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Abstract

We survey recent results regarding the study of dynamical properties of the space of pos-
itive definite functions and characters of higher rank lattices. These results have several
applications to ergodic theory, topological dynamics, unitary representation theory, and
operator algebras. The key novelty in our work is a dynamical dichotomy theorem for
equivariant faithful normal unital completely positive maps between noncommutative von
Neumann algebras and the space of bounded measurable functions defined on the Poisson
boundary of semisimple Lie groups.
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1. Introduction and main results

In order to explain the motivation for our work and to state our main results, we set
up the following terminology regarding higher rank lattices.

Terminology. LetG be any connected semisimple real Lie group with finite center, no non-
trivial compact factor, and real rank rkR.G/ � 2. Let � < G be any irreducible lattice,
meaning that � is a discrete subgroup of G with finite covolume such that N � � is a dense
subgroup of G for every noncentral closed normal subgroup N C G. In what follows, if all
the above conditions are satisfied, then we simply say that � < G is a higher rank lattice.

The following examples of higher rank lattices are particular cases of general results
due to Borel–Harish-Chandra [11].

Examples. For every d � 2, the special linear group SLd .R/ is a connected simple real Lie
group with finite center Z .SLd .R// D ¹˙1d º and real rank rkR.SLd .R// D d � 1.

(1) For every d � 3, SLd .Z/ < SLd .R/ is a higher rank lattice.

(2) For every d � 2 and every square free integer q 2 N,

� WD
®
.g; g� / j g 2 SLd

�
ZŒ

p
q�

�¯
< SLd .R/ � SLd .R/ WD G

is a higher rank lattice, where � is the order-2 automorphism of Q.pq/.

The main inspiration for our work is Margulis’ celebrated normal subgroup theo-
rem which states that for any higher rank lattice � < G, any normal subgroup N C � is
either finite and contained in Z .�/ orN has finite index in � (see [41, Theorem IV.4.9]). Mar-
gulis’ remarkable strategy to prove the normal subgroup theorem consists of two “halves”:
the amenability half and the property (T) half. Indeed, assuming thatN C � is a noncentral
normal subgroup, to prove that the quotient group �=N is finite, Margulis showed that �=N
is both amenable and has property (T). The proof of the amenability half relies on Margulis’
factor theorem which states that any measurable �-factor of the homogeneous space G=P ,
where P < G is a minimal parabolic subgroup, is measurably isomorphic to a G-factor
whence of the form G=Q, where P < Q < G is an intermediate parabolic subgroup (see
[41, Theorem IV.2.11]). Margulis’ strategy has been used to prove a normal subgroup theorem
for various classes of irreducible lattices in product groups (see [4, 16, 24,49]) and to under-
stand the structure of point stabilizers of ergodic probability measure preserving actions of
higher rank lattices (see [23,50]). More recently, Margulis’ strategy has been adapted to the
noncommutative setting to study characters of higher rank lattices (see [22,46]).

In that respect, for any countable discrete groupƒ, we denote by P.ƒ/ the space of
positive definite functions ' Wƒ! C normalized so that '.e/D 1. Then P.ƒ/� `1.ƒ/ is a
weak-� compact convex subset. Thanks to the Gelfand–Naimark–Segal (GNS) construction,
to any positive definite function ' 2 P.ƒ/ corresponds a triple .�' ;H' ; �'/, where �' W

ƒ ! U .H'/ is a unitary representation and �' 2 H' is a unit vector such that the linear
span of �'.ƒ/�' is dense in H' and

8
 2 ƒ; '.
/ D
˝
�'.
/�' ; �'

˛
:
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We consider the conjugation action ƒ Õ P.ƒ/ defined by

8
; g 2 ƒ;8' 2 P.ƒ/; .
'/.g/ WD '.
�1g
/:

A fixed point ' 2 P.ƒ/ for the conjugation action is called a character. We denote by
Char.ƒ/ � P.ƒ/ the weak-� compact convex subset of all characters. Any countable dis-
crete groupƒ always admits at least two characters: the trivial character 1ƒ and the regular
character ıe . The GNS representation of the regular character ıe coincides with the left regu-
lar representation� Wƒ! U .`2.ƒ//. An important source of characters comes from ergodic
theory. Indeed, for any probability measure preserving action ƒ Õ .X; �/ on a standard
probability space, the function '� W ƒ ! C W 
 7! �.Fix.
// defines a character. The action
ƒ Õ .X; �/ is (essentially) free if and only if the above character '� is equal to ıe .

For any unitary representation � Wƒ! U .H�/, we consider the unital C�-algebra

C�
�.ƒ/ WD C�

�®
�.
/ j 
 2 ƒ

¯�
� B.H�/

endowed with the conjugation action Ad.�/ W ƒ Õ C�
�.ƒ/. We then regard the state space

S.C�
�.ƒ// as a ƒ-invariant weak-� compact convex subset of P.ƒ/ via the mapping

S.C�
�.ƒ// ,! P.ƒ/ W  7!  ı � . When � D � is the left regular representation, C�

�.ƒ/ is
the reduced group C�-algebra which is endowed with the canonical faithful trace �ƒ defined
by �ƒ W C�

�.ƒ/ ! C W a 7! haıe; ıei.
Given unitary representations �i W ƒ ! U .Hi /, i D 1; 2, we say that �2 is weakly

contained in �1 if the map �1.ƒ/! �2.ƒ/ W �1.
/ 7! �2.
/ is well defined and extends to
a �-homomorphism C�

�1
.ƒ/ ! C�

�2
.ƒ/. Following [5], we say that a unitary representation

� Wƒ! U .H�/ is amenable if the trivial representation 1ƒ is weakly contained in� ˝� . If
� contains a finite dimensional subrepresentation, then � is amenable. Ifƒ has property (T),
then conversely any amenable representation � Wƒ! U .H�/ contains a finite-dimensional
subrepresentation.

We now present in a unified way the main results we obtained in [13] (joint work
with R. Boutonnet) and [3] (joint work with U. Bader, R. Boutonnet, and J. Peterson). Our
first main result deals with the existence of characters. It is a fixed point theorem for the
affine action of higher rank lattices on their space of positive definite functions.

Theorem A ([3,13]). Let � < G be any higher rank lattice. Then any nonempty �-invariant
weak-� compact convex subset C � P.�/ contains a character.

Our second main result deals with the classification of characters of higher rank
lattices. Bekka [6] obtained the first character rigidity results in the case � D SLd .Z/ for
d � 3. More recently, using a different approach based on Margulis’ strategy discussed above,
Peterson [46] obtained character rigidity results for arbitrary higher rank lattices (see also
[22] for the case of irreducible lattices in certain product groups). The operator-algebraic
framework we developed in [3,13] enables us to obtain a new and more conceptual proof of
Peterson’s character rigidity results [46].

Theorem B (Peterson, [46]). Let � < G be any higher rank lattice. Then any character
' 2 Char.�/ is either supported on Z .�/ or its GNS representation �' is amenable.
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In caseG has a simple factor with property (T), any character ' 2 Char.�/ is either
supported on Z .�/ or its GNS representation �' contains a finite dimensional subrepre-
sentation.

Theorem B generalizes Margulis’ normal subgroup theorem [41] and Stuck–Zimmer’s
stabilizer rigidity theorem [50]. Also, Theorem B solved a conjecture formulated by Connes
(see [38]). For other recent results regarding classification of characters, we refer the reader
to [7,9,22,40,47].

Combining Theorems A and B, we obtain new results regarding the simplicity and
the unique trace property for the C�-algebra C�

�.�/ associated with an arbitrary nonamenable
(resp. weakly mixing) unitary representation � W � ! U .H�/. In particular, Corollary C
provides a far reaching generalization of the results obtained by Bekka–Cowling–de la
Harpe [8] for the reduced C�-algebra C�

�.�/.

Corollary C ([3, 13]). Let � < G be any higher rank lattice. Let � W � ! U .H�/ be any
unitary representation. Then C�

�.�/ admits a trace.
Assume, moreover, that G has trivial center. If � is not amenable, then � is weakly

contained in � and the unique �-homomorphism ‚ W C�
�.�/ ! C�

�.�/ W �.
/ 7! �.
/ sat-
isfies the following properties:

(1) �� ı‚ is the unique trace on C�
�.�/.

(2) ker.‚/ is the unique proper maximal ideal of C�
�.�/.

In case G has property (T), the above properties hold as soon as � does not contain any
nonzero finite-dimensional subrepresentation.

In case ƒ is a countable discrete group and � D �, Hartman–Kalantar [34] initi-
ated the study of the noncommutative dynamical system ƒ Õ C�

�.ƒ/ and obtained a new
characterization of the simplicity and the unique trace property for C�

�.ƒ/ (see also [15,39]).
As a byproduct of our operator algebraic methods, we also obtain a topological

analogue of Stuck–Zimmer’s stabilizer rigidity theorem [50]. In particular, our next result
gives a positive answer to a recent problem raised by Glasner–Weiss [32].

Theorem D ([3, 13]). Let � < G be any higher rank lattice and assume that G has trivial
center. Let � Õ X be any minimal action on a compact space. Then at least one of the
following assertions holds:

(1) There exists a �-invariant Borel probability measure on X .

(2) The action � Õ X is topologically free.

In case G has a simple factor with property (T), either X is finite or the action � Õ X is
topologically free.

As we will explain, all the main results stated above are consequences of a dynam-
ical dichotomy theorem for �-equivariant faithful normal unital completely positive (ucp)
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mapsˆ WM ! L1.G=P /, whereM is an arbitrary von Neumann algebra endowed with an
ergodic action � ÕM (see Theorem E and Theorem 3.8 below). This dynamical dichotomy
theorem is one of the key novelties of our operator algebraic framework. Both its statement
and its proof rely on von Neumann algebra theory and depend heavily on whether the con-
nected semisimple real Lie group G is simple or not.

In our first joint work [13], we dealt with the case where G is simple and rkR.G/ �

2 (and, more generally, where all its simple factors Gi satisfy rkR.Gi / � 2). In that case,
we obtained the following noncommutative analogue of Nevo–Zimmer’s structure theorem
[43, 44]. We denote by P < G a minimal parabolic subgroup and whenever P < Q < G

is an intermediate parabolic subgroup, we denote by pQ W G=P ! G=Q W gP 7! gQ the
canonical factor map and byp�

Q W L1.G=Q/! L1.G=P / W f 7! f ıpQ the corresponding
unital normal embedding.

Theorem E ([13]). Let � < G be any higher rank lattice and assume that G is simple. Let
M be any von Neumann algebra, � ÕM any ergodic action, andˆ WM ! L1.G=P / any
�-equivariant faithful normal ucp map. Then the following dichotomy holds:

• Either ˆ.M/ D C1,

• Or there exist a proper parabolic subgroup P < Q < G and a �-equivariant
unital normal embedding � W L1.G=Q/ ,! M such that ˆ ı � D p�

Q.

Theorem E extends the work of Nevo–Zimmer in two ways. Firstly, we deal with
arbitrary von Neumann algebras M (instead of measure spaces .X; �/) and secondly, we
deal with �-actions � Õ M (instead of G-actions G Õ .X; �/). We refer to Section 3 for
the correspondence between equivariant ucp maps and stationary states. The remarkable
feature of Theorem E is that whenˆ WM ! L1.G=P / is not invariant, there is a nontrivial
�-invariant commutative von Neumann subalgebra M0 � M such that M0 Š L1.G=Q/.
This allows us to exploit the dynamical properties of the ergodic action � Õ G=Q and
the fact that every noncentral element 
 2 � n Z .�/ acts (essentially) freely on G=Q. In
particular, in [13], we used Theorem E to derive all the main results stated above.

In our second joint work [3], we dealt with the case whereG is not simple. We point
out that whenG has a rank one simple factor (e.g.,G D SL2.R/� SL2.R/), a Nevo–Zimmer
structure theorem does not hold, and the method used in [13] to prove the main results does
not apply. Instead, we proceeded as follows [3]. Firstly, for any higher rank lattice � < G, we
formulated a general dynamical dichotomy theorem invariant vs. singular for �-equivariant
faithful normal ucp maps ˆ W M ! L1.G=P / (see Theorem 3.8 below) and we showed
that all the main results stated above can be derived from this general dichotomy theorem. In
case G is simple, the dynamical dichotomy Theorem 3.8 is a straightforward consequence
of Theorem E. Secondly, to prove the dynamical dichotomy Theorem 3.8 in the case where
G is not simple, we developed a new method based on the product structure in G. In that
respect, the tools developed in [13] and [3] are complementary.

For any nonsingular action ƒ Õ .X; �/ on a standard probability space, we denote
by L.ƒÕX/ the corresponding group measure space von Neumann algebra (see Section 2).
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For higher rank latttices � < G whereG is simple with trivial center, we present yet another
application of Theorem E that appeared in [2] (joint work with U. Bader and R. Boutonnet).
The next result can be regarded as a noncommutative analogue of Margulis’ factor theorem.

Corollary F ([2]). Let � < G be any higher rank lattice and assume that G is simple with
trivial center. Let L.�/�M � L.� ÕG=P / be any intermediate von Neumann subalgebra.
Then there is a unique intermediate parabolic subgroup P < Q < G such that

M D L.� Õ G=Q/:

In Section 2, we give some preliminary background on Poisson boundaries, semi-
simple Lie groups and operator algebras. In Section 3, we introduce the notion of boundary
structures for von Neumann algebras and state the dynamical dichotomy theorem. We also
outline the main steps of the proof of Theorem E. In Section 4, we sketch the proofs of
Theorems A, B and Corollary C based on the dynamical dichotomy theorem. We also dis-
cuss open problems related to our main results. In Section 5, we discuss Corollary F and its
relevance for Connes’ rigidity conjecture.

Remark. In this survey article, we only consider higher rank lattices in connected semisim-
ple real Lie groups to simplify the exposition and to focus on the main ideas. However,
we point out that all our main results do hold for higher rank lattices in semisimple alge-
braic groups defined over arbitrary local fields. We refer the reader to [2,3] for more general
statements and further details.

2. Preliminaries

2.1. Poisson boundaries
Let H be any locally compact second countable (lcsc) group. We say that a Borel

probability measure � 2 Prob.H/ is admissible if the following conditions are satisfied:

(1) � is absolutely continuous with respect to the Haar measure;

(2) supp.�/ generates H as a semigroup;

(3) supp.�/ contains a neighborhood of the identity element e 2 H .

We say that a bounded measurable function F W H ! C is (right) �-harmonic if

8g 2 H; F.g/ D

Z
H

F.gh/ d�.h/:

Any �-harmonic function is continuous. We denote by Har1.H; �/ � Cb.H/ the space
of all (right) �-harmonic functions. The left translation action � W H Õ Cb.H/ leaves the
subspace Har1.H;�/ globally invariant.

Let .X; �/ be any standard probability space endowed with a measurable action
H Õ X . We say that .X; �/ is a .H; �/-space if � is �-stationary, that is, � � � D �. For
any .H; �/-space .X; �/, define the Poisson transform ‰� W L1.X; �/ ! Har1.H; �/ by
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the formula

8f 2 L1.X; �/;8g 2 H; ‰�.f /.g/ D

Z
X

f .gx/ d�.x/:

The mapping ‰� W L1.X; �/ ! Har1.H; �/ is H -equivariant, unital, positive, and con-
tractive.

Theorem 2.1 (Furstenberg, [26]). There exists a unique .H;�/-space .B; �B/ for which the
Poisson transform ‰� W L1.B; �B/ ! Har1.H;�/ is bijective.

The .H; �/-space .B; �B/ is called the .H; �/-Poisson boundary. For a construc-
tion of the .H; �/-space .B; �B/, we also refer to [4, 25]. The .H; �/-space .B; �B/ enjoys
remarkable ergodic theoretic properties. In that respect, let .E;k � k/ be any separable contin-
uous isometric BanachH -module and C � E� any nonemptyH -invariant weak-� compact
convex subset. Denote by Bar W Prob.C /! C theH -equivariant continuous barycenter map.
A point c 2 C is �-stationary if Bar.�c��/ D c where �c W H ! C W g 7! gc is the orbit
map associated with c 2 C . By Markov–Kakutani’s fixed point theorem, the subset C� � C

of all �-stationary points in C is not empty.
The following theorem due to Furstenberg provides the existence (and uniqueness)

of boundary maps (see also [4, Section 2]).

Theorem 2.2 (Furstenberg, [26]). Let c 2 C� be any �-stationary point. Then there exists
an (essentially) unique H -equivariant measurable map ˇ W B ! C such that

Bar.ˇ��B/ D c:

We say that ˇ W B ! C is the H -equivariant boundary map associated with c 2 C�.

2.2. Semisimple Lie groups
LetG be any connected semisimple real Lie group with finite center and no nontriv-

ial compact factors. Fix an Iwasawa decomposition G D KAV , whereK < G is a maximal
compact subgroup,A<G is a Cartan subgroup, and V <G is a unipotent subgroup. Denote
by L WD ZG.A/ the centralizer of A in G and set P WD LV . Then P < G is a minimal
parabolic subgroup. Since K Õ G=P is transitive, G=P is a compact homogeneous space,
and there exists a uniqueK-invariant Borel probability measure �P 2 Prob.G=P /. The mea-
sure class of �P coincides with the unique G-invariant measure class on G=P .

Example 2.3. Assume that G D SLd .R/ for d � 2. Then we may takeK D SOd .R/, A <
G the subgroup of diagonal matrices, and V < G the subgroup of strict upper triangular
matrices. In that case, P D AV < G is the subgroup of upper triangular matrices. The
homogeneous spaceG=P is the full flag variety which consists of all flags ¹0º �W1 � � � � �

Wd D Rd , whereWi � Rd is a vector subspace such that dimR.Wi /D i for every 1� i � d .

Observe that, for any left K-invariant Borel probability measure �G 2 Prob.G/,
the probability measure �G � �P is K-invariant on G=P and so �G � �P D �P , that is,
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.G=P; �P / is a .G; �G/-space. Furstenberg [27] proved the following fundamental result
describing the Poisson boundary of semisimple Lie groups.

Theorem 2.4 (Furstenberg, [27]). Let �G 2 Prob.G/ be any K-invariant admissible Borel
probability measure. Then .G=P; �P / is the .G;�G/-Poisson boundary.

For lattices � < G in connected semisimple real Lie groups as above, Fursten-
berg [28] also showed that .G=P; �P / can be regarded as the .�;��/-Poisson boundary with
respect to a well chosen probability measure �� 2 Prob.�/ (see also [25] and the references
therein).

Theorem 2.5 (Furstenberg, [28]). Let � < G be any lattice. Then there exists a probabil-
ity measure �� 2 Prob.�/ with full support such that .G=P; �P / is the .�; ��/-Poisson
boundary.

We call a probability measure �� 2 Prob.�/ as in Theorem 2.5 a Furstenberg mea-
sure. Combining Theorems 2.4 and 2.5, we have

Har1.G;�G/ Š
G-equiv.

L1.G=P; �P / Š
�-equiv.

Har1.�; ��/:

A combination of Theorem 2.5 and [33] implies that, for any intermediate parabolic
subgroup P < Q < G, the map

ı ı pQ W G=P ! Prob.G=Q/ W gP 7! ıgQ (2.1)

is the (essentially) unique �-equivariant measurable mapping � W G=P ! Prob.G=Q/.

2.3. Operator algebras
A C�-algebra A is a Banach �-algebra endowed with a complete norm k � k that

satisfies the C�-identity ka�ak D kak2, for every a 2 A. Any C�-algebraA admits a faithful
isometric �-representation on a Hilbert space � W A ! B.H /. After identifying A with
�.A/, we may regard A � B.H / as a concrete C�-algebra. Unless stated otherwise, all
C�-algebras and all linear mappings between C�-algebras are always assumed to be unital.

We denote by S.A/ the state space of A. Then S.A/ � Ball.A�/ is a weak-�
compact convex subset. We say that an action � W H Õ A is continuous if the action map
H �A ! A W .g; a/ 7! �g.a/ is continuous. We then simply say that A is aH -C�-algebra.
The continuous action H Õ A induces a weak-� continuous affine action H Õ S.A/.
We may apply the results from Section 2.1 to the H -invariant weak-� compact convex set
C D S.A/. When � 2 Prob.H/ is an admissible Borel probability measure, we denote by
S�.A/ � S.A/ the nonempty weak-� compact convex subset of all �-stationary states.

Examples 2.6. We will consider the following examples of C�-algebras:

(1) For any compact metrizable space X , the space C.X/ of all continuous func-
tions onX endowed with the uniform norm k � k1 is a commutative C�-algebra.
Any commutative C�-algebra arises this way. We identify the set Prob.X/ of
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Borel probability measures on X with the state space S.C.X// via the con-
tinuous mapping Prob.X/ ! S.C.X// W � 7!

R
X

� d�. Any continuous action
by homeomorphismsH Õ X naturally gives rise to a continuous actionH Õ
C.X/ in the above sense.

(2) For any countable discrete group ƒ and any unitary representation � W ƒ !

U .H�/, define the C�-algebra

C�
�.ƒ/ WD C�

�®
�.
/ j 
 2 ƒ

¯�
� B.H�/

and consider the conjugation action Ad.�/ W ƒ Õ C�
�.ƒ/. The state space

S.C�
�.ƒ// is a ƒ-invariant weak-� compact convex subset of P.ƒ/ via the

mapping S.C�
�.ƒ// ,! P.ƒ/ W  7!  ı � . If � D � is the left regular rep-

resentation, then C�
�.ƒ/ is the reduced group C�-algebra. Moreover, the state

�ƒ W C�
�.ƒ/ ! C W a 7! haıe; ıei is a faithful trace.

A von Neumann algebra (or W�-algebra) M is a unital C�-algebra which admits a
faithful unital �-representation � W M ! B.H / such that �.M/ � B.H / is closed with
respect to the weak (equivalently strong) operator topology. After identifyingM with �.M/,
we may regardM � B.H / as a concrete von Neumann algebra. By von Neumann’s bicom-
mutant theorem, a unital �-subalgebra M � B.H / is a von Neumann algebra if and only
if M is equal to its own bicommutant M 00, that is, M D M 00. There is a unique Banach
space predualM� such thatM D .M�/

�. The ultraweak topology onM coincides with the
weak-� topology arising from the identification M D .M�/

�. A linear mapping between
von Neumann algebras is normal if it is continuous with respect to the ultraweak topol-
ogy. We say that an action � W H Õ M is continuous if the corresponding action map
H � M� ! M� W .g; '/ 7! ' ı ��1

g is continuous (see, e.g., [52, Proposition X.1.2]). We
then simply say that M is a H -von Neumann algebra. The action H Õ M is ergodic if the
fixed point von Neumann subalgebra MH D ¹x 2 M j 8g 2 H; �h.x/ D xº is trivial.

Examples 2.7. We will consider the following examples of von Neumann algebras:

(1) For any standard probability space .X; �/, the space L1.X; �/ of all �-equi-
valence classes of (essentially) bounded measurable functions endowed with
the (essential) uniform norm k � k1 is a commutative von Neumann algebra.
Any commutative von Neumann algebra arises this way. Any nonsingular action
H Õ .X; �/ naturally gives rise to a continuous action H Õ L1.X; �/ in
the above sense. When no confusion is possible, we simply write L1.X/ D

L1.X; �/.

(2) For any countable discrete group ƒ and any nonsingular action ƒ Õ .X; �/

on a standard probability space, define the group measure space von Neumann
algebra

L.ƒ Õ X/ WD
®
f ˝ 1; �.
/ j f 2 L1.X/; 
 2 ƒ

¯00
� B

�
L2.X; �/˝ `2.ƒ/

�
3210 C. Houdayer



where � W ƒ ! U .L2.X; �/˝ `2.ƒ// is the unitary representation defined by

8� 2 L2.X; �/;8
; h 2 ƒ; �.
/.� ˝ ıh/ D

s
d.� ı 
�1/

d�
� ı 
�1

˝ ı
h:

When .X; �/ is a singleton, the von Neumann algebra L.ƒ Õ X/ coincides
with the group von Neumann algebra L.ƒ/. When the action ƒ Õ .X; �/ is
(essentially) free and ergodic, the von Neumann algebra L.ƒ Õ X/ is a factor
whose type coincides with the type of the action (see, e.g., [53, Theorem XIII.1.7]).

A von Neumann algebraM � B.H / is amenable if there exists a norm-one projec-
tion E W B.H /!M . By Connes’ fundamental result [17],M is amenable if and only ifM is
approximately finite dimensional, that is, there exists an increasing net of finite-dimensional
subalgebras Mi � M such that

W
i2I Mi D M .

3. Dynamical dichotomy for boundary structures

3.1. Boundary structures
For any C�-algebra A � B.H / and any n � 1, Mn.A/ WD Mn.C/˝A � B.H ˚n/

is naturally a C�-algebra. Let A, B be any C�-algebras. A linear map ˆ W A ! B is said
to be unital completely positive (ucp) if ˆ is unital and if for every n � 1, the linear map
ˆ.n/ W Mn.A/ ! Mn.B/ W Œaij �ij 7! Œˆ.aij /�ij is positive. Any unital �-homomorphism
� W A ! B is a ucp map. When A or B is commutative, any unital positive linear map
ˆ W A ! B is automatically ucp (see, e.g., [45, Theorems 3.9 and 3.11]).

Definition 3.1 ([3]). Let � < G be any higher rank lattice andM any �-von Neumann alge-
bra with separable predual. A �-boundary structureˆ WM ! L1.G=P / is a �-equivariant
faithful normal ucp map. We say that ˆ is invariant if ˆ.M/ D C1.

We will simply say that ˆ W M ! L1.G=P / is a boundary structure instead of a
�-boundary structure when it is understood that M is a �-von Neumann algebra. In this
survey, we only deal with higher rank lattices in connected semisimple real Lie groups. In
that setting, the notion of boundary structure is equivalent to the notion of stationary state.
Indeed, fix a Furstenberg measure �� 2 Prob.�/ so that .G=P; �P / is the .�; ��/-Poisson
boundary (see Theorem 2.5).

• If ˆ W M ! L1.G=P / is a boundary structure, then ' WD �P ı ˆ 2 M� is a
faithful normal �� -stationary state on M . Moreover, if ˆ is invariant, then ' is
�-invariant.

• Conversely, let ' 2 M� be any faithful normal �� -stationary state on M . Define
the �-equivariant faithful normal ucp map

ˆ W M ! Har1.�; ��/ W x 7!
�

 7! '.
�1x/

�
:
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Since Har1.�; ��/ Š L1.G=P; �P / as �-operator systems, we may further
regard ˆ W M ! L1.G=P / as a boundary structure such that ' D �P ıˆ. If '
is �-invariant, then ˆ is invariant.

Remark 3.2. The notion of boundary structure was developed in [3] to replace the notion of
stationary state used in [13] in order to deal with higher rank lattices in semisimple algebraic
groups defined over arbitrary local fields.

It is useful to restrict boundary structures to separable C�-subalgebras. Let M be
any �-von Neumann algebra with separable predual. A globally �-invariant separable ultra-
weakly dense C�-subalgebra A � M is called a separable model for the action � Õ M . If
ˆ WM ! L1.G=P / is a boundary structure, then .�P ıˆ/jA 2 S�� .A/ and the restriction
ˆjA W A ! L1.G=P / gives rise to the �-equivariant boundary map ˇ W G=P ! S.A/ W

b 7! ˇb such that Bar.ˇ��P / D .�P ıˆ/jA, where

8a 2 A; ˆ.a/.b/ D ˇb.a/:

We present several examples of boundary structures.

Example 3.3 (Boundary structure arising from unitary representations). Let � W � !

U .H�/ be any unitary representation and set A WD C�
�.�/. Choose an extremal �� -statio-

nary state ' 2 S�� .A/ and consider the GNS triple .�' ;H' ; �'/. Denote by ˇ W G=P !

S.A/ W b 7! ˇb the �-equivariant boundary map associated with ' 2 S�� .A/. By duality,
we may consider the �-equivariant ucp mapˆ W A! L1.G=P / W a 7! .b 7! ˇb.a// which
satisfies �P ı ˆ D '. Set M WD �'.A/

00 D .�' ı �/.�/00. By extremality, the conjugation
action Ad.�' ı �/ W � Õ M is ergodic. Moreover, the �-equivariant ucp map

�'.A/ ! L1.G=P / W �'.a/ 7! ˆ.a/

is well defined and extends to a boundary structure ˆ W M ! L1.G=P /. We refer to [13,

Proof of Theorem A] for further details.

Example 3.4 (Boundary structure arising from characters). Let' 2 Char.�/ be any extremal
character. Simply denote by .�;H ; �/ the GNS triple associated with ' 2 Char.�/. Denote
by J W H ! H W �.
/� 7! �.
/�� the canonical conjugation. Following [46], define the
noncommutative Poisson boundary B as the von Neumann algebra of all �P -equivalence
classes of (essentially) bounded measurable functions f W G=P ! B.H / satisfying
f .
b/ D Ad.J�.
/J /.f .b// for every 
 2 � and almost every b 2 G=P . Observe that
C1 ˝ �.�/00 � B. Since P is amenable, B is an amenable von Neumann algebra. By
extremality, the conjugation action Ad.�/ W � Õ B is ergodic. Moreover,

ˆ W B ! L1.G=P / W f 7!
�
b 7!

˝
f .b/�; �

˛�
is a boundary structure. When ' D ıe is the regular character, the noncommutative Poisson
boundary B coincides with the group measure space von Neumann algebra L.� Õ G=P /

and the boundary structure ˆ W L.� Õ G=P / ! L1.G=P / is the canonical �-equivariant
conditional expectation. We refer to [13, Proof of Theorem C] for further details.
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Example 3.5 (Boundary structure arising from topological dynamics). Let � Õ X be any
minimal action on a compact metrizable space. Choose an extremal �� -stationary Borel
probability measure � 2 Prob�� .X/. By minimality, we have supp.�/ D X . Denote by ˇ W

G=P ! Prob.X/ W b 7! ˇb the�-equivariant boundary map associated with � 2 Prob�� .X/.
By duality, we may consider the �-equivariant ucp mapˆ W C.X/! L1.G=P / W f 7! .b 7!

ˇb.f // which satisfies �P ı ˆ D �. By extremality, the nonsingular action � Õ .X; �/ is
ergodic. Moreover,ˆ W C.X/! L1.G=P / extends to a boundary structureˆ W L1.X;�/!

L1.G=P /.

The notion of boundary structure is well adapted to induction. Indeed, letˆ WM !

L1.G=P / be any �-boundary structure. Denote by OM WD IndG� .M/Š L1.G=�/˝M the
induced G-von Neumann algebra. Since G=P is a G-space, we have IndG� .L

1.G=P // Š

L1.G=�/ ˝ L1.G=P /, where G Õ G=� � G=P acts diagonally. Denote by �� 2

Prob.G=�/ the uniqueG-invariant Borel probability measure. Then the map b̂ WD �� ˝ˆ W

OM ! L1.G=P / is a G-equivariant faithful normal ucp map. We then refer to b̂ as the
induced G-boundary structure. Note that ˆ is invariant if and only if b̂ is invariant.

This framework provides a more conceptual approach to the stationary induction
considered in [13, Section 4]. Let �G 2 Prob.G/ be any K-invariant admissible Borel prob-
ability measure. Let ' be any faithful normal �� -stationary state on M and define the
corresponding �-boundary structure ˆ W M ! L1.G=P / such that �P ıˆ D '. Consider
the induced G-boundary structure b̂ W OM ! L1.G=P /. Then b' WD �P ı b̂ is a faithful
normal �G-stationary state on OM . Moreover, ' is �-invariant if and only if b' isG-invariant.

3.2. The dynamical dichotomy theorem for boundary structures
Let A be any separable C�-algebra. We say that �; 2 S.A/ are pairwise singular

and write � ?  if there exists a sequence .ak/k in A such that 0 � ak � 1 for every k 2 N
and for which limk �.ak/D 0D limk  .1� ak/. This notion naturally extends the notion of
pairwise singularity of Borel probability measures on metrizable compact spaces. Observe
that for any unital C�-subalgebra B � A and any states �;  2 S.A/, if �jB ?  jB , then
� ?  . We introduce the following terminology.

Definition 3.6 ([3]). Let � < G be any higher rank lattice. Let M be any �-von Neumann
algebra with separable predual and ˆ W M ! L1.G=P / any boundary structure. We say
that ˆ is singular if there exists a separable model A � M for the action � Õ M such that
the corresponding �-equivariant boundary map ˇ W G=P ! S.A/ W b 7! ˇb satisfies the
following property:

For every 
 2 � n Z .�/; for almost every b 2 G=P; ˇ
b ? ˇb : (3.1)

The notion of singularity for boundary structures is quite robust. If ˆ W M !

L1.G=P / is singular, then for every separable model A � M , the corresponding �-equi-
variant boundary map ˇ W G=P ! S.A/ W b 7! ˇb satisfies (3.1) (see [3, Proposition 4.10]).
This implies the following useful fact. IfM0 �M is a �-invariant von Neumann subalgebra
and if the restriction ˆjM0 W M0 ! L1.G=P / is singular, then ˆ is singular as well.

3213 Noncommutative ergodic theory of higher rank lattices



In case the action � Õ M is given by conjugation, singular boundary structures
enjoy the following useful vanishing property.

Proposition 3.7 ([3]). Let M be any von Neumann algebra with separable predual and � W

� ! U .M/ any unitary representation. Consider the conjugation action Ad.�/ W � Õ M .
Letˆ WM ! L1.G=P / be any singular boundary structure. Then for every 
 2 � n Z .�/,
we have ˆ.�.
// D 0.

Proof. The proof is similar to [34, Lemma 2.2]. We may choose a separable model A � M for
the conjugation action Ad.�/ W � ÕM such that�.�/�A. Denote by ˇ WG=P ! S.A/ the
�-equivariant boundary map arising from ˆjA. Let 
 2 � n Z .�/ be any element. Choose
a conull measurable subset Y � G=P such that for every b 2 Y , we have ˇ
b D 
ˇb D

ˇb ı Ad.�.
/�/ and ˇ
b ? ˇb . Let b 2 Y be any point and choose a sequence .ak/k in A
such that 0 � ak � 1 for every k 2 N and for which limk ˇ
b.ak/ D 0 D limk ˇb.1 � ak/.
Then Cauchy–Schwarz inequality implies thatˇ̌

ˇb
�
.1 � ak/�.
/

�ˇ̌
D

ˇ̌
ˇb

�
.1 � ak/

1=2
� .1 � ak/

1=2�.
/
�ˇ̌

� ˇb.1 � ak/
1=2

! 0:

Likewise, Cauchy–Schwarz inequality implies thatˇ̌
ˇb

�
ak�.
/

�ˇ̌
D

ˇ̌
ˇ
b

�
�.
/a

1=2

k
� a
1=2

k

�ˇ̌
� ˇ
b.ak/

1=2
! 0:

Then ˇb.�.
// D ˇb..1 � ak/�.
//C ˇb.ak�.
// ! 0 and so ˇb.�.
// D 0. Since this
holds true for every b 2 Y , it follows that ˆ.�.
// D 0.

As we mentioned in the Introduction, the following dynamical dichotomy theorem
invariant vs. singular for boundary structures is the key novelty in our operator-algebraic
framework.

Theorem 3.8 ([3,13]). LetM be any ergodic�-von Neumann algebra with separable predual
and ˆ W M ! L1.G=P / any boundary structure. Then ˆ is either invariant or singular.

The proof of Theorem 3.8 depends heavily upon whether the ambient connected
semisimple real Lie group G is simple or not.

In case G is simple, let us explain why Theorem E implies Theorem 3.8. Let
ˆ W M ! L1.G=P / be any noninvariant boundary structure. By Theorem E, there exist
a proper parabolic subgroup P < Q < G and a �-equivariant unital normal embedding
� W L1.G=Q/ ,! M such that ˆ ı � D p�

Q. Set M0 WD �.L1.G=Q// � M . Then A WD

�.C.G=Q//�M0 is a separable model for the action � ÕM0 and the �-equivariant bound-
ary map corresponding to ˆjA is exactly ı ı pQ W G=P ! Prob.G=Q/ W gP 7! ıgQ. Since
any element 
 2 � n Z .�/ acts (essentially) freely on G=Q (see, e.g., [13, Lemma 6.2]), it
follows that the restriction ˆjM0 W M0 ! L1.G=P / is singular. Thus, ˆ is singular.

In caseG is not simple, we have to use a different approach. Following [3], we outline
the main steps of the proof of Theorem 3.8 in the particular case where G D G1 �G2 with
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G1 and G2 noncompact connected simple Lie groups with finite center. This particular case
already contains all the main conceptual difficulties. Let i D 1; 2. Denote by pi W G ! Gi

the canonical factor map. Denote by Pi < Gi a minimal parabolic subgroup and set P D

P1 � P2 < G. By Theorem 2.4, .Gi ; �Pi / is the .Gi ; �i /-Poisson boundary with respect to
appropriate Borel probability measures�i 2 Prob.Gi / and �Pi 2 Prob.Gi=Pi /. Letˆ WM !

L1.G=P / be any noninvariant boundary structure. Our goal is to show that ˆ is singular.

Step 1: Induction. Denote by b̂ W OM ! L1.G=P / the inducedG-boundary structure. Since
ˆ is not invariant, b̂ is not invariant either, that is, b̂. OM/ ¤ C1.

Step 2: Reduction to the von Neumann algebra of G1-continuous elements. Exploiting
the product structureG DG1 �G2 and up to permuting the indices, we show that the restric-
tion of b̂ to theG2-fixed point von Neumann subalgebra OMG2 � OM still satisfiesˆ. OMG2/¤

C1 and, moreover, b̂. OMG2/� L1.G1=P1/. Exploiting that � <G1 �G2 is irreducible and
that .Gi ; �Pi / is the .Gi ;�i /-Poisson boundary, i D 1; 2, we show that theG1-von Neumann
algebra OMG2 is �-isomorphic to the �-von Neumann subalgebra M1 � M of all elements
x 2 M for which the action map � ! M W 
 7! �
 .x/ extends continuously to G1. We say
thatM1 � M is the von Neumann subalgebra of G1-continuous elements. Moreover, under
the identification OMG2 D M1, we naturally have the identification b̂j OMG2

D ˆjM1 . Then
M1 is aG1-ergodic von Neumann algebra andˆjM1 WM1 ! L1.G1=P1/ is aG1-boundary
structure such that ˆ.M1/ ¤ C1. Since ˆjM1 is the restriction to M1 of the �-boundary
structure ˆ, it suffices to show that ˆjM1 is singular.

Step 3: Singularity of ˆjM1
. We may choose a separable model A1 � M1 for the contin-

uous action G1 Õ M1. Since G1 Õ G1=P1 is transitive, ˆjA1 W A1 ! L1.G1=P1/ gives
rise to a G1-equivariant continuous boundary map ˇ W G1=P1 ! S.A1/ W b 7! ˇb . Since
the actionG1 ÕM1 is ergodic, the P1-invariant state WD ˇP1 2 S.A1/ is extremal among
P1-invariant states. We then show that for every g 2 G1, either g ?  or g D  . Since
 is not G1-invariant on A1, the stabilizerQ1 D StabG1. / is a proper parabolic subgroup
such that P1 < Q1. Since any element g 2 G1 n Z .G1/ acts (essentially) freely on G1=Q1
and since p1.� n Z .�// � G1 n Z .G1/, it follows that the restriction ˆjM1 is singular.
Thus, ˆ is singular.

3.3. Outline of the proof of Theorem E
Following [13], we outline the main steps of the proof of Theorem E. We may assume

that G is a connected simple real Lie group with trivial center and real rank rkR.G/ � 2.
Recall that G admits an Iwasawa decomposition G D KAV where K < G is a maximal
compact subgroup, A < G is a Cartan subgroup, and V < G is a unipotent subgroup. Set
P DLV whereLD ZG.A/ and note thatP <G is a minimal parabolic subgroup. Likewise,
write P D LV for the opposite minimal parabolic subgroup. Note that G D hP;V i and the
map V ! G=P W Nv 7! NvP defines a measurable isomorphism. Let ˆ W M ! L1.G=P / be
any noninvariant boundary structure. Our goal is to show that there exist a proper parabolic
subgroup P < Q < G and a �-equivariant unital normal embedding � W L1.G=Q/ ,! M .
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Step 1: Induction. Exactly as in the proof of Theorem 3.8, denote by b̂ W OM ! L1.G=P /

the induced G-boundary structure which satisfies b̂. OM/ ¤ C1. We may choose a separable
model A � OM for the continuous action G Õ OM . Since G Õ G=P is transitive, b̂jA W

A! L1.G=P / gives rise to aG-equivariant continuous boundary map ˇ W G=P ! S.A/ W

b 7! ˇb . Denote by  WD ˇP 2 S.A/ the corresponding P -invariant state, consider the
GNS representation � W A! B.H / and setN WD � .A/

00. ThenN is a P -von Neumann
algebra and we may consider the induced G-von Neumann algebra IndGP .N /. Moreover, we
may regard OM � IndGP .N / as a G-von Neumann subalgebra. We point out that the normal
state  2 N� need not be faithful on N . Since we only give a sketch of the proof, we will
assume that  is faithful on N . We refer to [13, Theorem 5.1] for the general proof.

Step 2: Construction of a well behaved von Neumann subalgebra. In this step, we build
upon Nevo–Zimmer’s proof of [44, Theorem 1]. Since b̂. OM/¤ C1, the P -invariant state 2

S.A/ is notG-invariant whence notV -invariant. Using the real rank assumption rkR.G/� 2,
there is a strict intermediate parabolic subgroup P < P0 < G with Levi decomposition
P0 D L0V0, where L0 D ZG.A0/, A0 < A, and V0 < V , such that  2 S.A/ is not V 0-
invariant. Choose a nontrivial element s 2 A0 so that s (resp. s�1) acts by conjugation as a
contracting automorphism ofV0 (resp.V 0). By Mautner phenomenon, any s-fixed element in
N is necessarily V0-fixed. Since the subgroup hs; V0i is normal in P , it follows thatN s �N

is a P -invariant von Neumann subalgebra. Using these assumptions, we show that M0 D

OM \ IndGP .N s/ is a G-von Neumann subalgebra such that b̂.M0/ ¤ C1.

Step 3: From noncommutative to commutative. We reached the point where we can no
longer rely on Nevo–Zimmer’s argument [44]. Indeed, M0 is not commutative and so we
cannot use the Gauss map trick from [44, Section 3] to conclude. We adopt the following new
strategy. Using the induction in two steps, we may write IndGP .N s/ D IndGP0.IndP0P .N

s// Š

L1.V 0; IndP0P .N
s//. Regarding M0 � L1.V 0; IndP0P .N

s// as a G-von Neumann subal-
gebra, denote by N0 � IndP0P .N

s/ the von Neumann subalgebra generated by the essential
values of all the elements f 2 A0, where A0 � M0 is an ultraweakly dense separable C�-
subalgebra. On the one hand, by construction, we have M0 � L1.V 0;N0/ Š L1.V 0/˝

N0. On the other hand, exploiting that s�1 acts by conjugation as a contracting automor-
phism of V 0, we show that C1˝ N0 � M0. Therefore, we have the inclusions C1˝ N0 �

M0 � L1.V 0/˝ N0. By considering the centers, we also have C1˝ Z .N0/� Z .M0/�

L1.V 0/ ˝ Z .N0/. Since G Õ M0 is faithful and since s acts identically on C1 ˝ N0,
we have C1 ˝ N0 ¨ M0. Exploiting Ge–Kadison’s splitting theorem [30], we show that
C1˝ Z .N0/ ¤ Z .M0/. This further implies that ˆ.Z .M0// ¤ C1. We may now apply
Nevo–Zimmer’s result [44, Theorem 1] to the commutativeG-von Neumann algebra Z .M0/

to obtain a proper parabolic subgroupP <Q<G and aG-equivariant unital normal embed-
ding � W L1.G=Q/ ,! Z .M0/ � OM .

Step 4: Back to the lattice. We use the simple argument given in [2]. Since the actionG Õ
C.G=Q/ is k � k-continuous, by G-equivariance, it follows that �.C.G=Q// is contained in
the C�-subalgebra C�

b.G;M/� � OM of all �-equivariant bounded continuous functions f W
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G ! M . Consider the evaluation �-homomorphism ev W C�
b.G;M/� ! M W f 7! f .e/.

Then ev ı � W C.G=Q/ ! M is a �-equivariant �-homomorphism which extends uniquely
to a �-equivariant unital normal embedding L1.G=Q/ ,! M thanks to (2.1).

4. Proofs of the main results

In this section, following [3, 13], we explain how to use the dynamical dichotomy
Theorem 3.8 to prove the main results stated in the Introduction. We fix a higher rank lattice
� < G and a Furstenberg measure �� 2 Prob.�/ so that .G=P; �P / is the .�; ��/-Poisson
boundary (see Theorem 2.5). Since the proofs of Theorems A and D are similar, we only
give the proofs of Theorems A, B and Corollary C.

Proof of Theorem A. Denote by � W � ! U .H�/ the universal unitary representation,
meaning that � is equal to the orthogonal direct sum of all cyclic unitary representations
of� . ThenA WD C�

�.�/ coincides with the full C�-algebra C�.�/ and we may use the identifi-
cation S.A/D P.�/. Let C � S.A/ be any nonempty �-invariant weak-� compact convex
subset. We claim that any�� -stationary state ' 2 C is �-invariant. More generally, we claim
that any �� -stationary state on A is �-invariant. By Krein–Milman theorem, it suffices to
show that any extremal �� -stationary ' 2 S.A/ is �-invariant. LettingM D �'.A/

00, con-
sider the boundary structure ˆ W M ! L1.G=P / such that �P ıˆ D ' as in Example 3.3.
By Theorem 3.8, ˆ is either invariant or singular. If ˆ is invariant, then ' 2 Char.�/. If ˆ
is singular, then Proposition 3.7 implies that for every 
 2 � n Z .�/, we haveˆ.�.
//D 0

and so '.
/ D 0. Then ' is supported on Z .�/ and so ' 2 Char.�/.

Proof of Theorem B. Let' 2 Char.�/ be any character. We may assume that ' is an extremal
character. Denote by B the noncommutative Poisson boundary and consider the boundary
structure ˆ W B ! L1.G=P / as in Example 3.4. By Theorem 3.8, ˆ is either invariant or
singular. If ˆ is invariant, then for every f 2 B, the function ˆ.f / W G=P ! C W b 7!

hf .b/�; �i is (essentially) constant. Since C1˝ �'.�/
00 � B and since the linear span of

�'.�/�' is dense in H' , it easily follows that every f 2 B is (essentially) constant as a
function G=P ! B.H'/. This further implies that B D C1 ˝ �'.�/

00 and so �'.�/00 is
amenable. This further implies that �' is amenable. If ˆ is singular, then for every 
 2

� n Z .�/ we have ˆ.�.
// D 0 and so '.
/ D 0. Thus, ' is supported on Z .�/.
IfG has property (T), then � has property (T). If ' is not supported on Z .�/, then

�' is amenable and so �' necessarily contains a finite-dimensional subrepresentation. In the
more general case whereG has a simple factor with property (T), we refer to the proof of [3,
Proposition 7.5].

Proof of Corollary C. Let � W � ! U .H�/ be any unitary representation and set A WD

C�
�.�/. Regarding S.A/ � P.�/ as a �-invariant weak-� compact convex subset, Theo-

rem A implies that the C�-algebra A admits a trace.
Assume, moreover, that G has trivial center and that � is not amenable. Let ' 2

S.A/ be any trace. Regarding ' 2 Char.�/ as a character, the GNS representation �' is
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weakly contained in � and so �' is not amenable. Theorem A implies that ' D ıe . Then
�' D � is the left regular representation and � is weakly contained in � . Denote by ‚ W

C�
�.�/ ! C�

�.�/ the unique �-homomorphism such that‚.�.
// D �.
/ for every 
 2 � .
Then �� ı‚ is the unique trace on A D C�

�.�/. Let J C A be any proper ideal and define
� WA!A=J . Then the unitary representation � ı � is weakly contained in � and so � ı � is
not amenable. The previous reasoning implies that� is weakly contained in � ı� and so there
is a �-homomorphism‚ W A=J ! C�

�.�/ such that‚D‚ ı �. Then J D ker.�/� ker.‚/.
Therefore, ker.‚/ C C�

�.�/ is the unique maximal proper ideal.

We now discuss open problems in relation with our main results. Let .E;k � k/ be any
separable Banach�-module and C �E� any nonempty�-invariant weak-� compact convex
subset. Let � 2 Prob.�/ be any probability measure. By analogy with [29], we say that the
affine action � Õ C is�-stiff if any�-stationary point is invariant. The proof of Theorem A
shows that for any Furstenberg measure �� 2 Prob.�/, the affine action � Õ P.�/ is �� -
stiff. It is natural to ask whether the stiffness property holds for more general probability
measures � 2 Prob.�/.

Problem 4.1. Let � 2 Prob.�/ be any probability measure such that hsupp.�/i D � . Is the
action � Õ P.�/ �-stiff?

Problem 4.1 requires a new strategy as we can no longer identify the .�;�/-Poisson
boundary with .G=P; �P /. We note that in case � has trivial center, it is showed in [34]

that for any probability measure � 2 Prob.�/ such that hsupp.�/i D � , the affine action
� Õ S.C�

�.�// is �-stiff and the canonical trace �� is the only �-stationary state on C�
�.�/.

Problem 4.1 is particularly relevant in case � WD SLd .Z/ < SLd .R/ WD G for d � 3. To
draw a parallel with homogeneous dynamics, we point out that the affine action SLd .Z/ Õ
Prob.Td / is �-stiff for every d � 2 and every probability measure � 2 Prob.SLd .Z// such
that hsupp.�/i D SLd .Z/ [12]. We refer the reader to [12] and [10] for more general results
regarding measure rigidity.

We say that a countable discrete group ƒ is character rigid if for any extremal
character ' 2 Char.ƒ/, either ' is supported on Z .ƒ/ or the GNS representation �' is
finite dimensional. Assuming that G has a simple factor with property (T), Theorem B says
that � is character rigid. It is showed in [47] that SLd .ZŒS�1�/ is character rigid for every
d � 2 and every nonempty set of primes S . In view of Margulis’ normal subgroup theorem
which holds for arbitrary higher rank lattices, the next problem is of fundamental importance.

Problem 4.2. Let � < G be any higher rank lattice. Is � character rigid?

Problem 4.2 is also discussed in [31, Question 2.1] for characters arising from ergodic
probability measure preserving actions � Õ .X; �/, in connection with Stuck–Zimmer’s
results [50]. To answer positively Problem 4.2, it would suffice to prove for every extremal
character ' 2 Char.�/ that is not supported on Z .�/, the tracial GNS factor �'.�/00 has
property (T) in the sense of Connes–Jones [20]. This would correspond to the property (T)
half in Margulis’ normal subgroup theorem.
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5. Noncommutative factor theorem and Connes’ rigidity

conjecture

Connes [18] obtained the first rigidity result in von Neumann algebras by showing
that for any icc (infinite conjugacy classes) countable discrete group ƒ with property (T),
the type II1 factorM D L.ƒ/ has countable outer automorphism group Out.M/ and count-
able fundamental group F .M/1. This result prompted Connes to state the following bold
conjecture (see [19, Problem V.B.1]).

Connes’ rigidity conjecture. Let ƒ1 and ƒ2 be any icc countable discrete groups with
property (T) such that L.ƒ1/ Š L.ƒ2/. Show that ƒ1 Š ƒ2.

We say that a discrete group ƒ is W�-superrigid if whenever ‡ is another discrete
group such that L.ƒ/Š L.‡/, we haveƒŠ ‡ . Using [20], Connes’ rigidity conjecture asks
whether every icc countable discrete group ƒ with property (T) is W�-superrigid.

A first deep result towards Connes’ rigidity conjecture was obtained by Cowling–
Haagerup [21] where they showed that for every n � 2 and every lattice ƒ in the rank one
connected simple Lie group Sp.n; 1/=¹˙1º, the type II1 factor L.ƒ/ retains the integer
n � 2. For the last two decades, Popa’s deformation/rigidity theory [48] has led to tremen-
dous progress regarding classification and rigidity results for group (resp. group measure
space) von Neumann algebras. In particular, the first examples of W�-superrigid groups were
obtained by Ioana–Popa–Vaes [37]. The examples constructed in [37] are generalized wreath
products groups and so they do not have property (T). It is still an open problem to find an
example of a W�-superrigid countable discrete group ƒ with property (T). For other recent
results regarding classification and rigidity results for von Neumann algebras, we refer the
reader to the surveys [35,36,54].

Connes’ rigidity conjecture is particularly relevant for the class of higher rank lat-
tices. In this context, celebrated strong rigidity results by Mostow and Margulis (see [42] and
[41, Chapter VI]) show that whenever �i < Gi is a higher rank lattice, where Gi has trivial
center, i D 1; 2, if �1 Š �2, thenG1 Š G2. In view of the strong rigidity results by Mostow
and Margulis, we state the following version of Connes’ rigidity conjecture for higher rank
lattices.

Conjecture. For every i D 1; 2, let Gi be any connected simple real Lie group with trivial
center and real rank rkR.Gi /� 2 and �i <Gi any lattice. If L.�1/Š L.�2/, thenG1 ŠG2.

Popa’s deformation/rigidity theory cannot be used to tackle the above conjecture
because higher rank lattices are somehow “too rigid.” As suggested by Connes himself (see
the discussion in [38, Section 4]), it is natural to try and develop a strategy building upon the
works of Furstenberg, Margulis, and Zimmer. In what follows, we assume that G is a con-
nected simple real Lie group with trivial center and real rank rkR.G/ � 2. We fix a minimal
parabolic subgroup P <G. Let � < G be any lattice (e.g., � WD PSLd .Z/ < PSLd .R/ WDG

1 The fundamental group F .M/ of a type II1 factor M is defined as the subgroup of R�
C

that
consists of all �.p/

�.q/
, where p; q 2 M are projections for which pMp Š qMq.

3219 Noncommutative ergodic theory of higher rank lattices



for d � 3). Then � is icc and the group von Neumann algebra L.�/ is a type II1 factor.
Moreover, the nonsingular action � Õ .G=P; �P / is (essentially) free and ergodic and the
corresponding von Neumann factor L.� Õ G=P / is amenable and of type III1 (see, e.g.,
[14, Proposition 4.7]). We now give the proof of Corollary F by combining Theorem E with
Suzuki’s results [51].

Proof of Corollary F. Denote by E W L.� Õ G=P / ! L1.G=P / the canonical �-equi-
variant conditional expectation. Let L.�/ � M � L.� Õ G=P / be any intermediate von
Neumann subalgebra and consider the boundary structure ˆ D E jM W M ! L1.G=P /.
Note that the conjugation action � Õ L.� Õ G=P / is ergodic. By Theorem E, there are
two cases to consider.

Firstly, assume that ˆ is invariant. Following Examples 2.7(2), we simply denote
by u
 2 L.�/ � L.� Õ G=P / the canonical unitaries implementing the action � Õ G=P .
For every x 2 M , write x D

P

2� x
u
 for its Fourier expansion, where x
 D E.xu�


 / for
every 
 2 � . Since E jM D ˆ is invariant and since L.�/ � M , it follows that x
 2 C1 for
every 
 2 � and every x 2 M . This implies that M D L.�/ (see, e.g., [1, Lemma 6.8]).

Secondly, assume that ˆ is not invariant. There there exist a proper parabolic sub-
group P < Q < G and a �-equivariant unital normal embedding � W L1.G=Q/ ,! M such
that E ı� D p�

Q. This further implies that L.� Õ G=Q/ D L.�/ _ L1.G=Q/ � M . Since
the nonsingular action � Õ .G=Q; �Q/ is (essentially) free (see, e.g., [13, Lemma 6.2]), a
combination of [51, Theorem 3.6] and [41, Theorem IV.2.11] implies that there exists a parabolic
subgroup P < R < Q such that M D L.� Õ G=R/.

It is well known that there are exactly 2rkR.G/ intermediate parabolic subgroupsP <
Q < G. Thus, Corollary F implies that there are exactly 2rkR.G/ intermediate von Neumann
subalgebras L.�/ � M � L.� Õ G=P /. In particular, the inclusion L.�/ � L.� Õ G=P /

retains the real rank rkR.G/. We believe this result could be useful to tackle Connes’ rigid-
ity conjecture and to show that the group von Neumann algebra L.�/ retains the real rank
rkR.G/.
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