the unit
balls of `d

1 and `d
1 , respectively, for which the product is 4d =dŠ. He also asked whether the

minimum over all (not necessarily symmetric) bodies occurs for the simplex. The precise
questions are still open but, for example, the products v2

d
and 4d =dŠ have a ratio of about

.�=2/d , so for most purposes it is enough to have an estimate

jKj:jKı
j � cd v2

d

for some positive constant c. Such an estimate was proved in a well-known article of Bourgain
and Milman [28].
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Theorem 17 (Bourgain–Milman). There is a constant c > 0 so that if K is a symmetric
convex body and Kı is its polar then

jKj:jKı
j �

�
c

d

�d

:

The assumption of symmetry was removed in subsequent works, but the ideas
involved in proving the more general statement do not really add anything to the origi-
nal.

The original proof of the theorem used a subtle, but rather technical, estimate of
Milman’s [90] (which he called the lower M �-estimate), together with the theory of type and
cotype developed principally by Kwapień, Maurey, and Pisier; see in particular [85, 98]. A
crucial result of the latter is Pisier’s estimate for the norm of the Rademacher projection on
a finite-dimensional space [99]. If K is a convex body that is t -equivalent to an ellipsoid in
the sense of Section 3.1 then there is a linear image QK so that the norms whose unit balls are
QK and its polar satisfyZ

Sd�1

k�k QK d�d�1.�/

Z
Sd�1

k�k QKı d�d�1.�/ � C.1 C log t / (3.1)

for some constant C . As alluded to in Section 2.3, an upper estimate forZ
Sd�1

k�k QK d�d�1.�/

yields a lower estimate for the volume of K because of Hölder’s inequality. So Pisier’s result
gives an estimate

jKj:jKı
j �

�
c

d log d

�d

which is much stronger than the estimate that follows from John’s Theorem, but contains
an extra log d that is not present in the Bourgain–Milman Theorem. Milman’s lower M �-
estimate demonstrates the existence of a high-dimensional subspace on which k � k QK is
controlled in terms of the quantityZ

Sd�1

k�k QKı d�d�1.�/:

This and the very weak (logarithmic) dependence of the integral on the distance of a normed
space from Euclidean made possible an iterative argument: apply a linear map that makes
the integral small, find a subspace much closer to Euclidean and repeat. Shortly after The-
orem 17, Milman proved another result in the same spirit: his reverse Brunn–Minkowski
inequality [91]. The reverse Santaló and reverse Brunn–Minkowski inequalities are explained
at length in the books [5,100].

In the years following the Bourgain–Milman Theorem, there have been a number
of other proofs using very different methods. Kuperberg [77] found one that uses topology,
and Nazarov [93] presented a method using complex analysis. Quite recently an “elementary”
proof was found by Giannopoulos, Paouris, and Vritsiou [60] which is very much in the spirit
of convex geometry. This will be discussed in Section 4.6 below.
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4. The probabilistic picture

The aim of this last section is to explain the somewhat cryptic assertion made in the
the introduction that convex domains exhibit many of the properties we expect of the joint
densities of independent random variables. In the previous section it was explained how
the probabilistic method appears in the proofs of subtle geometric results. But here we are
after a more intimate connection between geometry and probability. Instead of probability
being a tool for proving geometric facts, we want to see classical probability theory actually
mimicked by the geometry.

4.1. The cube and the Gaussian isoperimetric inequality
To begin gently, observe that the indicator function of the cube Œ�1=2; 1=2�n is

exactly the joint density of n independent random variables, each one uniformly distributed
on the interval Œ�1=2; 1=2�. If our convex set happened to be a rectangle then it would be the
joint density of independent random variables, but we have to choose the coordinate system
carefully. If a long thin rectangle is not aligned with the coordinates then its coordinates are
highly dependent; see Figure 3.

Figure 3

A rectangle misaligned

For a general convex domain, there is no natural choice of a coordinate system, so,
in order to witness its similarity to a joint density, we must first transform the domain in
such a way that the choice of coordinate system does not really matter. If .Xi / are not just
independent but also identically distributed then all marginals of the joint distribution have
the same variance: the vector .X1; : : : ; Xd / has the property that for any unit vector .�i /,

E
�X

�i Xi

�2

D EX2
1 :

So, given a symmetric convex domain, we start by applying the linear map which makes its
inertia tensor a multiple of the identity. We call a symmetric domain K isotropic ifZ

K

hu; xi
2 du D L2

kxk
2
2 (4.1)
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for some L and every vector x. Note that this condition again resembles the conditions of
John (1.2) and Petty (2.1). (If the domain is not symmetric, we also shift it so that

R
K

x D 0.)
For an isotropic body, it makes sense to ask whether its indicator looks like the joint density
of IID random variables.

The cube is the only example of a convex domain which exactly corresponds to IID
random variables, but the model we want to keep in mind is that of the standard Gaussian
density on Rd , namely

x 7! g.x/ D
1

.
p

2�/d
exp

�
�kxk

2
2=2

�
:

Although this is not the density of a convex set, it is logarithmically concave and is the joint
density of independent 1-dimensional Gaussians. There is an isoperimetric principle for the
Gaussian density established independently by Borell [25] and by Sudakov and Tsirel’son
[106]. We write


.A/ D

Z
A

g

for the Gaussian measure of a measurable set A in Rd .

Theorem 18 (Borell–Sudakov–Tsirel’son). Suppose A is a measurable subset of Rd and H

is a half-space with the same Gaussian measure, 
.A/ D 
.H/. Then for each " > 0 the
"-neighborhoods of these sets satisfy


.A"/ � 
.H"/:

Both articles establish the theorem by using the isoperimetric inequality on the
sphere and a limiting process. There are other, direct, proofs; a particularly elegant one
was found by Bobkov [22]. From this isoperimetric principle, we can immediately obtain
a deviation estimate: if 
.A/ D 1=2 then the t -neighborhood of A has large measure:


.At / � 1 � 1=2e�t2=2:

It follows from this, or can easily be checked by simple calculation, that most of the mass of
the Gaussian density in Rd lies in a spherical shell of constant thickness (the constant being
independent of dimension) and radius about

p
d . In other words, most of the mass lies in a

shell much thinner than its radius.
As explained, the aim of this final section of the article is to discuss the extent to

which convex domains exhibit features like those of the Gaussian density. To set the scene,
let us remark that we already have a deviation inequality for the Euclidean ball: Theorem 6
works just as well for the solid ball as for the sphere. Moreover, Pisier noticed that we can get
a similar inequality for the cube by transporting the Gaussian measure to Lebesgue measure
on the cube. However, one cannot hope to obtain such a sub-Gaussian deviation principle
for a general convex domain. The unit ball of `d

1 has volume 2d =dŠ so the scaled copy that
has volume 1 is about d times as large. Its marginal in a coordinate direction decays like
.1 � x=d/d and this is only subexponential, rather than sub-Gaussian. For a general convex
domain, a subexponential deviation estimate can be provided by a Poincaré inequality which
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estimates the smallest nontrivial eigenvalue �1.K/ of the Neumann Laplacian on the domain.
In an influential paper [38] Cheeger showed that (on any compact Riemannian manifold)
this eigenvalue cannot be too small if there is an isoperimetric inequality for subsets in the
manifold. On the other hand, Gromov and Milman [62] showed that a lower bound for �1 does
imply a subexponential deviation estimate. The statement that �1.K/ is the first nontrivial
eigenvalue can be written as an inequality: if s W K ! R is differentiable and perpendicular
to the trivial constant eigenfunction Z

K

s D 0;

then
�1.K/

Z
K

s2
�

Z
K

krsk
2
2: (4.2)

Observe that if K is isotropic with constant L as in equation (4.1), then for any unit vector e

we have Z
K

hu; ei
2 du D L2:

So by taking s to be the function s W u 7! hu; ei whose gradient everywhere is the vector e

of length 1, we conclude that �1.K/ cannot be larger than 1=L2.
The Laplacian with respect to Gaussian measure, namely the operator

s 7! �
r:.grs/

g
D ��s C hx; rsi;

satisfies a Poincaré inequality with constant 1: the linear functions x 7! hu; xi are the eigen-
functions of this operator that have the smallest nonzero eigenvalue. The conjectures dis-
cussed below are intended to capture the extent to which convex domains share with Gaussian
densities the properties of having Gaussian marginals, satisfying a Poincaré inequality or
concentrating mass in a thin shell. Before addressing the conjectures that frame our proba-
bilistic picture of convex domains, it is helpful to discuss sections of convex bodies.

4.2. Sections of convex bodies
From now on we shall assume that K is a symmetric convex domain in Rd with

volume 1 which is isotropic, that is,Z
K

hu; xi
2 du D L2

kxk
2
2 (4.3)

for all x 2 Rd . As a consequence of the Brunn–Minkowski inequality, each marginal density
of K is logarithmically concave, and that means we can relate its maximum value to its
“variance” L2. Hensley [68] pointed out that this implies that if H is a 1-codimensional
subspace of Rd then the slice H \ K has volume between, say, 1=.4L/ and 1=L. The obvious
question is “How big is L?”. We can apply (4.3) to an orthonormal basis to getZ

K

kuk
2
2 D dL2;

and so it is clear that L is minimized if K is a Euclidean ball. In this case L is approxi-
mately 1=

p
2�e. So the question is how large L can be? It is tempting to think that a convex
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domain of volume 1 must obviously have some 1-codimensional slices as large as those of
the Euclidean ball of the same volume and use Hensley’s result to deduce that L must be at
most a constant independent of dimension. In 1956 Busemann and Petty [35] asked a general
version of this question: Is it true that if K and B are symmetric convex bodies and every
1-codimensional slice through the center of K has .d � 1/-dimensional volume smaller than
the corresponding slice of B , then K itself must have smaller d -dimensional volume than B?
The answer is no, and the simplest counterexamples take B to be the Euclidean ball, so there
is no hope of estimating L in this way. A negative answer in 12 dimensions was provided in
1975 by Larman and Rogers [78] with K a random perturbation of the Euclidean ball. Some
years later I proved that each 1-codimensional slice of the cube has volume at most

p
2 and,

as a result, if the dimension is at least 10, the unit cube has all its slices smaller than those
of the Euclidean ball of volume 1; see [8] and [10].

The Busemann–Petty problem is now solved in all dimensions. Lutwak [82] showed
that the problem can be reformulated in terms of intersection bodies (the unit balls of the
norms generated by Busemann’s Theorem 3) and using this Gardner [58] proved that the
problem has a positive solution in 3 dimensions, while Zhang [112] proved it for 4 dimen-
sions. For dimension 5 and above, the solution is negative, and a unified treatment of the
problem can be given using ideas of Koldobsky; see the article by Gardner, Koldobsky, and
Schlumprecht [59]. (In the special case in which K is the Euclidean ball, the answer to the
Busemann–Petty question is yes in all dimensions: every convex body has a slice as small
as those of the Euclidean ball of the same volume.) So there remains the question: Is there
an upper bound, independent of dimension, for the variance of isotropic convex domains in
Euclidean space? This will be the subject of the first conjecture in the next subsection.

4.3. The conjectures
The aim of this subsection is to describe three conjectures that have motivated much

of the work in high-dimensional geometry over the last two decades, each of which describes
a sense in which the indicators of convex domains look like the densities of independent
random variables or, more specifically, like Gaussian densities.

Conjecture 19 (Bourgain’s slicing conjecture). There is a constant M independent of
dimension so that if K is an isotropic symmetric convex domain of volume 1 in Rd thenZ

K

kuk
2
2 � M 2 d:

While this conjecture is usually attributed to Bourgain, I personally do not think
he actually believed it. The question of just how large the integral can be remains open but
there has been dramatic recent progress that will be discussed in Section 4.6. Note that the
conjecture is equivalent to the following tantalisingly simple statement: there is a constant
ı > 0 so that every convex body of volume 1 has a 1-codimensional slice of volume at least
ı; hence the name of the conjecture. As explained in the previous section, you cannot hope
to prove the conjecture by showing that every convex body of volume 1 has a slice as large
as the Euclidean ball of the same volume. What is trivial is that every convex domain of
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volume 1 must have width at most that of the Euclidean ball of the same volume, in at least
one direction, and this is about

p
d . By the Cavalieri principle, it must have a slice of volume

at least 1=
p

d . On the face of it, this conjecture appears to be saying much less than that a
convex domain looks like a Gaussian density; this point will be taken up in Section 4.4 below.

The second conjecture was made by the present author in the mid-1990s (and later
published in a joint article with Anttila and Perissinaki [3]) and also by Brehm and Voigt
[31]. Roughly speaking, it says the following:

Conjecture 20 (The central limit problem). Let K be an isotropic, convex domain of volume
1 in Rd . Then in all but a small proportion of directions, the 1-dimensional marginals of K

are approximately Gaussian.

(The precise formulation stipulates that as d ! 1 the proportion decreases to 0
and the distance of the marginals from Gaussian also decreases to 0.)

The third and final conjecture concerns the Poincaré constant for an isotropic convex
domain. It has been known for a century that for a bounded connected domain � � Rd there
is a spectral gap for the Neumann Laplacian on �. The gap can be very small if � is a
dumbbell-shaped domain because then s can be equal to �1 on one of the weights, 1 on the
other, and only have a nonzero gradient on the narrow bar that joins the two weights. Even
if � is convex, the constant can be large if the set is long and thin since then s can take large
values at the two ends by changing only very slowly along the length of �. However, for an
isotropic convex set K, there is a bound depending only upon dimension. As was remarked
earlier the spectral gap cannot be more than 1=L2. In their article [70], Kannan, Lovász, and
Simonovits conjectured that this is the correct order.

Conjecture 21 (Kannan–Lovász–Simonovits). There is a constant C independent of dimen-
sion so that if K is an isotropic, convex domain of volume 1 then for any differentiable s on
K with

R
K

s D 0, Z
K

s2
� CL2

Z
K

krsk
2
2 (4.4)

where L is the “slicing constant” of K, that is,Z
K

hu; xi
2 du D L2

kxk
2
2:

Thus the conjecture is that for convex domains, linear functions are approximately
the worst for the spectral gap problem, just as they are for the Gaussian density.

In the same article Kannan, Lovász, and Simonovits gave a better bound for the
spectral gap than the trivial one that can be deduced just from a bound on the diameter of K.
To do so, they used a localization method for proving inequalities originally employed by
Payne and Weinberger [95], which is roughly as follows. Among convex sets, the cones are
“extremal” in the sense that they are only just convex. As you scan along a cone in Rd the
.d � 1/-dimensional volume of the slices is given by x 7! l.x/d�1 where l is a real-valued
linear function. You have a pair of functions f and g and you want to contradict the claim that
they both have positive integral (thereby proving the inequality you want). Assume that they
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do. Choose a hyperplane that cuts space into two pieces on which the integrals of f are the
same and pick the piece on which the integral of g is the larger. Thus you have found a smaller
region on which both functions have positive integral. Keep doing this and take a “limit.”
It is possible to show that the limiting region is an infinitesimal truncated cone: formally, a
line segment and a weight function of the form l.x/d�1 for some linear function l . You now
just have to prove the inequality you want in this 1-dimensional setting. The estimate given
by Kannan, Lovász, and Simonovits isZ

K

s2
� CdL2

Z
K

krsk
2
2

with an additional factor of the dimension d , instead of inequality (4.4). The same estimate
was later established by Bobkov [23] using entropy arguments.

The next subsection explains the probabilistic picture of geometry that grew out
of these conjectures and how this led to a study of the entropy of logarithmically concave
random variables. The following subsections will then describe the state of play on each of
the three conjectures. There are a number of books and survey articles on these topics, for
example, [2,75].

4.4. The probabilistic picture clarified
It was remarked in Section 1.1 that the class of logarithmically concave densities is

an extension of the class of convex domains which has the virtue of being closed under the
most common operations of probability theory. Facts about convex domains usually transfer
to this larger class: for example, using Theorem 3 it is not hard to show that if M is a bound
in the slicing conjecture for a given dimension then eM works for logarithmically concave
densities in the same dimension (see [9]). When studying a convex domain, it makes sense
to consider its indicator function which takes the value 1 on the domain. But when looking
at more general densities, it is not natural to normalize by fixing the value at a point. In the
context of probability theory, it is clearly much more natural to consider probability densities
f W Rd ! R for which the covariance matrix is the identity; so for all x,Z

Rd

f .u/hu; xi
2

D kxk
2
2:

Once you rescale in this way, two of the conjectures read differently. The central limit prob-
lem, of course, stays as it is: we still want marginals to look Gaussian, just with a different
variance.

The KLS conjecture now becomes as simple as it could be, namely the slicing con-
stant L simply disappears from the statement.

Conjecture 22 (KLS probabilistic version). There is a constant C independent of dimension
so that if f W Rd ! Œ0; 1/ is an even logarithmically concave probability density whose
covariance matrix is the identity, then for any differentiable s W Rd ! R with compact support
and

R
sf D 0, Z

s2f � C

Z
krsk

2
2f:
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The slicing problem states that in passing from the convex body normalization to the
probabilistic normalization, we haven’t had to rescale too much. So it now specifies that the
value f .0/ cannot be more than M d for some constant M . However, the quantity f .0/ looks
rather unnatural in the probabilistic setting: among other things, it is very unstable under
probabilistic operations such as convolution. Fortunately, it can be replaced by a proxy that
is much more appropriate. It is not difficult to check that for an even logarithmically concave
density the entropy, Ent.f / D �

R
Rd f log f , satisfies

� log f .0/ � Ent.f / � � log f .0/ C cd

for some constant c. (Within a few days of my pointing this out, Fradelizi showed me a neat
argument that gives the optimal constant, c D 1. He included it into an article some years
later [54].) Therefore the slicing problem now reads

Conjecture 23 (Slicing, probabilistic version). There is a constant C independent of dimen-
sion so that if f W Rd ! Œ0;1/ is an even logarithmically concave probability density whose
covariance matrix is the identity, then

Entf � �Cd:

Among random vectors with a given covariance matrix, the Gaussian has the largest
entropy. The gap between the entropy of a random vector on Rd with density f and the
entropy of the Gaussian is a well-known and very natural measure of how far the random
vector is from being Gaussian. So this version of the slicing problem shows clearly that it
does indeed constitute a statement about logarithmically concave densities being similar to
Gaussians.

This entropic formulation of the problem was the motivation behind a series of
articles [4, 13] of Artstein, Barthe, Naor, and the author, which used a local version of the
Brunn–Minkowski inequality to find a new formula for the entropy (or more precisely, the
Fisher information) of a marginal distribution. This did not solve the slicing problem, but
led us to (among other things) the solution of an old problem in information theory: Is the
central limit theorem driven by an analogue of the second law of thermodynamics? Since
the Gaussian has the largest entropy among random variables with a given variance, it makes
sense to ask whether the central limit theorem can be “explained” by the fact that normalized
sums of IID random variables have increasing entropy that drives them to the Gaussian.

Theorem 24 (Artstein–Ball–Barthe–Naor). If .Xi / are IID square-integrable random vari-
ables then the entropies

Ent

 
1

p
n

nX
1

Xi

!
increase with n.

This theorem constitutes an application of convex geometry to information theory
rather than the other way around, but the machinery developed in [13] did have one surprising
consequence for geometry. Following the work of Bakry and Emery [7], most studies of
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entropy consider the evolution of a random vector along the Ornstein–Uhlenbeck semigroup.
This is a semigroup ¹Pt ºt�0 of convolution operators on L1 which can be defined as follows.
If f is the density of a random vector X then Pt f is the density of the random vector
Xt D

p
e�2t X C

p
1 � e�2t G where G is a standard Gaussian independent of X . Thus

the semigroup evolves the original random vector towards the Gaussian. The logarithmic
Sobolev inequality of Gross [63] ensures that the rate of decrease of the entropy gap between
the random vector Xt at time t and the Gaussian limit is at least a certain multiple of the gap:

2.EntG � EntXt / � �
@

@t
.EntG � EntXt /:

As a result the entropy gap decays to zero at least as fast as the exponential e�2t . One con-
sequence of the methods found in [13] is that if we start with a random variable X with a
logarithmically concave density f D e�� for which the Laplacian

s 7! �
r:.f rs/

f
D ��s C hr�; rsi

itself has a spectral gap, then the entropic convergence is enhanced. So if the KLS conjecture
holds for a particular density f , we get more rapid convergence of the entropy gap to zero.
With some care, this can be used to show that the initial entropy gap was not too large to
start with and hence yield an estimate for the slicing constant for f . The argument appears
in [14].

Theorem 25 (Ball–Nguyen). Let f W Rd ! R be an isotropic even logarithmically concave
probability density satisfying a Poincaré inequalityZ

s2f � C

Z
krsk

2
2f

for differentiable s with compact support satisfying
R

sf D 0. Then the slicing constant of
f is at most e16C .

Some years later Eldan and Klartag [47] gave a much tighter estimate for the rela-
tionship between the spectral gap and the slicing bound, not for each convex domain but
“globally.” They showed that an estimate C in the KLS conjecture for all convex domains
transfers to an estimate of some constant multiple of C in the slicing problem for all domains.
The most interesting thing about the argument is that they apply the spectral gap property to
a more natural function, the Euclidean norm, than in the case of the theorem for individual
domains stated above. Their result has acquired new significance following a recent article
of Chen [39] and will be taken up in Section 4.6. The last three sections deal with what is
known on the three conjectures stated above.

4.5. The central limit problem
It was shown by Sudakov [105] and by Diaconis and Freedman [43] that an isotropic

probability measure � on high-dimensional space will have Gaussian marginals, in the sense
of the central limit problem stated above, as long as the measure satisfies a thin shell estimate
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of the kind that Gaussian measure satisfies. IfZ
Rd

hu; xi
2 d�.u/ D L2

kxk
2
2

for all x then the typical radius of the random vector with law � is L
p

d . The thin shell
condition states that most of the mass of � lies in a shell of roughly this radius, whose
thickness is significantly smaller, namely

�
�ˇ̌

kxk2 � L
p

d
ˇ̌

> "L
p

d
�

< ":

A measure satisfying this will have Gaussian marginals in most directions up to an error of "

plus a term depending only on d (that is, o.1/ as d ! 1). In the case of the uniform measure
on a convex set, one can obtain essentially optimal estimates (in terms of " and d ) as in [3].
This thin shell condition is clearly implied by a Poincaré inequality for the measure, so the
KLS conjecture is stronger than both the central limit conjecture and the slicing problem.
The KLS conjecture would give the thin shell property with " of the order of 1=

p
d which is

the best one could possibly hope for. It was explained in Section 4.3 that Kannan, Lovász, and
Simonovits had used localization to obtain a bound on the spectral gap for isotropic convex
sets or logarithmically concave functions. That bound does not provide an estimate for " that
tends to 0 as the dimension grows.

The central limit problem was solved in 2006 by Klartag [73] and shortly afterwards
a completely different proof was given by Fleury, Guédon, and Paouris [53]. The key idea
in Klartag’s article is to show that typical marginals of the body of fairly high dimension,
say log d , have almost exactly rotation-invariant densities, a kind of Dvoretzky Theorem
for marginal densities instead of sections. (The possibility of such an approximate rotation
invariance was suggested by Gromov during the 1980s.) For a rotation invariant density,
the thin shell property is a 1-dimensional question that is easily solved. Then, since the 1-
dimensional marginals of the original body are the 1-dimensional marginals of the log d -
dimensional ones, they must be almost Gaussian.

A year or so before the proof of the central limit theorem for convex domains,
Paouris [94] proved an optimal decay estimate for the Euclidean norm, which is clearly related
to the thin shell estimate but ultimately has rather different consequences.

Theorem 26 (Paouris). Suppose K is an isotropic, symmetric convex body of volume 1 in
Rd and Z

K

kxk
2
2 D L2d:

Then the volume of the part of K where kxk2 is significantly larger than L
p

d decays asˇ̌®
x 2 K W kxk2 � cL

p
dt
¯ˇ̌

< e�
p

dt

for some constant c independent of dimension and K, and for all t > 1.

The restriction that t should be larger than 1 means that the theorem does not yield
a concentration of volume in a shell but it gives an excellent decay rate for large radii. The
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proof of this theorem depends upon a delicate analysis of the integralsZ
Sd�1

k�k
q
K d�d�1.�/

of powers of the norm corresponding to K. This in turn depends upon a study of the norm
restricted to subspaces in the same spirit as the Bourgain–Milman Theorem, the new ingre-
dient here being that a crucial role is played by subspaces of dimension

p
d . The optimality

(apart from the value of c) is shown by sets like the unit ball of `d
1 as remarked earlier.

The proof of the central limit problem given by Fleury, Guédon, and Paouris uses a
variant of the methods of Theorem 26. Each of these two articles gives an estimate for the thin
shell problem with " only logarithmic in the dimension. Klartag [74] quickly gave a power-
type estimate and this was improved by Fleury [52], and again by Guédon and E. Milman
[64] by combining the techniques from [53,73]. Then in [79] Lee and Vempala showed how to
use the stochastic localization method of Eldan to estimate the thin shell bound. At the time
this gave a bound of the form " D 1=d 1=4, but the recent work of Chen reduces this almost
to 1=

p
d .

4.6. The slicing conjecture
Bourgain not only posed the slicing problem but gave the first significant estimate.

As remarked above, there is a trivial bound of
p

d for slicing constants in dimension d . In
[27] Bourgain improved this dramatically to d 1=4 log d .

Theorem 27 (Bourgain). For some M independent of dimension, if K is an isotropic sym-
metric convex body of volume 1 then

1

d

Z
K

kxk
2
2 � M.d 1=4 log d/2:

Bourgain’s argument used much of the functional-analytic machinery that had just
become available: Pisier’s estimate (3.1), Talagrand’s majorizing measure theorem [107], and
an interpolation argument using the Brunn–Minkowski inequality.

In the late 1980s when the problem was first discussed, there was considerable inter-
est in the question of whether the slicing constant is an isomorphic invariant for normed
spaces. Suppose we have two t -equivalent norms on Rd with unit balls J and K which are
isotropic and have volume 1. If the slicing constant of K is L, must it be that the constant
for J is at most some fixed function of t times as large as L? Klartag [72] showed some 15
years later that, in this form at least, the question is a bit of a red herring.

Theorem 28 (Klartag). If K is a convex body and " > 0, there is another body T which is
.1 C "/-equivalent to K and whose slicing constant is at most C=

p
".

So every convex body is quite similar to one with a bounded slicing constant. Thus
the only way that the slicing constant can be an isomorphic invariant is that it is essentially
the same for all convex bodies. Klartag pointed out that by combining this with Paouris’
estimate, Theorem 26, one can eliminate the log d factor in Bourgain’s Theorem to give an
estimate for slicing constants of d 1=4.
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Klartag’s argument is very surprising. He considers the following logarithmically
concave function:

y 7! ehx;yi

restricted to K, for different choices of x. Using the theory of monotone transport discussed
in Section 2.2, he shows that for an appropriate x, the slicing constant for this function can be
bounded in terms of the volume product jKj:jKıj and then invokes a nonsymmetric version
of Theorem 3 to create a convex set from the logarithmically concave function. To get Theo-
rem 28, he used the reverse Santaló inequality (Theorem 17). Some years later Giannopoulos,
Paouris, and Vritsiou realized that the final step could be avoided in a rather dramatic way. It
is possible to estimate the volume product of a body in terms of its slicing constant. In itself
that is not very surprising: the slicing conjecture is a strong statement, and already in [9]

there was a very simple proof that the slicing conjecture implies Milman’s reverse Brunn–
Minkowski inequality. But the key point here is that the powers of the volume product in
Klartag’s Theorem and in the reverse direction are different, and this means that they can be
combined to yield a proof of the reverse Santaló inequality. That in turn can be fed back into
Klartag’s Theorem. So there is now an “elementary” approach to Theorem 17.

It was remarked in Section 4.4 that the KLS conjecture implies the slicing conjecture
and that Eldan and Klartag [47] had sharpened the dependence. Their argument applies the
spectral gap property to the function kxk2 and so what they actually prove is that estimates
in the slicing conjecture can be deduced from estimates for the thin shell bound discussed in
the previous subsection. Their original argument involved the construction of a Riemannian
metric related to a convex body which seems to have little or nothing to do with the other
ideas discussed in this article, although one can see a link to the proof of Theorem 28. Subse-
quently, the machinery of stochastic localization developed by Eldan, which will be discussed
in the next section, was used by Eldan and Lehec [48] to give an alternative proof. The best
estimates currently known in the slicing problem have just been improved dramatically as
will be explained at the end of the next subsection.

4.7. The KLS conjecture
It was remarked in Section 4.1 that for a convex set, a bound on the spectral gap is

equivalent to an isoperimetric inequality for subsets, that is, a bound on the Cheeger constant.
The Cheeger constant for a domain K is the minimum over all subsets A of K of the ratio

j@Aj

jAj:jK � Aj

where the “surface area” j@Aj of A includes only the part of the surface inside K. So the
constant tells you how small can be the area of a (curved) cut that divides the set into roughly
equal pieces. In the paper [88] of E. Milman, there is a detailed explanation of the relationship
between the Cheeger constant, the spectral gap, and (on the face of it) much weaker notions
for convex domains.

The interest of computer scientists in the spectral gap problem for convex domains
arose because of the problem of effective computation of volume for convex sets. To com-
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pute volume deterministically, even to within a factor that is exponential in the dimension, is
computationally hard. However, in [45] Dyer, Frieze, and Kannan found a randomized algo-
rithm which involved running a random walk inside the set: sampling from a set is more or
less equivalent to computing its volume. There has been a succession of improvements in the
run time of the algorithm by Lovász, Simonovits, Applegate, Vempala, Lee, and the original
authors over a period of 30 years. A very helpful survey of the history is provided by Lee
and Vempala [80]. Some of these improvements involve choosing enhanced random walks,
but others depend upon getting better estimates for the geometry of the domains being sam-
pled. In order to sample effectively, you want the random walk to mix throughout the domain
quickly and the barrier to that happening will be a bottleneck: a way of cutting the domain
into substantial pieces with a cut whose area is small. If your domain has this dumbbell shape
then a random walk can get trapped in one of the weights. This is exactly the Cheeger con-
stant problem. So better estimates in the KLS conjecture immediately imply better run times
in the algorithm.

A very new approach to the problem was found by Eldan, [46]. Instead of convolving
with a Gaussian as in the Ornstein–Uhlenbeck process above, Eldan’s method can be thought
of as the apparently simpler one of multiplying by a Gaussian density. But it is a random
density and the aim is to show that the typical product behaves as you would like. If you
multiply by a Gaussian with large variance you do not really change the logarithmically
concave density: if you multiply by a Gaussian with small variance you get essentially a
Gaussian, for which you know everything. The problem is to keep track of how quantities
change in going from one to the other. The key is to effect the multiplications by a stochastic
process, what Eldan called stochastic localization. The process is governed by a stochastic
differential equation, but Eldan explains that this can be thought of in the following way. At
each infinitesimal step, you multiply the density by a linear function whose gradient has a
random direction. A linear function such as x 7! 1 � x1 puts greater weight on one half of
the density, thus mimicking the localization technique described in Section 4.3. A familiar
fact in analysis is that the product of two “complementary” linear functions

.1 � x1/.1 C x1/ D 1 � x2
1

gives you a hump which is the first step towards a Gaussian.
When he introduced the method, Eldan used it to show that the thin shell property

for a logarithmically concave density implies the KLS conjecture up to a factor that is only
a power of log d . As explained above, Lee and Vempala modified the technique to prove an
estimate " D 1=d 1=4 for the thin shell problem and hence by [47] a bound of d 1=4 for the
slicing conjecture, the same as Klartag’s. At that point it was tempting to wonder whether
this might be the correct order of the worst slicing constant on the grounds that two (or even
three) completely different methods gave (essentially) the same bound. However, in a recent
remarkable breakthrough, Chen [39] found a way to use stochastic localization to get a bound
for the KLS conjecture, the thin shell problem and the slicing problem, which is O.d ˛/ for
every ˛ > 0.
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Theorem 29 (Eldan–Chen). For every ˛ > 0, there is a constant C.˛/ so that for every
symmetric, isotropic convex domain K � Rd of volume 1 and every differentiable s W K ! R
with

R
K

s D 0, we have Z
K

s2
� C.˛/d ˛

Z
K

krsk
2
2:

4.8. Conclusion
I introduced the final section by suggesting that convex bodies mimic classical prob-

ability theory. But with hindsight one should perhaps see the situation differently. Indepen-
dence and convexity each, in their different ways, force a measure to be “genuinely” high-
dimensional, as opposed to being a low-dimensional measure that accidentally lies in a high-
dimensional space. What makes a measure roughly Gaussian is the high-dimensionality.
How is it that the extra freedom in high dimensions creates what appears to be more order
and predictability instead of less? I admit to being biased but surely a clue is given by Theo-
rem 24: the disorder that comes from high-dimensionality is the sort of disorder that is found
in physical systems, namely the disorder of high entropy. And increased entropy presents to
low-dimensional human eyes as uniformity and regularity.
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