
Quantitative
invertibility of
non-Hermitian random
matrices
Konstantin Tikhomirov

Dedicated to Prof. Nicole Tomczak-Jaegermann

Abstract

The problem of estimating the smallest singular value of random square matrices is impor-
tant in connection with matrix computations and analysis of the spectral distribution. In
this survey, we consider recent developments in the study of quantitative invertibility in the
non-Hermitian setting, and review some applications of this line of research.

Mathematics Subject Classification 2020

Primary 60B20; Secondary 65F05, 15A18

Keywords

Random matrices, condition number, spectrum

© 2022 International Mathematical Union
Proc. Int. Cong. Math. 2022, Vol. 4, pp. 3292–3313
DOI 10.4171/ICM2022/10

Published by EMS Press
and licensed under
a CC BY 4.0 license

https://creativecommons.org/licenses/by/4.0/


1. Introduction

Given an N � n (N � n) matrix A, its singular values are defined as square roots
of the eigenvalues of the positive semidefinite n � n matrix A�A:

si .A/ WD
p

�i .A�A/; i D 1; 2; : : : ; n;

where we assume the nonincreasing ordering �1.A�A/ � �2.A�A/ � � � � � �n.A�A/. The
classical Courant–Fischer–Weyl theorem provides a variational formula

si .A/ D min
E W dim.E/Dn�iC1

max
x2E; kxk2D1

kAxk2; 1 � i � n;

where the minimum taken over all linear subspaces E of the specified dimension. In partic-
ular, the smallest and the largest singular values of A can be computed as

smin.A/ D sn.A/ D min
xWkxk2D1

kAxk2; smax.A/ D s1.A/ D max
xWkxk2D1

kAxk2:

Additionally, if the matrix A is square (N D n) and invertible then smin.A/ D
1

smax.A�1/
.

The magnitude of the smallest singular value of square random matrices has attracted
much attention due to the special role it plays in several questions of theoretical significance
and in applications. In particular, the ratio of the largest and smallest singular values of
a square matrix – the condition number – is systematically used in numerical analysis as a
measure of sensitivity to round-off errors. Further, for certain random matrix models, bounds
on the spectral norm of the matrix’ resolvent (or, equivalently, the smallest singular value of
diagonal shifts of the matrix) is a crucial point in the study of the spectral distribution. We
refer to Sections 2 and 3 of the survey for a discussion of those directions.

In this survey, we consider quantitative invertibility of random non-Hermitian
square matrices, including matrices with independent entries and adjacency matrices of
random regular digraphs. The main objective in this line of research is to obtain bounds on
the probability P¹smin.A/ � tº as a function of t , of the dimension, and, possibly, of some
parameters of the model under consideration, such as the variance profile of the matrix or
its mean.

One approach to the problem, which can be named analytical, is based on comparing
the distribution of smin.A/ with the distribution of the smallest singular value of a correspond-
ing Gaussian random matrix. The latter is very well understood [25] since explicit formulas
for the joint distribution of the singular values of Gaussian matrices are available [46]. We
refer to [14,85] for results of that type.

Another approach, which is the focus of this survey, falls in the category of non-
asymptotic methods [75] and is based on a combination of techniques originated within
asymptotic geometric analysis. It often produces very strong probability estimates, although
typically lacks the precision of the analytical methods. The major features of this approach
are (a) reducing the estimation of smin to estimating distances between random vectors and
random linear subspaces associated with the matrix, and (b) using concentration (Bernstein-
type) and anti-concentration (Littlewood–Offord-type) inequalities. Often, this approach also
involves constructing discretizations of certain subsets of Rn or Cn ("-nets) and estimating
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their cardinalities. We will give a description of the features by considering multiple exam-
ples from the literature.

Because of some differences in methodology, and because we wish to emphasize
the importance of the matrix invertibility for numerical analysis and in the study of the
spectral distribution, this survey does not cover nonquantitative results on the singularity
of random matrices. We note that estimating the singularity probability for several models
of discrete random matrices is a major topic within the combinatorial random matrix theory
[10,21,47,50,63,83]. In the last few years there has been a significant progress in this research
direction (also, as corollaries of quantitative results), in particular, the problem of estimating
the singularity probability of adjacency matrices of random regular (di)graphs [38,62,65], of
Bernoulli random matrices [43,57,92] and, more generally, discrete matrices with i.i.d. entries
[44], as well as of random symmetric matrices [11–13,29]. We refer to a recent survey [97] for
a discussion and further references.

The rest of the survey is organized as follows. Sections 2 and 3 provide motivation
for studying quantitative invertibility of non-Hermitian random matrices, and a brief account
of known results. In Section 4, we give an overview of the methodology, starting with the
result of Rudelson and Vershynin [72] as a main illustration. We then discuss novel additions
to the methodology made in the past ten years, which allowed making progress on several
important problems in the random matrix theory. Finally, in Section 5, we discuss some open
problems.

Let us recall some notions which will be used further.
A random variable X on R or C is called subgaussian if E exp.jX j2=K2/ < 1 for

some number K > 0. The smallest value of K such that E exp.jX j2=K2/ � 1 � 1, is called
the subgaussian moment of X . Any gaussian random variable is also subgaussian; further,
all bounded random variables are subgaussian.

Given a sequence of random Borel probability measures .�m/1
mD1 and a random

probability measure � on C, we say that �m converge weakly in probability to � if for every
bounded continuous function f on C,

lim
m!1

P

²ˇ̌̌̌ Z
f d�m �

Z
f d�

ˇ̌̌̌
> "

³
D 0; 8" > 0:

We will denote by k�k the spectral norm of a matrix. The standard Euclidean norm
in Rn or Cn will be denoted by k�k2. We will write dist.S; T / for the Euclidean distance
between two subsets S and T of Rn or Cn. By Sn�1.R/ or Sn�1.C/ we denote the unit
Euclidean sphere in Rn or Cn, respectively. The constants will be denoted by C; c0, etc.

2. Quantitative invertibility in matrix computations

In this section, we discuss the importance of estimating the smallest singular value
in numerical analysis, and provide a brief overview of related results on random matrices.
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2.1. The condition number in numerical analysis
For an n � n invertible matrix A 2 Cn�n, the condition number of A is defined as

�.A/ WD kAk


A�1



 D
smax.A/

smin.A/
:

Consider a system of n linear equations in n variables, represented in the matrix–vector form
as Ax D b. If the system is well conditioned, i.e., the condition number of the coefficient
matrix A is small, a perturbation of the matrix or the coefficient vector does not strongly
affect the solution. In particular, the round-off errors in matrix computations such as the
Gaussian elimination, do not significantly distort the solution vector.

As an example of well-known theoretical guarantees, we mention an estimate on the
relative distance between the solution of Ax D b and the solution of a perturbed system

.A C F /y D .b C f /:

The terms F 2 Cn�n and f 2 Cn can be thought of as consequences of measurement or
round-off errors. It is not difficult to check that under the assumption that ı WDmax. kF k

kAk
; kf k2

kbk2
/

is small, the relative distance ky�xk2

kxk2
satisfies

ky � xk2

kxk2

D O
�
ı�.A/

�
(see, in particular, [33, Section 2.6.2], [80, Section 4]). In the specific setting when the system
Ax D b is solved using the Gaussian elimination with partial pivoting and the perturbation
of the system is due to round-off errors, Wilkinson [98] showed that the relative distance
between the computed and actual solutions can be bounded above by nO.1/"�.A/�. Here the

growth factor � is defined as � WD
maxkD0;1;:::I i;j �n ja

.k/
ij j

maxi;j �n jaij j
, with a

.k/
ij being the .i; j /th element

of the matrix A.k/ obtained from A after k iterations of the Gaussian elimination process,
and " is the precision of the machine (see also [77,94]).

Whereas the condition number of A characterizes sensitivity of the corresponding
system of linear equations to small perturbations, the eigenvector condition number quanti-
fies the stability of the spectrum and eigenvectors of A. The eigenvector condition number
of a diagonalizable matrix A 2 Cn�n is defined as

�V .A/ WD min
W 2Cn�nWW �1AW is diagonal

�.W / D min
W 2Cn�nWW �1AW is diagonal

smax.W /

smin.W /
:

Clearly, �V .A/ D 1 if and only if A is unitarily diagonalizable (normal). A classical stabil-
ity result for a matrix spectrum using the eigenvector condition number is the Bauer–Fike
theorem [8]. According to the theorem, given a diagonalizable matrix A and its perturbation
A C F , the distance between any eigenvalue � of A C F and the spectrum of A can be
estimated as

min
�2Spec.A/

j� � �j � �V .A/kF k:

Moreover, stability of matrix functions under perturbations of the argument can be quantified
using the eigenvector condition number (see [36, Section 3.3]). Here, we refer to a related line
of research dealing with the approximate diagonalization of matrices, namely approximating
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a matrix with one having a small eigenvector condition number (see [2,3,22,41] and references
therein). A connection between �V .A/ and quantitative invertibility of diagonal shifts of A

is established through the notion of a pseudospectrum. An "-pseudospectrum of A, denoted
Spec".A/, is defined as the set of all points z 2 C with smin.A � z Id/ < ". It can be shown
(see [23, Lemma 9.2.11]) that for a diagonalizable matrix A with D being a corresponding
diagonal matrix, Spec.D/ C �V .A/�1"U � Spec".A/ � Spec.D/ C �V .A/"U , where U

is the unit disk of the complex plane.

2.2. Related results on random matrices
Randomness is a natural approach to simulate typical matrices observed in applica-

tions. For example, the LINPACK benchmark for measuring the computing power involves
systems of linear equations with a randomly generated coefficient matrix [24]. Condition
numbers of random square matrices with the computational perspective were first consid-
ered by von Neumann and Goldstine [96]. Rigorous results were obtained much later, notably
by Edelman [25] for Gaussian random matrices (see also Szarek [82]). We note here that for
sufficiently dense random matrices with i.i.d. entries satisfying certain moment conditions,
estimating the largest singular values up to a constant multiple can be accomplished by a
simple combination of Bernstein-type inequalities and an "-net argument (see, for example,
[75]), and with precision up to .1 ˙ o.1// multiple via the trace method [30,79,100]. Further,
we only discuss estimates for the smallest singular value.

The average-case quantitative analysis of the matrix invertibility, when a typical
matrix is modeled as a random matrix with independent entries and with matching first
two moments, has been developed in multiple works. We refer, in particular, to papers [14,

85] employing the analytical approach, as well as works [5, 7, 37, 43, 44, 57–60, 67, 69, 71, 72,

89–92] based on the reduction to distance estimates and use of concentration/anticoncentra-
tion inequalities. Some of those results are mentioned below.

In [72], Rudelson and Vershynin showed that given a random n � n matrix A with
i.i.d. real entries of zero mean, unit variance, and a bounded subgaussian moment, the small-
est singular value of A satisfies

P
®
smin.A/ � n�1=2t

¯
� C.t C cn/; t > 0;

where the constants C > 0 and c 2 .0; 1/ may only depend on the subgaussian moment
(in fact, the statement is preserved if A is shifted by a nonrandom matrix with the spectral
norm of order O.

p
n/). The moment assumptions and the requirement that the entries are

equidistributed were relaxed in later works [58,59,67]. On the other hand, in the special case
of a matrix A with i.i.d. entries taking values C1 and �1 with probability 1=2, it was proved
in [92] that for any " > 0,

P
®
smin.A/ � n�1=2t

¯
� C t C C.1=2 C "/n; t > 0;

where C > 0 is only allowed to depend on " (see the introduction to [92], as well as [97],
for a discussion of this result in the context of the combinatorial random matrix theory). An
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even stronger result is available when A has i.i.d. discrete entries which are not uniformly
distributed on their support [44]: for every " > 0 and assuming n is sufficiently large,

P
®
smin.A/ � n�1=2t

¯
� C t C .1 C "/P¹two rows or columns of A are colinearº; t > 0;

with C > 0 depending only on the individual entry’s distribution (see [44] for the statement
in its full strength). In the setting when A has i.i.d. Bernoulli(p) entries and p is allowed to
depend on n, its was shown in [7,37,57] that, as long as p � c for a small universal constant
c > 0, for every " > 0 and assuming n is sufficiently large,

P
®
smin.A/ � n�C t

¯
� t C .1 C "/P¹a row or a column of A is zeroº; t > 0;

where C > 0 is a universal constant. We refer to [37] for a generalization to matrix rank
estimates, as well as work [43] for sharp bounds in the setting of constant p 2 .0; 1=2/, and
[5] for stronger quantitative estimates in a certain range for the parameter p.

Put forward by Spielman and Teng [81], the smoothed analysis of the condition
number is concerned with quantitative invertibility of a typical matrix in a small neigh-
borhood of a fixed matrix (with possibly a very large spectral norm). A basic model of that
type is of the form A C M , where M is a nonrandom matrix, and A has i.i.d. entries. The
result of Sankar–Spielman–Teng [78] provided a bound for the smallest singular value of a
shifted Gaussian real random matrix with i.i.d. standard normal entries, independent from
the shift:

P
®
smin.A C M/ � tn�1=2

¯
� C t; t > 0; M 2 Rn�n;

for a certain universal constant C > 0 (see also [3, Section 2.3]). Analogous estimates for a
broader class of random matrices with continuous distribution were later obtained in [91]. On
the other hand, it was observed that for certain discrete random matrices, such as random sign
(Bernoulli) matrices, no shift-independent small ball probability bounds for smin.A C M/

are possible [42, 87, 91]. In particular, it is shown in [42] that, assuming A has i.i.d. entries
taking values ˙1 with probability 1=4 and zero with probability 1=2, for every L � 1 and
every positive integer K,

sup
M WkMk�nL

P
®
smin.A C M/ � C n�KL

¯
� cn�K.K�1/=4;

where C;c > 0 may only depend on L and K. The smoothed analysis of the matrix condition
number for discrete distributions was carried out in works [39,42,87,88] (see also references
therein). The following result was proved in [87]. Let K; B; " > 0 and L � 1=2 be arbitrary
parameters. Then, for all sufficiently large n, given an n � n random matrix A with i.i.d.
centered entries of unit variance and the subgaussian moment bounded above by B , and
given a nonrandom matrix M with kM k � nL, one has

P
®
smin.A C M/ � n�.2KC1/L

¯
� n�KC":

In [42], it is shown that the above small ball probability bound can be significantly improved
to match the average-case result of Rudelson and Vershynin [72], under the assumption that
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a positive fraction of the singular values of M are of order O.
p

n/. More specifically, for
every Qc 2 .0; 1/ and QC > 0, and any fixed matrix M with sn�bQcnc.M/ � QC

p
n, one has

P
®
smin.A C M/ � tn�1=2

¯
� C

�
t C cn

�
;

where C > 0 and c 2 .0; 1/ may only depend on Qc, QC , and the subgaussian moment B . Under
much weaker assumptions on the shift M , though at a price of precision, quantitative bounds
for smin.A C M/ were obtained in [39].

3. Invertibility and spectrum

Given a square n � n matrix An, denote by �An its normalized spectral measure
(spectral distribution):

�An WD
1

n

nX
iD1

ı�i .An/:

For real and complex Gaussian matrices with i.i.d. standard entries (the Ginibre ensemble),
explicit formulas for the joint distribution of the eigenvalues are known [26,31,51]. Those, in
turn, were used by Mehta [61], Silverstein (unpublished; see [9, Section 3]) and Edelman [26]

to derive convergence results for the spectral distribution in the Gaussian case.
In the non-Gaussian setting, where no similar formulas are available, Girko [32]

proposed a Hermitization argument based on the identity

1

n

nX
iD1

log
ˇ̌
z � �i .An/

ˇ̌
D

1

n
log

q
det
�
.An � z Id/.An � z Id/�

�
D

1

n

nX
iD1

log si .An � z Id/;

which relates the spectrum to the singular values of the matrix resolvent. A modern form of
the argument can be summarized as follows (see [9, Lemma 4.3], as well as the replacement
principle in [86]). Assume that a sequence of random matrices .An/1

nD1 is such that for almost
every z 2 C, the sequence of measures �p

.An�z Id/.An�z Id/� converges weakly in probability
to a nonrandom probability measure �z . Assume further that the logarithm is uniformly
integrable in probability with respect to .�p

.An�z Id/.An�z Id/�/1
nD1 for almost every z 2 C,

that is,

lim
t!1

sup
n

P

²
1

n

X
i�nWj log si .An�z Id/j>t

ˇ̌
log si .An � z Id/

ˇ̌
> "

³
D 0; 8" > 0: (3.1)

Then there is a measure � on C such that the sequence .�An/1
nD1 converges to � weakly in

probability; moreover, the measure � can be characterized in terms of .�z/z2C . We refer to
[9] for proofs, as well as a detailed historical account of the study of the spectral distribution
of non-Hermitian random matrices, up to 2000s.

In view of the uniform integrability requirement (3.1), strong quantitative estimates
for small singular values of matrices An � z Id are an essential part of the Hermitization
argument. In the setting of matrices with i.i.d. non-Gaussian entries, first rigorous estimates
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on the small singular values of An � z Id sufficient for the argument to go through were
obtained for a class of continuous distributions by Bai [1], who applied the estimates to study
the limiting spectral distribution in that setting. As the techniques to quantify invertibility
of more general classes of matrices became available through the works of Tao–Vu [89],
Rudelson [69], and Rudelson–Vershynin [72], the result of Bai was consequently generalized
in works [34,66,84,86]. The strong circular law under minimal moment assumptions proved
in [86] can be formulated as follows. Let � be a complex-valued random variable of zero mean
and unit absolute second moment, and let .An/1

nD1 be a sequence of random matrices, where
each An is n � n with i.i.d. entries equidistributed with � . Then the sequence of spectral dis-
tributions .� 1p

n
An

/1
nD1 converges weakly almost surely to the uniform probability measure

on the unit disk of the complex plane.
In the context of the circular law, the most studied model of sparse random matrices

is of the form An D Bn ˇ Mn, where Bn is the random matrix with i.i.d. Bernoulli(pn)
entries, Mn is independent from Bn and has i.i.d. entries equidistributed with a random
variable � of unit variance, and “ˇ” denotes the Hadamard (entrywise) product of matrices.
In the regime pn � n�1C" for a fixed " > 0, the (weak) circular law has been established in
[99] following earlier works [34,84] dealing with additional moment assumptions.

In an even sparser regime, estimating the smallest singular value of An � z Id
presents significant challenges, and further progress has only been made recently in [6, 70].
In [70], it is proved that, assuming � is a real-valued random variable with unit variance,
npn � n1=8, and npn tends to infinity with n, and assuming the matrices An D Bn ˇ Mn are
defined as in the previous paragraph, the sequence of spectral distributions .� 1p

npn
An

/1
nD1

converges weakly in probability to the uniform measure on the unit disk of C. A central
technical result of [70] is the following quantitative bound for smin.An � z Id/: under the
assumption that jzj � npn and j=.z/j � 1,

P
®
smin.An � z Id/ � exp.�C log3 n/

¯
� C.npn/�c ;

where C; c > 0 may only depend on the c.d.f. of �.
Quantitative invertibility and spectrum of adjacency matrices of random regular

directed graphs have been considered in multiple works in the past [4,15,17,18,53–55]. Given
integers n and d , a d -regular digraph on vertices ¹1; 2; : : : ; nº is a directed graph in which
every vertex has d incoming edges and d outgoing edges. Here, we focus on the model
when no multiedges are allowed, but the graph may have loops (the latter condition is not
conventional). For each n, denote by An;d the adjacency matrix of a random graph uniformly
distributed on the set of all d -regular digraphs on ¹1; 2; : : : ; nº (we allow d to depend on n).
The first results on invertibility for this model were obtained by Cook [18]. The circular law
for the sequence of spectral measures .� 1p

d.1�d=n/
An;d

/1
nD1 has been established in [17] under

the assumption min.d; n � d/ � log96 n. Later, in [53–55], the range !.1/ D d � log96 n

was treated. Either of the two results relies heavily on the estimates of the smallest singular
values of An;d � z Id. In particular, the main theorem of [53] is the following statement:
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assuming C � d � n= log2 n and jzj � d=6,

P
®
smin.An;d � z Id/ < n�6

¯
�

C log2 d
p

d
;

where C > 0 is a universal constant.
The invertibility of structured random matrices and applications to the study of

limiting spectral distribution have been considered, in particular, in [16,19,20,40,76]. A basic
model of interest here is of the form An D Un ˇ Mn � z Id, where Mn is a matrix with
i.i.d. entries having zero mean and unit variance, z 2 C is some complex number, Un is
a nonrandom matrix with nonnegative real entries encoding the standard deviation profile,
and “ˇ” denotes the Hadamard (entrywise) product of matrices. Note that An has mutu-
ally independent entries, with

p
Var aij D uij , 1 � i; j � n. In [76], the invertibility (and,

more generally, the singular spectrum) of Un ˇ Mn was studied in connection with the
problem of estimation of matrix permanents. In particular, strong quantitative bounds on
smin.Un ˇ Mn/ were obtained in the setting when Mn is the standard real Gaussian matrix,
and Un is a broadly connected profile (see [76, Section 2]). A significant progress in the study
of structured random matrices was made by Cook in [16], who extended the result of [76] to
non-Gaussian matrices, and obtained a polynomial lower bound on smin.Un ˇ Mn � z Id/

under very general assumptions on Un. Namely, assuming that all entries of Un are in the
interval Œ0; C �, that z 2 Œc

p
n; C

p
n� for some constants c; C > 0, and that the entries of

Mn have a bounded .4 C "/-moment, the main result of [16] asserts that

P
®
smin.Un ˇ Mn � z Id/ � n�ˇ

¯
� n�˛

for some ˛; ˇ > 0 depending only on c; C; ", and the value of the .4 C "/-moment. In [19],
this estimate was applied to derive limiting laws for the spectral distributions, under some
additional assumptions on Un. One of the results of [19] is the circular law for doubly
stochastic variance profiles: provided that

Pn
iD1.Un/2

ij D
Pn

iD1.Un/2
ji D n, 1 � j � n, and

supn maxi;j .Un/ij < 1, the sequence of spectral distributions .� 1p
n

UnˇMn
/1
nD1 converges

weakly in probability to the uniform measure on the unit disc of C.
The setting of sparse structured matrices is not well understood. For results in that

direction, we refer to a recent paper [40] dealing with the invertibility and spectrum of block
band matrices.

4. Methodology

We start this section with a brief outline of [72] which will serve as an illustration
of nonasymptotic methods (at the same time, we note that the argument of [72] is strongly
influenced by earlier works, in particular, by Tao–Vu [89] and Rudelson [69]). The proof of
the main theorem in [72] relies on four major components: sphere partitioning, invertibility
via distance, "-net arguments, and Littlewood–Offord-type inequalities.

Let A be an n � n matrix with i.i.d. real entries having zero mean and unit vari-
ance, and assume for simplicity that the entries are K-subgaussian for some constant K > 0.
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A vector x 2 Rn is called m-sparse if the size of its support is at most m. We will denote the
set of all m-sparse vectors by Sparsen.m/. The proof of [72, Theorem 3.1] starts with splitting
Sn�1.R/ into sets of compressible and incompressible vectors,

Compn.ı; �/ WD
®
x 2 Sn�1.R/ W dist

�
x; Sparsen.ın/

�
< �

¯
I

Incompn.ı; �/ WD
®
x 2 Sn�1.R/ W dist

�
x; Sparsen.ın/

�
� �

¯
:

Here, ı; � 2 .0; 1/ are small constants. The variational formula for smin.A/ allows writing

P
®
smin.A/ � s

¯
� P

®
kAxk2 � s for some x 2 Compn.ı; �/

¯
C P

®
kAxk2 � s for some x 2 Incompn.ı; �/

¯
; s > 0:

If both ı and � are sufficiently small, the set of compressible vectors has small covering
numbers, which allows applying an "-net argument. More specifically, it can be checked that
for every " 2 .3�;1=2�, there is a discrete subset N � Compn.ı;�/ of size at most . C

"ı
/ın such

that for every x 2 Compn.ı; �/, we have dist.x; N / � " (i.e., N is an "-net in Compn.ı; �/

with respect to the Euclidean metric). Consequently, for every L > 0,

P
®
kAxk2 � s for some x 2 Compn.ı; �/

¯
� P

®
kAyk2 � s C "L

p
n for some y 2 N

¯
C P

®
kAk > L

p
n
¯

� jN j sup
z2Sn�1.R/

P
®
kAzk2 � s C "L

p
n
¯

C P
®
kAk > L

p
n
¯
:

For any z 2 Sn�1.R/, the vector Az has i.i.d. subgaussian components with unit variances,
and a standard Laplace transform argument implies that, as long as s C "L

p
n is much less

than
p

n, the probability P¹kAzk2 � s C "L
p

nº is exponentially small in n. Moreover, for
a sufficiently large constant L, the probability P¹kAk > L

p
nº is exponentially small in n.

Therefore, an appropriate choice of parameters ı; �; "; L yields

P
®
kAxk2 � s for some x 2 Compn.ı; �/

¯
� 2 exp.�cn/; s D o.

p
n/:

We refer to [72] and [75] for details regarding the above computations. Let us note also that
the idea of sphere partitioning was applied a few years earlier in [56] dealing with rectangular
random matrices.

The incompressible vectors are treated using the invertibility via distance argument,
which is based on the observation that for any incompressible vector x, a constant proportion
of its components are of order �.n�1=2/ by the absolute value. For every 1 � i � n, denote
by Hi .A/ the linear span of columns of A except the i th,

Hi .A/ WD Span
®
Colj .A/; j ¤ i

¯
:

Then for arbitrary vector x and arbitrary “threshold” � > 0 with ¹i W jxi j � �º ¤ ;, we have

kAxk2 � max
1�i�n

�
jxi jdist

�
Coli .A/; Hi .A/

��
� � max

i Wjxi j��
dist

�
Coli .A/; Hi .A/

�
;

and hence for any s > 0, 1¹kAxk2�sº �
1

j¹i Wjxi j��ºj

Pn
iD1 1¹dist.Coli .A/;Hi .A//�s=�º. This, com-

bined with Markov’s inequality and the fact that every .ı;�/–ncompressible vector is spread,
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i.e., has at least ın components of magnitude at least �n�1=2, gives for t > 0,

P
®
9 x 2 Incompn.ı; �/ W kAxk2 � tn�1=2

¯
�

1

ın

nX
iD1

P
®
dist

�
Coli .A/; Hi .A/

�
� t=�

¯
(4.1)

(see [72, Lemma 3.5]). Since the distribution of A is invariant under column permutations, the
last relation can be rewritten as

P
®
kAxk2 � tn�1=2 for some x 2 Incompn.ı; �/

¯
�

1

ı
P
®
dist

�
Coln.A/; Hn.A/

�
� t=�

¯
�

1

ı
P
®
j
˝
Coln.A/; Yn.A/

˛
j � t=�

¯
;

where Yn.A/ denotes a unit normal to Hn.A/ measurable with respect to �.Hn.A//.
The most involved part of [72] is the analysis of anticoncentration of hColn.A/;

Yn.A/i. Recall that the Lévy concentration function L.Z; t/ of a real variable Z is defined
as

L.Z; t/ WD sup
r2R

P
®
jZ � r j � t

¯
; t � 0:

The relationship between the magnitude of L.
Pn

iD1 ai Zi ; t / for a linear combination of
random variables

Pn
iD1 ai Zi and the structure of the coefficient vector .a1; : : : ; an/ has

been studied in numerous works, starting from an inequality of Erdős–Littlewood–Offord
[27, 52]; we refer, in particular, to works [28, 48, 49, 68], as well as [89] and a survey [64] for
a more recent account of the Littlewood–Offord theory and its applications to the matrix
invertibility.

To characterize the structure of a coefficient vector in regard to anticoncentration,
the notion of the essential least common denominator (LCD) has been introduced in [72].
We quote a slightly modified definition from [73]:

LCD.a/ WD inf
®
� > 0 W dist

�
�a; Zn

�
< min

�

k�ak2; ˛

p
n
�¯

; a 2 Rn:

Here, ˛; 
 are small positive constants. The Littlewood–Offord-type inequality used in [72,

73] can be stated as follows. If Z1; Z2; : : : ; Zn are i.i.d. real-valued random variables with
P¹jZi � EZi j < ˇº � 1 � ˇ for some ˇ > 0 then for any unit vector a 2 Rn,

L

 
nX

iD1

ai Zi ; t

!
� C t C

C

LCD.a/
C 2 exp.�cn/; t > 0; (4.2)

where C > 0 may only depend on ˇ; 
 and c > 0 only on ˛; ˇ (see [73] for a proof). Using
an "-net argument, the authors of [72] show that, with probability exponentially close to one,
the random unit normal vector Yn.A/ has an exponentially large LCD. This implies

P
®ˇ̌˝

Coln.A/; Yn.A/
˛ˇ̌

� s
¯

� P
®
LCD

�
Yn.A/

�
< exp.c0n/

¯
C C s C 2 exp.�c0n/

� C s C 3 exp.�c00n/; s > 0:

The combination of all the ingredients now gives the final estimate

P
®
smin.A/ � tn�1=2

¯
� QC t C QC exp.�Ocn/; t > 0;
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matching, by the order of magnitude and up to the exponentially small additive term, the
known asymptotics of smin of Gaussian random matrices [25,82].

In the remaining part of this section, we will consider some of the novel additions
to the methodology made over the past years. To avoid technical details as much as possible,
we will refer to compressible vectors, as well as all related notions from the literature, as
almost sparse vectors, and to incompressible vectors and their relatives as spread vectors.

Invertibility over almost sparse vectors. In the setting of dense random matrices as
described above, the set of almost sparse vectors AlSpn can be treated by a simple "-net
argument since anticoncentration estimates for kAzk2 for an arbitrary vector z 2 Sn�1 are
able to overpower the cardinality of the "-net N in AlSpn. In the case of sparse and certain
models of structured random matrices, such an argument may not be sufficient since the
product jN j supz2Sn�1.R/ P¹kAzk2 � sº may become infinitely large even for small s > 0.
We consider two (related) approaches to this problem from the literature.

The first is based on further subdividing AlSpn into a few subsets T1;T2; : : : accord-
ing to the size of set of vector’s components of nonnegligible magnitude, and applying an
"-net argument within each subset. Anticoncentration estimates for Az for vectors z 2 Ti

then compete with the cardinality of an "-net on the set Ti rather than on the entire collec-
tion AlSpn, which, for certain models, allows the proof to go through. We refer, in particular,
to [76, Section 4] and [16, Section 3] for an application of this strategy to structured random
matrices; as well as [17, Proposition 3.1] dealing with adjacency matrices of random d -regular
digraphs.

The second approach consists in identifying a class of nonrandom matrices C such
that, for every M 2 C and every almost sparse vector z 2 Sn�1, Mz has a nonnegligible
Euclidean norm, and then showing that, with probability close to one, A 2 C . As an example,
consider a collection of matrices M such that for every nonempty subset I � Œn� with jI j �

m, there is a row Rowi .M/ with jsupp Rowi .M/ \ I j D 1. Then, it is not difficult to check
that, for every nonzero m-sparse vector z, one has Mz ¤ 0. It can further be verified that a
random matrix A with i.i.d. Bernoulli(p) elements and n�1polylog.n/ � p � cm�1 belongs
to this class with probability tending to one as n ! 1 [5]. The construction can be made
robust to treat almost sparse vectors, and can be further elaborated to deal with diagonal
shifts of very sparse matrices [5,53,70].

Invertibility via distance. Relation (4.1) discovered in [72] can be applied to any model
of randomness. However, this relation is not completely satisfactory when either (a) there
are strong probabilistic dependencies between Coli .A/ and Hi .A/ which make estimating
P¹dist.Coli .A/; Hi .A// � tº challenging, or (b) invertibility over the almost sparse vectors
cannot be treated with a desired precision using approaches based on "-net arguments or on
conditioning on a particular structure of the matrix. Here, we consider some developments
of the invertibility via distance argument made in the contexts of d -regular random digraphs
and smoothed analysis of the condition number.

Let An;d be the adjacency matrix of a uniform random d -regular directed graph
on n vertices. The regularity condition implies that for every 1 � i � n, Coli .An;d / is a
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function of ¹Colj .An;d /ºj ¤i , creating issues with applying the original version of the argu-
ment from [72]. In [18], Cook proposed a modification of the argument based on considering
distances between the matrix columns and random subspaces of the form Hi1;i2;C.An;d / WD

Span¹Colj .An;d /; j ¤ i1; i2I Coli1.An;d / C Coli2.An;d /º, for i1 ¤ i2. This was later applied
in [17,53]. Here, we quote [53, Lemma 4.2]: denoting by S.�; ı/ the collection of all unit vectors
x in Cn with inf�2C j¹i � n W jxi � �j > �n�1=2ºj > ın, one has

P
°

inf
x2S.�;ı/



.An;d � z Id/x




2
� tn�1=2

±
�

1

ın2

X
i1;i22Œn�;

i1¤i2

P
®
dist

�
Coli1.An;d � z Id/; Hi1;i2;C.An;d � z Id/

�
� t=�

¯
:

Conditioned on a realization of Colj .An;d /, j ¤ i1; i2 (hence, also Y WD Coli1.An;d / C

Coli2.An;d /), the support of the i1th column of An;d is uniformly distributed on the collec-
tion of d -subsets Q satisfying ¹j � n W Yj D 2º � Q � supp Y . In the regime d ! 1 as n

tends to infinity, this is “sufficient randomness” for a satisfactory bound on smin.An;d � z Id/

required by the Hermitization argument [17,53].
We remark here that another version of the argument for matrices with dependencies

based on evaluation of certain quadratic forms, introduced in [95], has been used in a non-
Hermitian setting in [74] to estimate the smallest singular value of unitary and orthogonal
perturbations of fixed matrices, which in turn is an important ingredient of the single ring
theorem [35,74]. We refer to [74] for details.

In [91], a variant of the invertibility via the distance argument was developed to deal
with nonrandom shifts of matrices with continuous distributions. The main observation of
[91] is that the distances dist.Coli .A/;Hi .A//, 1 � i � n, are highly correlated, which allows
for a more efficient analysis than the first moment method estimate (4.1). The invertibility
via distance is applied in [91] to the entire sphere rather than the set of spread vectors. As an
illustration of the principle, we consider a simpler setting of centered random matrices when
the argument is still able to produce new results. Assuming A is an n � n real random matrix
with i.i.d. entries having zero mean, unit variance, and the distribution density bounded above
by �, for every t > 0 and 1 � k � n, one has P¹9 I � Œn� W jI j � k; dist.Coli .A/; Hi .A// �

t 8 i 2 I º � C�t .n=k/5=11, where C� > 0 may only depend on � (see [91, Prop. 3.8]). This,
combined with the simple consequence of the negative second moment identity

smin.A/ �

 
nX

iD1

dist
�
Coli .A/; Hi .A/

��2

!�1=2

;

implies an estimate P¹smin.A/ � tn�1=2º � C 0
�t , t > 0, which does not carry the cn additive

term inevitable when an "-net-based approach is used. We refer to [91] for the more involved
setting of noncentered random matrices.

Alternatives to the LCD. Functions of coefficient vectors different from the essential least
common denominator have been introduced in the literature to deal with anticoncentration in
the context of sparse and inhomogeneous random matrices, and matrices with dependencies.
Here, we review some of them (for non-Hermitian models only).
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The original notion of LCD is not applicable to the study of linear combinations of
nonidentically distributed variables: in fact, given any vector a 2 Sn�1.R/ with an exponen-
tially large LCD, one can easily construct mutually independent variables Z1; : : : ; Zn with
L.Zi ; 1/ � 1=2, 1 � i � n, and such that L.

Pn
iD1 ai Zi ; 0/ D �.n�1=2/. Given a random

vector X in Rn and denoting by NX the difference X � X 0 (where X 0 is an independent copy
of X/, the randomized least common denominator with respect to X is defined by

RLCDX .a/ WD inf
®
� > 0 W Edist2

�
.�a1

NX1; : : : ; �an
NXn/; Zn

�
< min

�

k�ak

2
2; ˛n

�¯
; a 2 Rn:

The notion was introduced in [59] to deal with inhomogeneous random matrices with dif-
ferent entry distributions. The small ball probability inequality (4.2) from [72,73] extends to
the non-i.i.d. setting with the RLCD taking place of the original notion. We refer to [59] for
details.

Strong quantitative invertibility results for matrices with fixed rowsums and adja-
cency matrices of d -regular digraphs obtained recently in [93] and [45], respectively, rely on
a modification of the LCD which allows treating linear combinations of Bernoulli variables
conditioned on their sum. Specifically, in [93] the notion of the combinatorial least common
denominator CLCD is defined by

CLCD.a/ WD inf
®
� > 0 W dist

�
�.ai � aj /i<j ; Z

�
n
2

��
< min

�




�.ai � aj /i<j




2
; ˛n

�¯
; a 2 Rn;

where .ai � aj /i<j denotes a vector in R
�
n
2

�
with the .i; j /th coordinate equal to ai � aj ,

1 � i < j � n. It is further shown that for the random vector .Z1; Z2; : : : ; Zn/ uniformly
distributed on the collection of 0=1 vectors with exactly n=2 ones, an analog of the anti-
concentration inequality (4.2) holds, with LCD replaced by CLCD. A modification of the
notion, called QCLCD, was further considered in [45]. We refer to that paper for details.

Another functional – the degree of unstructuredness UD – was introduced in [57] to
study the invertibility of sparse Bernoulli random matrices. The main observation exploited
in [57] is that, for p D o.1/, linear combinations of i.i.d. Bernoulli(p) random variablesPn

iD1 ai Zi are often more concentrated than corresponding linear combinations of depen-
dent 0=1 variables conditioned to sum to a fixed number of order ‚.pn/. In [57], the argument
proceeds by conditioning on the size of the support of a column of the matrix and estimating
the anticoncentration of dist.Coli .A/; Hi .A// D jhColi .A/; Yi .A/ij in terms of the degree
of unstructuredness of the unit random normal Yi .A/. The definition of UD is technically
involved, and we do not provide it here; see [57] for details.

Average-case analysis of anticoncentration. The average-case study of Littlewood–Offord-
type inequalities for linear combinations

Pn
iD1 ai Zi , introduced in the random matrix con-

text in [92], was a crucial element in some of recent advances on quantitative invertibility
of random discrete matrices [43,44,92], which helped resolve some long-standing problems
in the combinatorial random matrix theory. The main idea of [92] is, rather than attempting
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to obtain an explicit description of vectors a such that
Pn

iD1 ai Zi is strongly anticoncen-
trated, to consider the linear combination for a randomly chosen coefficient vector (with
an appropriately defined notion of randomness). This approach allowed strengthening the
invertibility results available through the use of the LCD. As an example, we consider a
simplified version of the main technical result of [92]. Let " 2 .0; 1=2/, M � 1. Then there
exist n0 D n0."; M/ depending on "; M and L0 D L0."/ > 0 depending only on " (and
not on M ) with the following property. Take n � n0, 1 � N � .1=2 C "/�n, and let A WD

.¹�2N; : : : ;�N � 1º [ ¹N C 1; : : : ; 2N º/n. Assume that a random vector a D .a1; : : : ; an/

is uniformly distributed on A. Then

Pa

®
LZ.a1Z1 C � � � C anZn;

p
n/ > L0N �1

¯
� e�Mn:

Here, LZ.�; �/ denotes the Lévy concentration function with respect to the randomness of
.Z1; : : : ; Zn/, a vector with independent ˙1 components. The main point of the statement
is that the parameter L0 controlling the anticoncentration of the linear combination does not
depend on M , i.e., the proportion of the coefficient vectors in A such that the anticoncen-
tration of a1Z1 C � � � C anZn is weak, becomes superexponentially small in n as n ! 1.

Matrices with heavy entries. For the invertibility of (dense) random matrices with inde-
pendent entries assuming only finite second moments, we refer to [58,59,67].

5. Open problems

We conclude this survey with a selection of open research problems.

Refined smoothed analysis of invertibility. Recall that a standard model in the setting of
the smoothed analysis of the condition number is of the form A C M , where A is an n � n

random matrix with i.i.d. entries, and M is a nonrandom shift.

Problem 1 (Shift-independent estimates for matrices with continuous distributions). Let �

be a real random variable with zero mean, unit variance, and bounded distribution density.
Let A be an n � n matrix with i.i.d. entries equidistributed with �. It is true that for every
nonrandom matrix M ,

P
®
smin.A C M/ � tn�1=2

¯
� C t; t > 0;

where C > 0 may only depend on the c.d.f. of � (and not on n)?

For partial results on the above problem, see [78,91].

Problem 2 (Optimal dependence of smin.A C M/ on the norm of the shift in the discrete
setting). Let A be an n � n matrix with i.i.d. ˙1 entries, and let T; t > 0 be parameters. For
any "; L > 0, estimate supM WkMk�T P¹smin.A C M/ � tº up to a multiplicative error O.n"/

and an additive error O.n�L/, that is, find an explicit function f .n; T; t/ such that

n�"f .n; T; t/ � C n�L
� sup

M WkMk�T

P
®
smin.A C M/ � t

¯
� n"f .n; T; t/ C C n�L;

where C > 0 may only depend on " and L.
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For the best known partial results on the above problem, see [42,87].

Problem 3 (Dependence of smin.A C M/ on M in the Gaussian setting). Let A be an n � n

matrix with i.i.d. standard real Gaussian entries. Find an estimate on Esmin.A C M/ in terms
of the singular spectrum of M .

One can assume in the above problem that M is a diagonal matrix with the i th diag-
onal element si .M/, 1 � i � n. Note that A may either improve or degrade the invertibility
of M .

Invertibility and spectrum of very sparse matrices. Here, we consider the problem of
identifying the limiting spectral distribution for non-Hermitian matrices with constant aver-
age number of nonzero elements in a row/column.

Problem 4 (The oriented Kesten–McKay law; see [9, Section 7]). Let d � 3. For each n,
let An;d be the adjacency matrix of a uniform random d -regular directed graph on n ver-
tices. Prove that the sequence of spectral distributions .�An;d

/1
nD1 converges weakly to the

probability measure on C with the density function

�d .z/ WD
1

�

d 2.d � 1/

.d 2 � jzj2/2
1

¹jzj<
p

dº
:

Assuming the standard Hermitization approach to the above problem, the following
is the crucial (perhaps the main) step of the argument:

Problem 5. Let d � 3 and let .An;d /1
nD1 be as above. Prove that for almost every z 2 C and

every " > 0,
lim

n!1
P
®
smin.An;d � z Id/ � exp.�"n/

¯
D 0:

Problem 6 (Spectrum of directed Erdős–Renyi graphs of constant average degree). Let
˛ > 0. For each n � ˛, let An be an n � n random matrix with i.i.d. Bernoulli(˛=n) entries.
Does a sequence of spectral distributions .�An/ converge weakly to a nonrandom probability
measure?

As in the case of regular digraphs, assuming the Hermitization argument, the follow-
ing problem constitutes an important step in understanding the asymptotics of the spectrum:

Problem 7. For each n � ˛, let An be an n � n random matrix with i.i.d. Bernoulli(˛=n)
entries. Is it true that for almost every z 2 C and every " > 0,

lim
n!1

P
®
smin.An � z Id/ � exp.�"n/

¯
D 0‹

Invertibility and spectrum of structured random matrices. The spectrum of structured
random matrices in the absence of expansion-like properties (such as broad connectivity
[76] or robust irreducibility [19, 20]) is not well understood as of now. In particular, a full
description of the class of inhomogeneous matrices with independent entries with spectral
convergence to the circular law seems to be out of reach of modern methods.
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Problem 8. Give a complete description of sequences of standard deviation profiles .Un/1
nD1

satisfying the following condition: assuming that � is any random variable with zero mean
and unit variance, and that for each n, Mn is an n � n matrix with i.i.d. entries equidistributed
with � , the sequence of spectral distributions .�UnˇMn/ converges weakly in probability to
the uniform measure on the unit disc of C.

A natural class of profiles considered, in particular, in [19,20], are doubly stochastic
profiles. One may expect that those profile sequences, under some weak assumption on the
magnitude of the maximal entry, should be sufficient for the circular law to hold:

Problem 9. Assume that for each n, the standard deviation profile Un satisfies
nX

iD1

.Un/2
ij D

nX
iD1

.Un/2
ji D 1; 1 � j � n;

and that for some " > 0, lim supn maxij ..Un/ij n"/ D 0. Is it true that, with Mn as in the above
problem, the sequence .�UnˇMn/ converges weakly in probability to the uniform measure
on the unit disc of C?

Note that the above setting allows sparse matrices (cf. [19, Theorem 2.4]). Solving the
above problem, if approached with Girko’s Hermitization procedure, requires satisfactory
bounds on the smallest singular values of Un ˇ Mn � z Id.
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