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Abstract

We describe some recent results on weighted Fourier extension estimates and their applica-
tions in PDEs and geometric measure theory.
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The goal of this paper is to go over some recent work by the author and her collabora-
tors on Schrödinger maximal estimates, weighted Fourier extension estimates, and Falconer
distance set problem. The study of Schrödinger maximal estimates arises from the point-
wise convergence problem of the solution to the Schrödinger equation raised by Carleson
in the late 1970s. Weighted Fourier extension estimates are closely related to the classical
Fourier restriction problem raised by Stein and have various applications in PDEs and geo-
metric measure theory. Falconer distance set problem was introduced by Falconer in the early
1980s and remains to be a difficult and wide open question in geometric measure theory. Two
major special cases of the general weighted Fourier extension estimates apply to Schrödinger
maximal estimates and Falconer distance set problem.

1. Schrödinger maximal estimates

The solution to the free Schrödinger equation8<: iut � �u D 0; .x; t/ 2 Rn � R;

u.x; 0/ D f .x/; x 2 Rn;

is
eit�f .x/ D .2�/�n

Z
ei.x��Ct j�j2/ Of .�/ d�:

It is not hard to show that the solution eit�f .x/ converges to the initial data f in
L2 as the time t tends to 0. However, the problem of pointwise convergence is much harder.
About 40 years ago, Carleson [10] proposed the question of identifying the optimal exponent
s for which limt!0 eit�f .x/ D f .x/ almost everywhere whenever f lies in the Sobolev
space H s.Rn/. He proved himself the convergence for s � 1=4 when n D 1. Dahlberg and
Kenig [12] then showed that this result is sharp. The higher-dimensional case has since been
studied intensely [4–6, 9, 11, 13, 15, 16, 20, 30–32, 36, 38, 39, 41, 42]. Recently, Bourgain [6] gave
counterexamples showing that s �

n
2.nC1/

is necessary for the pointwise convergence to
hold. In collaboration with Guth and Li, and then with Zhang, we proved that Bourgain’s
bound is also sufficient (up to endpoint).

Theorem 1.1 (n D 2, Du, Guth, and Li [15]; n � 3, Du and Zhang [20]). Let n � 2. For every
f 2 H s.Rn/ with s > n

2.nC1/
, limt!0 eit�f .x/ D f .x/ almost everywhere.

The pointwise convergence problem can be approached via a standard smooth
approximation argument. Indeed, the convergence holds uniformly for Schwartz functions
because of their rapid decay nature. Since the space of Schwartz functions is dense in the
Sobolev space, to prove that limt!0 eit�f .x/ D f .x/ holds a.e. for any f in H s.Rn/, it is
enough to show that the associated maximal function sup0<t�1 jeit�f .x/j is bounded from
H s.Rn/ to Lp.Bn.c; 1// for some p � 1 and any unit ball Bn.c; 1/ in Rn. Such estimates
are called the Schrödinger maximal estimates. More precisely, results in Theorem 1.1 are
consequences of the following two theorems on Schrödinger maximal estimates.
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Theorem 1.2 (Du, Guth, and Li [15]). For any s > 1
3
, the following bound holds: for any

function f 2 H s.R2/, 


 sup
0<t�1

jeit�f j





L3.B2.0;1//

� Cskf kH s.R2/:

Theorem 1.3 (Du and Zhang [20]). Let n � 3. For any s > n
2.nC1/

, the following bound
holds: for any function f 2 H s.Rn/,


 sup

0<t�1

jeit�f j





L2.Bn.0;1//

� Cskf kH s.Rn/:

Comparing the two Schrödinger maximal estimates above, we note that one can
derive Theorem 1.3 in the case n D 2 from Theorem 1.2 using Hölder’s inequality. Despite
the fact that Theorem 1.3 in the cases n D 1; 2 can recover the almost sharp results of point-
wise convergence problem, the sharp estimates for the L2-norm of the Schrödinger maximal
function are not as strong as the previous sharp estimates for the Lp-norm (p D 4 when
n D 1 is due to Kenig, Ponce, and Vega [29], and p D 3 when n D 2 is due to Du, Guth, and
Li [15]). Based on these results, it is natural to ask the following:

Question 1.4. Consider the Schrödinger maximal estimates of the form


 sup
0<t�1

jeit�f j





Lp.Bn.0;1//

� Cskf kH s.Rn/: (1.1)

(1) Let n � 3. Determine the optimal p D p.n/ for which (1.1) holds for any
s > n

2.nC1/
.

(2) Let n � 3 and fix p > 2. Identify the optimal range of s D s.n;p/ for which (1.1)
holds.

Via a localization argument, Littlewood–Paley decomposition, and parabolic rescal-
ing, the above question can be reduced to the problem of identifying the sharp exponent

.n; p/, which is the optimal 
 such that


 sup

0<t�R

jeit�f j





Lp.Bn.0;R//

/ R

kf kL2 ; 8f W supp Of � Bn.0; 1/: (1.2)

Here A / B means A � C"R"B for any " > 0, R � 1. The known results [6,12,15,20,29] can
be summarized as


.n; p/ D max
²

n

�
1

p
�

n

2.n C 1/

�
; 0

³
(1.3)

for any p � 1 when n D 1; 2, and 1 � p � 2 when n � 3.
It remains an interesting problem to determine 
.n; p/ for p > 2 when n � 3. It

seemed possible that (1.3) should hold for any p � 1 and n � 1. However, we disproved this
for a certain range of p when n � 3 by examining Bourgain’s example [6] in all intermediate
dimensions:

Theorem 1.5 (Du et al. [19]). Let n � 3 and p > 2. Then


.n; p/ � max
m2Z;1�m�n

�
n C m

2

�
1

p
�

1

2

�
C

m

2.m C 1/

�
:
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Let us look at two special cases of Theorem 1.5: by a direct calculation,

• if 
n;p D n. 1
p

�
n

2.nC1/
/, then p � p0.n/ WD 2 C

4
.n�1/.nC2/

;

• if 
n;p D 0, then p � p1.n/ WD maxm2Z;1�m�nŒ2 C
4

n�1CmCn=m
�.

Note that p0.n/ < 2.nC1/
n

< p1.n/ when n � 3. Therefore, (1.3) fails for p0.n/ < p < p1.n/

when n � 3.
To establish (1.2), it is helpful to consider a more general setting, in which it is conve-

nient to use induction on scales. By formalizing the being locally constant property, one can
treat jeit�f .x/j essentially as a constant on each unit cube, and therefore the left-hand side
of (1.2) is equivalent to keit�f kLp.X/, where X is a union of lattice unit cubes in BnC1.0;R/

such that each lattice vertical thin tube of dimensions 1 � � � � � 1 � R contains exactly one
unit cube from X . In particular, the set X satisfies the condition that jX \ Br j . rn for any
ball Br of radius r � 1. Based on this observation, we are led to consider a slight general-
ization of (1.2):

Question 1.6. Let XnC1;R denote the collection of subsets X such that each X in XnC1;R

is a union of lattice unit cubes in BnC1.0; R/ satisfying jX \ Br j � rn for any ball Br of
radius r � 1.

Let n � 3 and fix p > 2. Determine the sharp exponent Q
.n;p/, which is the optimal

 for which the following holds:

eit�f




Lp.X/

/ R

kf k2; 8X 2 XnC1;R; 8f W supp Of � Bn.0; 1/: (1.4)

The argument from Du, Guth, and Li [15] can be adapted to establish Q
.n D 2;

p D 3/ D 0, which in turn determines Q
.n D 2; p/ for all p � 1:

Q
.n D 2; p/ D

8<: 2. 1
p

�
1
3
/; 1 � p � 3;

0; p � 3:

For general n � 3, the fractal L2 Fourier extension estimate from Du and Zhang [20] gives
the sharp exponent Q
.n; p D 2/ D

n
2.nC1/

, which also determines Q
.n; p/ for all 1 � p � 2:

Q
.n; p/ D n

�
1

p
�

n

2.n C 1/

�
; 8n � 3; 81 � p � 2:

The main ingredients in the work of [15] include the polynomial partitioning method
adapted by Guth to Fourier restriction problem [25] and Bourgain–Demeter’s l2 decoupling
theorem [7]. The method of polynomial partitioning identifies algebraic structures where
the Schrödinger solutions are most concentrated, and reduces the original 3-dimensional
problem to an essentially 2-dimensional one. The reduced problem can then be solved by a
bilinear refined Strichartz estimate, which is derived via decoupling and induction on scales.

The proof of the fractal L2 Fourier extension estimate in [20] uses a broad–narrow
analysis [5,7,8,26]. In the broad case, there are n C 1 transverse frequency caps in Bn.0; 1/

making significant contributions, and we can apply either Bennett–Carbery–Tao’s multilin-
ear restriction estimates [2] or multilinear refined Strichartz estimates of Du et al. [16]. In
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the narrow case, we invoke l2 decoupling [7] in dimension n and use an induction on scales
argument which is rooted in the proof of the refined Strichartz estimates [15].

It remains a wide open and challenging problem to determine Q
.n; p/ for n � 3 and
p > 2.

2. Weighted Fourier extension estimates

In this section, we discuss the general weighted Fourier extension estimates, which
include the Schrödinger maximal estimate as a major special case. Besides their own inde-
pendent interest, such general estimates have various applications in PDEs and geometric
measure theory.

Definition 2.1. Let 0 < ˛ � d .

(1) We say that � is an ˛-dimensional measure in Bd .0; 1/ if it is a positive Borel
measure, supported in the unit ball Bd .0; 1/, that satisfies

c˛.�/ WD sup
x2Rd ;r>0

�.B.x; r//

r˛
< 1:

(2) We say that H is an ˛-dimensional weight in Rd if it is a nonnegative measur-
able function on Rd that satisfiesZ

B.x;r/

H.x/ dx � r˛; 8x 2 Rd ; 8r � 1:

(3) Let Xd;˛;R denote the collection of subsets X such that each X in Xd;˛;R is a
union of lattice unit cubes in Bd .0; R/ satisfyingˇ̌

X \ B.x; r/
ˇ̌

� r˛; 8x 2 Rd ; 8r � 1:

Let S denote either the unit sphere Sd�1 or the truncated paraboloid P d�1. Let d�

be the induced Lebesgue measure on S . Consider the Fourier extension operator

Ef .x/ D ES f .x/ D

Z
S

ei!�xf .!/ d�.!/:

Note that EPd�1f corresponds to free Schrödinger solutions. We are interested in the fol-
lowing weighted Fourier extension estimates:

Question 2.2. Determine the sharp exponent 
.d ; ˛; p/, which is the optimal 
 for which
the following two equivalent estimates hold:

(1) For any ˛-dimensional weight H in Rd and any function f 2 L2.S; d�/,

kEf kLp.Bd .0;R/IHdx/ / R

kf k2I (2.1)

(2) For any subset X 2 Xd;˛;R and any function f 2 L2.S; d�/,

kEf kLp.X/ / R

kf k2: (2.2)
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To see the equivalence of the two estimates (2.1) and (2.2), one direction is easy:
given X 2 Xd;˛;R, the characteristic function of X is an ˛-dimensional weight in Rd ; the
other direction was proved in Du and Zhang [20] where the being locally constant property
and dyadic pigeonhole argument play key roles. The advantage of the expression (2.2) is that
it allows us to take into account geometric structures more directly.

The case ˛ D n D d � 1 of (2.2) is a generalization of Schrödinger maximal esti-
mates as described in Section 1. Estimates (2.1) for general ˛ are related to the study of
spherical average Fourier decay rates of fractal measures [3, 17, 20–23, 33–35, 40, 43]. For ˛

around d
2

, estimates (2.1) have drawn particular interest because of their application to Fal-
coner’s distance set problem [17, 20–24, 43]. The techniques in the proof of Theorems 1.2
and 1.3 are used to establish the following results:

Theorem 2.3. Let H be an ˛-dimensional weight in Rd .

(1) (Du et al. [17]). For 3
2

< ˛ � 2,

kEf kL3.B3.0;R/IHdx/ / kf k2; 8f 2 L2.S; d�/: (2.3)

(2) (Du and Zhang [20]). For d � 3 and d
2

< ˛ < d ,

kEf kL2.Bd .0;R/IHdx/ / R
˛

2d kf k2; 8f 2 L2.S; d�/: (2.4)

In particular, (2.3) gives that 
.d D 3;˛ D 2;p D 3/ D 0, which in turn determines
the exact 
.d D 3; ˛ D 2; p/ for all p � 1. For 3

2
< ˛ < 2, it is unknown, but expected, that


.d D 3; ˛; p/ D 0 for some p smaller than 3.
Due to a recent example in Du [14], (2.4) is sharp when d � 1 � ˛ < d , and it

determines the exact value of 
.d;˛;p/ for all d � 1 � ˛ < d and 1 � p � 2. For ˛ < d � 1,
it is expected that there is still room to improve the estimate (2.4). The key feature of the
examples from [14] is that for ˛ 2 Œm; m C 1� the corresponding examples are concentrated
around hyperplanes of dimension m or m C 1. This explains in some way why (2.4) only
gives sharp results for large ˛. When working towards answering Question 2.2 for small ˛,
we need to explore new methods which can reduce the original question that in a much lower
dimension.

Theorem 2.3 gives certain state-of-the-art results for several problems in PDEs and
geometric measure theory, including size of the divergence set of Schrödinger solutions,
Fourier decay rates of fractal measures, and Falconer distance set problem.

2.1. Divergence set of Schrödinger solutions
A natural refinement of Carleson’s problem was initiated by Sjögren and Sjölin [38]:

determine the size of the divergence set, in particular, consider

˛n.s/ WD sup
f 2H s.Rn/

dim
°
x 2 Rn

W lim
t!0

eit�f .x/ ¤ f .x/
±
;

where dim denotes the Hausdorff dimension. It is known that

˛n.s/ D

8<: n; for s �
n

2.nC1/
(Bourgain [6], Lucà and Rogers [32]);

n � 2s; for n
4

� s �
n
2

(Žubrinić [44], Barceló et al. [1]):

3195 Weighted Fourier extension estimates and applications



An open problem is to determine ˛n.s/ for n � 2 and n
2.nC1/

< s < n
4
. For ˛ in this

range, the best known lower bounds (examples) are due to Lucà and Rogers [31,32], and the
best known upper bounds follow from Theorem 2.3:

˛n.s/ � n C 1 �
2.n C 1/s

n
(Du and Zhang [20]):

An improvement of estimate (2.4) will give a better upper bound of ˛n.s/. More
precisely, if

kEf kL2.BnC1.0;R/IHdx/ / R

kf k2; 8˛-dimensional weight H; 8f 2 L2.P n; d�/;

then we have ˛n.s/ � ˛0, where ˛0 is the root for ˛ to the equation 
 C
n�˛

2
D s [33].

2.2. Fourier decay rates of fractal measures
Let ˇd .˛; S/ denote the average Fourier decay rate of fractal measures, which is

defined as the supremum of the numbers ˇ for which

b�.R�/


2

L2.S;d�/
. c˛.�/k�kR�ˇ ; (2.5)

whenever R > 1 and � is an ˛-dimensional measure in Bd .0; 1/. The problem of identifying
the value of ˇd .˛; Sd�1/ was proposed by Mattila [35].

In dimension two, the exact decay rates are known:

ˇ2.˛; S/ D

8̂̂<̂
:̂

˛; ˛ 2 .0; 1=2� (Mattila [34]),

1=2; ˛ 2 Œ1=2; 1� (Mattila [34]),

˛=2; ˛ 2 Œ1; 2� (Wolff [43]):

In higher dimensions, it is known that ˇd .˛; S/ D ˛ in the range ˛ 2 .0; d�1
2

�, and

ˇd .˛; P d�1/ D
.d � 1/˛

d
for d � 3 and d � 1 � ˛ < d (Du and Zhang [20], Du [14]):

In other cases, ˇd .˛; S/ is still a mystery. The current best lower bounds are

ˇd .˛; S/ �

8̂̂<̂
:̂

˛; ˛ 2 .0; d�1
2

� (Mattila [34]),
d�1

2
; ˛ 2 Œ d�1

2
; d

2
� (Mattila [34]),

.d�1/˛
d

; ˛ 2 Œ d
2

; d � .Du et al. [17, d D 3], Du and Zhang [20, d � 4]/:

For upper bounds, the author’s recent work [14] includes a summary. New upper bounds
are obtained in [14] for ˇd .˛; Sd�1/ with d � 4, ˛ > d

2
, and for ˇd .˛; P d�1/ with d � 3,

˛ > d�1
2

.
By a duality argument and Hölder’s inequality, the weighted Fourier extension esti-

mates (2.1) and ˇd .˛; S/ are related as follows: if

kEf kLp.Bd .0;R/IHdx/ / R

kf k2; 8˛-dimensional weight H; 8f 2 L2.S; d�/;

then ˇd .˛; S/ � 2. ˛
p

� 
/. Therefore, in order to determine the exact ˇd .˛; S/, it is of
particular interest to study Question 2.2 for fractional dimension ˛ 2 . d�1

2
; d � 1/.
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2.3. Falconer’s distance set problem
The Falconer distance set conjecture, which is a famously difficult problem in geo-

metric measure theory, is a continuous version of the celebrated Erdős distinct distance
conjecture whose two-dimensional case was resolved by Guth and Katz [28]. The study of
the Falconer problem is naturally related to Fourier restriction theory, projection theory of
fractal measures, and incidence geometry. It has attracted a great amount of attention over
the decades and has seen some very recent breakthroughs. See [17,18,20,27] and the references
therein for more details.

Let E � Rd be a compact set. Its distance set �.E/ is defined by �.E/ WD ¹jx � yj W

x; y 2 Eº.

Conjecture 2.4 (Falconer [24]). Let d � 2 and E � Rd be a compact set. Then

dim.E/ >
d

2
)

ˇ̌
�.E/

ˇ̌
> 0:

Here j � j denotes the Lebesgue measure and dim.�/ is the Hausdorff dimension.

Different methods have been invented to lower the dimensional threshold. To name
a few landmarks: in 1985, Falconer [24] showed that j�.E/j > 0 if dim.E/ > d

2
C

1
2
. This

dimensional threshold has since been lowered gradually. It was further lowered by Wolff [43]

to 4
3

in the case d D 2, and by Erdoğan [22] to d
2

C
1
3

when d � 3. These records were
recently broken with the following state-of-the-art thresholds:8̂̂̂̂

<̂̂
ˆ̂̂̂:

5
4
; d D 2 (Guth et al. [27]);

9
5
; d D 3 (Du et al. [17]);
d2

2d�1
D

d
2

C
1
4

C
1

8d�4
; d � 3 and d is odd (Du and Zhang [20]);

d
2

C
1
4
; d � 4 and d is even (Du et al. [18]):

By a classical analytic approach of Mattila [34], we can approach Falconer’s problem
via Fourier decay rates of fractal measures and thus via weighted Fourier extension estimates.
This is the route taken in many prior works, including [17,20,22,43]. More precisely, if

kEf kLp.Bd .0;R/IHdx/ / R

kf k2; 8˛-dimensional weight H; 8f 2 L2.S; d�/;

then j�.E/j > 0 if dim.E/ > ˛0, where ˛0 is the root for ˛ to the equation ˛ D d � 2. ˛
p

� 
/.
In a recent breakthrough by Guth et al. [27], they studied the two-dimensional Fal-

coner problem, and developed a new method that modifies the original Mattila’s approach.
Their argument consists primarily of two steps. First, prune the natural Frostman measure �

on E by removing “bad” wave packets at different scales, and show that the error introduced
in the pruning process can be controlled. Second, apply a refined decoupling inequality to
estimate some L2 quantity involving the pruned good measure.

The above arguments do not readily extend to higher dimensions. In [27], to verify
that the pruned measure is close enough to the original Frostman measure, one applies a
radial projection theorem of Orponen [37] that assumes the measure has dimension
˛ > d � 1. However, when d � 3, this condition fails to hold if ˛ is close enough to d

2
.
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In a recent work Du et al. [18], we overcame this difficulty by introducing another
ingredient into the process: orthogonal projections of the original measure. Combining
orthogonal projections and Orponen’s radial projection theorem, we were able to remove
certain bad part from the original measure and approach Falconer’s distance set problem via
the following:

Question 2.5. Prove weighted L2 Fourier extension estimates for good functions:

kEf kL2.Bd .0;R/IHdx/ / R

kf k2; 8˛-dimensional weight H; 8 good f 2 L2.S; d�/:

By the techniques from [18], we can define good functions as follows: we say f 2

L2.S; d�/ is good if in its wave packet decomposition f D
P

T 2T fT (here for each wave
packet fT , EfT is essentially supported on a tube T of dimensions R1=2 � � � � � R1=2 � R,
and fT is supported on a cap � D �.T / � S of radius R�1=2), for each tube T 2 T with
fT ¤ 0, Z

T

H.x/ dx /

8<: R˛R� d
4 ; d is even;

R˛R� d�1
4 ; d is odd:

(2.6)

Note that since H is ˛-dimensional, we have that the total weight H on Bd .0; R/ is � R˛ .
Condition (2.6) says that a function f is good if the weight H on each relative tube from
the wave packet decomposition of f is just a small proportion of the total weight. Roughly
speaking, all the relative tubes are light. To further improve the current results for Falconer’s
distance set problem, one may explore other tools from geometric measure theory which
could help removing more bad parts from the original measure and so the functions under
consideration are good at various scales in contrast with (2.6).
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