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Abstract

We present a simple tool to perform analysis with groups such as SLn.R/ and SLn.Z/,
that has been introduced by Vincent Lafforgue in his study of nonunitary representations
and strong property (T), in connection with the Baum–Connes conjecture. It has been
later applied in various contexts: operator algebras, Fourier analysis, geometry of Banach
spaces, and dynamics. The idea is to first restrict to compact subgroups and then exploit
how they sit inside the whole group.
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This text is devoted to the presentation of a single idea that has been useful to answer
several analysis questions on higher rank simple Lie groups and lattices. This idea originates
from Vincent Lafforgue’s work [43], and can be summarized as rank 0 reduction.

One of the basic tools to study Lie algebras is that of sl2 triples. In the context a
semisimple Lie groups, it is often used in the following form: to understand a possibly com-
plicated Lie group, one restricts to its subgroups locally isomorphic to SL2.R/ (and there are
plenty by the Jacobson-Morozov theorem), the simplest noncompact semisimple Lie group.
This idea, that we could call rank 1 reduction because SL2.R/ has rank 1, can be powerful.
For example, it allows obtaining precise information on the unitary representations of higher
rank simple Lie groups [34, 57]. But, as we shall see later in this text, there are situations
where rank 1 reduction is not efficient. Rank 2 reduction has also become a standard tool
in the study of higher rank simple Lie groups, as every real simple Lie group of rank � 2

contains a subgroup locally isomorphic to one of the rank 2 groups SL3.R/ of SP2.R/. See,
for example, [2, I.1.6].

Rank 0 reduction, the subject of this survey, consists in studying a Lie group through
its compact subgroups. The idea is to first restrict to the compact subgroups of the Lie group
G and do analysis there. It is perhaps surprising that there are nontrivial general things to
say (see Proposition 1.1). And then, in a second step, by analyzing the relative positions of
the various cosets of compact groups in G, it is possible to promote the local phenomena
that have been discovered in the first step to global phenomena in G.

In the whole text, except for the brief and last Section 5, we only consider for sim-
plicity the Lie group SL3.R/ and its subgroup SL3.Z/. In the first section, we illustrate rank 0

reduction in the simplest meaningful setting of unitary representations of SL3.R/: we shall
see that this idea provides a new proof of Kazhdan’s celebrated theorem that SL3.R/ has
property (T). In the next sections we show several other applications of this idea for SL3.R/

or SL3.Z/, each time with a brief history of the problems. In Section 2, devoted to Fourier
analysis for noncommutative groups, we explain how this same idea can show that Fourier
synthesis (the reconstruction of a “function” from its Fourier series) is in a way impossi-
ble for SL3.R/ and SL3.Z/. We then interpret these Fourier analysis statements in terms of
approximation properties of the von Neumann algebra of SL3.Z/ and its noncommutative Lp

spaces. Section 3 is devoted to strong property (T): we study nonunitary representations of
SL3.R/ and SL3.Z/ on Hilbert spaces and see that the same idea allows proving some form
of property (T) for them. Applications of strong property (T) are also described, in particular
we explain how strong property (T) appears as a key tool in the resolution by Brown, Fisher,
and Hurtado of Zimmer’s conjecture for group actions of high rank lattices on manifolds
of small dimension. Section 4 is devoted to group actions on Banach spaces: we investigate
how much of strong property (T) can be proved for representations on more general Banach
spaces. Finally, in Section 5 we survey how these ideas have been used for other semisimple
Lie groups or algebraic groups over other local fields.
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1. A proof of property (T) for SL3.R/

Throughout this text, by representation of a locally compact group G on a Banach
space X , we will always mean a group homomorphism � from G to the group of invertible
continuous linear maps on X that is continuous for the strong operator topology: for every
� 2 X , g 7! �.g/� is continuous. A unitary representation is when � takes values in the
unitary group of a Hilbert space.

A topological group G has Kazhdan’s property (T) whenever the trivial represen-
tation is isolated in its unitary dual for the Fell topology. This means that every unitary
representation � of G on a Hilbert space H which almost has invariant vectors (i.e., there is
a net �i of unit vectors in H such that limi k�.g/�i � �i k D 0 uniformly on compact subsets
of G), has a nonzero invariant vector. Because of its numerous applications, property (T)
has become a central concept in many areas of mathematics such as geometric and analytic
group theory, operator algebras, ergodic theory, etc; see [2].

The purpose of this introductory section is to give a detailed proof of Kazhdan’s
celebrated theorem [35] that the group SL3.R/ has property (T). We do not give one of
the classical proofs (which rely in a way or another on the pair SL2 � SL3) but a proof
due to Lafforgue [43] (which relies on the pair SO.3/ � SL3.R/). We denote G D SL3.R/,
K D SO.3/ � G being the maximal compact subgroup. Then the polar decomposition asserts
that every element of G can be written as a product g D kak0 for k; k0 2 K and a diagonal
matrix a with positive entries in nonincreasing order. In other words, it identifies the double
classes KnG=K with the Weyl chamber ƒ D ¹.r; s; t/ 2 R3; r � s � t; r C s C t D 0º via
the identification of .r; s; t/ with the class KD.r; s; t/K of

D.r; s; t/ D

0B@er 0 0

0 es 0

0 0 et

1CA :

We also introduce the subgroup U ' SO.2/ � K of block-diagonal matrices

U D

8̂<̂
:

0B@1 0 0

0 � �

0 � �

1CA
9>=>; \ K:

The double classes U nK=U are then parametrized by Œ�1; 1�, the parametrization being
given by UkU 7! k1;1. For every ı 2 Œ�1; 1�, let kı denote a representative of the corre-
sponding double class, for example,

kı D

0B@ ı �
p

1 � ı2 0
p

1 � ı2 ı 0

0 0 1

1CA :

Step 1. The first step is the observation that U -biinvariant matrix coefficients of unitary
representations of K are Hölder 1

2
-continuous on .�1; 1/. In particular, we have

Proposition 1.1. For every unitary representation � of K on a Hilbert space H and every
�.U /-invariant unit vectors �; � 2 H , we haveˇ̌˝

�.kı/�; �
˛
�

˝
�.k0/�; �

˛ˇ̌
� 2

p
jıj:
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Proof. By the Peter–Weyl theorem, it is enough to prove the inequality for the irreducible
representations of SO.3/. For the nth irreducible representation of SO.3/ (the degree n

spherical harmonics), the quantity h�.kı/�; �i is equal to ˙Pn.ı/, the value at ı of the
nth Legendre polynomial normalized by Pn.1/ D 1, see, for example, [22]. So we have to
prove that supn jPn.ı/ � Pn.0/j � 2

p
jıj. By boundingˇ̌

Pn.ı/ � Pn.0/
ˇ̌

� min
�ˇ̌

Pn.0/
ˇ̌
C

ˇ̌
Pn.ı/

ˇ̌
; jıj max

t2Œ0;1�

ˇ̌
P 0

n.tı/
ˇ̌�

and using the Bernstein inequality jPn.x/j � min.1;

q
2

�n
.1 � x2/� 1

4 / [70, Theorem 7.3.3]

and the formula
.1 � x2/P 0

n.x/ D �nxPn.x/ C nPn�1.x/

expressing P 0
n in terms of Pn and Pn�1, one deduces the proposition.

Step 2. The next step is to deduce regularity properties of K-biinvariant matrix coefficients
of unitary representations of G. The proof is short, but there are important things happening.

Proposition 1.2. Let � be a unitary representation of G on a Hilbert space H , and �; � be
�.K/-invariant unit vectors. Then for every g1; g2 2 G,ˇ̌˝

�.g1/�; �
˛
�

˝
�.g2/�; �

˛ˇ̌
� 100 min

�
kg1k;

g�1
1

; kg2k;
g�1

2

�� 1
2 :

Proof. We may regard the matrix coefficient g 7! h�.g/�; �i as the map cW ƒ ! C given
by c.r; s; t/ D h�.D.r; s; t//�; �i. For every .r; s; t/ 2 ƒ, the matrix D.�t; t

2
; t

2
/ commutes

with U , so the unit vectors �.D.�t; t
2
; t

2
//� and �.D.t;� t

2
;� t

2
//� are U -invariant. We can

therefore apply Proposition 1.1. With ı D
sinh.rC t

2 /

sinh.� 3t
2 /

, we obtainˇ̌̌̌
c.r; s; t/ � c

�
�

t

2
; �

t

2
; t

�ˇ̌̌̌
� 2

p
ı � 2e

r
2 Ct

D 2e� r
2 �s : (1.1)

Applying this to the representation g 7! �..gT /�1/, we also obtainˇ̌̌̌
c.r; s; t/ � c

�
r; �

r

2
; �

r

2

�ˇ̌̌̌
� 2e

t
2 Cs : (1.2)

These two inequalities are best understood on a picture (see Figure 1): (1.1) expresses that
the amplitude of c is very small (exponentially small in the distance to the origin) on lines
of slope �

1
2

in the region s � �1, whereas (1.2) expresses that the amplitude of c is very
small on vertical lines in the region s � 0. We can join any two points of the Weyl chamber
by a zigzag path as in Figure 1, and combining these estimates we deduceˇ̌

c.r; s; t/ � c.r 0; s0; t 0/
ˇ̌

� 100 max
�
e�

min.r;�t/
2 ; e�

min.r 0;�t 0/
2

�
;

which is exactly the proposition.

If � is a representation of G on a Hilbert space H and g 2 G, let us denote by
�.KgK/ the bounded operator on H mapping � to

’
K�K

�.kgk0/�dkdk0, where the inte-
grals are with respect to the Haar probability measure on K. We also say that a vector � 2 H

is harmonic if �.KgK/� D � for every g 2 G (the terminology is justified by [24]).
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r D s

s D t

s D �1
s D 0

Figure 1

The zigzag path in the Weyl chamber ƒ.

Corollary 1.3. If � is a unitary representation of G, then�.KgK/ � P


B.H/
� 100 min

�
kgk;

g�1
�� 1

2 ; (1.3)

where P is a projection on the space of harmonic vectors.

Proof. Taking the supremum over all K-invariant unit vectors in Proposition 1.2, we obtain
that .�.KgK//g2G is Cauchy in B.H /, and that its limit P satisfies (1.3). Then P is clearly
the identity on the space of harmonic vectors, and the following computation shows that the
image of P is made of harmonic vectors:

�.KgK/P �dk D lim
g 0!1

�.KgK/�.Kg0K/� D lim
g 0!1

Z
K

�.Kgkg0K/� D P �:

So P is indeed a projection (and even the orthogonal projection) on the space of harmonic
vectors.

Step 3. The last step, which can be summarized as harmonic implies invariant, is the conclu-
sion of the proof of property (T). Let � be a unitary representation of G with almost invariant
vectors. Evaluating �.KgK/ at almost invariant vectors, we see that �.KgK/ has norm 1

for every g 2 G. The limit P in Corollary 1.3 therefore also has norm 1, which means that
there is a nonzero harmonic vector �. For every g 2 G, the equality � D

’
�.kgk0/�dkdk0

expresses � as an average of vectors of the same norm �.kg0k/�. By strict convexity of
Hilbert spaces, we have that �.kgk0/� D � for every k; k0, in particular � is �.g/-invariant.
So � is a nonzero invariant vector. This proves that G D SL3.R/ has property (T).

For further reference, we can rephrase Proposition 1.1 in terms of the operators
Tı WL2.S2/ ! L2.S2/ defined by Tıf .x/ is the average of f on the circle ¹y 2 S2jhx;yi D

ıº. Identifying S2 with SO.3/=SO.2/, we see that Proposition 1.2 is equivalent to

kTı � T0k � 2
p

jıj: (1.4)
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1.1. Comments on the proofs
The distinct steps in the proof of property (T) for SL3.R/ have different nature. The

first step is analytic and deals with harmonic analysis on a compact group, and more pre-
cisely on the pair .U � K/ of compact groups. The second step is geometric/combinatorial.
What happens is that one studies the various K-equivariant embeddings of the sphere S2

(identified with K=U D SO.3/=SO.2/) into the symmetric space G=K D SL3.R/=SO.3/.
The relative position between a pair of such embeddings gives rise to an embedding of
U nK=U D Œ�1; 1� inside the Weyl chamber KnG=K. There are three types of such embed-
dings: the segments in Figure 1; others, that are of no use for us, are segments parallel to the
line s D 0. Combining these embeddings allows us to explore the whole Weyl chamber of
SL.3; R/, and to prove that K-biinvariant matrix coefficients of unitary representations of G

are Hölder 1
2
-continuous away from the boundary of ƒ. The crucial fact that leads to (1.1)

and (1.2) expresses that the interesting embeddings are exponentially distorted in the dis-
tance to the origin in the Weyl chamber, and hence that this exploration allows us to escape
to infinity in finite time. The last step is rather obvious, but will become much more involved
later.

It is informative to make similar computations for rank 1 simple Lie groups G which
contain a subgroup isomorphic to SO.3/ (for example, for SO.3; 1/). In that case, one gets
also lots of embeddings of Œ�1; 1� inside the Weyl chamber Œ0; 1/ of G, and also enough to
explore the whole Weyl chamber and prove Hölder 1

2
-regularity in the interior of the Weyl

chamber. The difference (and the reason why this does not create a contradiction by proving
that SO.3; 1/ has property (T)!) is that these embeddings are almost isometric, and so it
takes an infinite time to explore the whole Weyl chamber. In a sense, only the segments
going straight but slowly to infinity exist in rank one. Those that are used in the zigzag
argument, which take less direct routes but are faster, only appear in higher rank.

The fact that all the analysis is done at the level of the compact groups U; K is very
important, because harmonic analysis for compact groups is much better understood than
for arbitrary groups (see, for example, the very easy results in Lemmas 2.2, 3.1, 3.6). This
is what permits using a similar approach for other objects than coefficients of unitary repre-
sentations, and proving rigidity results in various other linear settings. This is the content of
the remaining of this survey.

1.2. Induction and property (T) for SL3.Z/

For later reference, we recall the classical argument why property (T) for SL3.R/

implies property (T) for SL3.Z/. We uses Minkowski’s theorem that SL3.Z/ is a lattice in
SL3.R/. A lattice in a locally compact group G is a discrete subgroup such that the quotient
G=� carries a finite G-invariant Borel probability measure. Equivalently, there is a Borel
probability measure � on G whose image in G=� is G-invariant. The proof that property (T)
passes to lattices uses induction of representations. If � is a unitary representation of � on
a Hilbert space H , the space of the induced representation is the space L2.G; �I H /� of
measurable functions G ! H that satisfy f .g/ D �.�1/f .g/ for every g 2 G and 
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in � , and such that
R

G
kf .g/k2d�.g/ < 1. It is equipped with a unitary representation of

G by left-translation g � f D f .g�1�/. If � almost has invariant vectors, then so does the
induced representation. By property (T) for G, it has a nonzero invariant vector. This vector
is a constant function with values in H � . So � has invariant nonzero vectors.

2. Fourier series, approximation properties, operator

algebras

2.1. Fourier series, absence of Fourier synthesis
If 1 < p < 1, it is very well known (this follows immediately from Marcel Riesz’s

theorem that the Hilbert transform f 7!
P

n�0
Of .n/e2i� � is bounded on Lp) that the Fourier

series of every function f 2 Lp.R=Z/ converges in Lp:

lim
N

f �

NX
nD�N

Of .n/e2i� �


p

D 0:

This is not true for p D 1 or p D 1, but there are more clever summation methods, for
example, Fejér’s method: if we denote WN .n/ D max.1 �

jnj

N
; 0/, then

lim
N

f �

X
n

WN .n/ Of .n/e2i� �


p

D 0;

and this time the convergence holds for L1, and even L1, if f is continuous. All this remains
true on the torus .R=Z/d of arbitrary dimension, and more generally on the Pontryagin dualb� of every discrete abelian group.

When � is a nonabelian discrete group, b� does not make sense as a group, but
the spaces C.b�/, L1.b�/, and Lp.b�/ have a very natural meaning: they are respectively
the reduced C �-algebra C �

�
.�/, the von Neumann algebra L� , and the noncommutative Lp

space [64] of the von Neumann algebra of L� . Recall that if � is the left regular representation
(by left-translation) of � on `2.�/, C �

�
.�/ is the norm closure in B.`2.�// of the linear span

of �.�/, L� is its closure for the weak-operator topology, and Lp.L�/ its completion for
the norm x 7! hjxjpıe; ıei

1
p . The elements of each of these spaces admit a Fourier series

f D
P


Of ./�./. This is a formal series, whose convergence is not clear in general (except

in L2). One can wonder in that case whether, as in the case when � is abelian, there exist
Fourier summation methods in this context, i.e., a sequence of functions WN W � ! C with
finite support such that

f D lim
N

X


WN ./ Of ./�./; (2.1)

for every f in C �
�

.�/ or Lp.L�/ (convergence in norm). It is well known that this is the
case when � is amenable. According to a celebrated (and surprising at that time) result by
Haagerup [28], this is also true when � is a nonabelian free group. This result has inspired a
massive research program on approximation properties of group operator algebras. Indeed,
by the Banach–Steinhaus theorem, if (2.1) holds, then the maps f 7!

P
� WN ./ Of ./�./,

called Fourier multipliers, are uniformly bounded, have finite rank, and converge pointwise
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to the identity. In [10] de Cannière and Haagerup realized that in the case of free groups,
the convergence even holds for every f in the C �-algebra B.`2/ ˝ C �

�
.�/, that is, when

the Fourier coefficients Of ./ are bounded operators on `2. When this holds, � is said to
be weakly amenable. Moreover, a function W W � ! C is said to be a completely bounded
Fourier multiplier if the map f 7!

P
 W./ Of ./ ˝ �./ is bounded on B.`2/ ˝ C �

�
.�/.

So weak amenability comes with a constant, which is the smallest common upper bound
on these completely bounded norms, among all sequences of finitely supported multipli-
ers achieving (2.1). Mutatis mutandis, completely bounded Fourier multipliers and weak
amenability also make sense for locally compact groups, and importantly restriction to closed
subgroups and induction from lattices work well for completely bounded Fourier multipli-
ers. In particular, the weak amenability constant coincide for a group and a lattice [29]. The
major achievement in this direction was obtained in a series a work by Haagerup with de
Cannière and Cowling [10,16,29], that led to the exact computation of the weak amenability
constant of all simple Lie groups. Excluding exceptional groups, it is equal to 1 for SO.n; 1/,
SU.n; 1/, 2n � 1 for SP.n; 1/, and is infinite for higher rank groups.

In [32], Haagerup and Kraus discovered a strange phenomenon: it might happen that
there is no sequence WN satisfying (2.1) for every f 2 B.`2/ ˝ C �

�
.�/, but there exists

such a generalized sequence (or net).1 A group for which such a net exists is said to have the
approximation property of Haagerup and Kraus, or simply AP.

So groups without the AP are groups in which no L1-summation method exists
whasotever for operator coefficients. It has been difficult to produce such groups. It was
known [32] that nonexact groups [59] would be such examples, but they are difficult to con-
struct. Haagerup and Kraus had conjectured that SL3.Z/ was another example. This conjec-
ture turned out to be delicate because classical approaches to rigidity in higher-rank lattices,
which rely on the subgroup SL2.Z/ Ë Z2 or its relative SL2.R/ Ë R2, are inefficient by the
strange phenomenon described above. It is the ideas described in Section 1 that allowed to
settle it.

Theorem 2.1 ([47]). SL3.Z/ does not have the approximation property of Haagerup and
Kraus.

The original proof of this theorem was not direct and went through Lp Fourier
theory (Theorem 2.3), but, thanks to several simplifications [30, 66, 71], a very easy proof
is now known. We have already justified that, by induction, we can as well prove the theorem
for SL3.R/. The starting point is the following straightforward lemma (which is known to
hold more generally if [36] and only if [4] the locally compact group K is amenable), which
provides a characterization of completely bounded Fourier multipliers of compact groups.

1 Remembering that the Banach–Steinhaus theorem is false for nets might help imagine how
such a statement could be true. An example is given by SL2.Z/ Ë Z2: it has the AP as the
semidirect product of two weakly amenable groups and AP is stable by group extensions
[32]. That it is not weakly amenable was proved in [29] and also reproved in [60].
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Lemma 2.2. Let K be a compact group. A function 'WK ! C defines a completely bounded
Fourier multiplier of C �

�
.K/ if and only if ' is a matrix coefficient of a unitary representation

of K.

Proposition 1.1 therefore says that SO.2/-biinvariant completely bounded Fourier
multipliers of C �

�
.SO.3// are Hölder- 1

2
continuous in the interior of SO.2/nSO.3/=SO.2/.

The same proof as Proposition 1.2 then produces a map from SO.3/nSL3.R/=SO.3/ into the
dual of the space of completely bounded Fourier multipliers of SL3.R/, which satisfies the
Cauchy criterion. Its limit vanishes on compactly supported functions and takes the value 1

on the identity multiplier. This is exactly a Hahn–Banach-type separation, which says that
SL3.R/ does not have the AP.

The same argument can also be used to say something about Lp Fourier summa-
bility for some finite p and to obtain the following, which is an equivalent form of the main
result in [47].

Theorem 2.3 ([47]). For every 4 < p < 1 or 1 � p < 4
3
, there is f 2 Lp.LSL3.Z/ ˝ B.`2//

such that, for every finitely supported W W SL3.Z/ ! C,f �

X


W./ Of ./�./


p

� 1:

Again, the proof has the same structure as in Section 1. To initiate the first step, we
need to investigate in more details the spectral decomposition of the operators Tı in (1.4). For
a Hilbert space H , the Schatten p-class Sp.H / is the space of operators T on H such that
kT kSp WD .Tr.jT jp//

1
p < 1. It can be shown [47] that the operators Tı , ı 2 .�1; 1/ belong

to Sp.L2.S2// if p > 4, and there is a constant C such that for every ı; ı0 2 Œ�1=2; 1=2�,

kTı � T0kSp �
C

.p � 4/1=p
jıj

1
2 � 2

p : (2.2)

With this inequality, we can run the argument of Section 1 and obtain a form of Theorem 2.3
for SL3.R/. However, the induction procedure for completely bounded Lp Fourier multipli-
ers, which works well when p D 1 [29,32], is problematic for 1 < p ¤ 2 < 1. It is known
to work well mainly for amenable groups [12, 13, 56]. The solution is to work with Herz–
Schur multipliers on Sp.L2.G//, that is, operators of the form A D .Ag;h/ 2 Sp.L2.G// 7!

.W.gh�1/Ag;h/ for functions W W G ! C, for which induction works well. Fortunately, for
compact groups (and even amenable groups [12, 56]) Schur Sp and Fourier Lp multipliers
coincide.

The preceding sketch is the only proof I know of Theorem 2.3. It can be shown
that (2.2) is optimal, and that Tı � T0 does not belong to S4 for any ı ¤ 0. So this idea
cannot work for 2 < p � 4, and it is an intriguing question whether this condition is really
needed for Theorem 2.3. As we will explain in Section 5, a positive answer to this question
would allow distinguishing the von Neumann algebra of SL3.Z/ and PSLn.Z/ for n > 4, and
would confirm a conjecture of Connes. The challenge is to construct nontrivial Lp Fourier
multipliers for SL3.Z/. A first step is to do so for SL3.R/. Together with Parcet and Ricard
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[62], we made some progress on that recently by proving a satisfactory local form of the
Hörmander–Mikhlin multiplier theorem for SLn.R/.

2.2. Approximation properties for Banach spaces and operator algebras
In his thesis [26], Grothendieck initiated the study of tensor product of topological

vector spaces, and realized the tight connection with the Banach’s approximation property
AP: a Banach space E has the approximation property (AP) if the identity operator belongs
to the closure of the space of finite rank operators, for the topology of uniform convergence
on compact sets. He was even led to conjecture that all Banach space have the AP (this would
make the theory of tensor product simpler!). Later in his Résumé [25] he changed his mind
and actually expected that Banach spaces exist, which fail the AP. Récoltes et Semailles [27]

contains a moving part, where Grothendieck explains how much he suffered from the year
he spent on working on this problem without progress. It was only much later than the first
example of Banach space was constructed by Enflo [21], followed by many other examples.
See the survey [11] for a list. Let me emphasize: the examples of Enflo, as most other exam-
ples, are obtained from delicate combinatorial constructions, and in particular they are not
Banach spaces, the existence of which was known to Grothendieck. There is, to my knowl-
edge, only one example of a Banach space that is both natural (not obtained from an ad hoc
construction) and known to fail the AP, namely the space B.`2/ of all bounded operators
on `2 [69]. This space is not reflexive and we are lacking separable and natural examples of
space with the AP. For some time in the 1970s, a candidate of such a satisfactory example
was C �

�
.F2/, the reduced C �-algebra on the nonabelian free group with two generators, and

the hope was that the lack of AP could be explained by the non amenability of F2. Haagerup
broke this hope in [28] by proving, better, that C �

�
.F2/ has the metric AP (the identity belongs

to the closure of the norm 1 finite rank operators). More precisely, as explained in the pre-
vious section, F2 is weakly amenable with constant 1. However, two serious candidates of
natural separable Banach spaces without the AP remain in the same vein: C �.F2/, the full
C �-algebra of F2 and C �

�
.SL3.Z//. It is hoped that the first lacks the AP for the simple

reason that F2 is nonamenable, and the latter for reasons related to the ideas in Section 1.
This last conjecture has not been settled, but its weakening in the sense of operator

spaces is known. Indeed, there are natural variants of Grothendieck’s approximation property
in the category of operator spaces rather than Banach spaces (replacing bounded operators by
completely bounded operators [63]), that we denote by OAP and CBAP. The CBAP, meaning
that the identity on E belongs to the closure of the finite rank operators with completely
bounded norm bounded above by some constant C , comes with a constant (the best such C ).
Given a discrete group � , the fundamental observation of Haagerup [29] (and Kraus for OAP
[32]) is that the CBAP/OAP for C �

�
.�/ (and respectively its variants for dual spaces for the

von Neumann algebra L.�/) can be achieved with finitely supported Fourier multipliers. As
a consequence, the weak amenability constant of a discrete group � is an invariant of its von
Neumann algebra, and so is the AP of Haagerup and Kraus. For example, the computation
of the weak amenability constant of simple Lie groups [10, 16, 29] discussed above allows
distinguishing the von Neumann algebra of a lattice in SP.n; 1/ (for n ¤ 3, n ¤ 11) from
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the von Neumann algebra of a lattice in a simple Lie group that is not locally SP.n; 1/. Also,
Theorem 2.1 can be rephrased as C �

�
.SL3.Z// does not have the approximation property in

the category of operator spaces. This was the first example of an exact C �-algebra without
the OAP. Similarly, Theorem 2.3 can be rephrased as Lp.LSL3.Z// does not have the OAP
for p > 4. For 4 < p < 80, this was the first example of a noncommutative Lp space without
the CBAP.

3. Nonunitary representations: Lafforgue’s strong

property (T)

This section is devoted to non unitary representations on Hilbert spaces.

3.1. Strong property (T) for SL3.R/

It is useful at this point to have a look back at the proof of property (T) for SL3.R/

in Section 1 and see precisely where the assumption that the representations are unitary was
used. Step 1 is about the compact group SO.3/, and therefore only uses that the restriction to
SO.3/ is unitary. This is not a very strong assumption, as compact groups are unitarizable:

Lemma 3.1. Every representation of a compact group on a Hilbert space is similar to a
unitary representation.

In particular, every representation of SL3.R/ is similar to a representation whose
restriction to SO.3/ is unitary.

Step 2 did not use that � is unitary in a strong way, and remains true (with a different
constant and the exponent �

1
2

replaced by 2˛ �
1
2
) if

˛ D ˛.�/ WD lim sup
jt j!1

1

jt j
log

�

�
D

�
�t;

t

2
;

t

2

�� <
1

4
:

So if � is a representation of SL3.R/ on a Hilbert space such that ˛.�/ < 1
4
, we obtain

that �.KgK/ converges in norm to a projection on the space of harmonic vectors. Step 3
apparently relies more fundamentally on the fact that � is unitary. However, it is still true
when ˛.�/ < 1

4
that harmonic vectors are invariant. This requires new ideas, which make

step 3 the most involved part, see [43] or the presentation in [65]. To summarize, the condi-
tion ˛.�/ < 1

4
is enough to guarantee that �.KgK/ converges in norm to a projection on

the invariant vectors. In the terminology of Vincent Lafforgue [43], SL3.R/ has strong prop-
erty (T), which is a form of property (T) for representations on Hilbert spaces with small
exponential growth rate. Let us spell out the definition.

If G is a locally compact function, a length function ` W G ! RC is a function
that is bounded on compact subsets, that is, symmetric `.g/ D `.g�1/ and subadditive
`.gh/ � `.g/ C `.h/. Let us denote C`.G/ the completion of Cc.G/ for the norm given by
kf kC`.G/ D sup k�.f /k where the supremum is over all representations of G on a Hilbert
space such that k�.g/k � e`.g/ for every g 2 G. It is a Banach algebra for the convolution.
An element p 2 C`.G/ is called a Kazhdan projection if �.p/ is a projection on the invariant
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vectors H � of � for every such representation. Kazhdan projections have been investigated
in [20, 67]. If a Kazhdan projection exists, �.p/ is the unique G-equivariant projection on
H � , so p is unique [67].

Definition 3.2 ([43]). G has strong property (T) if for every length function `, there is s > 0

such that for every C > 0, Cs`CC .G/ has a Kazhdan projection.

A posteriori, a group with strong property (T) is necessarily compactly generated
(this is even a consequence of property (T)), and it is enough to check the definition for ` the
word-length with respect to a compact generating set.

We have just explained the proof of the following theorem.

Theorem 3.3 ([43]). SL3.R/ has strong property (T).

Moreover, the Kazhdan projection belongs to the closure of Cc.G/C WD ¹f 2

Cc.G/ j f .g/ � 08g 2 Gº. Some authors [6–9] add this precision to the definition because,
as we will see below, this is crucial for some applications.

Vincent Lafforgue’s original motivation for this definition was his work on the
Baum–Connes conjecture. Indeed, strong property (T) (and variants of it) are the natural
obstructions for applying some of his ideas (and in particular the ideas in [46]) to groups
such as SL3.Z/. We refer to [45] for more on the link with the Baum–Connes conjecture.

3.2. Strong property (T) for SL3.Z/

Theorem 3.3 also holds for SL3.Z/, but the proof turned out to be delicate. In par-
ticular, we do not see how to prove in general that strong property (T) passes to lattices.

Theorem 3.4 ([68]). SL3.Z/ has strong property (T).

The way Theorem 3.4 is proved is by introducing and working with representation-
like objects, where one is only allowed to compose once and that I call two-step representa-
tions.

Definition 3.5. A two-step representation of a topological group G is a tuple .X0; X1; X2;

�0; �1/ where X0; X1; X2 are Banach spaces and �i W G ! B.Xi ; XiC1/ are strongly con-
tinuous2 maps such that

�1.gg0/�0.g00/ D �1.g/�0.g0g00/ for every g; g0; g00
2 G:

In this case we will denote by � W G ! B.X0; X2/ the continuous map satisfying �.gg0/ D

�1.g/�0.g0/ for every g; g0 2 G.

The reason for this introduction is that two-step representations appear naturally
when we induce non unitary representations. Indeed, let � � G be a lattice. For every
probability measure � on G as in Section 1.2, we can consider the space L2.G; �I H /� .
When � is a cocompact lattice (that is G=� is compact), Lafforgue [43] observed that it

2 In other words, for every x 2 Xi , the map g 2 G 7! �.g/x 2 XiC1 is continuous.
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is possible to choose � in such a way that the induced representation remains by bounded
operators on L2.G; �I H /� , with small exponential growth if the original representation of
� had small exponential growth. Therefore, strong property (T) passes to cocompact lat-
tices [43]. When � is not cocompact and � is not uniformly bounded, there does not seem
to be any choice of � for which the representation is by well-defined (bounded) operators.
However, in the particular case of SL3.Z/ � SL3.R/, if � is well chosen and if the origi-
nal representation � of has small enough exponential growth, it possible to show that the
representation g � f D f .g�1�/ is bounded from Lp.G; �I H /� ! Lq.G; �I H /� when-
ever 1

q
�

1
p

�
1
2
. This uses some strong exponential integrability properties of SL3.Z/ in

SL3.R/, which rely on the celebrated Lubotzky–Mozes–Raghunathan theorem [52]. In par-
ticular, we obtain a two-step representation with X0 D L1.G;�IH /� , X1 D L2.G;�IH /� ,
and X2 D L1.G; �I H /� . So Theorem 3.4 is a consequence of a form of strong property (T)
for two-step representations of SL3.R/ where X1 is a Hilbert space. This is done following
the strategy in Section 1. The starting point is again a straightforward statement, which asserts
that two-step representations of compact groups are governed by usual representations:

Lemma 3.6. If .X0; X1; X2; �0; �1/ is a two-step representation of a compact group K

where X1 is a Hilbert space, then there is a constant C such that, for every f 2 Cc.K/,�.f /


B.X0;X2/
� C

�.f /


C �
�

.K/
:

3.3. Applications of strong property (T)
Let us end this section with two applications of strong property (T). We will see in

the next section other applications of variants of strong property (T) for representations on
Banach spaces. All applications have in common that strong (T) is used as a way to system-
atically find and locate fixed point. The first is a result about vanishing of first cohomology
spaces for representations with small exponential growth. If � is a representation of G on a
space H , we denote by H 1.G; �/ the quotient of the space of cocycles

Z1.G; �/ WD
®
b 2 C.G; H / j 8g1; g2 2 G; b.g1g2/ D b.g1/ C �.g1/b.g2/

¯
by the subspace of coboundaries

B1.G; �/ D
®
g 7! �.g/� � � j � 2 H

¯
:

Hence H 1.G;�/ parametrizes the continuous affine actions of G on H with linear part � , up
to a change of origin. Delorme and Guichardet have proved that a second countable locally
compact group G has property (T) if and only if H 1.G; �/ D 0 for every unitary repre-
sentation � . The following result has the same flavor, but the proof is different. The idea is
that any b 2 Z1.G; �/ gives rise to a representation

�
�.g/ b.g/

0 1

�
with the same exponential

growth rate on H ˚ C.

Proposition 3.7 ([44]). If G has strong property (T) and ` is a length function on G, there
is s > 0 such that H 1.G; �/ D 0 for every representation with exponential growth rate � s.

This proposition can be used to show that strong property (T) is incompatible with
hyperbolic geometry, and in particular that infinite Gromov-hyperbolic groups do not have
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strong property (T). Indeed, in [43], for every group G acting with infinite orbits on a Gromov-
hyperbolic graph with bounded degree, a representation with quadratic growth rate on a
Hilbert space is constructed with H 1.G; �/ ¤ 0. By Proposition 3.7, such a group cannot
have strong property (T).

Another notable application of strong property (T) was found in the resolution of
most cases of Zimmer’s conjecture by Brown, Fisher, and Hurtado (see [5,23]). The following
is a particular case of their result.

Theorem 3.8 ([7]). Let G be a locally compact group with length function ` and ˛ W G !

Diff.M/ an action by C 1 diffeomorphisms on a compact Riemannian manifold with subex-
ponential growth of derivatives:

8" > 0; sup
g2G

e�"`.g/ sup
x2M

Dx˛.g/
 < 1:

If G has strong property (T) with Kazhdan projections in the closure of Cc.G/C, then for
every k, ˛ preserves C k Riemannian metrics on M . In particular, for the original metric, ˛

has bounded derivatives.

The idea is to use strong property (T) for the representation on the Hilbert space of
signed metrics on M with Sobolev norms W n;2, which take into account the L2-norms of all
derivatives of order � n. Here n is an arbitrary positive integer. Strong property (T) allows
constructing such invariant signed metrics. The fact that the Kazhdan projection belongs
to the closure of nonnegative functions is used to ensure that these signed metrics can be
taken positive. The Sobolev embedding theorems say that, for n large, these metrics become
smoother.

4. Banach space representations

4.1. Banach spaces versions of property (T)
The last two decades have seen important developments in the study of group actions

on Banach spaces, initiated by a number of more or less simultaneous investigations [1, 14,

15,42,43,72].
The work [1] (and also [14, 43]) has proposed to study different possible general-

izations of property (T) with Hilbert spaces replaced by Banach spaces. If one adopts the
definition in terms of almost invariant vectors, one gets property (TX ). Let E be a class of
Banach spaces.

Definition 4.1 (Bader, Furman, Gelander, Monod [1]). A locally compact group G has prop-
erty (TE ) if for every isometric representation � WG ! O.X/ on a space X in E , the quotient
representation G ! O.X=X�.G// does not almost have invariant vectors. Here, X�.G/

denotes the closed subspace of X consisting of vectors that are fixed by � .

When the quotient representation G ! O.X=X�.G// does not almost have invariant
vectors, we say that � has spectral gap.
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Compact groups have TX with respect to all Banach spaces, but for other locally
compact groups we have to impose conditions on a Banach space to hope to have TX . For
example, the action by left-translation of C0.G/ has spectral gap if and only G is compact.

Adapting the equivalent characterization of property (T) in cohomological terms,
we obtain:

Definition 4.2 ([1]). A locally compact group G has property FE if every action of G by
affine isometries on a space in E has a fixed point.

It still holds that for � -compact groups, FE implies (TE ), but the converse is not true.
For example, Pansu’s computation of Lp-cohomology of rank 1 symmetric spaces [61] says
that Sp.n; 1/ does not have FLp for p > 4n C 2, whereas as every group with property (T)
[1], it has TLp for every 1 � p < 1. Pansu’s result has been generalized by Yu [72] who
showed that every Gromov-hyperbolic group has a proper isometric action on an Lp space
for every large p. We refer to [17,18,48,53] and [19,40,58] for recent progresses on fixed points
properties for actions on Lp spaces and other Banach spaces. So studying for which spaces
a group has FX is a way to quantify the strength of property (T). The following conjecture
therefore is another indication that SL3.Z/ has a very strong form of property (T).

Conjecture 4.3 ([1]). Any action by isometries of SL3.Z/ (or, more generally, a lattice in
a connected simple Lie group of real rank � 2) on a uniformly convex Banach space has a
fixed point.

4.2. Expander graphs
The study of group actions on Banach spaces is also related to questions about the

possible interactions between geometry of finite graphs and of Banach spaces. Given a finite
graph G and a Banach space X , the X -valued Poincaré constant �.G ;X/ is the smallest con-
stant � such that, for every function f from the vertex set of G to X , the Poincaré inequality

inf
�2X

kf � �k2 � �krf k2

holds, where rf is the function on the edge set of G taking the value f .x/ � f .y/ at the
edge .y; x/. A sequence of bounded degree graphs with size going to infinity is said to be
expanding with respect to X if infn �.Gn; X/ > 0. When X is the line, or a Hilbert space,
or an Lp space for 1 � p < 1, we recover the usual notion of expander graph. On the
opposite, there are no expanders with respect to `1, and more generally with respect to a
space containing arbitrarily large copies of `n

1 (such space are called spaces with trivial
cotype). A sequence Gn that is expanding with respect to every uniformly convex Banach
space is called a sequence of superexpanders [54]. There are two sources of examples known:
one that we will discuss in the last section, coming from quotients of arithmetic groups over
nonarchimedean local fields [44] and relying on the ideas from Section 1, and one coming
from zigzag products [54].

When a sequence of graphs Gn are Cayley graphs of .�n;Sn/ where �n is a sequence
finite quotients of a group � with size going to infinity and Sn the image of a fixed generating
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set of � in �n, the fact that Gn are expanders with respect to X is equivalent to the fact that
the representation � on `2.

S
n �nIX/ has spectral gap. This if, for example, the case if � has

(T`2.NIX/). It follows from this discussion is that Conjecture 4.3 is stronger than the following
conjecture:

Conjecture 4.4. The sequence of Cayley graphs of SL3.Z=nZ/ with respect to the elemen-
tary matrices is a sequence of superexpanders.

It is conceivable that they are even expanders with respect to every Banach space
of nontrivial cotype. The existence of such expanders is still unknown. On the opposite, it is
also unknown whether there exist expanders that are not expanders with respect to all Banach
spaces of nontrivial cotype. This is revealing of how little such questions are understood.

4.3. Strong Banach property (T)
Let E be a class of Banach spaces. If, in Definition 3.2, we allow representations on

a Banach space in E rather than only on a Hilbert space, we say that G as strong property (T)
with respect to E . So there are as many Banach space versions of strong property (T) that
classes of Banach spaces. In [44], Lafforgue uses the terminology strong Banach property (T)
to mean that G has strong property (T) with respect to every class E in which `1 is not finitely
representable. This is essentially the largest possible class, because no noncompact group can
have strong property (T) with respect to L1.G/.

Strong property (T) with respect to Banach spaces has the same kind of applications
than for Hilbert spaces. First as in Proposition 3.7, strong property (T) with respect to X ˚ C
implies that H 1.G; �/ D 0 for every representation on X with small enough exponential
growth. We also have a variant of Theorem 3.8. If G is assumed to have strong property (T)
with respect to all subspaces of Lp spaces for all 2 � p < 1, then it is enough to assume that
the action is by C 1Cs-diffeomorphisms to ensure that for every " > 0 ˛ preserves of metric
of regularity C s�" [7], and enough to assume that the action is by C 1-diffeomorphisms to
ensure that for every p < 1 ˛ preserves a measurable metric that is Lp-integrable [6].

The sketch of proof of strong property (T) for SL3.R/ and SL3.Z/ is Section 3
applies in the same way, provided that there are constants C; � > 0 such that

8ı 2 Œ�1; 1�; kTı � T0kB.L2.S2IX// � C jıj
�=2: (4.1)

Theorem 4.5 ([43,68]). SL3.R/ and SL3.Z/ have strong property (T) with respect to X for
every Banach space satisfying (4.1) for some C; � > 0.

It is expected that all uniformly convex Banach spaces spaces satisfy (4.1) for some
C; � . More precisely, it should be true that spaces satisfying (4.1) are exactly the spaces of
nontrivial Rademacher type. This would settle Conjecture 4.3 and 4.4.

If follows from the Riesz–Thorin theorem that (4.1) holds for Lp spaces for 1 <

p < 1 and therefore for every subspace of an Lp space, and more generally for every � -
Hilbertian space. In [65], exploiting the stronger summability property from (2.2), I showed
that (4.1) holds whenever dn.X/ D O.n

1
4 �"/ as n ! 1. Here dn.X/ denotes the supremum
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over all subspaces E of X of dimension n of the Banach–Mazur distance to the Euclidean
space of the same dimension. For example, this holds if X has type p and cotype q with
1
p

�
1
q

< 1
4
.

5. Other groups

There is no general theory yet, in which the strategy from Section 1 for SL3.R/ fits,
but there are other examples of groups for which such tools have been developed: SL3.F/

for a nonarchimedean local field [43], SP2.R/ and its universal cover [30,31,37,38], SP2.F/

[50,51], SLn.F/ and SLn.R/ for n � 4 [47] and [39,41], SO.n; 1/ [62], and finally lattices in
locally finite affine buildings of type QA2 [49].

Let me expand a bit, starting with the real Lie groups. The group SP2.R/ is the
group of 4 � 4 matrices which preserve the standard symplectic form !.x; y/ D y1x3 C

y2x4 � x1y3 � x2y4. The Bernstein inequalities used in Proposition 1.1 were generalized in
[33] to Jacobi polynomials, which appear as spherical functions for other Gelfand pairs than
SO.2/ � SO.3/. In [30,31], Haagerup and de Laat then generalized Theorem 2.1 to SP2.R/

and its universal cover, respectively. The analogue of Theorem 2.3 was obtained in [37], but
for p > 12 (improved to p > 10 in [38] by refining the Bernstein inequalities from [33]), and
strong property (T) was proved in [38] for the Lie groups or their cocompact lattices, and in
[68] for their non cocompact lattices, for a class of Banach spaces that is more restrictive than
for SL3.R/. By rank 2 reduction all these results extend to all real connected semisimple Lie
groups all of whose simple factors have rank � 2, and all their lattices.

When F is a nonarchimedean local field, in the same way, to obtain all almost F-
simple algebraic group of split rank at least two, it was enough to consider SL3 and SP2.
Lafforgue’s original article [43] already contained a proof of strong property (T) for SL3.F/.
Steps 2 and 3 are almost identical to the real case, but the first step is very different because
maximal compact subgroups of SL3.F/ are very different from those in SL3.R/. For exam-
ple, when F D Qp , a maximal compact subgroup is SL3.Zp/, which contains large nilpotent
groups (the groups of upper-triangular matrices). This difference turns out to play a rôle
for Banach space versions of strong property (T). Indeed, exploiting these large nilpotent
groups and the good understanding of abelian Fourier analysis on vector-valued Lp spaces
[3], Lafforgue [44] was able to make the first step work for representations of the maximal
compact subgroups of SL3.F/ on arbitrary Banach space of nontrivial type. For SP2, the
same was proved by Liao in [50]. As a consequence, all almost F-simple algebraic group
of split rank at least two and their lattices have strong property (T) with respect to Banach
spaces of nontrivial type, and Conjectures 4.3 and 4.4 hold for SL3.Z/ replaced by such
lattices.

The Fourier analysis and approximation results from Section 2 have also been
obtained for nonarchimedean local fields, in [47] for SL3 and [51] for SP2. The results are
identical for SL3.F/ and SL3.R/. Interestingly, for SP2 a difference appears: the condition
p > 10 becomes better, namely p > 4, in the nonarchimedean case [51].
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The fact that both in the real and nonarchimedean case the proofs do not allow taking
p down to 2 in Theorem 2.3 has been a motivation for finding other groups for which the
restriction on p is smaller. And indeed, this is the case for SLn.F/ [47] and SLn.R/ [39] for
large n. Let us focus on SLn.R/ because the situation is closer to Section 1. In that case,
a satisfactory replacement for Step 1 is to work with the pair SO.d/ � SO.d C 1/. In the
sphere picture, we are studying the operators Tı defined as for S2 but in higher dimension
Sd D SO.d C 1/=SO.d/. In [39], we proved that the map ı 2 .�1; 1/ 7! Tı 2 Sp is Hölder
continuous for every p > 2 C

2
d�1

. Step 2 is more delicate. Taking n � d C 1 and seeing
SO.d C 1/ � SLn.R/, by considering all possible matrices D; D0 2 SLn.R/, the maps k 2

SO.d C 1/ 7! DkD0 2 SLn.R/ pass to maps from the segment Œ�1; 1� D SO.d/nSO.d C

1/=SO.d/ into the Weyl chamber ƒn WD SO.n/nSLn.R/=SO.n/. The problem is that all
these maps take values in a fixed .d � 2)-codimensional subset of ƒn, so it is hopeless
to efficiently connect any two points in the Weyl chamber by such moves as in Figure 1.
Even worse, when n < 2d � 1, the unions of these segments have only bounded connected
components. Fortunately, when n � 2d � 1, these connected components merge to form an
unbounded component, and a weaker form of efficient exploration of this unbounded compo-
nent is possible. Putting everything together, we obtain that SL2d�1.Z/ satisfies Theorem 2.3
for every p > 2 C

2
d�1

. Equivalently, the noncommutative Lp space of the von Neumann
algebra of SL2d�1.Z/ does not have the CBAP for every p > 2 C

2
d�1

. If d � 5, by rank
2d � 1 reduction, we obtain that the same is true for every � is a simple Lie group of rank
at least 2d � 1. In particular, if Lp.LSL3.Z// had the CBAP for some p > 2, this would
distinguish the von Neumann algebras of SL3.Z/ and SL2d�1.Z/ for large d . Even more
optimistically, if conversely Lp.LSL2d�1.Z// had the CBAP for 2 � p �

2
d�1

, this would
distinguish the von Neumann algebras of SLn.Z/ for odd n.

In [41] the exploration procedure of the Weyl chamber of SLn.R/ was refined, and
this allowed proving strong property (T) for SLn.R/ with respect to classes of Banach spaces
that become larger with n: if a Banach space X satisfies that, for some ˇ < 1

2
, dk.X/ D

O.kˇ / as k ! 1, then X has strong property (T) with respect to X for every n �
c

1
2 �ˇ

. The

property that dk.X/ D o.k
1
2 / characterizes the Banach spaces with nontrivial type [55], and it

is an old problem whether they automatically satisfy the stronger condition dk.X/ D o.k
1
2 /.

This is, for example, the case if X has type 2.
So far, we have only talked about higher rank groups, and rank 0 reduction was

used to prove strong rigidity results. But rank 0 reduction can also say something about
rank 1 groups, which are not rigid in the same way as higher rank group. The following is
an example.

Proposition 5.1 ([62]). Every SO.n/-biinvariant matrix coefficient of every representation
of SO.n; 1/ on a Hilbert space is of class C

n
2 �1�" outside of SO.n/, for every " > 0.

We do not know if the regularity n
2

� 1 is optimal, but the linear order of n is, already
for unitary representations. For odd n, " D 0 is allowed.
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