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Abstract

We survey the history and recent developments around two decades-old problems that con-
tinue to attract a great deal of interest: the slicing �2, �3 conjecture of H. Furstenberg in
ergodic theory, and the distance set problem in geometric measure theory introduced by
K. Falconer. We discuss some of the ideas behind our solution of Furstenberg’s slicing
conjecture, and recent progress in Falconer’s problem. While these two problems are on
the surface rather different, we emphasize some common themes in our approach: ana-
lyzing fractals through a combinatorial description in terms of “branching numbers,” and
viewing the problems through a “multiscale projection” lens.
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1. Introduction

In this article we survey recent progress on the following two old conjectures. Haus-
dorff dimension is denoted dimH.

Conjecture 1.1 (Furstenberg’s slicing conjecture, [18]). Let X; Y � Œ0; 1/ be closed and
invariant under Ta; Tb respectively, where Tm.x/ D mx mod 1 is multiplication by m on
the circle. Assume that log a= log b is irrational. Then

dimH
�
.X � Y / \ `

�
� max

�
dimH.X/ C dimH.Y / � 1; 0

�
for all lines ` that are neither vertical nor horizontal.

Conjecture 1.2 (Falconer’s distance set problem, originating in [16]). Let X � Rd , d � 2

be a Borel set with dimH.X/ � d=2. Let �.X/ D ¹jx � yj W x; y 2 Xº. Then

dimH
�
�.X/

�
D 1:

We discuss the history and motivation behind these conjectures in Sections 3 and 4,
respectively. Conjecture 1.1 was resolved by the first author [48] and, simultaneously, inde-
pendently, and with a strikingly different proof, by M. Wu [57]. Many related problems remain
open. Conjecture 1.2 is open in all dimensions.

At first sight, Conjectures 1.1 and 1.2 appear to be rather different (other than both
involving Hausdorff dimension). A key difference is that Furstenberg’s conjecture deals with
sets with a rigid arithmetic structure, while Falconer’s conjecture involves arbitrary Borel
sets. A more subtle but also crucial distinction is that Furstenberg’s conjecture is linear in
nature (it concerns linear slices of X � Y ), while Falconer’s conjecture deals with Euclidean
distances and curvature plays a key rôle in all partial progress towards it.

Nevertheless, we will see that there are some similar ideas in our own approach to
these two problems. We will recast both in terms of projections. To handle these projections,
we use in both cases a combinatorial approach to the study of fractals through their branching
structure. Bourgain’s celebrated discretized projection theorem [6,7] (or its proof) makes an
appearance in our work on both conjectures.

In Section 2, we discuss a key uniformization lemma, and Bourgain’s discretized
sumset, sum-product, and projection theorems. In Section 3, we put Furstenberg’s slicing
conjecture into context and give an impressionistic account of our solution. In Section 4,
we discuss Falconer’s problem and some of our recent progress towards it (obtained partly
in collaboration with T. Keleti and with H. Wang). Along the way, we will touch upon the
closely related and vast field of projection theory in geometric measure theory.

A word on notation. Given two positive quantities A; B , the notation A . B means
that A � CB for some constant C > 0, while A .x B means that A � C.x/B , where again
C.x/ > 0. We write A & B for B . A and A � B for A . B . A, and likewise with
subindices. We denote positive constants whose value is not too important by c; C and as
before indicate their dependencies with subindices.
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2. A glimpse of Bourgain’s discretized geometry

2.1. Uniform sets and uniformization
Even though the statements of Conjectures 1.1 and 1.2 involve Hausdorff dimension,

most approaches discretize the problem at a small scale ı. Given a bounded set X � Rd ,
let jX jı be the number of ı-mesh cubes

Qd
iD1Œki ı; .ki C 1/ı/ intersecting X . If X has the

property that jX jı � ı�s for arbitrarily small values of ı, then dimH.X/ � s. If, on the
other hand, jX jı � ı�s for all small ı, it does not quite follow that dimH.X/ � s—what is
technically true is that the lower Minkowski dimension of X is at least s. For the sake of
simplicity, we will ignore this distinction, and consider the growth rate of jX jı as a good
proxy for the (Hausdorff) dimension of X . In this discussion, there is no loss of generality
in restricting ı to dyadic numbers 2�m or even .2T /-adic numbers 2�T ` once the integer T

has been fixed.
Let Dı denote the family of ı-mesh cubes in Rd . If X � Rd is a union of cubes in

D2�m , we say that X is a 2�m-set. For X � Rd , we denote the set of cubes in Dı intersecting
X by Dı.X/.

Let X � Œ0; 1/d . Given a T 2 N (which we consider fixed) and ` � 1, we can
view .D2�Tj .X//`�1

j D0 as a tree, with Œ0; 1/d as the root and descendance given by inclusion.
This tree provides a combinatorial description of X at resolution 2�T `. In general, the tree
may be very irregular, with different vertices having different numbers of offspring. In many
situations, the set X is easier to study if one knows that the tree is spherically symmetric,
meaning that the number of offspring is constant at each level of the tree (but can still change
from level to level).

Definition 2.1. A set X � Œ0; 1/d is .T; .Nj /`�1
j D0/-uniform if

Q 2 D2�jT .X/ H)
ˇ̌
D2�.j C1/T .X \ Q/

ˇ̌
D Nj ; j D 0; 1; : : : ; ` � 1:

If X is .T; .Nj /`�1
j D0/-uniform for some .Nj /`�1

j D0, then we also say that X is .T I `/-uniform.

We emphasize that what is fixed at each scale is the number of offspring; the partic-
ular set of Nj subcubes is still allowed to depend on the parent cube of level j . The following
uniformization lemma says that by taking T large, and at the price of replacing X by a large
subset, we may always assume that X is .T I `/-uniform.

Lemma 2.2. Fix T;` 2 N and write m D T `. Let X � Œ0;1/d be a 2�m-set. Then X contains
a .T I `/-uniform subset X 0 withˇ̌

X 0
ˇ̌

� .2T /�`
jX j D 2.� log.2T /=T /m

jX j:

Proof. We begin from the bottom of the tree, setting X .`/ WD X . Once X .j C1/ is constructed,
we let

X .j;k/
D

[®
X .j C1/

\ Q W
ˇ̌
Q \ X .j C1/

ˇ̌
2�.j C1/T 2

�
2k

C 1; 2kC1
�¯

; k D 0; : : : ; T � 1:

Since k takes T values, we can pick k D kj such that jX .j;k/j � jX .j C1/j=T . By remov-
ing at most half of the cubes in D2�.j C1/T .X .j C1// from each of the sets Q \ X .j C1/
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making up X .j;k/, we obtain a set X .j / � X .j C1/ such that jX .j /j � jX .j C1/j=.2T / and
jQ \ X .j /j2�.j C1/T D 2k for all Q 2 DjT .X .j //. We see inductively that jQ \ X .j /j2�.j 0C1/T

is constant over all Q 2 Dj 0T .X .j //, for all j 0 D j; j C 1; : : : ; ` � 1. The lemma follows
by taking X 0 D X .0/.

We make some remarks on this statement and its proof. Firstly, this is just the sim-
plest example of a flexible and powerful multiscale pigeonholing argument. For example,
instead of (or additionally to) uniformizing the branching numbers Nj , we can pigeonhole
any property of Q \ X , Q 2 DTj .X/, that depends only on the behavior at scale 2�T .j C1/

and can be partitioned into a number CT of classes, with log.CT /=T ! 0 as T ! 1. Sec-
ondly, these ideas can also be used to “uniformize” a measure �—an additional first step in
this case is to pigeonhole a “�-large” 2�T `-set X such that the density of �jX is roughly con-
stant; we can then invoke the argument for sets. Here “�-large” could simply mean that �.X/

is large, but sometimes it is convenient to look at other quantities like k�jX kLq . Lastly, we
can iterate such a uniformization lemma to decompose X (or �) into a union of finitely many
“large” uniform subsets Xi , plus a “small” remaining set Xbad; see, e.g., [33, Corollary 3.5].

2.2. Bourgain’s sumset theorem
Let X � Œ0; 1/ be a 2�m-set for some large m. We are interested in understanding

how the size of the arithmetic sum X C X D ¹x C y W x; y 2 Xº relates to the structure of
X . If X is an interval, then jX C X jı � jX jı . There are many “fractal” sets which satisfy
jX C X jı � 2"mjX jı with " > 0 arbitrarily small: fix a large T 2 N, an even larger ` � T ,
and J � ¹0; 1; : : : ; ` � 1º. Let XJ be the set of points in Œ0; 1/ whose base 2T -expansion has
a digit zero at position j C 1 for j 2 J , but is otherwise arbitrary. Then XJ C XJ has the
same structure, except that there could be carries; however, because T is large, these carries
will not substantially increase the size of XJ C XJ . More precisely,

jXJ C XJ j � 2`�jJ j
jXJ j � 2"m

jXJ j; where " D 1=T;

where as usual we write m D T `. Note that even though XJ may not look macroscopically
like an interval, there is a sequence of scales at which it looks like a union of intervals of the
same length, and the left endpoints of these intervals form an arithmetic progression.

The set XJ is .T I .Nj /`�1
j D0/-uniform, with Nj D 1 if j 2 J , and Nj D 2T otherwise.

Bourgain’s sumset theorem, which is implicit in [7], and stated in this form in [48, Corollary

3.10], asserts that having a small sumset forces this kind of branching structure:

Theorem 2.3. Given ı > 0 there are " > 0, T 2 N, such that the following holds for all
sufficiently large ` 2 N.

Let m D `T . Suppose X is a 2�m-set with jX C X j2�m � 2"mjX j2�m . Then X

contains a .T; .Nj /`�1
j D0/-uniform subset X 0 such that:

(i) jX 0j2�m � 2�ımjX j2�m ,

(ii) for each j , either Nj D 1, or Nj � 2.1�ı/T .
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In other words, up to passing to a large subset, 2�m-sets with sub-exponential dou-
bling locally look, depending on the scale, like an interval or a point. This is an example of
an “inverse theorem” in (discretized) additive combinatorics, in which from a purely combi-
natorial fact (small doubling) one deduces strong structural information. We will encounter
another (related) inverse theorem in Section 3.6. We emphasize that Theorem 2.3 does not
characterize sets with small doubling—even if X is uniform with either full or no branching
at each scale, if the locations of the (single) offspring cubes at the scales wit no branching
do not have any arithmetic structure, it may well happen that jX C X j2�m is far larger than
jX j2�m .

2.3. Bourgain’s discretized sum-product and projection theorems
A heuristic principle of great reach asserts that if X is a subset of some ring, then

either the sumset X C X or the product set X � X must be substantially larger than X , unless
X itself looks like a subring. For example, it is a longstanding conjecture of Erdős and Sze-
merédi that if X � Z, then max¹jX C X j; jX � X jº &" jX j2�"—in other words, either the
sumset or the product set must be as large as possible. See [47] for the best bound at the time
of writing, and further discussion.

When dealing with products, it is more convenient to work with subsets of Œ1; 2/

rather than Œ0; 1/. Again, if X D Œa; b/ � Œ1; 2/, then both jX C X jı and jX � X jı are com-
parable to jX jı . Heuristically, one would expect that if X � Œ1; 2/ does not look roughly like
an interval at scales in Œı; 1�, then either jX C X jı or jX � X jı is substantially larger than
jX jı . This is the content of Bourgain’s discretized sum-product theorem, which confirmed
a conjecture of Katz and Tao [30]:

Theorem 2.4 ([6,7,9]). Given 0 < ˛ < 1 and ˇ > 0 there are �.˛; ˇ/ > 0, � D �.˛; ˇ/ > 0

such that the following holds for ı � ı0.˛; ˇ/. Let X � Œ1; 2� satisfy jX jı � ı�˛ andˇ̌
X \ Œt; t C r�

ˇ̌
ı

� ı��rˇ
jX jı ; t 2 Œ1; 2�; r 2 Œı; 1�: (2.1)

Then
max

®
jX C X jı ; jX � X jı

¯
� ı�˛��:

Hypothesis (2.1) is known as a nonconcentration assumption, and it quantifies the
fact that X “does not look like an interval.” Note that because of the factor ı�� , it is vacuous
at scales close to 1 or ı. Bourgain [6] first proved this theorem under the stronger assumption
that (2.1) holds with ˛ in place of ˇ (so that the nonconcentration exponent matches the size
of the set). Bourgain and Gamburd [9] then proved it as stated, and used it to establish a spec-
tral gap for subgroups of SU.2/ satisfying a diophantine condition. Under the assumption
ˇ D ˛, Guth, Katz, and Zahl [24] recently found a simpler proof with an explicit value: any
� < ˛.1�˛/

4.7C3˛/
works (with � depending also on �).

In [7], Bourgain proved a discretized projection theorem that can be seen as a far
more flexible form of Theorem 2.4. Let …x.a; b/ D a C bx.

Theorem 2.5 ([7, Theorem 2]). Given 0 < ˛ < 2 and ˇ > 0, there are �.˛; ˇ/ > 0 and
� D �.˛; ˇ/ > 0 such that the following holds for ı � ı0.˛; ˇ/. Let E � Œ0; 1�2 satisfy
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jEjı � ı�˛ and ˇ̌
E \ B.x; r/

ˇ̌
ı

� ı��rˇ
jEjı ; x 2 Œ0; 1�2; r 2 Œı; 1�:

Let X � Œ1; 2� be a set satisfying (2.1).
Then there is a set X0 � X with jX n X0jı � ı� jX jı , such that if x 2 X0 thenˇ̌

…x.E 0/
ˇ̌
ı

� ı�˛=2�� for all E 0
� E;

ˇ̌
E 0
ˇ̌
ı

� ı�
jEjı :

This is not quite the form the theorem was stated in [7] but is formally equivalent;
see W. He’s article [25] for this formulation and an extension of Theorem 2.5 to projections
from Rd

! Rk . Taking E D X � X with jX jı D ı� , we obtain in particular jX C X �

X jı & ı��� , which is close to Theorem 2.4. One can in fact recover Theorem 2.4 from
Theorem 2.5, see [7, Proof of Theorem 1].

The proof of Theorem 2.5 relies on Theorem 2.3. An intermediate step in the proof
is showing that if Y � Œ1; 2/ satisfies the nonconcentration assumption (2.1), then jY C xY jı

is large for some x 2 X . If this does not hold, then it is easy to see that jY C Y jı is also
small. The structural information on Y provided by Theorem 2.3 can then be used (very
nontrivially!) to show that in fact jY C xY jı must be large for some x 2 X .

Theorem 2.5 has striking applications, for example, to equidistribution of linear
random walks in the torus [8] and bounds for the dimensions of Kakeya sets in R3

[31].
We discuss a nonlinear version of the theorem and applications to the Falconer distance set
problem in Section 4.2. For later reference, we conclude this discussion with a Hausdorff
dimension version of Theorem 2.5. We note however that it is the discretized version that
gets used in the applications.

Theorem 2.6 ([7, Theorem 4]). Given 0 < ˛ < 2 and ˇ > 0, there is � D �.˛; ˇ/ > 0 such
that for any Borel set E � R2 with dimH.E/ � ˛,

dimH

²
x 2 R W dimH.…xE/ <

˛

2
C �

³
� ˇ:

3. Furstenberg’s slicing problem

3.1. Furstenberg’s principle and rigidity result
Recall that integers a; b 2 N are called multiplicatively dependent (denoted a � b)

if log a= log b 2 Q or, equivalently, a and b are powers of a common integer. Otherwise,
we say that a and b are multiplicatively independent, and denote it by a œ b. If a � b, say
a D ma0 , b D mb0 , then there is a straightforward relationship between the expansion of a
real number x to bases a and b: they are both essentially the expansion to base m, looking
at it in blocks of a0 and b0 digits at a time. In the 1960s, H. Furstenberg proposed a series of
conjectures which, in different ways, aim to capture the heuristic principle that, on the other
hand, expansions in multiplicatively independent bases have no common structure.

Recall that if a 2 N�2, we let Ta W Œ0; 1/ ! Œ0; 1/, x 7! ax mod 1 denote multipli-
cation by a on the circle. A set X � Œ0; 1/ is Ta-invariant if TaX � X . Since the map Ta

shifts the a-ary expansion of a real number, a proper, closed, infinite Ta-invariant subset of
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Œ0; 1/ can be thought of as being structured to base a. (The full circle Œ0; 1/ and finite rational
orbits ¹j=mºm�1

j D1 are trivially invariant under all Ta.) In 1967, Furstenberg [17] proved that
no proper infinite closed subset of the circle can be invariant under Ta and Tb if a œ b. This
was the first concrete verification of the above heuristic principle, and gave birth to the vast
and ongoing area of rigidity in ergodic theory. Furstenberg’s �2, �3 problem asks whether
the natural analog of this result also holds for measures, and is one of the most fundamental
open questions in ergodic theory and beyond. He also proposed a number of other conjectures
involving Ta-invariant sets, that we discuss next.

3.2. Furstenberg’s sumset, slice, and orbit conjectures
In this section a;b � 2 are multiplicatively independent, and X;Y � Œ0;1/ are closed

and invariant under Ta; Tb . According to Furstenberg’s principle, such sets X;Y should have
no common structure. Furstenberg’s rigidity result established a rough form of this: X and
Y cannot be identical, unless trivial. Furstenberg conjectured that X and Y should be not
just distinct but “geometrically independent,” obeying dimensional relationships analogous
to those of linear planes in general position. Since these are fractal sets (Ta-invariance can be
seen as a kind of self-similarity, and it is well known that dimH.X/ < 1 unless X D Œ0; 1/),
it is natural to use Hausdorff dimension.

Furstenberg’s sumset conjecture (which originated in the 1960s but was never stated
in print) asserts that

dimH.X C Y / D min
�
dimH.X/ C dimH.Y /; 1

�
;

while Furstenberg’s slice or intersection conjecture, stated as Conjecture 1 in [18], states that

dimH.X \ Y / � max
�
dimH.X/ C dimH.Y / � 1; 0

�
:

As pointed out in [18], this latter conjecture easily implies that X ¤ Y (unless trivial), recov-
ering the rigidity result. While stopping short of proving the conjecture, Furstenberg in [18]

introduced some ideas that are at the heart of modern progress in the area, including what are
now known as CP-chains, a class of Markov chains where the transitions consist in “zooming
in” dyadically towards typical points for the measures (see [19] for an elegant formulation of
the theory). Using CP-chains, he showed that if dimH.X \ Y / >  , then for almost all reals
u there is a line `u with slope u such that dimH..X � Y / \ `u/ >  ; moreover, there is
an ergodic dynamical system on (measures supported on) linear fibers of X � Y of dimen-
sion >  .

After partial progress in [44], the sumset conjecture was fully resolved by M. Hoch-
man and the author in [29], using CP-chains as a key tool. In this work we also introduced
the method of local entropy averages to bound from below the entropy and dimension of
projected images; we will come back to this in Section 4.4. A simple, purely combinatorial
proof was recently obtained by D. Glasscock, J. Moreira, and F. Richter [21].

The slice conjecture was resolved around 10 years later, independently by the author
[48] and M. Wu [57]. Wu’s proof is also based on CP-chains and the ideas from [18], but
introduces a key new ergodic-theoretic insight. A simple conceptual proof, also based on the
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CP-chains from [18], was recently obtained by T. Austin [4]. By adapting Wu’s method, H. Yu
[58] gave a more elementary and quantitative proof in the case dimH.X/ C dimH.Y / < 1.
Our proof follows a different approach, based on additive combinatorics and multifractal
analysis—we will describe some of the main ideas in the rest of this section. All the proofs
yield also Conjecture 1.1, which was also implicitly stated in [18]. They all also imply the
sumset conjecture. Applications of the slice conjecture to number-theoretic problems involv-
ing integers with restricted digit expansions were given in [10,20].

A further conjecture of Furstenberg [18, Conjecture 2], in the authors’ view among
the hardest and most beautiful in mathematics, asserts that for every irrational x 2 Œ0; 1/, if
Om;x D ¹T n

mxºn2N , is the closure of the orbit of x under Tm, then

dimH.Oa;x/ C dimH.Ob;x/ � 1:

This fits into the theme of lack of common structure for expansions to bases a; b: it says that
such expansions of an irrational number cannot simultaneously have “low complexity,” as
measured by the dimension of the orbit closure. In particular, if the orbit closure under Ta has
“minimal complexity” (dimension 0), then the Tb-orbit must be dense, meaning that every
possible b-ary block appears in the base b expansion of x. This conjecture is wide open;
even proving that either dimH.Oa;x/ or dimH.Ob;x/ has positive dimension seems to require
completely new ideas. However, it is a formal consequence of the slicing conjecture that the
set of x for which the orbit conjecture fails has Hausdorff dimension zero. Unfortunately, this
says nothing about points x for which dimH.Oa;x/ D 0, since all such points form a zero-
dimensional set. Recently, B. Adamczewski and C. Faverjon [1] showed that an irrational
number cannot be automatic in bases a and b; being automatic is a computational notion of
“simplicity,” and so this can be seen as a first verification that an irrational number cannot
be “too simple” in two multiplicatively independent bases.

3.3. Lq dimensions, self-similarity, and the dimension of slices
Let P .X/ denote the family of Borel probability measures on a metric space X .

Given � 2 P .Rd /, the Lq dimensions ¹D�.q/ºq>1 are a family of indices measuring the
degree of singularity of � through its q-moments:

D�.q/ D D.�; q/ D lim inf
ı!0

log
P

Q2Dı
�.Q/q

.q � 1/ log ı
:

(It is also possible to define D�.q/ for q < 1, but we do not need this here.) The normalizing
factor 1=.q � 1/ ensures that D�.q/ 2 Œ0; d �. If � has an Lq density, then D�.q/ D 1 but
D�.q/ < 1 is possible even for other absolutely continuous measures. For any fixed �, the
function D� is nonincreasing, so it makes sense to define

D�.1/ D D.�; 1/ D lim
q!1

D�.q/:

It is not hard to show that D�.1/ is the supremum of the s such that �.B.x; r// � C rs for
some constant C D C.�; s/ and all closed balls B.x; r/. Such s are also called Frostman
exponents of �. The function ��.q/ D .q � 1/D�.q/ is known as the Lq-spectrum of �. It
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is always concave. In particular, both �� and D� are differentiable outside of a countable set
of q. See [34, Section 3] for proofs of these facts and further background on the Lq spectrum
and dimension.

We are interested in upper bounds for the dimension of slices. The next very
simple but key lemma relates this problem to lower bounds on D�.1/ for suitable mea-
sures �. Given a map � W X ! Y and � 2 P .X/, we denote the push-forward measure by
�� D � ı ��1.

Lemma 3.1. Suppose � W Rd
! R is a Lipschitz map. Let � 2 P .Œ0; 1�d / be such that

�.B.x; r// � cr˛ for all x 2 X WD supp.�/, r 2 .0; 1�. If D.��; 1/ � ˇ, then

dimH
�
X \ ��1.y/

�
� ˛ � ˇ for all y 2 R :

Proof. Fix a small " > 0 and y 2 R. Let .xj /M
j D1 be a maximal "-separated subset of X \

��1.y/, and let A D
SM

j D1 B.xj ; "=2/. Since the balls are disjoint, �.A/ � cM."=2/˛ . On
the other hand, �A is contained in an interval of size . " and hence, for any � > 0,

�.A/ � .��/.�A/ .� "ˇ��:

Comparing the bounds, M .c;� "ˇ�˛�� . Now X \ ��1.y/ �
SM

j D1 B.xj ; "/ by the max-
imality of .xj /, and hence X \ ��1.y/ can be covered by .c;� "ˇ�˛�� balls of radius ".
Letting � ! 0, we get the claim.

In order to connect this lemma to the slice conjecture, our next step is to look at
measures defined on invariant sets. A set X � R is self-similar if there are finitely many
contracting similarity transformations fi .x/ D ri x C ti , i 2 I with 0 < ri < 1, such that
X D

S
i2I fi .X/. The family .fi /i2I is called an iterated function system (IFS) and X is its

attractor. For simplicity, from now we assume that we are in the homogeneous case, meaning
that all the contractions ri are equal.

A closed Ta-invariant set X needs not be self-similar in the sense above. However,
it is easy to see [48, p. 378] that for every " > 0 there is a set X 0 � X with dimH.X 0/ <

dimH.X/ C ", which is the attractor of an IFS of the form ¹a�m.x C j /ºj 2J , where m and
the “digit set” J � ¹0; : : : ; am � 1º depend on ". Hence, in order to establish Conjecture 1.1,
we may assume that X; Y are self-similar of this special form. Since the assumption a œ b

is not affected by taking powers, we assume that m D 1 for simplicity.
Given a homogeneous IFS I D ¹rx C ti ºi2I , let � D �I D

1
jI j

P
i2I ıti , where ıt

denotes a unit mass at t , and define the (natural) self-similar measure

� D �I D �
1
nD0Srn�;

where Su D ux scales by u. In other words, � is the push-forward of
Q1

nD0 � under
.xn/1

nD0 7!
P1

nD0 xnrn. Then � is supported on the attractor X , and it easy to check that
for ˛ D log jI j= log.1=r/,

�
�
B.x; r/

�
� cr˛; x 2 X; r 2 .0; 1�:

The parameter ˛ is the similarity dimension of the IFS I; if the pieces .fi .X//i2I are disjoint,
then it equals dimH.X/, but it is a well known open problem to understand when equality
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holds in the overlapping situation; see [26] and P. Varjú’s survey in this volume for progress
on this problem.

Fix closed Ta; Tb-invariant self-similar sets X; Y as above, and let �X ; �Y be the
corresponding self-similar measures, defined in terms of atomic measures �X ; �Y . Let
˛ D dimH.X/, ˇ D dimH.Y /. As we have seen,

.�X � �Y /
�
B.p; r/

�
� cr˛Cˇ ; p 2 X � Y; r 2 .0; 1�:

Recall that …u.x;y/ D x C uy. Then …u.�X � �Y / D �X � Su�Y . By the above discussion
and Lemma 3.1, in order to prove Conjecture 1.1, it is enough to show:

Theorem 3.2.

D.�X � Su�Y ; 1/ D min.˛ C ˇ; 1/ for all u ¤ 0: (3.1)

This recasts the slice conjecture into a problem concerning projections and self-
similarity. This is convenient, since a lot was previously known about this topic. For exam-
ple, (3.1) was known to hold for Hausdorff dimension in place of L1 dimension [29] and
even for Lq dimension for q 2 .1; 2� [38]. However, these results used in an essential way
the known fact that for arbitrary measures �; �, equation (3.1) with q 2 .1; 2� in place of 1

holds for almost every u. This is not true for q > 2 and hence new ideas were needed. While
the setting is different, the inspiration came from M. Hochman’s work on self-similarity, see
the survey [28] for an overview.

3.4. Dynamical self-similarity and exponential separation
While �X and �Y are self-similar measures in the sense described in Section 3.3,

the convolution �X � Su�Y is not strictly self-similar since a œ b. However, it satisfies a
more flexible notion that we term dynamical self-similarity. Suppose a < b, and let us define
G D Œ0; log b/, T W G ! G, x 7! x C log a mod .log b/. For each x 2 G, let

�.x/ D

8<:�X � Sex �Y if x 2 Œ0; log a/;

�X if x 2 Œlog a; log b/:
(3.2)

These are finitely supported measures. It is easy to check (see [48, §1.4]) that

�x WD �X � Sex �Y D �
1
nD0Sa�n

�
�
�
Tnx

��
:

This is what we mean by dynamical self-similarity: �x has a structure analogous to that of
�X ; �Y , but the discrete measure � now depends on the scale and is driven by the dynamics
of T. Note that

�x D �x;n � Sa�n�Tnx ; where �x;n D �
n�1
j D0�.Tj x/: (3.3)

This says that �x is a convex combination of scaled down copies, not quite of itself (as in the
strictly self-similar case), but of the related measures �Tnx .

In the proof of Theorem 3.2, dynamical self-similarity plays a central rôle. Another
key feature is exponential separation. The measures �x;n defined in (3.3) are purely atomic;
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let Ax.n/ denote the set of its atoms. Thenˇ̌
Ax.n/

ˇ̌
�

n�1Y
j D0

ˇ̌
supp

�
�
�
Tj x

��ˇ̌
:

Let Mx.n/ denote the minimal separation between two elements of Ax.n/, defined to be 0

if the inequality above is strict. We claim that there is a number c > 0 such that

Mx.n/ � cn for n � n0.x/; for Lebesgue almost all x 2 G: (3.4)

Indeed, the distance between two elements of Ax.n/ has the form ia�n C exjb�n for some
ji j < an, jj j < bn, and i; j are not both 0. If j D 0, then i ¤ 0 and the distance is � a�n.
Otherwise, x 7! ia�n C exjb�n has derivative � b�n in absolute value, and so is � cn in
absolute value outside of a set of x of measure 2.cb/n. Since there are . .ab/n pairs i; j ,
we see that Mx.n/ � cn outside of a set of measure . .c � ab2/n. Hence if c < .ab2/�1,
then the Borel–Cantelli lemma yields (3.4).

Exponential separation was introduced in the self-similar setting by Hochman [26].
The way we apply it will be conceptually similar. However, in the strictly self-similar setting,
this condition is often hard to check (or fails) for concrete examples, while as we have seen, in
the dynamical setting the one-dimensional group G makes the verification straightforward.

A final ingredient of the proof of Theorem 3.2 is unique ergodicity: the dynami-
cal system .G; T/ is isomorphic to a .log a= log b/-rotation on the circle. Because a œ b,
Lebesgue measure on the circle is the only T-invariant measure on G: this is the point in the
proof where the hypothesis a œ b gets used. As we will see, this will be crucial in obtaining
information for every x 2 G out of seemingly weaker information for almost every x 2 G.

In the rest of this section, we indicate how dynamical self-similarity, exponential
separation and unique ergodicity enter into the proof of Theorem 3.2. The theorem extends
to a more general setting in which appropriate versions of these three properties hold (plus
some additional technical assumptions): see [48, §1.5].

3.5. A subadditive cocycle and the rôle of unique ergodicity
Fix q 2 .1; 1/, recall that �x D �X � Sex �Y D …ex .�X � �Y /, and let

�q;n.x/ D log
� X

I2D2�n

�x.I /q

�
; x 2 G;

where here and below logarithms are to base 2. In order to establish Theorem 3.2, it is enough
to show that

lim inf
n!1

�q;n.x/

�.q � 1/n
� min.˛ C ˇ; 1/; for all x 2 G: (3.5)

Indeed, it is rather easy to check that for any x 2 G

lim sup
n!1

�q;n.x/

�.q � 1/n
� min.˛ C ˇ; 1/;

and so (3.5) yields D.�X � Su�Y ; q/ D max.˛ C ˇ; 1/ (and the limit in the definition of
Lq dimension exists), from where the claim follows by taking q ! 1. A priori this is only
true for u D ex 2 Œ1; b/, but using self-similarity it is not hard to extend it to every u ¤ 0.
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Dynamical self-similarity and the convexity of tq imply (see [48, Prop. 4.6])

�q;nCm.x/ � Cq C �q;n.x/ C �q;m.Tnx/:

Hence .�q;n C Cq/n is a subadditive cocycle over the dynamical system .G; T/. The func-
tions �q;n are continuous on G except at x D log a. The unique ergodicity of .G; T/ can
then be seen to imply ([48, §4.2]) that there is a number D.q/ such that

lim inf
n!1

�q;n.x/

�.q � 1/n
D D.q/ for all x 2 G;

lim
n!1

�q;n.x/

�.q � 1/n
D D.q/ for almost all x 2 G:

Hence the task is now to show that D.q/ D max.˛ C ˇ; 1/. This is a really crucial point,
because one only needs to compute the almost sure limit D.q/ in order to reach a conclusion
valid for every x. This is also the strategy from [38] in the case q � 2; the almost sure state-
ment follows in that case by classical projection results, while the more involved argument
discussed below is required when q > 2. Because the Lq dimension is continuously decreas-
ing in q, it is easy to check that D D D�x (as a function) for almost all x; in particular, D is
differentiable outside of a countable set.

3.6. An inverse theorem for the Lq norms of convolutions
So far, discretized additive combinatorics has not entered the picture. As indicated

earlier, the proof of Theorem 3.2 is inspired by Hochman’s work on self-similar sets and
measures [26]. Hochman [26, Theorem 2.7] proved an inverse theorem for the entropy of con-
volutions of general measures on R, then applied it to self-similar measures, and concluded
that under exponential separation they have the “expected” dimension; again we refer to [28]

for a survey of these ideas. We follow a parallel strategy; in particular, we rely on a new
inverse theorem for the Lq norms of convolutions.

If � is finitely supported, we denote k�k
q
q D

P
x �.x/q for q 2 .1; 1/. If �; � are

supported on 2�m Z \Œ0; 1/ then, by Young’s inequality (which in this setting is just the
convexity of tq),

k� � �kq � k�kqk�k1: (3.6)

We are interested in understanding what happens when we are close to equality, in an
exponential sense (up to 2�"m factors). This is the case if � is the uniform measure on
2�m Z \Œ0; 1/, or if � is supported on a single atom, but also in some “fractal” situations.
For example, if � D � is the uniform measure on the (left endpoints of the intervals making
up the) sets XJ from Section 2.2; it is also possible to construct similar examples with � dif-
ferent from �. Our inverse theorem asserts, roughly speaking, that if we are close to equality
in (3.6), then locally either � looks very uniform or � looks like an atom.

Theorem 3.3 ([48, Theorem 2.1]). For each q > 1, ı > 0, there are T 2 N, " > 0 such that
the following holds for ` � `0.q; ı/. Let m D `T and let �; � 2 P .2�m Z \Œ0; 1//. Suppose

k� � �kq � 2�"m
k�kq :

3277 Slices and distances: on two problems of Furstenberg and Falconer



Then there exist sets X � supp � and Y � supp �, so that

(i) k�jX kq � 2�ımk�kq and k�jY k1 D �.Y / � 2�ım;

(ii) �.x1/ � 2�.x2/ for all x1; x2 2 X ; and �.y1/ � 2�.y2/ for all y1; y2 2 Y ;

(iii) X and Y are .T I `/-uniform; let .Nj /`�1
j D0, .N 0

j /`�1
j D0 be the associated se-

quences;

(iv) For each 0 � i < `, either Nj � 2.1�ı/T or N 0
j D 1 (or both).

The reader will note the analogy with Theorem 2.3, especially in the case � D �.
In fact, Theorem 2.3 is a central component of the proof of Theorem 3.3. In order to
pass from the size of sumsets to the Lq norm of convolutions, we use the celebrated
Balog–Szemerédi–Gowers (BSG) Theorem, see [54, §2.5]. Simplifying slightly, the BSG
Theorem asserts that if k� � �k2 � K�1k�k2 for � 2 P .Z/, then there is a set X such that
�.X/ � K�C and jX C X j � KC jX j, where C > 0 is universal. To be more precise,
this holds if � is the uniform measure on some set X0. In the case � D � and q D 2, the
claim is little more than the BSG Theorem combined with Theorem 2.3 and some dyadic
pigeonholing. To deal with the general case, we appeal to an asymmetric version of BSG,
[54, Theorem 2.35], while the general case q 2 .1; 1/ can be reduced to the case q D 2 by
an application of Hölder’s inequality [48, Lemma 3.4]. We remark that the theorem fails at
q D 1 and q D 1 due to lack of strict convexity; this is the reason why, even though we are
ultimately interested in L1 dimensions, we work with Lq dimensions throughout the proof.

While motivated by the slice conjecture, Theorem 3.3 is a result in geometric mea-
sure theory. In [46], E. Rossi and the author applied it to the growth of Lq dimension under
convolution. It also features in two recent results of T. Orponen [41,42] concerning projections
of planar sets outside of a zero-dimensional set of directions.

3.7. Conclusion of the proof: sketch
We indicate very briefly how the proof of Theorem 3.2 (and hence of Conjecture 1.1)

is concluded. Given a measure � on R, we let �.m/ be the purely atomic measure with

�.m/.j 2�m/ D �
�
Œj 2�m; .j C 1/2�m/

�
:

Thus, �.m/ is a discrete approximation to � at scale 2�m. Note that �q;m.x/ D log k�
.m/
x k

q
q .

The inverse theorem is used to show:

Theorem 3.4 ([48, Theorem 5.1]). Fix q 2 .1; 1/ such that D is differentiable at q and
D.q/ < 1. For every � > 0 there is " D ".�; q/ > 0 such that if m � m0.�; q/, and
� 2 P .2�m Z \Œ0; 1// satisfies k�kq � 2��m, then�.m/

x � �


q
� 2�.D.q/C"/m; x 2 G:

The assumption k�kq � 2��m says that � is not too close to being atomic in the
Lq sense. Since D.q/ D D�x .q/ for almost all x, the theorem says that convolving with any
quantitatively nonatomic measure results in a smoothening of the Lq norm of �x at small
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scales (unless D.q/ D 1, in which case �x was already “maximally smooth”). This is, again,
a dynamical, Lq version of a result of Hochman, [26, Corollary 5.5]. Heuristically, this is
deduced from Theorem 3.3 as follows: assuming the conclusion fails, let X; Y be the sets
provided by the inverse theorem. Using that k�kq � 2��m, one can see that Y has positive
branching (N 0

j > 1) for a positive proportion of scales j . Then by (iv), X must have “almost
full branching” .Nj � 2.1�ı/T / at those scales. But the dynamical self-similarity of �x can
be used to rule this out, since it implies that �x should have “roughly constant branching,”
which is less than full since D.q/ < 1. Making this precise is one of the biggest hurdles in
the proof of Theorem 3.2; it relies on ideas from multifractal analysis, in particular, the fact
that if D0.q/ exists then k�

.m/
x kq is heavily concentrated on points of mass � 2T 0.q/m, where

T D .q � 1/D.
Once Theorem 3.4 is in hand, the rest of the proof of Theorem 3.2 is a fairly straight-

forward adaptation of Hochman’s arguments. Theorem 3.4 is used to show that (always
assuming D0.q/ exists and D.q/ < 1)

lim
n!1

log k�
.Rn/
x;n k

q
q

.q � 1/n log.1=a/
D D.q/ for any R > log a and almost all x 2 G;

where �x;n is the discrete approximation to �x defined in (3.3). See [48, Proposition 5.2].
Now the exponential separation (3.4) comes into play: if R is taken large enough in terms
of c, then the atoms of �x;n are 2�Rn-separated for n � n0.x/, and this easily yields

log
�.Rn/

x;n

q

q
D log k�x;nk

q
q D .1 � q/

n�1X
j D0

log
ˇ̌
supp

�
�.Tj x/

�ˇ̌
:

Recalling (3.2), the ergodic theorem can then be used to conclude that if D.q/ < 1, then
D.q/ D ˛ C ˇ, completing the proof.

3.8. Extensions and open problems
3.8.1. Slices of McMullen carpets
The set X � Y in Conjecture 1.1 is invariant under the toral endomorphism Ta � Tb ,

but there are many closed invariant sets under Ta � Tb which are not cartesian products. The
simplest class are McMullen carpets: given J � ¹0; : : : ; a � 1º � ¹0; : : : ; b � 1º, let

EJ D

´ 
1X

nD1

xna�n;

1X
nD1

ynb�n

!
W .xn; yn/ 2 J for all n

µ
:

If J D J1 � J2 then we are in the setting of Conjecture 1.1, but otherwise the methods
of [48,57] do not directly apply. One new difficulty is that these carpets often have different
Hausdorff, Minkowski, and Assouad dimension, while these all coincide in the product case.
Nevertheless, by modifying the method of Wu, A. Algom [2] proved an upper bound for the
dimension of linear slices of McMullen carpets, that reduces to Conjecture 1.1 in the product
case. The bound was recently improved further by A. Algom and M. Wu [3], but the optimal
result remains elusive.
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3.8.2. Bernoulli convolutions
Given � 2 .1=2; 1/, we define the Bernoulli convolution (BC) �� D �1

nD0S�n�,
where � D

ı�1Cı1

2
. This is the simplest family of overlapping self-similar measures, yet it

remains a major open problem with deep connections to number theory to elucidate their
properties. BCs are extensively discussed in [28] and in P. Varjú’s article in this volume, so
here we only point out that the method of proof discussed in this section also yields that
D.��; 1/ D 1 for all � with exponential separation (a set of Hausdorff co-dimension zero)
and �� is absolutely continuous with a density in Lq for all q 2 .1; 1/, for all � outside of a
(nonexplicit) set of exceptions of zero Hausdorff dimension. See [48, Section 9]. In a major
breakthrough, P. Varjú [55] proved that �� has Hausdorff dimension 1 (which is weaker than
D.��; q/ D 1 if q > 1) for all transcendental �. It remains a challenge to extend Varjú’s
result to L1 and even to Lq dimensions.

3.8.3. Higher dimensions
A natural higher-dimensional version of Conjecture 1.1 involves slicing the product

of closed sets .Xi /
d
iD1 invariant under .Tai

/d
iD1, with affine subspaces. As another applica-

tion of the dynamical self-similarity framework, we have:

Theorem 3.5. Let Xi be closed, Tai
-invariant sets, i D 1; : : : ; d , with ai œ aj for i ¤ j .

Then

dimH
�
.X1 � � � � � Xd / \ H

�
� max

�
dimH.X1/ C � � � C dimH.Xd / � 1; 0

�
for all affine hyperplanes H � Rd not containing a line in a coordinate direction.

The case d D 2 is Conjecture 1.1. The higher-dimensional case follows in a similar
way, using [48, Theorem 1.11] and Lemma 3.1 for projections from Rd to R, although veri-
fying the exponential separation assumption takes a little bit of work, see [52]. We underline
that it seems hard to prove such a result using the approaches of [4, 57]. To be more pre-
cise, it is possible but under the more restrictive assumption that .1= log ai /

d
iD1 are linearly

independent over Q. This is unknown in most cases, for example, for 2; 3; 5.
What about slicing with lower dimension subspaces? For this, we need to consider

projections … W Rd
! Rk and in turn this requires an inverse theorem for convolutions in Rk .

This is necessarily more challenging because there is a new obstruction to smoothening of
convolutions: having the measures (locally) concentrated on lower-dimensional subspaces.
Nevertheless, Hochman [27] proved an inverse theorem for the entropy of convolutions in
arbitrary dimension. In [52], using Hochman’s result, we derive an Lq version, and use it to
deduce a generalization of Theorem 3.5 to slices with planes of arbitrary dimension.

4. Falconer’s distance set problem

4.1. Introduction
We now discuss Conjecture 1.2. It is a natural continuous analog of the P. Erdős

distinct distances conjecture, stating that N points in Rd determine &d;" N 2=d�" distinct
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distances. Erdős’ conjecture was famously resolved in the plane by L. Guth and N. Katz [23],
but the techniques they used seem hard to extend to the continuous setting. As shown already
by Falconer [16], the measurability condition in Conjecture 1.2 is crucial.

From now on fix a Borel set X � Rd . Falconer [16] proved that j�.X/j > 0 provided
dimH.X/ > .d C 1/=2 (here and below, j � j denotes Lebesgue measure, as well as cardinal-
ity). In the plane, the threshold 3=2 was lowered successively to 13=9 by J. Bourgain [5],
to 4=3 by T. Wolff [56], and recently to 5=4 by L. Guth, A. Iosevich, Y. Ou, and H. Wang
[22]. There have been parallel developments in higher dimensions [11–13, 15]. These results
use deep methods from restriction theory in harmonic analysis; the connection to restric-
tion was made by P. Mattila [36], through what has become known as the Mattila integral.
B. Liu [35] found a pinned version of the Mattila integral, that is, with �.X/ replaced by
�y.X/ D ¹jx � yj W x 2 Xº. As a result, all the previous results are also valid for pinned
distance sets. Summarizing, the current world records are [11–13,22]: let

˛d D

8<: d
2

C
1
4

if d is even,
d
2

C
1
4

C
1

8d�4
if d is odd:

Then for a Borel set X � Rd with dimH.X/ > ˛d there is y 2 X such that j�y.X/j > 0.
What if we assume dimH.X/ D d=2 instead? Falconer [16] proved that in this case

dimH.�.X// � 1=2. There are at least three reasons why this is a natural barrier to over-
come: (i) If R was a 1=2-dimensional Borel subring of the reals, then the distance set of
X D R � � � � � R � Rd would be contained in a locally Lipschitz image of R. By the prod-
uct formula for dimension, dimH.X/ � d=2, so if R existed then Falconer’s bound would be
sharp. As it turns out, no such Borel subring exists [14], but this was an open problem for
nearly 40 years. (ii) For a natural single-scale version of the problem, the exponent 1=2 is
actually sharp. This is the “train track” example introduced by N. Katz and T. Tao [30]: given
a small scale ı > 0, let X � Œ0; 1�2 be the union of � ı�1=2 equally spaced vertical rectangles
of size ı � ı1=2, with a ı1=2 space between consecutive rectangles. See [30, Figure 1]. Then
jX jı � ı�1 and ˇ̌

X \ B.x; r/
ˇ̌
ı

� r jX jı ; x 2 X; r 2 Œı; 1�:

Hence X looks very much like a set of dimension 1 (even Ahlfors regular) down to resolution
ı. Yet, the set of distances between two separated rectangles is contained in an interval of
length . ı, and this can be used to show that j�.X/jı � ı�1=2. (iii) Finally, if the Euclidean
norm is replaced by the `1 norm, then again it is not hard to see that the threshold 1=2 is
sharp, so any improvement must exploit the curvature of the Euclidean norm. We also empha-
size that even though the harmonic analytic methods described above also yield dimension
estimates when dimH.X/ � ˛d , they do not say anything for dimH.X/ D d=2.

Despite these challenges, we have:

Theorem 4.1 (Katz–Tao [30], Bourgain [6]). There is a universal � > 0 such that if X � R2

is a Borel set with dimH.X/ � 1, then dimH.�.X// � 1=2 C �.
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Katz and Tao [30] proved that the discretized sum-product conjecture (Theorem 2.4)
implies the above theorem. As we saw, Bourgain [6] then proved Theorem 2.4. In order to
avoid “train track” examples, Katz and Tao had as an intermediate step a “discretized bilin-
ear” version of Falconer’s problem. This approach does not seem to extend to pinned distance
sets. The value of �, although effective in principle, is hard to track down and would in any
event be tiny (recall that the conjecture is � D 1=2).

4.2. A nonlinear version of Bourgain’s projection theorem
There is a formal analogy between Theorems 2.6 and 4.1: both provide an

“�-impovement” over a natural barrier, and as we saw they are both connected to discretized
sum-product. We take this analogy further. We can view ¹�y.x/ D jx � yjºy2X as a family
of (nonlinear) projections. One can then ask if it satisfies an estimate similar to that of
Theorem 2.5. It turns out that it does:

Theorem 4.2 ([50, Theorem 1.1]). Given ˛ 2 .0; 2/, ˇ > 0, there is � D �.˛; ˇ/ > 0 such that
the following holds: let X � R2 be a Borel set with dimH.X/ � ˛. Then

dimH
�
E.X; �/

�
� ˇ; where E.X; �/ D

²
y 2 R2

W dimH
�
�y.X/

�
<

˛

2
C �

³
: (4.1)

In particular, taking ˇ < 1 D ˛, this provides a pinned version of Theorem 4.1.
Theorem 4.2 follows from a general scheme that can be seen as a nonlinear extension

and refinement of Bourgain’s projection theorem and its higher rank generalization by W. He.
See [50] for further discussion and precise statements. This scheme yields Theorem 4.2 also
for smooth norms of everywhere positive Gaussian curvature and `p norms for p 2 .1; 1/,
as well as some partial extensions to higher dimensions; see [50, Theorem 1.1].

Using the nonlinear adaptation of Bourgain’s projection theorem (along with many
other ideas), O. Raz and J. Zahl [45] have recently obtained a further refinement of Theo-
rem 4.2. They show that for every ˛ 2 .0; 2/ there is � D �.˛/ > 0 such that the set E.X; �/

from (4.1) is flat, which roughly means that it is contained in a union of a small set of lines,
see [45, Definition 1.4]. This is optimal since they also observe that Theorem 4.2 is sharp in
the sense that � ! 0 as ˇ ! 0, but the sets that witness this are contained in a line (or a
union of a small family of lines). Raz and Zahl also obtain a related single-scale distance set
estimate involving only three noncollinear vantage points:

Theorem 4.3 ([45, Theorem 1.9]). Given ˛ 2 .0; 2/, there is � D �.˛/ > 0 such that if
E � Œ0; 1�2 satisfies the nonconcentration estimateˇ̌

E \ B.p; r/
ˇ̌
ı

� ı��r˛
jEjı ; p 2 Œ0; 1�2; r 2 Œı; 1�;

and y1; y2; y3 2 Œ0; 1�2 span a triangle of area � ı� , then max3
iD1 j�yi

X jı � ı�˛=2�� .

Note that the quantitative noncollinearity hypothesis prevents the train-track almost
counterexamples discussed above. These are just special cases of general theorems involving
nonlinear projections and Blaschke curvature, see [45] for further details.
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4.3. Explicit estimates and sets of equal Hausdorff and packing dimension
The improvements upon the natural threshold 1=2 that we have seen so far all involve

a tiny and unknown parameter �. The following were the first explicit bounds in the near
critical regime:

Theorem 4.4 (T. Keleti and P. Shmerkin, [33]). Let E � R2 be a Borel set with dimH.E/ > 1.
Then dimH.�.E// > 37=54 � 0:685, and there is y 2 E such that dimH.�y.E// > 2=3 and
dimP.�y.E// D .2 C

p
3/=4 � 0:933.

Here dimP is packing dimension; we refer to [37, §5.9–5.10] for its definition and basic
properties, and recall only that it lies between Hausdorff and Minkowski (box) dimensions.
See [35,51] for some further improvements, always assuming dimH.E/ > 1.

The first explicit estimates in the critical case dimH.E/ D d=2 were obtained only
very recently by the author and H. Wang [53, Theorems 1.1 and 1.2]:

Theorem 4.5. Let E � Rd be a Borel set with dimH.E/ D d=2 where d D 2 or 3. Then
supy2E dimH.�yE/ � ˛d , where ˛2 D .

p
5 � 1/=2 � 0:618 and ˛3 > 0:57.

While these are the best currently known estimates for general Borel sets, for sets of
equal Hausdorff and packing dimension we are able to prove the full strength of Falconer’s
conjecture [53, Theorem 1.4]:

Theorem 4.6. Let E � Rd , d � 2, be a Borel set with dimH.E/ D dimP.E/ D d=2. Then
supy2E dimH.�yE/ D 1, and if E has positive d=2-dimensional Hausdorff measure then
the supremum is attained.

If dimH.E/ D dimP.E/ D ˛, then for each " > 0 there is � 2 P .E/ such that

r˛C" ." �
�
B.x; r/

�
." r˛�"; r 2 .0; 1�; x 2 supp.�/:

Thus we can interpret this condition as a rough or approximate version of Ahlfors regularity
(which corresponds to the case " D 0).

In the plane, Theorem 4.6 has several predecessors. In an influential article, Orponen
[39] proved that if E is Ahlfors regular of dimension 1, then the packing dimension of �.E/

is 1. In [49], assuming that dimH.E/ > 1, we showed that there is y 2 E with dimH.�yE/ D 1;
this result was recovered and made more quantitative in [33]. Extending the proof to the
critical case dimH.E/ D 1 and to higher dimensions required new ideas; we sketch some of
them in Section 4.6.

4.4. A multiscale formula for the entropy of projections
A common theme through the proofs of Theorems 4.2, 4.4, 4.5, and 4.6 is the use of

a lower bound for the entropy of projections in terms of multiscale decompositions. Recall
that the Shannon entropy of � 2 P .Rd / with respect to a partition A of Rd is

H.�I A/ D

X
A2A

�.A/ log
�
1=�.A/

�
:
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This quantity measures how uniform the measure � is among the atoms A 2 A. A basic
property is that H.�I A/ � log jAj, and in particular

Hı.�/ WD H.�I Dı/ � log j supp �jı : (4.2)

Given a measure � and a set X with �.X/ > 0, we denote �X D
1

�.X/
�jX 2 P .X/. Finally,

fix a C 2 map F W U � Œ0; 1�d ! R with no singular points, and let �.x/ D rF.x/=jrF.x/j.

Proposition 4.7 ([50, Proposition A.1]). Let � 2 P .Œ0; 1/d /, let 1 > ı0 > ı1 > � � � > ıJ D ı

be a sequence with ı2
j � ıj C1, 0 � j < J . Let F be as above. Then, denoting orthogonal

projection in direction � by P� .x/ D hx; �i,

Hı.F�/ � �CF;d J C

Z JX
j D1

Hıj C1
.P�.x/�Dıj

.x// d�.x/: (4.3)

A local variant of this formula is a key element in the proof of Furstenberg’s sumset
conjecture in [29]. Orponen [39] introduced this approach to the distance set problem. The
method was further refined in [33, 49]—these papers highlighted the importance of choos-
ing the scales ıj depending on the combinatorics of the measure �, a point to which we
will come back shortly. Thanks to (4.2), the formula (4.3) provides a lower bound on box-
counting numbers jF.supp�/jı . In order to obtain Hausdorff dimension estimates, one needs
a more robust (and technical) variant; we refer to [50, Appendix A] for details and here we stick
with (4.3) for simplicity.

In all our applications the number of scales J is bounded while ı ! 0, and so the
error term is negligible. Note that if Q 2 Dıj

, then P� Q is an interval of length .d ıj , and
hence Hıj C1

.P� �Q/ � log.ıj =ıj C1/ C Cd .
Why is Proposition 4.7 useful? A key feature is that it linearizes the nonlinear pro-

jection F ; the hypothesis ı2
j � ıj C1 comes from linearization, and can be dropped if F

is linear. Another advantage is that it replaces the single projection F� by an average of
projections, taken over x and, crucially, over the scales .ıj /.

4.5. Theorems for radial and linear projections, and choice of scales
We sketch how Proposition 4.7 is used to prove the bound dimH.�yE/ > 2=3 from

Theorem 4.4. By Frostman’s Lemma [37, Theorem 8.8], there are �; � 2 P .E/ with

�
�
B.x; r/

�
; �
�
B.y; r/

�
. r˛; x; y 2 R2; r > 0;

where ˛ > 1, and X D supp.�/, Y D supp.�/ are disjoint. We apply Proposition 4.7 to
the family .�y/y2Y and �. Since r�y.x/ D �x.y/ WD jy � xj=.y � x/, Equation (4.3)
becomes

Hı.�y�/ � �CJ C

Z JX
j D1

Hıj C1
.P�x.y/�Dıj

.x// d�.x/: (4.4)

The scales ıj will eventually be chosen in such a way that ıj C1 � ıcıj for some small
constant c; in particular, this ensures that J � dc�1e is bounded as ı ! 0.
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A radial projection theorem of Orponen [40] yields
R

k�x�k
p
p d�.x/ < 1 for some

p D p.˛/ > 1; it is here that the hypothesis dimH.E/ > 1 gets used. Restricting �, we may
thus assume that k�x�kp . 1 for all x 2 X . Hölder’s inequality and a quantitative form of
Marstrand’s projection theorem [37, Theorem 9.7] yield that, for any x 2 X and � 2 P .R2/,

�x�
®
� 2 S1

W kP� �k
2
2 � ı�"I1.�/

¯
� 2cp"; (4.5)

where I1.�/ D
R

jx � yj�1d�.x/d�.y/ is the 1-energy of �. Once the scales ıj are fixed, we
write �x;j for the convolution of �Dıj

.x/ with a bump function at scale ıj C1, scaled up by a
factor ı�1

j . Applying (4.5) to � D �x;j for fixed x and 1 � j � J , using that J is bounded,
and then Fubini, we eventually obtain a point y 2 Y and a set X 0 � X with �.X 0/ � 1=2,
such that

kP�x.y/�x;j k
2
2 � ı�"I1.�x;j /; x 2 X 0; 1 � j � J:

Jensen’s inequality can be used to bound

Hıj C1
.P�x.y/�x;j / � log.ıj =ıj C1/ � log kP�x.y/�x;j k

2
2 � C:

Putting everything together, (4.4) becomes (denoting a negligible error term by err)

Hı.�y�/ � log.1=ı/ �

JX
j D1

Z
X 0

log
�
I1.�x;j /

�
d�.x/ � err: (4.6)

Now the task has become to choose the scales ıj (depending on �!) subject to the constrains
ı

1=2
j � ıj C1 � ıcıj , in such a way that log.I1.�x;j // is minimized on average. This is a

combinatorial problem that becomes more tractable by first uniformizing � by applying (the
measure version of) Lemma 2.2 and using the branching numbers Nj as the combinatorial
input. The issue to deal with is that, even though � is ˛-dimensional, many of the measures
�x;j can be nearly atomic (if Nj � 1), which causes the 1-energy to explode, so one seeks
to merge the scales at which this happens with coarser scales at which � looks like a large
dimensional set. The value 2=3 is the outcome of this combinatorial problem. Note that if
� is (roughly) Ahlfors regular, then so are the measures �x;j , and then log.I1.�x;j // is
uniformly small—so (4.6) also yields dimH.�yE/ D 1 in this case.

We underline that even though linearization is at the core of this approach, it is still
crucial that the distance map is nonlinear, as this is what generates a rich set of directions
�x.y/ D

d
dx

�y.x/ to work with—curvature is still key!
The proofs of Theorems 4.1, 4.5, and 4.6 follow a similar approach, but they each

involve different radial and linear projection theorems. For example, Theorem 4.1 relies
(unsurprisingly) on Theorem 2.5 and a different radial projection bound of Orponen [40].
One feature of Theorems 4.5 and 4.6 is that they depend on new radial and linear projection
theorems; we briefly describe them in the next section, in the planar case.

4.6. Improving Kaufman’s projection theorem, and radial projections
Let E � R2 be as in Theorems 4.5 or 4.6. Fix " > 0 and, as before, let �; � be

Frostman measures on E with exponents 1 � ", and disjoint supports X; Y . If either � or �
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gives positive mass to a line, then E intersects that line in dimension � 1 � ", which makes
the distance set estimate immediate. So we may assume that �; � give zero mass to all lines.

As our discussion in Section 4.5 suggests, it is key to understand radial projections
.�y/y2Y first, and for this we use (again) Proposition 4.7. Note that d

dx
�y.x/ D �y.x/?:

this means that in order to estimate radial projections in this way, we need to rely on a priori
radial projection bounds. This opens the door to bootstrapping arguments, and this is exactly
what is done to prove Theorems 4.5 and 4.6.

To start the bootstrapping, we need an a priori radial projection estimate for mea-
sures of dimension � 1 that give zero mass to lines (note that if both measures are supported
on the same line, the radial projections �x� are atomic for all x 2 X ; this is why we excluded
this case at the beginning of the argument). This is provided by a result of Orponen from [40],
that we alluded to earlier in connection with Theorem 4.1. In our setting it asserts that for
a set of x of �-measure � 1=2, the radial projection �x� satisfies a Frostman condition of
exponent 1=2 � " (more precisely this holds after restricting � further, depending on x).

The goal is to apply Proposition 4.7 to .�y/y2Y to bootstrap the parameter 1=2 � "

to 1 and to .
p

5 � 1/=2 in the Ahlfors regular and general case, respectively. Following the
scheme of Section 4.5, we end up needing a certain linear projection theorem, that we discuss
next. A classical projection theorem of R. Kaufman [32] from 1968 asserts that if X � R2

is a Borel set and s < min.1; dimH.X//, then

dimH
®
� 2 S1

W dimH.P� X/ � s
¯

� s:

It is natural to conjecture that Kaufman’s theorem is not optimal, in that the bound s on
the right-hand side can be lowered, depending on s and dimH.X/. When s �

dimH.X/=2 C �.dimH.X//, such improvement follows from Theorem 2.6, but the general
case was established only very recently by T. Orponen and the author:

Theorem 4.8 ([43, Theorem 1.2]). Given s 2 .0; 1/, t 2 .s; 2�, there is " D ".s; t/ > 0 such
that if X � R2 is a Borel set with dimH.X/ � t , then

dimH
®
� 2 S1

W dimH.P� X/ � s
¯

� s � ":

The proof uses many of the ingredients we have discussed in this survey: Bour-
gain’s projection theorem, the uniformization lemma, and choosing the scales depending on
the given measure. There are also new ideas, including an “incidence version” of Propo-
sition 4.7 and a dichotomy between the “roughly Ahlfors regular” and “far from Ahlfors
regular” situations, each requiring different arguments.

A quantitative version of Theorem 4.8 (see [43, Theorem 1.3]) provides the input nec-
essary to complete the bootstrapping step in the proofs of the planar cases of Theorems 4.5
and 4.6. To be more precise, so far we have been considering radial projections, but because
d

dx
�y and d

dx
�y are rotations of each other, the argument for distance sets can be completed

in parallel. The golden mean .
p

5 � 1/=2 arises as the outcome of the combinatorial problem
of optimizing the choice of scales (after uniformization).
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