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Abstract

Sparse sets are, by definition, sets that are small, either in cardinality, measure, dimension,
or density. Curves, surfaces, and other submanifolds are standard examples of sparse sets
in Euclidean space. However, many sparse sets naturally occurring in ergodic and geo-
metric measure theory, such as Cantor-like sets or self-similar fractals, lack the regularity
of the aforementioned objects. Despite this deficiency, many sparse sets are rich in arith-
metic, geometric, and analytic properties that can be viewed as working substitutes for
smoothness. This has led to a vibrant line of inquiry into the governing principles behind
certain phenomena that are typically associated with submanifolds and that have the poten-
tial for ubiquity in far more general contexts. Structural and analytical properties of sparse
sets, whether discrete or continuous, lie at the center of many problems in harmonic anal-
ysis, fractal geometry, combinatorics, and number theory. This is a survey of a few such
problems that the author has worked on.
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1. Introduction

Many problems in harmonic analysis and geometric measure theory, including
restriction, Bochner–Riesz, Kakeya, Falconer conjectures, maximal operator bounds, and
oscillatory integral estimates, are at heart questions involving size and structural properties
of sparse sets. In classical formulations of the problems, these sparse sets are often lower-
dimensional surfaces in Euclidean space, such as lines, curves, other submanifolds, zero sets
of polynomials or real-analytic functions. For example, the famous Kakeya conjecture aims
to quantify the size of a possibly small (i.e., Lebesgue-null) set that contain lines in every
direction; intersection properties of lines or thin tubes (which are thickened versions of lines)
are essential to its analysis. The restriction problem is a statement about the Lebesgue inte-
grability of the Fourier transform of certain classes of functions in Rd after being restricted
to a sphere; the latter hypersurface provides the geometric basis for this problem. Decay rates
of multidimensional oscillatory integrals and integral operators are tied to critical points of
their phases; if the phase function is polynomial or analytic in nature, the set of critical points
is a semialgebraic set whose structure determines the asymptotic behavior of the integral.
These avenues of research naturally use well-developed analytic and geometric notions, such
as smoothness or curvature, of the underlying surfaces. A more recent research direction in
harmonic analysis has been devoted to investigating extensions of classical results that are
normally associated to surfaces and manifolds to the context of more general sets. More pre-
cisely, do similar results continue to hold for arbitrary Euclidean sets, possibly of fractional
dimension, where tools like smoothness or curvature are unavailable, or have to be replaced
by appropriate generalizations? To what extent are such results transferable between the dis-
crete and continuum settings, and which features are unique? This in turn has led to a deeper
investigation of the structure and content of sparse sets.

This article, arranged in three distinct and notationally self-contained parts, gives an
overview of part of the author’s work to date in this area, undertaken with many collaborators
over the last decade and a half. The common theme is the study of sparse sets. Each section
contains a brief motivation for the problems considered, and a statement of the main results.
Proofs are delegated to the publications where the results appear. An in-depth discussion of
the surrounding literature had to be scaled back due to space constraints, but the bibliography
contains some important landmarks in the subject, as well as more exhaustive surveys.

2. Maximal averages and differentiation

2.1. Motivation of the problem
There is a vast literature on maximal and averaging operators over families of lower-

dimensional submanifolds of Rd . The aim is to quantify the behavior of such operators;
for instance, what are the Lebesgue mapping properties of the maximal operator? What is
the Lebesgue or Sobolev regularity of the averaging operator? For concreteness, we will
focus here on the case of maximal operators over rescaled copies of a single submanifold.
Assuming that the submanifold in question is sufficiently smooth, an important issue turns
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out to be its curvature. Roughly speaking, curved submanifolds admit nontrivial maximal
estimates, whereas flat submanifolds do not. A fundamental and representative positive result
is the spherical maximal theorem, due to Stein [90] for d � 3 and Bourgain [9] for d D 2.
Recall that the spherical maximal operator in Rd is defined to be

MSd�1f .x/ WD sup
r>0

Z
Sd�1

ˇ̌
f .x C ry/

ˇ̌
d�.y/; (2.1)

where � is the normalized Lebesgue measure on the unit sphere Sd�1 � Rd .

Theorem 2.1 (Stein [90], Bourgain [9]). For any d � 2, the maximal operator MSd�1 is
bounded on Lp.Rd / for p > d

d�1
, and this range of p is optimal.

It is well known that Theorem 2.1 fails in all dimensions d � 2 if the sphere Sd�1 is
replaced by a polygonal line or the surface of a polytope. These geometric objects, while still
piecewise smooth, do not have any curvature. In intermediate cases such as conical surfaces,
which are flat along their generating rays but curved in other directions, maximal estimates
may still be available but with weaker exponents. Many results of this type are known under
varying smoothness and curvature conditions. We refer the reader to [19,45,46,66–68,88,89,

91,92] for an introduction to this prolific area of research and further references.
Stein’s proof of the spherical maximal theorem for d � 3 exploits curvature only

through the decay of the Fourier transform of the surface measure on the manifold, as do
many of the other results just mentioned. Let us recall that for any finite measure � on Rd ,
its Fourier transform is defined asb�.�/ WD

Z
Rd

e�ix��d�.x/: (2.2)

In the case of the sphere, the Fourier transform decays like j�j�
d�1

2 at infinity; similar esti-
mates hold for other convex hypersurfaces of codimension 1 with nonvanishing Gaussian
curvature. The decay estimates are weaker for manifolds with flat directions, which in turn
result in the restricted range of exponents in maximal and averaging estimates mentioned
above.

The connection between the Fourier decay of a measure and the maximal average
associated with it is exemplified in the following classical result of Rubio de Francia [73].
Given a measure �, let us define its corresponding maximal operator

M�f .x/ WD sup
r>0

Z ˇ̌
f .x C ry/

ˇ̌
d�.y/; (2.3)

which is the supremal average of jf .x C �/j over all possible dilates of �. If � is the surface
measure of Sd�1, then M� coincides with the spherical maximal operator defined in (2.1).

Theorem 2.2 (Rubio de Francia [73]). Suppose that � is a compactly supported Borel mea-
sure on Rd , d � 1, such that ˇ̌b�.�/

ˇ̌
� C

�
1 C j�j

��a (2.4)

for some a > 1
2
. Then the maximal operator M�, defined as in (2.3) is bounded on Lp.Rd /

for p > .2a C 1/=.2a/.
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Theorem 2.2 implies Theorem 2.1 for d � 3, since then the surface measure � on
the sphere obeys the above assumption with a D

d�1
2

> 1
2
. However, this Fourier decay is

insufficient for d D 2. In other words, Theorem 2.2 fails to capture the circular maximal
estimate in R2, for which a D

1
2
just misses the stated range. Instead, Bourgain’s proof of

the circular maximal theorem for d D 2 relies more directly on the geometry involved. The
relevant geometric information concerns intersections of pairs of ı-thickened circles, in other
words, annuli of width ı. In an arrangement of many such annuli, most pairwise intersections
are of the order ı2, which is smaller by an order of magnitude than each annulus itself. While
larger intersections are possible, Bourgain’s proof shows that they do not occur frequently.
An alternative proof of the circular maximal theorem that exploits finer properties of Fourier
integral operators rather than Fourier decay can be found in [65].

2.2. Main results
The above class of results does not offer an easy extension to dimension one. Indeed,

it is not clear a priori what a one-dimensional theory might look like, given that the real line
has no nontrivial lower-dimensional submanifolds. However, given any " > 0, there are many
singular measures on R supported on sets of Hausdorff dimension 1 � ". Viewing " as an
analogue of “codimension,” it is natural to ask whether by imposing additional structure on
these sets that would assume the role of curvature, one might obtain Lp estimates similar to
those in Theorem 2.1 for the associated maximal operators and for a range p > p", where
p" & 1 as " ! 0. Theorem 2.3 below, joint with Izabella Łaba, provides an affirmative
answer to this question. Theorem 2.3 may be interpreted as the limiting situation as " ! 0

(compare with Theorem 2.1 as d ! 1) where the maximal range .1; 1� of p is achieved
for a single set S of zero Lebesgue measure.

Theorem 2.3 ([59]). For every 0 � " < 1
3
, there exists a probability measure � D �."/

supported on a Lebesgue-null set S of Hausdorff dimension 1 � " such that M� is bounded
on Lp.R/ for all p > 1C"

1�"
.

The result above is one of many similar ones involving the operator on restricted sets
and restricted scales. The interested reader is referred to [59] for other analogous statements
concerning M� and its variants. As a consequence of Theorem 2.3, we obtain a differentia-
tion theorem for � that answers a question of Aversa and Preiss [2,3,69].

Theorem 2.4. For 0 � " < 1
3
, let � D �."/ be the measure specified in Theorem 2.3. Then

for every f 2 Lp.R/ with p 2 ..1 C "/=.1 � "/; 1/, we have

lim
r!0

ˇ̌̌̌Z
f .x C ry/d�.y/ � f .x/

ˇ̌̌̌
D 0 for a.e. x 2 R: (2.5)

Thus for " D 0, the measure � D �.0/ is supported on a full-dimensional set, is
singular with respect to Lebesgue, and yet differentiates Lp in the sense of (2.5), as does the
Lebesgue measure. Further, the maximal operator M� is bounded on the same Lebesgue
spaces Lp (namely, p 2 .1; 1/) as the one-dimensional Hardy–Littlewood maximal func-
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tion. However, unlike the Lebesgue measure, the measure � D �.0/ fails to differentiate L1,
as shown by Preiss [59, Section 8].

The measures � D �."/ in our results are constructed by randomizing a Cantor-
type iteration. More precisely, we describe a random mechanism for building the nested
Cantor iterates Sk as a union of finitely many intervals. The measure � is then shown to
be the weak-� limit of the natural probability measures 1Sk

=jSkj, which are supported on
S D

T
k Sk .
It turns out that the proof of Theorem 2.3 does not use any Fourier decay condi-

tions. Instead, the proof relies on geometric arguments akin to those in Bourgain’s proof of
the circular maximal theorem. The right substitute for Fourier decay turns out to be a cor-
relation condition between affine copies of the sets Sk , providing the needed bound on the
size of multiple intersections analogous to those arising in Bourgain’s argument. Readers
familiar with the proof of Theorem 2.1 for d D 2 or other similar results will recognize the
correlation condition as a bound on the integrand (interpreted as the correlation function) in
the expression for the Ln-norm of the dual linearized and discretized maximal operator, for
large integer values of n. The proof attempts to minimize this integrand whenever possible
through randomization arguments.

The threshold exponent p0 D .1 C "/=.1 � "/ is suboptimal in general. Shmerkin
and Suomala [82] have improved the range of p for random measures � associated to an
Ahlfors-regular variant of fractal percolation. Another improvement in a different direction
is due to Łaba [57], who has obtained slightly weaker estimates forM�, but for a much larger
class of measures �; in particular, her results apply to measures � with self-similar supports
of arbitrarily small Hausdorff dimension and no Fourier decay. Determining the Lebesgue
boundedness of M� where � is the Cantor–Lebesgue measure on the standard middle-third
Cantor set remains an open problem.

3. Sparse restriction of Laplace–Beltrami

eigenfunctions

The study of eigenfunctions of Laplacians lies at the interface of several areas of
mathematics, including analysis, geometry, mathematical physics, and number theory. These
special functions arise in physics and in partial differential equations as modes of periodic
vibration of drums and membranes. In quantum mechanics, they represent the stationary
energy states of a free quantum particle on a Riemannian manifold.

Let .M;g/ denote a compact, connected, n-dimensional Riemannianmanifold with-
out boundary, and ��g the positive Laplace–Beltrami operator on M . It is well known [87,

Chapter 3] that the spectrum of this operator is nonnegative and discrete. Let us denote its
eigenvalues by ¹�2

j W j � 0º, and the corresponding eigenspaces by Ej . Without loss of gen-
erality, the positive square roots of the distinct eigenvalues can be arranged in increasing
order, with

0 D �0 < �1 < �2 < � � � �j < � � � ! 1:

3228 M. Pramanik



It is a standard fact [87, Chapter 3] that each Ej is finite-dimensional. Further, the space
L2.M; dVg/ (consisting of functions on M that are square-integrable with respect to the
canonical volume measure dVg ) admits an orthogonal decomposition in terms of Ej :

L2.M; dVg/ D

1M
j D0

Ej :

One of the fundamental questions surrounding Laplace–Beltrami eigenfunctions targets their
concentration phenomena, via high-energy asymptotics or high-frequency behavior. There
are many avenues for this study, as exemplified in [1,11,13,20,32,41,61,74,79,83,99,100]. One
such approach involves studying the growth of the Lp-norms of these eigenfunctions as the
eigenvalue goes to infinity. My joint work with Suresh Eswarathasan [27], the main focus of
this section, lies in this category. Specifically, we describe the L2.M/ ! Lp.�/ mapping
property of a certain spectral projector (according to the spectral decomposition above),
where� is a Lebesgue-null subset ofM . In particular,� does not enjoy any smooth structure,
a point of departure from prior work where this feature was heavily exploited. We begin by
reviewing the current research landscape that will help place the main results in context.

3.1. Motivation of the problem
The Weyl law in spectral theory provides an L1-bound on eigenfunctions on M

[43]. The first results that establish Lp eigenfunction bounds for p < 1 are due to Sogge
[86].

Theorem 3.1 ([86]). Given any manifold M as above and p 2 Œ2;1�, there exists a constant
C D C.M; p/ > 0 such that the following inequality holds for all � � 1:

k'�kLp.M/ � C.1 C �/ı.n;p/
k'�kL2.M/; with (3.1)

ı.n; p/ D

8̂̂<̂
:̂

n � 1

4
�

n � 1

2p
; if 2 � p �

2.n C 1/

n � 1
;

n � 1

2
�

n

p
; if

2.n C 1/

n � 1
� p � 1

9>>=>>; : (3.2)

Here '� is any eigenfunction of��g corresponding to the eigenvalue �2. The bound is sharp
for the n-dimensional unit sphere M D Sn, equipped with the surface measure.

Historically, an important motivation and source of inspiration for this line of inves-
tigation has been the Fourier restriction problem, which explores the behavior of the Fourier
transform when restricted to curved surfaces in Euclidean spaces. In fact, the Stein–Tomas
L2-restriction theorem [96], originating in Euclidean harmonic analysis, was a key ingredi-
ent in an early proof of Theorem 3.1 for the sphere. Indeed, Theorem 3.1 may be viewed
as a form of discrete restriction on M where the frequencies are given by the spectrum of
the manifold, see, for example, [85]. Conversely, it is possible to recover the L2-restriction
theorem for the sphere from a spectral projection theorem such as Theorem 3.1 applied to
the n-dimensional flat torus. The lecture notes of Yung [98, Section 2] contain a discussion
of these implications.
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Theorem 3.1 permits a number of independent proofs. For an argument that involves
well-known oscillatory integral estimates of Hörmander applied to the smooth spectral pro-
jector (denoted �.

p
��g � �/), we refer the reader to the treatise [87]. The semiclassical

approach of Koch, Tataru, and Zworski [54] has also yielded many powerful applications.
Finer information on eigenfunction growth may be obtained through Lp-bounds on

'� when restricted to smooth submanifolds of M . One expects '� to assume large values
on small sets. Thus its Lp-norm on a Lebesgue-null set such as a submanifold, if meaning-
ful, is typically expected to be larger in comparison with the Lp-norm taken over the entire
manifold M , as given by Theorem 3.1. The first step in this direction is due to Reznikov [70],
who studied eigenfunction restriction phenomena on hyperbolic surfaces via representation-
theoretic tools. The most general results to date on restricted norms of Laplace eigenfunc-
tions are by Burq, Gérard, and Tzvetkov [14], and independently byHu [44]. The work of Tacy
[95] has extended these results to the setting of a semiclassical pseudodifferential operator
(not merely the Laplacian) on a Riemannian manifold, while removing logarithmic losses
at a critical threshold. Another particular endpoint result is due to Chen and Sogge [18]. We
have summarized below the currently known best eigenfunction restriction estimates for a
general manifold, combined from this body of work and for easy referencing later.

Theorem 3.2 ([14, 44, 95]). Let † � M be a smooth d -dimensional submanifold of M ,
equipped with the canonical measure d� that is naturally obtained from the metric g. Then
for each p 2 Œ2; 1�, there exists a constant C D C.M; †; p/ > 0 such that for any � � 1

and any Laplace eigenfunction '� associated with the eigenvalue �2, the following estimate
holds:

k'�kLp.†;d�/ � C.1 C �/ı.n;d;p/
k'�kL2.M;dVg /: (3.3)

The exponent ı.n; d; p/ admits a multipart description. Specifically,

ı.n; n � 1; p/ D

8<: n�1
4

�
n�2
2p

; for 2 � p �
2n

n�1
;

n�1
2

�
n�1

p
; for 2n

n�1
� p � 1:

(3.4)

For d ¤ n � 1,

ı.n; d; p/ D
n � 1

2
�

d

p
; for 2 � p � 1 and .d; p/ ¤ .n � 2; 2/: (3.5)

For .d; p/ D .n � 2; 2/, the exponent ı.n; d; p/ is still given by (3.5); however, there is an
additional logarithmic factor log1=2.�/ appearing in the right-hand side of inequality (3.3).

The proofs in [14] and [18] use a delicate analysis of oscillatory representations of
the smoothed spectral projector �.

p
��g � �/ restricted to submanifolds†, combined with

refined estimates influenced by the considered geometry. Alternatively, [44] uses general
mapping properties for Fourier integral operators with prescribed degenerate canonical rela-
tions to obtain bounds for the oscillatory integral operators in question. There are several
recurrent features in these proofs; namely, stationary phase methods, arguments involving
integration by parts and operator-theoretic convolution inequalities. This methodology heav-
ily relies on the fact that the underlying measures are induced by Lebesgue, which in turn is
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a consequence of M and † being smooth manifolds. We wanted to explore the accessibility
of this machinery in the absence of smoothness, and to find working substitutes when such
methods are unavailable.

There is a common theme in Theorems 3.1 and 3.2 above; namely, the left-hand side
of both inequalities (3.1) and (3.3) involves the Lp-norm of an eigenfunction '� but over
different submanifolds of M (including M itself), and with respect to natural measures on
these submanifolds. An interesting feature of the exponents ı.n; p/ and ı.n; d; p/ is that for
large p, they are both of the form .n � 1/=2 � ˛=p, where

˛ D dimension of the space on which the Lp-norm of '� is measured

D

´
dim.M/ D n in Theorem 3.1;

dim.†/ D d in Theorem 3.2:
(3.6)

In view of this commonality in (3.2), (3.4), and (3.5), we pose the following question:

• Given an arbitrary Borel set � � †, does there exist a measure � supported on
† with respect to which we can estimate the growth of the eigenfunctions '�?

The nontrivial situation arises when � is Lebesgue-null, i.e., � is singular with respect to
the canonical measure on †. The optimal scenario would be to obtain bounds that reflect the
dimensionality of the set � in the same way that Theorems 3.1 and 3.2 do. We answer this
by presenting the main results of our article [27].

3.2. Main results
Given a compact n-dimensional Riemannian manifold .M; g/, let † � M be a

smooth embedded submanifold of dimension 1 � d � n, equipped with the restricted Rie-
mannian metric naturally endowed by g. Let .U; u/ be a local coordinate chart on †, where
U � Rd is an open set containing Œ0; 1�d and u W U ! u.U / ,! † is a smooth embed-
ding. Given any " 2 Œ0; 1/, let E � Œ0; 1�d be an arbitrary Borel set of Hausdorff dimension
dimH.E/ D d.1 � "/. We refer the reader to the classical textbook of Mattila [64, Chap-

ter 4] for the definitions and properties of Hausdorff dimension of sets in Euclidean spaces.
The Borel set E � Œ0; 1�d generates a corresponding Borel set � D �ŒE� in † by setting
� WD u.E/. Conversely, every Borel subset � in u.Œ0; 1�d / � † can be identified with a set
E D u�1.�/ � Œ0;1�d . Similarly, anymeasure � supported on� corresponds with a measure
� D u�� on E via the pull-back u�, i.e.,

�.A/ WD �
�
u�1.A/

�
for all Borel sets A � †: (3.7)

The converse is also true; any Borel measure � generates another measure � on � through
its push-forward, given by the same relation (3.7). Since u is a diffeomorphism, and thus bi-
Lipschitz, it preserves Hausdorff dimension [28, Corollary 2.4]; hence dimH.�/ D

dimH.E/ D d.1 � "/. Let us define our critical exponent

p0 D p0.n; d; "/ WD
4d.1 � "/

n � 1
: (3.8)
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Our result below, representative of the class of results presented in [27], specifies a family of
restricted eigenfunction estimates for every such set � .

Theorem 3.3 ([27]). Let M , †, � and p0 be as above. Then for every � > 0 sufficiently
small, there exists a probability measure �.�/ supported on � such that for all � � 1 and all
p 2 Œ2; 1�, we have the eigenfunction estimate

k'�kLp.�;�.�// � C�;p.1 C �/�p ‚.�I �; p/k'�kL2.M;dVg /: (3.9)

Here '� denotes any L2-eigenfunction associated with the eigenvalue �2 for the Laplace–
Beltrami operator ��g on M . For p0 > 2, the exponent �p is given by

�p D �p.n; d; "/ WD

8<: n�1
4

if 2 � p � p0 �
4�

n�1
;

n�1
2

�
d.1�"/

p
if p � p0 �

4�
n�1

:
(3.10)

The function ‚ represents a power loss of �=p beyond the critical threshold:

‚.�I �; p/ WD

8̂̂̂<̂
ˆ̂:

1 if 2 � p � p0 �
4�

n�1
;

.1 C �/
�
p .log�/

1
p if p D p0 �

4�
n�1

;

.1 C �/
�
p if p > p0 �

4�
n�1

:

For p0 � 2 and 2 � p � 1, we set

�p D �p.n; d; "/ WD
n � 1

2
�

d.1 � "/

p
and ‚.�I �; p/ D .1 C �/

�
p :

The positive constant C�;p in (3.9) may depend on n; d; "; �, and p, but is independent
of �. The probability measure �.�/ in (3.9), given by Frostman’s lemma, obeys the following
volume growth condition: there exists C� > 0 such that for all x 2 † and r > 0,

�.�/
�
Bg.xI r/

�
� C�rd.1�"/�� ; (3.11)

where Bg.xI r/ � M denotes the Riemannian ball centered at x of radius r .

The estimate (3.9) is sharp for p � max.2; p0/, except possibly for the infinitesimal
blow-up factor of .1 C �/�=p . More precisely, for every " 2 Œ0;1/, d � n, andp �max.2;p0/,
the bound in (3.9) is realized, ignoring subpolynomial losses, for certain sets of dimension
d.1 � "/ in M D Sn. The estimate is not sharp for 2 � p < p0, when p0 > 2. This is an
artifact of our proof strategy.

For an arbitrary Borel set � , the information available about measures supported
on it is limited. As a result, the measure �.�/ that realizes (3.9) varies with � in general.
Thus we are able to prove (3.9) only for all � > 0 and not for � D 0. On the other hand, if
� D M or if � is a submanifold of M , it follows from [14, 44, 87, 95] that there is a natural
Lebesgue-induced measure on � for which (3.9) does hold with � D 0. We show in [27] is
that such an improvement holds in a generic sense. In Theorem 1.7 and Corollary 1.8 of [27],
we provide a large class of sparse subsets � that are not submanifolds, each supporting a
single probability measure � that obeys (3.11) for all � > 0, even though C� % 1 as � & 0.
For this measure �, we show that a stronger version of (3.9) holds, with � D 0. However,
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‚ is then replaced by a function of slow growth in the range p � max.2; p0/. A precise
functional form for ‚ that quantifies the infinitesimal blowup is provided.

For p � max.2; p0/, the exponent �p in Theorem 3.3 is of the same form alluded
to in (3.6), namely �p D .n � 1/=2 � ˛=p with ˛ D d.1 � "/ D dimH.�/. Thus our result
may be viewed as a natural interpolation between the global estimates in [86] and the smooth
restriction estimates in [14], bridging the estimates across a family of arbitrary Borel sets
with continuously varying Hausdorff dimensions.

To the best of our knowledge, Theorem 3.3 is the first result of its kind in several
distinct categories. First, it offers eigenfunction bounds restricted to any Borel subset of pos-
itive Hausdorff dimension, for every manifold M and every smooth submanifold † therein.
Second, even for integers m, our result produces new sets of dimension m, for example, with
.n;d; "/ D .2; 2; 1=2/, that are not necessarily contained in anym-dimensional submanifold,
and yet capture the same eigenfunction growth bounds as smooth submanifolds of the same
dimension, up to subpolynomial losses. Third, when " D 0, our result provides examples
of singular measures supported on submanifolds with respect to which the eigenfunctions
obey the same Lp growth bounds, up to any prescribed �-loss, as with the induced Lebesgue
measure on the same submanifold.

The work of Burq, Gérard, and Tzvetkov [14, Theorem 2] shows that when n D 2,
d D 1 and � is a curve of nonvanishing geodesic curvature, Theorem 3.2 admits a significant
improvement; namely the growth exponent ı.2;1;p/ can be replaced by the smaller exponent
Qı.2; 1;p/ D 1=3 � 1=.3p/ in the range 2 � p � 4. The correct analogue of the nonvanishing
curvature condition for an arbitrary sparse set � that would lead to similar improvements for
Theorem 3.3 is as yet unknown.

4. Configurations in sparse sets

Another related field of research, at the interface of harmonic analysis, geometric
measure theory, and fractal geometry, is the study of patterns or configurations in sparse
sets. Questions here are typically of the following type: Under what conditions must a small
set contain a given pattern? Can it contain many? Can a large set avoid specified patterns?
How can one quantify the patterns contained in a set? Stated in this level of generality, these
questions lack precision, both in the quantification of size and in the specification of patterns.
“Large” could be interpreted in the context of cardinality, Lebesgue measure, asymptotic or
Banach density, Hausdorff, Minkowski or Fourier dimension. “Patterns” could be geometric
in nature, for example, arithmetic or geometric progressions, equilateral triangles, parallel-
ograms; alternatively, they could be algebraic, such as solutions of certain equations. This
line of investigation has a particularly rich history in number theory and additive combi-
natorics where the ambient space is often the space of integers, or subsets thereof. It has
expanded into an active research area in the continuum setting within the last two decades.
While the questions often look similar in the discrete and continuous regimes, the answers
are sometimes very different.
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4.1. Existence and avoidance of linear patterns
Can large sets avoid many patterns? Regardless of the many possible variants of

such a question, it would seem that a natural answer would be “no,” with any reasonable
definition. Indeed, there is a large body of work that supports this intuition; see [5,15,35–37,

42,58].
However, there are also many results in the literature that challenge this intuition,

especially when slight variations in the notions of size lead to very different conclusions
regarding the existence of patterns. For example, in the discrete setting, a classical result
of Behrend [4] and Salem and Spencer [78] says that for any " > 0 and all sufficiently
large positive integers M , there exists a set XM � ŒM � WD ¹0; 1; 2; : : : ; M � 1º such that
#.XM / > M 1�" and XM contains no nontrivial three-term arithmetic progression. This is
in sharp contrast with the celebrated results of Roth [71, 72] and Szemerédi [93, 94], which
state that for any k � 3 and any c > 0, there exists M0 � 1 such that for M � M0, any set
XM � ŒM � obeying #.XM / � cM contains a nontrivial k-term arithmetic progression. The
work of Ruzsa [75,76] on subsets of integers avoiding nontrivial solutions of linear equations
has been particularly influential in subsequent research in additive combinatorics.

Similar results exist in the continuum as well. For instance, one can deduce from
the Lebesgue density theorem that any set in R with a Lebesgue density point contains a
nontrivial affine copy of any finite configuration. This conclusion applies therefore to any
set of positive Lebesgue measure. On the other hand, Keleti [52] constructs a compact subset
E � Œ0; 1� with Hausdorff dimension 1 but Lebesgue measure zero such that there does not
exist any nontrivial solution of x � y D z � w, with x < y � z < w and .x; y; z; w/ 2 E4.
In particular, E avoids all three-term arithmetic progressions. Subsequent results [23,30,40,

52, 53, 62, 63] have explored the issue of avoidance further, providing examples of sets of
large Hausdorff dimension that omit increasingly general families of algebraic and geometric
patterns. Let us recall from [64, Theorem 8.8] or [28, Section 4.1] that theHausdorff dimension
dimH.A/ of a Borel set A � Rn is the supremum of exponents ˛ > 0 with the following
property: there exists a probability measure � supported on A such that for some positive,
finite constant C1,

�
�
B.x; r/

�
� C1r˛ for all x 2 Rn; r > 0: (4.1)

These results suggest a general rule of thumb: large Hausdorff dimension is usually not
enough to ensure that a set contains a specified family of patterns.

On the other hand, the situation is expected to be different for setsA of large Fourier
dimension. The Fourier dimension dimF .A/ of a Borel set A � Rn is defined as the supre-
mum of exponents ˇ � n obeying the following condition: there exist a probability measure
� supported on A and a positive finite constant C2 such thatˇ̌b�.�/

ˇ̌
� C2

�
1 C j�j

��ˇ=2 for all � 2 Rn; where b�.�/ WD

Z
e�ix�d�.x/: (4.2)

Frostman’s lemma [64, p. 168] states that dimF .A/ � dimH.A/ for any Borel set A. This
inequality implies that sets of large Fourier dimension form a smaller subclass within the
class of sets of large Hausdorff dimension. It gives rise to the intuition that such sets are more
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likely to enjoy additional properties rooted in the Fourier decay of the supporting measures;
in particular, they could possibly contain a richer class of patterns. A Borel set whose Fourier
dimension equals its Hausdorff dimension is called a Salem set. One therefore hopes that a
Salem set of large dimensionmay contain patterns that a non-Salem set of the sameHausdorff
dimension does not. While this naive expectation turns out to be false in general (more on
this in Section 4.2), there is a core of truth in this heuristic principle. In joint work with Yiyu
Liang [60], we have made this precise. Our results in this direction form the main content of
this subsection and the next.

The intuition that large Salem sets are richer in structure than their non-Salem coun-
terparts of the same dimension is perhaps also due to the known examples of such sets. Salem
sets are ubiquitous among random sets. Many random constructions yield sets that are, on the
one hand, often (almost surely) Salem and, on the other hand, embody verifiable algebraic or
geometric structure. The first such random construction is due to Salem himself [77]; many
subsequent random constructions have appeared in [7,8,16,17,25,49,50,58,81]. Deterministic
examples of Salem sets are comparatively fewer [38, 39, 47, 48, 51], but they arise naturally
in number theory [6, 12, 24] and are rich in arithmetic patterns as well. The work of Körner
[55,56], which explicitly addresses the relation between the rate of decay of the Fourier trans-
form of a measure and possible algebraic relations within its support, is perhaps closest to
the main theme of this section.

In the results to be stated shortly, we will provide a quantitative formulation of
the heuristic principle that Salem sets possess richer structure, in the specific context of
translation-invariant linear patterns. More precisely, we will be concerned with algebraic
patterns that occur as a nontrivial zero of some function in the class

F D F .N/ WD

1[
vD2

Fv.N/; where (4.3)

Fv.N/ WD

8̂̂<̂
:̂f .x0; : : : ; xv/ WD m0x0 �

vX
iD1

mi xi

ˇ̌̌̌
ˇ̌̌̌ m0; : : : ; mv 2 N; m0 D

vX
iD1

mi ;

gcd.m0; m1; : : : ; mv/ D 1

9>>=>>; :

(4.4)

Here v 2 N n ¹1º and N WD ¹1; 2; : : :º.

Definition 4.1. Let us briefly review the patterns whose existence or avoidance we will
explore in this section.

• Given f 2 Fv.N/, a vector x D .x0; x1; : : : ; xv/ 2 RvC1 is said to be a zero of f

if it obeys the equation f .x0; : : : ; xv/ D 0. Such a vector x will also be referred
to as a solution of the equation f .x0; : : : ; xv/ D 0.

• A zero x D .x0; : : : ; xv/ 2 RvC1 of a function f 2 Fv.N/ is said to be nontrivial
if the entries of x are all distinct. All other zeros of f are called trivial. The terms
“trivial” and “nontrivial” apply with the same definition to solutions of equations
of the form f D 0 as well.
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• Given a setE � R, we say thatE contains a nontrivial zero of f 2 Fv.N/ if there
exists x D .x0; x1; : : : ; xv/ 2 EvC1 with all distinct entries such that f .x/ D 0.
If no such x 2 EvC1 exists, we say that E avoids all nontrivial zeros of f .

• A set E � R is said to contain a nontrivial translation-invariant rational linear
pattern if it contains a nontrivial zero of some f 2 F .

A three-term arithmetic progression .x0; x1; x2/ with nonzero common difference
is a simple example of a nontrivial translation-invariant rational linear pattern, since it is a
nontrivial zero of the function f .x0; x1; x2/ D 2x0 � .x1 C x2/. If a vector

x D .x0; : : : ; xv/ 2 RvC1

is a trivial zero of some f 2 Fv.N/ with v � 3 but has at least two distinct entries, then the
vector y D .y0; : : : ; yv0/ consisting of the distinct entries of x provides a nontrivial zero of
some g 2 Fv0.N/, v0 < v.

In the following subsection, we provide answers to variants of the following ques-
tion: given F � � F .N/, how large a set E � R, in the sense of Fourier dimension, can
one construct that avoids all the nontrivial zeros of all f 2 F �? Alternatively, are sets of
large enough Fourier dimension guaranteed to contain a nontrivial zero of some f 2 F �?
The requirement m0 D

Pv
iD1 mi in Fv.N/ is designed to avoid trivial answers; without

this assumption, one can always find an avoiding interval (of positive Lebesgue measure)
centered around 1.

4.2. Main results
In [58, Theorem 1.2], we showed, in joint work with Izabella Łaba, that if a compact

setA � Œ0; 1� supports a probability measure� obeying a ball condition of the type (4.1) and
a Fourier decay condition of the type (4.2), thenA contains a nontrivial three-term arithmetic
progression, provided (a) ˇ > 2=3, (b) the constants C1 and C2 are appropriately controlled,
and (c) the exponent ˛ is sufficiently close to 1, depending on C1; C2, and ˇ. The article [58,

Section 7] also contains a large class of examples of Salem sets that verify the hypotheses
of [58, Theorem 1.2]. This leads to a natural question whether the technical growth conditions
(b) on C1; C2 are truly necessary, and whether progressions exist in any set of large enough
Fourier dimension. This naive expectation is, however, false. Shmerkin [80, Theorems A and B]

has recently proved the existence of a compact full-dimensional Salem set contained in Œ0; 1�

that avoids all nontrivial arithmetic progressions. The existence of such a Salem set seems, at
first glance, to contradict the conventional belief that such sets should enjoy richer structure.

4.2.1. Rational linear patterns
Our next three results show that even though a Salem set of large dimension can

avoid a specific linear pattern (or even finitely many) given by F , it cannot avoid all of them.

Theorem 4.2 ([60]). Given v 2 N, v � 2, let E � Œ0; 1� be a closed set satisfying
dimF .E/ > 2

vC1
, i.e., there exist some ˇ > 1

vC1
, a probability measure � supported on E,
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and some positive constant C such thatˇ̌
O�.�/

ˇ̌
� C

�
1 C j�j

��ˇ
: (4.5)

Then E contains a nontrivial zero of some f 2 Fv.N/ defined in (4.4). In other words,
there exists ¹m0; : : : ; mvº � N satisfying m0 D

Pv
iD1 mi , such that E contains a nontrivial

solution of the equation
vX

iD1

mi xi D m0x0: (4.6)

Corollary 4.3 ([60]). Let E � Œ0; 1� be a closed set of positive Fourier dimension. Then E

contains a nontrivial translation-invariant rational linear pattern, in the sense of Defini-
tion 4.1.

We compare Theorem 4.2 with earlier results of Körner [55,56]. For instance, in [56,

Lemma 2.3] he shows that if E is a subset of the unit circle T D R=Z with dimF .E/ > 2
.vC1/

,
then there exist integers m0; m1; : : : ; mv 2 Z, not all zero, and distinct points x0; x1; : : : ;

xv 2 E such that
m0x0 D m1x1 C � � � C mvxv (mod 1): (4.7)

A priori, one does not know the number of integers mj that are zero in the above equation,
the signs of the nonzero integers mj and whether the equation is translation-invariant. On
the other hand, the linear equations stemming from Fv.N/ and underlying Theorem 4.2 are
exact (not modulo integers), and the coefficients m0; : : : ; mv are all positive with the further
constraint m0 D m1 C � � � C mv . Körner [56, Theorem 2.4] also constructs a set E � T of
Fourier dimension 1=v with the following property: there does not exist any nonzero vector
.m0; : : : ; mv/ 2 ZvC1 for which the equation (4.7) admits a nontrivial solution consisting of
distinct points x0; x1; : : : ; xv 2 E. Körner’s construction, based on a Baire category argu-
ment, is nonexplicit. We ask the interested reader to compare Körner’s construction of an
avoiding set with the avoidance results in this paper (Theorems 4.5, 4.6, and 4.10). The
sets that we construct avoid more restricted classes of equations but are of larger Fourier
dimension.

As another point of contrast, we mention a construction of Keleti [53] that provides,
for any countable set T � .0; 1/, a subset E � Œ0; 1� of Hausdorff dimension 1 that does
not contain any triple of distinct points ¹x; y; zº such that tx C .1 � t /y D z for any t 2 T .
Choosing v D 2 and T D Q \ .0; 1/, the set of rationals in .0; 1/, we observe that dimF in
Theorem 4.2 cannot be replaced by dimH. Generalizing Keleti’s result, Mathé [63] proves
the existence of a rationally independent set in R of full Hausdorff dimension. We recall that
a set E � R is rationally independent if for any integer v � 2 and any choice of distinct
points x1; x2; : : : ; xv 2 E,

vX
j D1

aj xj D 0 with ¹a1; : : : ; avº � Z implies a1 D a2 D � � � D av D 0:

Theorem 4.2 implies that such sets cannot be Salem. Indeed, any set E � R of positive
Fourier dimension will support a probability measure � that satisfies (4.5) for some v 2 N
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and some ˇ > 1=.v C 1/. By Theorem 4.2, it will contain a rationally dependent .v C 1/-
tuple of distinct points that obeys a relation of the form (4.6).

Corollary 4.4 ([60]). There can be no rationally independent set in R of positive Fourier
dimension.

However, it is possible for a large Salem set to avoid nontrivial zeros of any finite
sub-collection of F , as our next result illustrates.

Theorem 4.5 ([60]). Let F be as in (4.3). Given any finite collection G � F , there exists a
set E � Œ0; 1� with dimF E D 1 such that E contains no nontrivial zero of any f 2 G .

Corollary 4.4 and Theorem 4.5 lead to a natural question: does there exist a full-
dimensional Salem set that avoids the nontrivial zeros of some countably infinite sub-
collection of F? We answer this question in the affirmative; see Theorem 4.10. At the
moment, we do not know how to characterize such subcollections.

Our next result attempts to strike a balance of a different sort between Theorems 4.2
and 4.5. While Theorem 4.2 dictates that a Salem set of large Fourier dimension must nec-
essarily contain a nontrivial zero .x0; x1; : : : ; xv/ of some function f 2 Fv and some v � 2,
it a priori does not specify the diameter or spread of such a solution,

diam.x0; : : : ; xv/ D max
®
jxi � xj jI i; j 2 ¹0; 1; : : : ; vº; i ¤ j

¯
;

which could in principle be very small; in other words, the nontrivial solution could be
“almost trivial.” We now show that it is possible to construct a full-dimensional Salem set
that prohibits, in a quantifiable way, nontrivial zeros from being almost trivial.

Theorem 4.6 ([60]). There exists a set E � Œ0; 1�, dimF E D 1 with the following property.
For every v � 2 and every f 2 Fv.N/ defined as in (4.4), there exists � > 0 such that
whenever there exists a .v C 1/-tuple .x0; x1; : : : ; xv/ 2 EvC1 with

diam.x0; x1; : : : ; xv/ < � and f .x0; x1; : : : ; xv/ D 0; (4.8)

we have that x0 D x1 D � � � D xv . In particular, a nontrivial zero of f in E, if it exists, would
obey diam.x0; : : : ; xv/ � �.

In addition, the constant � D �N can be chosen uniformly for all f 2 F whose
coefficients are bounded by N .

4.2.2. General linear patterns
The statements of Theorems 4.2 and 4.5 lead to an interesting possibility. Let

Fv.RC/ denote the class of translation-invariant linear functions in .v C 1/ variables with
real positive coefficients. Then Fv.RC/ can be identified with the .v � 1/-dimensional set

Tv D
®
t 2 .0; 1/v�1

W t1 C t2 C � � � C tv�1 < 1
¯
; (4.9)
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which is a half-space of Rv�1 restricted to the open unit cube, via the map

t D .t1; : : : ; tv�1/ 2 T 7! ft 2 Fv.RC/; where

ft.x/ D x0 � .t1x1 C t2x2 C � � � C tvxv/; tv D 1 �

v�1X
iD1

ti :

Under this map, the class Fv.N/ is identified with the positive rationals in Tv , and hence is
of Hausdorff dimension zero. On the other hand,Fv.RC/ is of positive .v � 1/-dimensional
Lebesguemeasure. One is then led to ask:Given a collectionF � Fv.RC/ that is of positive
Lebesgue measure or large Hausdorff dimension under this identification, does there exist
a set E � R of large Fourier dimension that avoids all nontrivial zeros of F? In our next
two theorems, we answer this question in the affirmative, in the special case of trivariate
equations, where v D 2 and F can be viewed as a subset of .0; 1/. In Theorem 4.7, the
class F is identified with a union of intervals, in Theorem 4.8 with collections of badly
approximable numbers.

Theorem 4.7 ([60]). Let us fix any p 2 N with p � 2 and any ˛ 2 .0; 1/. Then there exist
some � D �.p; ˛/ > 0 and E � Œ0; 1� with dimF .E/ � ˛ such that E contains no nontrivial
solution of

tx C .1 � t /y D z for all t 2

p�1[
qD1

�
q

p
� �;

q

p
C �

�
:

For fixed constants 0 < � , c � 1, let us define the collection Ec;� of badly approx-
imable numbers as follows:

Ec;� WD

²
t 2 .0;1/ W

ˇ̌̌̌
t �

q

p

ˇ̌̌̌
>

c

p1C�
; for all

q

p
2 Q;p 2 N; q 2 Z;gcd.p;q/ D 1

³
: (4.10)

Sets of this type have applications in number theory, and their sizes have been widely studied.
For example, if � D 1, then the Hausdorff dimension of Ec;� is of the order of 1 � Oc.1/ as
c ! 0. We refer the reader to [84, Theorem 1.3] and the bibliography in this article for a survey
of such results.

Theorem 4.8 ([60]). For every "0 2 .0; 1
2
/, there exists a set E � Œ0; 1� with dimF .E/ D

1
1C�

such that E contains no nontrivial solution of

tx C .1 � t /y D z; for any t 2 Ec;� \ ."0; 1 � "0/:

The combined strategies of Theorems 4.7 and 4.8 imply the following corollary.

Corollary 4.9 ([60]). Let us fix 0 < � , c � 1, "0 2 .0; 1
2
/, and p 2 N n ¹1º. Then for all

sufficiently large M 2 N and � D
1

2pM
, there exists E � Œ0; 1� with dimF E D

1
1C�

such
that E contains no nontrivial solution of

tx C .1 � t /y D z; for any t 2
�
C \ ."0; 1 � "0/

�
[

"
p�1[
qD1

�
q

p
� �;

q

p
C �

�#
:

The sets of forbidden coefficients t in Theorems 4.7 and 4.8 are large, as a con-
sequence of which the avoiding sets we obtain are not of full dimension. Is it possible to
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construct a full-dimensional Salem set for which the set of forbidden coefficients is still
quantifiably large? Our next result provides an affirmative answer to this question, while
also addressing the question posed after Theorem 4.5.

Theorem 4.10 ([60]). There exists an infinite set C � .0; 1/ and E � Œ0; 1� with dimF E D 1

such that E contains no nontrivial solution of

tx C .1 � t /y D z for any t 2 C: (4.11)

The set C contains infinitely many rationals and uncountably many irrationals.

It is natural to ask whether there exists a version of Shmerkin’s theorem [80] or
Theorem 4.5 for a finite but arbitrary collection of equations in Fv.RC/; for instance,
does there exist a full-dimensional Salem set E that contains no nontrivial solution of
tx C .1 � t /y D z, for any prespecified irrational t 2 .0; 1/? We are currently unable to
provide an answer to this question. Also, the proof techniques of this paper are not immedi-
ately generalizable to other types of translation invariant equations, for example, when

mX
iD1

si xi D

nX
j D1

tj yj with
mX

iD1

si D

nX
j D1

tj D 1; 0 < si ; tj < 1 and m; n � 2;

or when the equation is nonlinear, say x3 � x1 D .x2 � x1/2. We are pursuing these direc-
tions in ongoing work.

4.3. A Roth-type result for dense Euclidean sets
A main objective of Ramsey theory is the study of geometric configurations in

large, but otherwise arbitrary sets. A typical problem in this area reads as follows: given
a set S , a family F of subsets of S and a positive integer r , is it true that any r-coloring of
S yields some monochromatic configuration from F ? More precisely, for any partition of
S D S1 [ � � � [ Sr into r disjoint subsets, does there exist i 2 ¹1; 2; : : : ; rº and F 2 F

such that F � Si? In discrete (respectively Euclidean) Ramsey theory, S is generally Zd

(respectively Rd ), and sets in F are geometric in nature. For example, if X is a fixed finite
subset of Rd , such as a collection of equally spaced collinear points or vertices of an isosce-
les right triangle, then F D F .X/ could be the collection of all isometric copies or all
homothetic copies of X in S . A coloring theorem refers to a choice of S and F for which
the answer to the above-mentioned question is yes. Such theorems are often consequences
of sharper, more quantitative statements known as density theorems. A fundamental result
with S D N D ¹1; 2; : : : º is Szemerédi’s theorem [93] (already mentioned in Section 4.1),
which states that if E � N has positive upper density, i.e.,

lim sup
N !1

jE \ ¹1; : : : ; N ºj

N
> 0;

then E contains a k-term arithmetic progression for every k. This in particular implies van
der Waerden’s theorem [34, 97], which asserts that given r � 1, any r-coloring of N must
produce a k-term monochromatic progression, i.e., a homothetic copy of ¹1; 2; : : : ; kº. This
subsection is devoted to joint work with Brian Cook and Akos Magyar [22], where we are
concerned with certain density theorems in Ramsey theory over Rd .
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4.3.1. Motivation of the problem
A basic and representative result of the type we are interested in states that, with

d � 2, a set A � Rd of positive upper Banach density contains all large distances, i.e., for
every sufficiently large � � �0.A/ there are points x; x C y 2 A such that kyk2 D �. Recall
that the positive upper Banach density of A is defined as

Nı.A/ WD lim
N !1

sup
x2Rd

jA \ .x C Œ0; N �d /j

N d
:

The quoted result was obtained independently, along with various generalizations, by a
number of authors, for example, Furstenberg, Katznelson, and Weiss [31], Falconer and
Marstrand [29], and Bourgain [10].

To paraphrase, the above result shows that for any two-point configuration X 2 Rd

we are guaranteed the existence, up to congruence, of all sufficiently large dilates ofX inside
of A. The term configuration simply refers to a finite point set. From this point of view, it
is a natural question to ask is whether similar statements exist that involve configurations
with a greater number of points. If one looks for some (rather than every) sufficiently large
dilate of a given configuration, such results are well known in the discrete regime of the
integer lattice, under suitable assumptions of largeness on the underlying set. These results
can often be translated to existence of configurations in the Euclidean setting as well. For
instance, Roth’s theorem [71] in the integers states that a subset ofZ of positive upper density
contains a three-term arithmetic progression ¹x; x C y; x C 2yº, and it easily implies that a
measurable setA � R of positive upper density contains a three-term progression whose gap
size can be arbitrarily large. Results ensuring all sufficiently large dilates of a configuration
in a set of positive Banach density are stronger, and their proofs typically more difficult.
Bourgain [10] shows that if X D ¹x1; : : : ; xkº is any nondegenerate k-point simplex in Rd ,
d � k � 2 (i.e., if ¹x2 � x1; : : : ;xk � x1º spans a .k � 1/-dimensional space), then any subset
of Rd of positive upper Banach density contains a congruent copy of �X for all sufficiently
large �.

On the other hand, a simple example given in [10] shows that there is a set A � Rd

in any dimension d � 1, such that the gap lengths of all 3-progressions in A do not contain
all sufficiently large numbers. In other words, the result of [10] is false for the degenerate
configuration X D ¹0; e1; 2e1º, where e1 is the canonical unit vector in the x1-direction.
More precisely, the counterexample provided in [10] is the set A of points x 2 Rd such that
jkxk2

2 � mj �
1

10
for some m 2 N. The parallelogram identity

2kyk
2
2 D kxk

2
2 C kx C 2yk

2
2 � 2kx C yk

2
2

then dictates that jkyk2
2 �

`
2
j �

4
10

(for some ` 2 N) for any progression ¹x; x C y;

x C 2yº � A. Thus the squares of the gap lengths are restricted to lie close to the half-
integers, and therefore cannot realize all sufficiently large numbers.

The counterexample above has an interesting connection with a result in Euclidean
Ramsey theory due to Erdős et al. [26]. Let us recall [33] that a finite point set X is said to be
Ramsey if for every r � 1, there exists d D d.X; r/ such that any r-coloring ofRd contains a
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congruent copy of X . A result in [26] states that every Ramsey configuration X is spherical,
i.e., the points in X lie on an Euclidean sphere. (The converse statement is currently an open
conjecture due to Graham [33]). Since a set of three collinear points is nonspherical, it is
natural to ask whether Bourgain-type counterexamples exist for any nonspherical X . This
question was posed by Furstenberg and answered in the affirmative by Graham [33].

Theorem 4.11 (Graham [33]). Let X be a finite nonspherical set. Then for any d � 2, there
exist a set A � Rd with Nı.A/ > 0 and a set ƒ � R with ı.ƒ/ > 0 so that A contains no
congruent copy of �X for any � 2 ƒ.

4.3.2. Main result
It is interesting to observe that while Bourgain’s counterexample prevents an exis-

tence theorem for three term arithmetic progressions of all sufficiently large Euclidean gaps,
it does not exclude the validity of such a result when the gaps are measured using some other
metric on Rd that does not obey the parallelogram law. In [22] we prove that such results do
indeed exist for the lp metrics kykp WD .

Pd
iD1 jyi j

p/1=p for all 1 < p < 1, p ¤ 2. In this
sense, a counterexample as described above is more the exception rather than the rule.

Variations of our arguments also work for other metrics given by specific classes of
positive homogeneous polynomials of degree at least 4 and those generated by symmetric
convex bodies with special structure. Results of the first type were obtained in the finite field
setting by Cook and Magyar [21]. Also, the arguments here can be applied to obtain similar
results for certain other degenerate point configurations.

Theorem 4.12 ([22]). Let 1 < p < 1, p ¤ 2. Then there exists a constant dp � 2 such that
for d � dp the following holds. Any measurable setA � Rd of positive upper Banach density
contains a three-term arithmetic progression ¹x; x C y; x C 2yº � A with gap kykp D �

for all sufficiently large � � �.A/.

The result is sharp in the range of p. Easy variants of the example in [10] show that
Theorem 4.12 and in fact even the two-point results of [10,29,31] cannot be true for p D 1 and
p D 1. Indeed, if A D Zd C "0Œ�1; 1�d for some small "0 > 0, then, on the one hand, A is
of positive upper Banach density. On the other hand, if x; x C y 2 A for some y ¤ 0, then
both kyk1 and kyk1 are restricted to lie within distance O."0/ from some positive integer.

Indeed, counterexamples similar to [10] and the above can be constructed for norms
given by a symmetric, convex body, a nontrivial part of whose boundary is either flat or coin-
cides with an l2-sphere. An appropriate formulation of a positive result for a general norm,
and indeed the measurement of failure of the parallelogram law for such norms, remains an
interesting open question.

We do not know whether the p-dependence of the dimensional threshold dp stated
in the theorem is an artifact of our proof. In our analysis, dp grows without bound as p % 1,
while other implicit constants involved in the proof blow up near p D 1 and p D 2. It would
be of interest to determine whether Theorem 4.12 holds for all d � 2 for the specified values
of p.
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Since three distinct collinear points cannot lie on an lp-sphere for any p 2 .1; 1/,
Theorem 4.12 shows that a result of the type considered by Graham in [33] is in general false
for an lp-sphere if p ¤ 1; 2; 1. Thus any connection between Ramsey-like properties and
the notion of sphericality appears to be a purely l2 phenomenon.
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