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Abstract

A fundamental property of compact groups and compact quantum groups is the existence
and uniqueness of a left and right invariant probability—the Haar measure. This is a very
natural playground for classical and quantum probability, provided that it is possible to
compute its moments. Weingarten calculus addresses this question in a systematic way.
The purpose of this manuscript is to survey recent developments, describe some salient
theoretical properties of Weingarten functions, as well as applications of this calculus to
random matrix theory, quantum probability and algebra, mathematical physics, and oper-
ator algebras.
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1. Introduction

One of the key properties of a compact group G is that it admits a unique left and
right invariant probability measure �G . It is called the Haar measure, and we refer to [15]

for reference. In other words, �G.G/ D 1, and for any Borel subset A of G and g 2 G,
�G.Ag/ D �G.gA/ D �G.A/, where Ag D ¹hg;h 2 Aº and gA D ¹gh;h 2 Aº. The left and
right invariance together with the uniqueness of �G readily imply that �G.A�1/ D �G.A/.
The standard proofs of existence of the Haar measure are not constructive. In the more gen-
eral context of locally compact groups, a left (resp. right) invariant measure exists, too. It is
finite if and only if the group is compact and uniqueness is up to a nonnegative scalar multi-
ple. In addition, the left and right Haar measures need not be the same. For locally compact
groups, a classical proof of existence imitates the construction of the Lebesgue measure
on R and resorts to outer measures. In the specific case of compact groups, a fixed-point
argument can be applied. Either way, in both cases, the proof of existence is not construc-
tive, in the sense that it does not tell us how to integrate functions. Weingarten calculus is
about addressing this problem systematically. Which functions one wants to integrate needs,
of course, to be clarified. We focus on the case of matrix groups, for which there are very
natural candidates, namely polynomials in coordinate functions.

We recast this problem as the question of computing the moments of the Haar mea-
sure. Recall that, for a real random variable X , its moments are by definition the sequence
E.Xk/; k � 0—whenever they are defined. If the variable is vector-valued in Rn, i.e.,
X D .X1; : : : ; Xn/, then the moments are the numbers E.X

k1
1 � � � X

kn
n /; k1; : : : kn � 0.

Naturally, the existence of moments is not granted and is subject to the integrability of the
functions. In the case of matrix compact groups, we have G � Mn.C/ D R2n2 therefore we
may consider that the random variable we are studying is a random vector in R2n2 whose
distribution is the Haar measure with respect to the above inclusion. In this sense, we are
really considering a moment problem. For this reason, we do not consider only coordinate
functions, but also their complex conjugates in our moment problem.

The goal of this note is to provide an account of Weingarten calculus and in partic-
ular its multiple applications, with emphasis on the moment aspects and applications. From
the point of view of the theory, there have been many approaches to computing integral of
functions with respect to the Haar measure. We enumerate here a few important ones:

(1) Historically, the first nontrivial functions computed are arguably Fourier trans-
forms, e.g., the Harish-Chandra integral [51]. The literature is huge and started
from the initial papers of Harish-Chandra and Itzykson Zuber until now, how-
ever, we do not elaborate too much on this field as we focus on polynomial
integrals. These techniques involve representation theory, symplectic geometry,
and complex analysis. We refer to [62] for a recent approach and to the bibliog-
raphy therein for references.

(2) Geometric techniques are natural because, when compact groups are manifolds,
the measure can be described locally with differential geometry. They are effi-
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cient for small groups. We refer, for example, to [3] for such techniques and
gaussianization methods, with application to quantum groups. Geometry is also
useful to compute specific functions, such as polynomials in one row or column
with respect to orthogonal or unitary groups.

(3) Probability, changes of variables, and stochastic calculus are natural tools to try
to compute the moments of Haar measures. For example, Rains in [68] used
Brownian motion on compact groups and the fact that the Haar measure is the
unique invariant measure to compute a complete set of relations. Subsequently,
Lévy, Dahlqvist, Kemp, and the author have made progress on understanding
the unitary multiplicative Brownian version of Weingarten calculus in [21,56].

(4) Representation theory has always been ubiquitous in the quest for calculating
the Haar measure. A first important set of applications can be found by [45], but
results were already available by [17,44,73].

(5) Combinatorial interpretations of the Haar measure in some specific cases were
initiated in [18]. In another direction, there was the notable work of [18]. Subse-
quently, new combinatorial techniques were developed in [20,24], and we refer to
[26] for substantial generalizations. We also refer [59] for modern interpretations
and applications to geometric group theory.

As for the applications, they can be found in a considerable number of areas, includ-
ing theoretical physics (2D quantum gravity, matrix integrals, random tensors), mathematical
physics (quantum information theory, quantum spin chains), operator algebras (free probabil-
ity), probability (limit theorems), representation theory, statistics, finance, machine learning,
and group theory. The foundations of Weingarten calculus, as well as its applications, keep
expanding rapidly, and this manuscript is a subjective snapshot of the-state-of-the-art. This
introduction is followed by Section 2 that contains the foundations and theoretical results
about the Weingarten functions. Section 3 investigates “simple” asymptotics of Weingarten
functions and applications to random matrix theory. Section 4 deals with “higher order”
asymptotics and applications to mathematical physics. Section 5 considers “uniform” asymp-
totics and applications to functional analysis, whereas the last section contains concluding
remarks and perspectives.

2. Weingarten calculus

2.1. Notation
On the complex matrix algebra Mn.C/, we denote by A the entrywise conjugate

of a matrix A and A� D A
t the adjoint. In the sequel we work with a compact matrix

group G, i.e., a subgroup of GLn.C/ of invertible complex matrices, that is compact for
the induced topology. It is known that such a group is conjugate inside GLn.C/ to the
unitary group Un D ¹U; U U � D U �U D 1nº. Writing an element U of Un as a matrix
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U D .uij /i;j 2¹1;:::;nº, we view the entries uij as polynomial functions Un ! C. As functions,
they form a �-algebra—the �-operation being the complex conjugation. By construction,
they are separating for Un, therefore, by Weierstrass’ theorem, the �-algebra generated by
uij ; i; j 2 ¹1; : : : ; nº, which is the algebra of polynomial functions on Un, is a dense subal-
gebra for the sup norm in the algebra of continuous functions on G.

By Riesz’ theorem, understanding the Haar measure boils down to understandingR
U 2G

f .U /d�G.U / for any continuous function. By density and linearity, it is actually
enough to be able to calculate systematicallyZ

U 2G

ui1j1 : : : uikjk
ui 0

1j 0
1

: : : ui 0

k0 j
0

k0
d�G.U /:

No answer was known in full generality until a systematic development was initiated in
[20, 40]. However, in the particular case of Un; On, an algorithm to calculate a develop-
ment in large n was devised in [44, 73], with further improvements by [66], and character
expansions were obtained in [17], however, these approaches are largely independent. Like-
wise, Woronowicz obtained a formula for the moments of characters in the case of quantum
groups in [74]. Interestingly, motivated by probability questions, the same formula was redis-
covered independently by Diaconis–Shashahani [45] in the particular case of compact matrix
groups.

2.2. Fundamental formula
Although the partial answers to the question of computing moments were rather

involved, the general answer turns out, in hindsight, to be surprisingly simple, so we describe
it here. We also refer to [32] for an invitation to the theory. We first start with the follow-
ing notation: for an element U D .uij / 2 G � Mn.C/, U is the entrywise conjugate, i.e.,
U D .Uij /. Since U is unitary, U is unitary, too. We denote by V D Cn the fundamental
representation of G, and V the contragredient representation. For a general representation
W of G, Fix.G; W / is the vector subspace of W of fixed points under the action of G, i.e.,
Fix.G; W / D ¹x 2 W; 8U 2 G; Ux D xº. Finally, we fix two integers k; k0, and set

ZG D

Z
U 2G

U ˝k
˝ U

˝k0

d�G.U /;

and abbreviate Fix.G; V ˝k ˝ V
˝k0

/ into Fix.G; k; k0/.

Proposition 2.1. The matrix ZG is the orthogonal projection onto Fix.G; k; k0/.

Proof. Since the distribution of U and U U 0 is the same for any fixed U 0 2 G, it implies
that for any U 2 G, ZG D ZG � U ˝k ˝ U ˝k0 . Integrating once more over U gives the fact
that ZG is a projection. The fact that the map U ! U �1 D U � preserves the Haar measure
implies that ZG D Z�

G . From the definition of invariance, for x 2 Fix.G; k; k0/ and for any
U 2 G one has U ˝k ˝ U ˝k0

� x D x. Integrating with respect to the Haar measure of G

gives ZG � x D x. Finally, take x outside Fix.G; k; k0/. It means that there exists U such that

U ˝k
˝ U ˝k0

x ¤ x:
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However, jjU ˝k ˝ U ˝k0
xjj2 D jjxjj2. Thanks to the strict convexity of the Euclidean ball,

after averaging over the Haar measure, we necessarily get jjZGxjj2 < jjxjj2, which implies
that x is not in Im.ZG/. Therefore we proved that Im.ZG/ D Fix.G; k; k0/.

From this, we can deduce an integration formula as soon as we have a generating
family y1; : : : ; yl for Fix.G; k; k0/ (for any k; k0). Let

Gr D .gij /i;j 2¹1;:::;lº

be its Gram matrix, i.e., gij D hyi ; yj i and W D .wij / the pseudoinverse of Gr. Let
E1; : : : ; En be the canonical orthonormal basis of V D Cn. Let k be a number and we
consider the tensor space V ˝k with its canonical orthogonal basis EI D ei1 ˝ � � � ˝ eik ,
where I D .i1; : : : ; ik/ is a multiindex in ¹1; : : : ; nºk . Let I D .i1; : : : ; ik ; i 0

1; : : : ; i 0
k0/,

J D .j1; : : : ; jk ; j 0
1; : : : ; j 0

k0/ be k C k0-indices, i.e.. elements of ¹1; : : : ; nºkCk0 . Then

Theorem 2.2.Z
U 2G

ui1j1 : : : uikjk
ui 0

1j 0
1

: : : ui 0

k0 j
0

k0
d�G.U / D hZG ; EI ˝ EJ i

D

X
i;j 2¹1;:::;lº

hEI ; yi ihyj ; EJ iwij :

2.3. Examples with classical groups
For interesting applications to be derived, the following conditions must be met:

(1) y1; : : : ; yl must be easy to describe.

(2) Gr should be easy to compute—and if possible, its inverse, the Weingarten
matrix, too.

(3) hEI ; yi i should be easy to compute.

Let us describe some fundamental examples. Let P2.k/ be the collection of pair partitions
on ¹1; : : : ; kº (P2.k/ is empty if k is odd, and its cardinal is 1 � � � .k � 1/ D kŠŠ if k is even).
Typically, a partition � 2 P2.k/ consists of k=2 blocks of cardinal 2, � D ¹V1; : : : ; Vk=2º,
and we call ı�;I the multiindex Kronecker function whose value is 1 if, for any block
V D ¹k < k0º of � , ik D ik0 , and zero in all other cases. Likewise, we call E� D

P
I EI ı�;I .

In [40], we obtained a complete solution to computing moments of Haar integrals
for On; Un; �pn. The following theorem describes this method. For convenience, we stick
to the case of On; Un.

Theorem 2.3. The entries of Gr are hE� ;E� 0i D nloops.�;� 0/, and we have hEI ;E�i D ı�;I .

• (The orthogonal case) For On, E� ; � 2 P2.k/ is a generating family of the image
of ZOn

.

• (The unitary case) Thanks to commutativity, and setting 2k0 D k, we consider the
subset of P2.k/ of pair partitions such that each block pairs one of the first k0
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elements with one of the last k0 elements. This set is in natural bijection with the
permutations Sk0 , and it is the generating family of the image of ZUn

.

Proof. The first two points are direct calculations. The last two points are a reformulation
of Schur–Weyl duality, respectively in the case of the unitary group and of the orthogonal
group (see. e.g., [46]).

2.4. Example with Quantum groups
We finish the general theory of Weingarten calculus with a quick excursion through

compact matrix quantum groups. For the theory of compact quantum groups, we refer to
[74,75]. The subtlety for quantum groups is that in general we can not capture all represen-
tations with just U ˝k ˝ U ˝k0 because U and U fail to commute in general. The theory of
Tannaka–Krein duality for compact quantum groups is completely developed, and in order
to get a completely general formula, we must instead consider

U ˝k1 ˝ U ˝k0
1 ˝ � � � ˝ U ˝kp ˝ U ˝k0

p :

Let us just illustrate the theory with the free quantum orthogonal group OC
n . It

was introduced by Wang in [72], and its Tannaka–Krein dual was computed by Banica in
[1]. Its algebra of polynomial functions C.OC

n / is the noncommutative unital �-algebra
generated by n2 self-adjoint elements uij that satisfy the relation

P
k uikujk D ıij 1 andP

k uki ukj D ıij 1. Note that the abelianized version of this unital �-algebra is the
�-algebra of polynomial functions on On, which explains why it is called the free orthog-
onal quantum group. There exists a unital �-algebra homomorphism, called the coproduct
� W C.OC

n / ! C.OC
n / ˝ C.OC

n / defined on generators by �uij D
P

k uik ˝ ukj , and a
unique linear functional � W C.OC

n / ! C such that �.1/ D 1 and

.� ˝ Id/� D 1�; .Id ˝ �/� D 1�:

This functional is known as the Haar state, and it extends the notion of Haar measure on
compact groups. Although the whole definition is completely algebraic, the proofs rely on
functional analysis and operator algebras.

However, the calculation of the Haar state is purely algebraic and just relies on the
notion of noncrossing pair partitions, denoted by NC2.k/, which are a subset of P2.k/

defined as follows. A partition � of P2.k/ is noncrossing—and therefore in NC2.k/ if
any two of its blocks ¹i; j º and ¹i 0; j 0º fail to satisfy the crossing relations i < j , i 0 < j 0,
i < i 0 < j < j 0. This notion was found to be of crucial use for free probability by Speicher,
see, e.g., [64]. The following theorem is a particular case of a series of results that can be
found in [4]:

Theorem 2.4. In the case of OC
n , for U ˝k , the complete solution follows from the following

result: E� ; � 2 NC2.k/ is a generating family of the image of ZOC
n

.

Note that, since U D U , it is enough to consider U ˝k to compute fully the Haar
measure. We refer to [2, 5, 6] for applications of classical Weingarten functions to quantum
groups, and to [3,4,8] for further developments of quantum Weingarten theory.
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2.5. Representation theoretic formulas
A representation theoretic approach to Weingarten calculus is available for many

families of groups, including unitary, orthogonal, and symplectic groups. Here we only
describe the unitary group, and for the others, we refer to [30,60].

Call Sk the symmetric group and consider its group algebra CŒSk �—the unital
�-algebra whose basis as a vector space is �� ; � 2 Sk , and endowed with the multiplication
�� �� D ��� and the �-structure ��

� D ���1 . We follow standard representation-theoretic
notation, see, e.g., [19] and � ` k denotes a Young diagram � has k boxes; � ` k enumerates
both the conjugacy classes of Sk and its irreducible representations. The symmetric group
Sk acts on the set ¹1; : : : ; kº, and in turn, by leg permutation on .Cn/˝k , which induces
an algebra morphism CŒSk � ! Mn.C/˝k . By Schur–Weyl duality, � describes also irre-
ducible polynomial representations of the unitary group Un if its length is less than n and in
this context, V� stands for the associated representation of the unitary group. For a permuta-
tion � 2 Sk , we call #� the number of cycles (or loops) in its cycle product decomposition
(counting fixed points). Consider the function

G D

X
�2Sk

n#� �� ;

and its pseudoinverse W D G�1 D
P

�2Sk
w.�/�� . The following result was observed by

the author and Śniady in [40] and it provides the link between representation theory and
Weingarten calculus:

Theorem 2.5. G is positive in CŒSk �. In addition, we have w.�; �/ D w.���1/, which we
rename as Wg.n; ���1/, and the following character expansion:

Wg.n; �/ D
1

kŠ2

X
�`k

��.e/2��.�/

dim V�

:

Proof. Consider the action of Sk on .Cn/˝k by leg permutation. It extends to a unital
�-algebra morphism � W CŒSk � ! Mn.C/˝k . By inspection, for A 2 CŒSk �,
TrŒ�.A/� D �.GA/, where � is the regular trace �.�g/ D ıg;e . The positivity of � implies
that of G which proves positivity. The remaining points follow from the fact that G is central
and by a character formula.

2.6. Combinatorial formulations
Let us write formally n�kG D �e C

P
�2Sk�¹eº n#��k�� . It follows that as a power

series in n�1,

nkW D �e C

X
p�1

.�1/p

� X
�2Sk�¹eº

n#��k��

�p

:

Reading through the coefficients of this series gives a combinatorial formula for Wg in the
unitary case. Such formulas were first found in [20], and we refer to [26] for substantial gen-
eralizations. See also [59] for other interpretations, as well as [18].
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However, this formula is signed, and therefore impractical for the quest of uniform
asymptotics. In a series of works, Novak and coworkers in [47–49,61] came with a very inter-
esting solution to this problem which we describe below. It relies on Jucys Murphy elements,
which are the following elements of CŒSk �: Ji D

P
j >i �.ij /. The following important result

was observed:
G D .n C J1/ � � � .n C Jk�1/:

This follows from the fact that every permutation � has a unique factorization as

� D .i1j1/ � � � .iljl /

with the property ip < jp and jp < jpC1.
This prompts us to define P.�; l/ to be the set of solutions to the equation

� D .i1j1/ � � � .iljl / with ip < jp , jp � jpC1. The number of solutions to this problem
is related to Hurwitz numbers, for details we refer, for example, to [26] and to the above
references. From this we have the following theorem:

Theorem 2.6. For � 2 Sk , we have the expansion

Wg.n; �/ D n�k
X
l�0

#P.�; l/.�n�1/l : (2.1)

The first strategy to compute the Weingarten formula was initiated in [73]. Let us
outline it. We can write Wg.n; �/ D

R
u11 � � � ukku1�1 � � � uk�k . Indeed, when considering

the integral on the right-hand side in Theorems 2.2 and 2.3, the only pairing appearing cor-
responds to Wg.n; �/. Replacing the first row index of u and u by i and summing over i , we
are to evaluate

nX
iD1

Z
ui1 � � � ukkui�.1/ � � � uk�.k/ D ı1�.1/

Z
u22 � � � ukku2�.2/ � � � uk�.k/

D n Wg.n; �/ C

lX
iD2

Wg
�
n; .1i/�

�
; (2.2)

where the first equality follows from orthogonality and the second from repeated use of the
Weingarten formula. The second line provides an iterative technique to compute Wg.n; �/

both numerically and combinatorially. Historically, this is the idea of Weingarten, and in [73]

he proved that the collection of all relations obtained above determine uniquely Wg for k

fixed, n large enough.
In [31], we revisited his argument and figured out that these equations can be inter-

preted as a fixed point problem and a path counting formula, both formally and numerically.
We got theoretical mileage from this approach and obtained new theoretical results, such as

Theorem 2.7. All unitary Weingarten functions and their derivatives are monotone on
.k; 1/.

The unavoidability of Weingarten’s historical argument becomes blatant when one
studies quantum Weingarten function. Partial results about their asymptotics were obtained
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in [8], however, the asymptotics were not optimal for all entries. On the other hand, motivated
by the study of planar algebras, Vaughan Jones asked us the following question: considering
the canonical basis of the Temperley Lieb algebra TLk.n/, are the coefficients of the dual
basis all nonzero when expressed in the canonical basis? For notations, we refer to our paper
[16]. One motivation for this question is that the dual element of the identity is a multiple of
the Jones–Wenzl projection.

Observing that this question is equivalent, up to a global factor, to the problem of
computing the Weingarten function for OC

n , and realizing that representation theory did not
give tractable formulas in this case, we revisited the original idea of Weingarten and proved
the following result, answering a series of open questions of Jones:

Theorem 2.8. The quantum OC
n Weingarten function is never zero on the noncritical inter-

val Œ2; 1/, and it is monotone.

Our proof actually provides explicit formulas for a Laurent expansion of the free
Wg in the neighborhood of n D 1, as a generating series of paths on graphs.

3. Asymptotics and properties of Weingarten functions

In this section, we are interested in the following problem. For a given permutation
� 2 Sk , what is the behavior as n ! 1 of Wg.n; �/? This function is rational as soon as
n � k, and even elementary observations about its asymptotics have nontrivial applications
in analysis. In the forthcoming subsections, we refine iteratively our study of the asymp-
totics, and derive each time new applications. Similar results have been obtained for most
sequences of classical compact groups, but we focus here mostly on Un and On, and refer
to the literature for other compact groups.

3.1. First order for identity Weingarten coefficients and Borel theorems
Let us first setup notations related to noncommutative probability spaces and of

convergence in distribution in a noncommutative sense. A noncommutative probability space
(NCPS) is a unital �-algebra A together with a state � (� W A ! C is linear, �.1/ D 1, and
�.xx�/ � 0 for any x). In general, we will assume traciality, �.ab/ D �.ba/ for all a; b.

Assume we have a family of NCPS .An; �n/, a limiting object .A; �/ and a d -tuple
.x1

n; : : : ; xd
n / 2 Ad

n . We say that this d -tuple of noncommutative random variables converges
in distribution to .x1; : : : ; xd / 2 Ad iff for any sequence i1; : : : ; ik of indices in ¹1; : : : ; dº,

�n.xi1
n � � � xik

n / ! �.xi1 � � � xik /:

In the abelian case this corresponds to a convergence in moments (which is not in general
the convergence in distribution); however, in the noncommutative framework, it is usually
called convergence in noncommutative distribution, cf. [71]. The following result was proved
in [42] in the classical case, and [4] in the quantum case:
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Theorem 3.1. Consider a sequence of vectors .An
1; : : : ; An

r / in Mn.R/ such that the matrix
.tr.Ai A

t
j // converges to A, and a On-Haar distributed random variable Un. Then, as n ! 1,

the sequence random vectors �
Tr.An

1Un/; : : : ; Tr.An
r Un/

�
converges in moments (and in distribution) to a Gaussian real vector of covariance A. If we
assume instead Un to be in OC

n , then .Tr.An
1Un/; : : : ; Tr.An

r Un// converges in noncommu-
tative distribution to a free semicircular family of covariance A.

The proof relies on two ingredients. Firstly, for all examples considered so far,
Gr D nk � 1l .1 C O.n�1//, which implies that W D Gr�1

D n�k1l .1 C O.n�1//. By inspec-
tion, it turns out that in the above theorem, the only entries of W that contribute asymptot-
ically are the diagonal ones, and one can conclude with the classical (resp. the free) Wick
theorem.

3.2. Other leading orders for Weingarten coefficients
The asymptotics obtained in the previous section are sharp only for the diagonal

coefficients, however, they already yield nontrivial limit theorems. For more refined theo-
rems, it is, however, necessary to obtain sharp asymptotics for all Weingarten coefficients.
In the case of Un, sharp asymptotics can be deduced from the following

Theorem 3.2. In the case of the full cycle in Sk , we have the following explicit formula:

Wg
�
n; .1 � � � k/

�
D

.�1/kC1ck

.n � k C 1/ � � � .n C k � 1/
;

where ck D .k C 1/�1
�

2k
k

�
is the Catalan number. In addition, Wg is almost multiplicative

in the following sense: if � is a disjoint product of two permutations � D �1 t �2 then

Wg.n; �/ D Wg.n; �1/ Wg.n; �2/
�
1 C O.n�2/

�
:

This result defines recursively a function Moeb W
F

k�1 Sk 7! Z � ¹0º satisfying

Wg.n; �/ D n�k�j� jMoeb.�/
�
1 C O.n�2/

�
:

This function was actually already introduced by Biane in [12], and it is closely related to
Speicher’s noncrossing Möbius function on the incidence algebra of the lattice of noncross-
ing partitions—see, e.g., [64]. Similar results are available for the orthogonal and symplectic
group, we refer to [41]. Finally, let us mention that the asymptotics Weingarten function for
the unitary group are the object of intense study; see, for example, [59,69].

3.3. Classical asymptotic freeness
Weingarten calculus allows answering the following

Question 1. Given two families .A
.n/
i /i2I and .B

.n/
j /j 2J of matrices in Mn.C/, what is the

joint behavior of .A
.n/
i /i2I t .UnB

.n/
j U �

n /j 2J , where Un is invariant according to the Haar
measure on Un?
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The notion of behavior has to be clarified, and it will be refined in the same time as
we refine our estimates of the Weingarten function. For now, we assume that .A

.n/
i /i2I and

.B
.n/
j /j 2J have asymptotic moments, namely, for any sequence i1; : : : ; il ,

tr A
.n/
i1

� � � A
.n/
il

admits a finite limit, and likewise for .B
.n/
j /j 2J (note that our standing notation is

tr D n�1 Tr). In this specific context, the question becomes:

Question 2. Does the enlarged family .A
.n/
i /i2I t .UnB

.n/
j U �

n /j 2J have asymptotic
moments?

Let us note that since the moments are random, the question admits variants, namely,
does the enlarged family have asymptotic moments in expectation, almost surely? The answer
turns out to be yes—irrespective of the variant chosen—and the above asymptotics allow us
to deduce the joint behavior of random matrices in large dimension. We recall that a family
of unital �-subalgebras Ai ; i 2 I of an NCPS .A; �/ is free iff for any l 2 N�, i1; : : : ; il 2 I ,
i1 ¤ i2; : : : ; il�1 ¤ il ; �.x1 � � �xl / D 0 as soon as (i) �.xj / D 0 and (ii) xj 2 Aij . Asymptotic
freeness holds when a family has a limit distribution and the limiting distribution generates
free �-subalgebras.

Theorem 3.3. The answer to Question 2 is yes. The limit of the union is determined by the
relation of asymptotic freeness, and the convergence is almost sure.

The proof relies on calculating moments, together with our knowledge of the asymp-
totics of the Weingarten function. In the next theorem, we observe that different types of
“asymptotic behavior,” such as the existence of a limiting point spectrum, are also preserved
under enlargement of the family. The theorem below is a particular case of a results to be
found in [27]:

Theorem 3.4. Let �i;n be sequences of complex numbers such that limn �i;n D 0. Let
ƒi;n D diag.�i;1; : : : ; �i;n/ and Aj;n be random matrices with the property that (i) .Aj;n/j

converges in NC distribution as n ! 1 and (ii) .UAj;nU �/j has the same distribution as
.Aj;n/j as a d -tuple of random matrices. Let P be a noncommutative polynomial. Then the
eigenvalues of P.ƒi;n; Aj;n/ converge almost surely.

The proof is also based on Weingarten calculus and moment formula. The limiting
distribution is of a new type—involving pure point spectrum—and we call it cyclic monotone
convergence.

3.4. Quantum asymptotic freeness
Finally, let us discuss another seemingly completely unrelated application, to asymp-

totic representation theory. The idea is to replace classical randomness by quantum random-
ness. To keep the exposition simple, we stick to the case of the unitary group, although
more general results are true for more general Lie groups, see [41]. Call Eij the canonical
matrix entries of Mn.C/, and eij the generators of the enveloping Lie algebra U.GLn.C//
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of GLn.C/, namely, the unital �-algebra generated by eij and the relations e�
ij D ej i and

Œeij ; ekl � D ıjkeil � ıilekj . The map Eij ! eij can be factored through all Lie algebra
representations of Un, and we are interested in the following variants of its Choi matrix

A.1/
n D

X
ij

Eij ˝ eij ˝ 1; A.2/
n D

X
ij

Eij ˝ 1 ˝ eij 2 Mn.C/ ˝ U
�
GLn.C/

�˝2
:

In [39], thanks—among others—to asymptotics of Weingarten functions, we proved the fol-
lowing, extending considerably the results of [11].

Theorem 3.5. For each n, take �n; �n two Young diagrams corresponding to a polynomial
representations V�n

;V�n of GLn.C/. Assume that both dimensions tend to infinity as n ! 1

and consider the traces on ��n
; ��n on U.GLn.C//. Assume that An converges in noncom-

mutative distribution in Voiculescu’s sense both for tr ˝��n
and tr ˝��n . Then A

.1/
m ; A

.2/
n

are asymptotically free with respect to tr ˝��n
˝ ��n .

4. Multiplicativity and applications to mathematical

physics

4.1. Higher-order freeness
The asymptotic multiplicativity of the Weingarten function states that

Wg.�1 t �1/ D Wg.�1/ Wg.�2/
�
1 C O.n�2/

�
and it is very far reaching. The fact that the error term O.n�2/ is summable in n allows in [20]

to use a Borel–Cantelli lemma and prove almost sure convergence of moments for random
matrices, cf. [70] for the original proof.

A more systematic understanding of the error term is possible and has deep appli-
cations in random matrix theory. It requires the notion of classical cumulants that we recall
now. Let X be a random variable, the cumulant Cp.X/ is defined formally by

C.t/ D log E.exp tX/ D

X
p�1

tp Cp.X/

pŠ
:

For instance, the second cumulant C2.X/ D E.X2/ � E.X/2 is the variance of the proba-
bility distribution of X . Cumulant Cp.X/ is well defined as soon as X has moments up to
order p, and it is an n-homogeneous function in X , therefore we can polarize it and define
a p-linear symmetric function .X1; : : : ; Xp/ ! Cp.X1; : : : ; Xp/. For any partition � of p

elements with blocks B 2 � , we define C�.X1; : : : ;Xp/ D
Q

B2� C.
Q

i2B Xi /. We are now
in the position to write the expectations in term of the cumulants:

E

 
pY

iD1

Xi

!
D

X
�2P.p/

C� :

The equation can be inverted through the Möbius inversion formula. Asymptotic freeness
considers the case where moments have a limit, whereas higher-order asymptotic freeness
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considers the case where things are known about the fluctuations of the moments: in addition
to the existence of limn tr A

.n/
i1

� � � A
.n/
il

, we assume the existence of

lim
n

n2k�2Ck.A
.n/
i11

� � � A
.n/
il11

; : : : ; A
.n/
i1k

� � � A
.n/
ilk k

/

for any sequence of indices. We call this set of limits the higher order limit. In [33], we proved

Theorem 4.1. The extended family .A
.n/
i /i2I t .UB

.n/
j U �/j 2J admits a higher order limit.

In addition, there exists a combinatorial rule to construct the joint asymptotic correlations
from the asymptotic correlations of each family.

This rule extends freeness, is called higher order freeness. Subsequent work was
done in the case of orthogonal invariance by Mingo and Redelmeier.

4.2. Matrix integrals
Historically, matrix integrals have been studied before higher order freeness. How-

ever, from the point of view of formal expansion, higher order freeness supersedes matrix
integrals. In [20], we proved the following

Theorem 4.2. Let A be a noncommutative polynomial in formal variables .Qi /i2I , formal
unitaries Uj ; j 2 J and their adjoint. Consider in Mn.C/ matrices .Q

.n/
i /i2I admitting

a joint limiting distribution as n ! 1, and in i.i.d. Haar distributed .U
.n/

j /j 2J and their
adjoint. Evaluating A in these matrices in the obvious sense, we obtain a random matrix An

and consider the Taylor expansion around zero of the function

z ! n�2 log E
�
exp.zn2An/

�
D

X
q�1

a.n/
q zq :

Then, for all q, limn a
.n/
q exists and depends only on the polynomial and the limiting distri-

bution of Q
.n/
i .

In [24], we upgraded this result in the case where An is selfadjoint, and proved that
there exists a real neighborhood of zero on which the convergence holds uniformly. The
complex convergence remains a difficult problem, as a uniform understanding of the higher
genus expansion must be obtained. Novak made a recent breakthrough in this direction, in
the case of the HCIZ integral, see [65].

4.3. Random tensors
Let us revisit Question 1, under the assumption that U has more structure, i.e.,

less randomness. Our model is a tensor structure, namely, U D U1 ˝ � � � ˝ UD where
Ui 2 Mn.C/ are i.i.d. In other words, we are interested in the symmetries under conjugation
by elements of the group Un

˝D . The joint moments of a matrix are a complete invariant of
global symmetry under Un-conjugation in Mn.C/, however, for U1 ˝ � � � ˝ UD-invariance
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in Mn.C/˝D , one needs more invariants, generated, for �1; : : : ; �D 2 Sk , by

Tr�1;:::;�D
.A/ D

X
i11;:::;iDk ;j11;:::;jDk

Ai11:::iD1;j11:::jD1
� � � Ai1k :::iDk ;j1k :::jDk

� ıi11;j1�1.1/
� � � ıi1k ;j1�1.k/

� � � ıiD1;jD�D.1/
� � � ıiDk ;jD�D.k/

: (4.1)

In the case of higher tensors, thanks to the Weingarten calculus, we unveil many new inequiv-
alent asymptotic regimes for higher order tensors. These questions are addressed in a series
of projects with Gurau and Lionni, starting with [26]. We study the asymptotic expansion of
the Fourier transform of the tensor valued Haar measure—a tensor extension of the Harish-
Chandra integral to tensors, and considerably extend the single tensor case. Just as the HCIZ
integral can be seen as a generating function for monotone Hurwitz numbers, which count
certain weighted branched coverings of the 2-sphere, the integral studied in [26] leads to a
generalization of monotone Hurwitz numbers, which count weighted branched coverings of
a collection of 2-spheres that “touch” at one common nonbranch node.

4.4. Quantum information theory
Quantum information theory has been a powerful source of problems in random

matrix theory in the last two decades, and their tensor structure has made it necessary to
resort to moment techniques. The goal of this section is to elaborate on a few salient cases.
One starting point is the paper [53] where the authors compute moments of the output of
random quantum channels. We just recall here strictly necessary definitions, and refer to
[36] for details. A quantum channel ˆ is a linear map Mn.C/ ! Mk.C/ that preserves
the nonnormalized trace, and that is completely positive, i.e., ˆ ˝ Idl W Mn ˝ Ml .C/ !

Mk.C/ ˝ Ml .C/ is positive for any integer l . It follows from Stinespring theorem that for
any quantum channel, there exists an integer p and an isometry U W Cn ! Ck ˝ Cp such
that ˆ.X/ D .Idk ˝ Trp/UXU �.

The set of density matrices Dn consists in the selfadjoint matrices whose eigenval-
ues are nonnegative and whose trace is 1. For A 2 Dn, we define its von Neumann entropy
H.A/ as

Pn
iD1 ��i .A/ log�i .A/ with the convention that 0 log0 D 0 and the eigenvalues of

A are �1.A/ � � � � � �n.A/. The minimum output entropy of a quantum channel ˆ is defined
as Hmin.ˆ/ D minA2Dn H.ˆ.A//, and a crucial question in QIT was whether one can find
ˆ1; ˆ2 such that

Hmin.ˆ1 ˝ ˆ2/ < Hmin.ˆ1/ C Hmin.ˆ2/:

For the statement, implications and background, we refer to [36]. An answer to this question
was given in [52] and it relies on random methods, which motivates us to consider quantum
channels obtained from Haar unitaries. A description of ˆ.Dn/ in some appropriate large n

limit has been found in [9], and the minimum in the limit of the entropy was found in [10]. In
the meantime, the image under tensor product of random channels ˆ1 ˝ ˆ2 of appropriate
matrices (known as Bell states) had to be computed. To achieve this, we had to develop a
graphical version of Weingarten calculus in [34].

We consider the case where k is a fixed integer, and t 2 .0; 1/ is a fixed number. For
each n, we consider a random unitary matrix U 2 Mnk.C/, and a projection qn of Mnk.C/
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of rank pn such that pn=.nk/ � t as n ! 1. Our model of a random quantum channel is
ˆ W Mpn.C/ ! Mn.C/ given by ˆ.X/ D trk.UXU �/, where Mpn.C/ ' qnMnk.C/qn.
By Bell we denote the Bell state on Mpn.C/˝2. In [34], we proved

Theorem 4.3. Almost surely, as n ! 1, the random matrix ˆ ˝ ˆ.Bell/ 2 Mn2.C/ has
nonzero eigenvalues converging towards


 .t/
D

�
t C

1 � t

k2
;

1 � t

k2
; : : : ;

1 � t

k2„ ƒ‚ …
k2�1 times

�
:

This result plays an important result in the understanding of phenomena underlying
the subadditivity of the minimum output entropy, and relies heavily on Weingarten calculus,
and in particular a graphical interpretation thereof. Much more general results in related
areas of quantum information theory have been obtained in [22,28,35,37,38,43].

5. Uniform estimates and applications to analysis

5.1. A motivating question
The previous sections show that when the degree of a polynomial is fixed, very pre-

cise asymptotics can be obtained in the limit of large dimension. For the purpose of analysis,
an important question is whether such estimates hold uniformly. About 20 years ago, Gilles
Pisier asked me the following question: given k i.i.d. Haar unitaries U

.n/
1 ; : : : ; U

.n/

k
2 Un,

what is the large dimension behavior of the real random variable

tn D jjU
.n/
1 C � � � C U

.n/

k
jj1;

where jj � jj1 stands for the operator norm? It follows from asymptotic freeness results that
almost surely lim inf tn � 2

p
k � 1 as soon as k � 2. Setting Xn D U

.n/
1 C � � � C U

.n/

k
, it

would be in principle enough to estimate

E
�
Tr
�
.XnX�

n /l.n/
��

for l.n/ � log n. However, there are two major hurdles: (i) uniform estimates of Weingarten
calculus would be needed; (ii) unlike in the multimatrix model case, the combinatorics grow
exponentially and a direct moment approach is not possible. Both hurdles require developing
specific tools, which we describe in the sequel.

One notion on which we rely heavily is that of strong convergence. Given a mul-
tiatrix model that admits a joint limiting distribution in Voiculescu’s sense, we say that it
converges strongly iff the operator norm of any polynomial P , evaluated in the matrices of
the model—thus yielding the random matrix Pn—satisfies

lim
n

jjPnjj D lim
`

.lim
n

n�1 Tr
�
.PnP �

n /`
�.2`/�1

:

In other words, the operator norm of any matrix model obtained from a noncommutative
polynomial converges to the operator norm of the limiting object. Strong convergence was
established in [50] in the case of Gaussian random matrices. Subsequently, the author and
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Male solved the counterpart for Haar unitary matrices in [29], with no explicit speed of con-
vergence. This result was refined further by Parraud [67] with explicit speeds of convergence,
relying on ideas of [25]. The strongest result concerning strong convergence of random uni-
taries can be found in [14]:

Theorem 5.1. .U
˝q�

i ˝ U
˝qC

i /iD1;:::;d are strongly asymptotically free as n ! 1 on the
orthogonal of fixed point spaces.

This means that strong asymptotic freeness does not hold at the sole level of the
fundamental representation of Un, but with respect to any sequence of representation asso-
ciated to a nontrivial .�; �/. In other words, the only obstructions to strong freeness are the
dimension one irreducible representations of Un. We need a linearization step, popularized
by [50] to evaluate the norm of

Pd
iD�d ai ˝ X

.n/
i , where X

.n/
�i D X

.n/�
i and X

.n/
0 D Id .

Although this first simplification step was sufficient to obtain strong convergence for i.i.d.
GUE—i.e., matrices with high symmetries—thanks to analytic techniques, this turns out to
be insufficient when one has to resort to moment methods. In [13], we initiated techniques
based on a operator version of nonbacktracking theory, which we generalized in [14]. We
outline one key feature here.

We consider .b1; : : : ; bl / elements in B.H / where H is a Hilbert space. We assume
that the index set is endowed with an involution i 7! i� (and i�� D i for all i ). The non-
backtracking operator associated to the `-tuple of matrices .b1; : : : ; bl / is the operator on
B.H ˝ Cl / defined by

B D

X
j ¤i�

bj ˝ Eij : (5.1)

The following theorem allows leveraging moments techniques on linearization of noncom-
mutative polynomials through the study of B:

Theorem 5.2. Let � 2 C satisfy �2 … [i2¹1;:::;lºspec.bi bi�/. Define the operator A� on H

through

A� D b0.�/ C

X̀
iD1

bi .�/; bi .�/ D �bi .�
2

� bi�bi /
�1;

and

b0.�/ D �1 �

X̀
iD1

bi .�
2

� bi�bi /
�1bi� :

Then � 2 �.B/ if and only if 0 2 �.A�/.

5.2. Centering and uniform Weingarten estimates
In order to use Theorem 5.2, one has to understand the spectral radius of the operator

B and therefore, evaluate �.BT B�T / with T growing with the matrix dimension, and this
can be done through moment methods as soon as we have uniform estimates on Weingarten
functions. The first uniform estimate was obtained in [23] and had powerful applications
to the study of area laws in mathematical physics, however, it was not sufficient for norm
estimates, and it was superseded by [31]:
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Theorem 5.3. For any � 2 Sk and n >
p

6k7=4,

1

1 �
k�1
n2

�
nkCj� j Wg.n; �/

Moeb.�/
�

1

1 �
6k7=2

n2

:

In addition, the left-hand side inequality is valid for any n � k.

This result already enables us to prove Theorem 5.1 in the case where q� ¤ qC

because there are no fixed points there. Let us now outline how to tackle the case q� D qC,
which is interesting because it has fixed points. To handle fixed points, we need to introduce
the centering of a random variable X , namely ŒX� D X � E.X/. For a symbol " 2 ¹�;�º and
z 2 C, we take the notation that z" D z if " D � and z" D z if " D �. We want to compute,
for U D .Uij / Haar distributed on Un, expressions of the form E

QT
tD1Œ

Qkt

lD1
U

"tl
xtl ytl

� in a
meaningful way. We can write a Weingarten formula:

E
TY

tD1

"
ktY

lD1

U "tl
xtl ytl

#
D

X
�;�2P2.k1C���CkT /

ı�;xı�;y Wg.�; � I k1; : : : ; kT /;

where the function Wg depends on the pairings and the partition. We say that a block of the
partition ¹¹1; : : : ; k1º; : : : ; ¹k1 C � � � C kT �1 C 1; : : : ; k1 C � � � C kT ºº is lonesome with
respect to the pairing .�; �/ iff the group generated by �; � stabilizes it. In [14], we prove

Theorem 5.4. Wg decays as n�k where k D .k1 C � � � C kT /=2 C d.�; �/ C 2#lonesome
blocks, and this estimate is uniform on k � Poly.n/.

This theorem, together a comparison with Gaussian vectors, allows proving Theo-
rem 5.1.

6. Perspectives

Understanding better how to integrate over compact groups is a fascinating problem
which is connected to many questions in various branches of mathematics and other scientific
fields. We conclude this manuscript by a brief and completely subjective list of perspectives:

(1) Uniform measures on (quantum) symmetric spaces
Viewing a group as a compact manifold, can one extend the Weingarten cal-
culus to other surfaces? Some substantial work has been done algebraically in
this direction by Matsumoto [60] in the case of symmetric spaces, see as well
[42] for the asymptotic version. It would be interesting to study extensions of
Matsumoto’s results for compact quantum symmetric spaces.

(2) Surfaces and geometric group theory
An important observation by Magee and Puder is that if G is a compact sub-
group of Un, the Haar measure on Gk yields a random representation of the
free group Fk on Un whose law is invariant under outer automorphisms of Fk .
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This motivated them to compute, in [59], the expectation of the trace of nontriv-
ial words in .U1; : : : ; Uk/ 2 Un

k . In addition to refining known asymptotics,
they used the properties of the Weingarten function to solve nontrivial prob-
lems about the orbits of Fk under the action by its outer conjugacy group. In a
different vein, Magee has very recent achieved a breakthrough by obtaining the
first steps of Weingarten calculus for representations of some one relator groups
[57,58].

(3) Other applications to representation theory
The problem of calculating Weingarten functions on SU.n/ efficiently is hard,
and even more so when the degree is high in comparison to n. A striking exam-
ple is

R
U 2SU.n/

Qn
i;j D1 uij . It was established in [55] that proving that this inte-

gral is nonzero is equivalent to the Alon–Tarski conjecture.
More generally, this raises the question of computing efficiently integrals of
high degree on classical groups (typically, of degree � n or � n2). Weingarten
calculus as developed in this manuscript is not well adapted to this task. Some
results in this direction have been obtained by Novak [65] the author, and Cioppa.

(4) More tensors and norm estimates
In [13,14], we obtained strong convergence for an arbitrary finite number of ten-
sors of random unitaries or random permutations. It turns out that the result can
be relaxed a bit to allow the number of legs to vary slowly to infinity as the
dimension of the group goes to infinity. This points to a double limit problem,
and we wonder to which extent the number of legs of tensors and the size of the
matrix can be independent. In the extreme case, could strong freeness hold for
a given finite group but a number of tensors tending to infinity? Many variants
of this problem exist, e.g., taking i.i.d. copies of unitaries instead of the same.
Likewise, an important question is the behavior of Ui ˝ Uj for arbitrary
indices—not only i D j as in [13, 14]. As observed by Hayes in [54], this is
a possible approach towards the Peterson–Thom conjecture in operator alge-
bras, and it seems plausible that Weingarten calculus could help to solve this
problem.

(5) Maximizing functionals over groups
Given a polynomial function f W G ! C, finding m D maxU 2G jf .U /j could
provide approaches to various conjectures in analysis or algebra. In general,
finding the argmax is a problem intricately linked to the conjectures, and Haar
integration could yield nonconstructive approaches. Indeed,

l�1 log
Z �

f .U /f .U /
�l

d�G.U / � 2 log m;

and the left-hand side could in principle be approached with Weingarten calcu-
lus. Let us mention the example of the Hadamard conjecture. It states that for
any 4=n, there exists an orthogonal matrix in Mn.R/ whose entries are ˙1.
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An approach to this problem would be to show that the minimum of the poly-
nomial function f .U / D

P
ij u4

ij on On is 1. We refer to [7] for attempts with
Weingarten calculus. We also believe that some important problems in operator
algebra could be approached that way (e.g., the problem of the nonexistence of
hyperlinear group).
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