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Abstract

Operator algebras are subalgebras of the bounded operators on a Hilbert space. They
divide into two classes: C �-algebras and von Neumann algebras according to whether
they are required to be closed in the norm or weak-operator topology, respectively.
In the 1970s Alain Connes identified the appropriate notion of amenabilty for von Neu-
mann algebras, and used it to obtain a deep internal finite-dimensional approximation
structure for these algebras. This structure is exactly what is needed for classification, and
one of many consequences of Connes’ theorem is the uniqueness of amenable II1 factors,
and later a complete classification of all simple amenable von Neumann algebras acting on
separable Hilbert spaces.
The Elliott classification programme aims for comparable structure and classification
results for C �-algebras using operator K-theory and traces. The definitive unital classifi-
cation theorem was obtained in 2015. This is a combination of the Kirchberg–Phillips the-
orem and the large scale activity in the stably finite case by numerous researchers over the
previous 15–20 years. It classifies unital simple separable amenable C �-algebras satisfying
two extra hypotheses: a universal coefficient theorem which computes KK-theory in terms
of K-theory and a regularity hypothesis excluding exotic high-dimensional behaviour.
Today the regularity hypothesis can be described in terms of tensor products (Z-stability).
These hypotheses are abstract, and there are deep tools for verifying the universal coeffi-
cient theorem and Z-stability in examples.
This article describes the unital classification theorem, its history and context, together
with the new abstract approach to this result developed in collaboration with Carrión,
Gabe, Schafhauser, and Tikuisis. This method makes a direct connection to the von Neu-
mann algebraic results, and does not need to obtain any kind of approximation structure
inside C �-algebras en route to classification. The companion survey [32] focuses on the
role of the Z-stability hypothesis, and the associated work on “regularity.”
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1. Operator algebras

This survey aims to describe how the classification theorems for simple amenable
C �-algebras parallel Connes’ celebrated von Neumann algebra classification results from the
1970s. The first four sections set the context and are written for a nonexpert. Section 5 focuses
on the two key hypotheses required for the classification theorem. The last four sections
give a flavour of some of the ideas involved in these results, and require increasingly more
background.

Operator algebras originate in the mathematical foundations of quantum mechan-
ics. There are two main classes: C �-algebras and von Neumann algebras. A C �-algebra
is a complex Banach algebra A equipped with an involution � satisfying the fundamental
C �-identity, kx�xk D kxk2 for all x 2 A. This seemingly innocuous formula binds the alge-
braic and analytic aspects of the definition together. It is the source of a surprising amount of
rigidity: the norm on a C �-algebra is unique and determined algebraically through spectral
data. C �-algebras are based on abstraction of the bounded operators on a Hilbert space H ,
and so examples arise from Hilbert space representations. For example, the left regular rep-
resentation � W G ! B.`2.G// of a discrete groupG is given by �g.f /.h/ WD f .g�1h/ for
g; h 2 G and f W G ! C in `2.G/. To this we associate the reduced group C �-algebra of
G, C �

�
.G/ as the C �-algebra generated by the unitaries .�g/g2G . Group C �-algebras pro-

vide a framework linking operator algebras with group representation theory and harmonic
analysis.

Norm convergence of bounded operators is a restrictive condition, and there are a
number of finer topologies on B.H /: the strong operator topology of pointwise convergence,
the weak operator topology of pointwise weak convergence, and the weak�-topology from
the duality with the trace class operators. Von Neumann algebras are the �-subalgebras of
B.H / which are closed in these topologies (they all give �-subalgebras the same closure).
The group von Neumann algebra L.G/ is the von Neumann algebra generated by the image
of the left regular representation, so L.G/ is the weak operator closure of C �

�
.G/.

The distinction between the norm and strong or weak operator topologies creates
a profound difference between the flavour of C �-algebras and von Neumann algebras. The
former are topological in nature, while the latter are measure-theoretic. This is evident in the
abelian case: via the Gelfand transform, every commutative C �-algebra arises as the algebra
C0.X/ of continuous functions vanishing at infinity on a locally compact Hausdorff space
X . While uniform limits of continuous functions are continuous, pointwise limits are only
guaranteed to be measurable, and a general abelian von Neumann algebra is L1.X; �/ for
some measure space .X; �/. In the setting of discrete abelian groups G, these spaces come
from the Fourier transform: C �.G/ Š C0. OG/ and L.G/ Š L1. OG/, where OG is the Fourier
dual group. Considering G D Z and Z2, we have C �

�
.Z/ 6Š C �

�
.Z2/ as the Fourier duals

T and T2 are not homeomorphic. The circle and torus are measurably indistinguishable, so
L.Z/ Š L.Z2/.

Another important family of examples arises from dynamics. Given a group action
G Õ X , we obtain an induced action ˛ on the relevant abelian operator algebra, C0.X/ or
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L1.X/, according to whether X is topological or measurable. Reminiscent of the semidi-
rect product construction from group theory, the reduced crossed product is a C �-algebra
C0.X/Ìr G or von Neumann algebraL1.X/ÌG generated by the relevant abelian algebra
C0.X/ or L1.X/ and unitaries .ug/g2G that implement the induced action:
ugf u

�
g D ˛g.f / for g 2 G and f in the commutative subalgebra. This construction is

set up so that the unitaries ug generate C �
�
.G/ or L.G/, respectively. These operator alge-

bras provide tools for examining actions whose quotient spaces are non-Hausdorff, such
as the action Z Õ T of rotation by an irrational multiple � of 2� leading to the famous
irrational rotation C �-algebras A� D C.T / Ìr;� Z.

2. Projections and approximate finite dimensionality

Classification results for operator algebras go back to the foundational work of
Murray and von Neumann on projections. This relativises the classification of closed sub-
spaces of an infinite-dimensional Hilbert space by their dimension to an operator algebra A.
Projections p; q 2 A are equivalent (written p � q) if there exists v 2 A with v�v D p

and vv� D q; p is sub-equivalent to q (p - q) if there exists q0 � q with p � q0. Akin to
Dedekind’s definitions for sets, a projection is called infinite if it is equivalent to a proper
sub-projection of itself, and finite otherwise. Likewise a unital operator algebra is infinite or
finite according to the behaviour of its unit. This theory is particularly clean for von Neu-
mann algebras where p - q and q - p imply p � q, and is at its crispest in the case of
factors. A factor is a von Neumann algebra with trivial centre; these are precisely the simple
von Neumann algebras. Factors are the irreducible building blocks of von Neumann algebras
and the set of equivalence classes of projections in a factor is always totally ordered.

Murray and von Neumann used this total ordering to loosely divide factors into
types. The type I factors have a discrete order ¹0; 1; 2; : : : ; nº or ¹0; 1; 2; : : : º [ ¹1º. The
only examples are bounded operators on a Hilbert space. The interest begins with the type II
factors, where the projections form a continuum. These subdivide further into II1 factors,
where the unit is finite, and II1 factors where it is infinite. After rescaling, the Murray–von
Neumann equivalence classes of projections in a II1 factor M identify with Œ0; 1� and are
determined by the trace. That is, there is a unique positive linear functional � with �.1M/D 1

satisfying the trace identity �.xy/D �.yx/. Then projections p; q 2 M satisfy p - q if and
only if �.p/ � �.q/. Every II1 factor is a von Neumann tensor product of a II1 factor and
B.H /, so for many purposes the study of II1 factors reduces to that of II1 factors. Finally,
there are the type III factors, which are purely infinite: all non-zero projections are infinite
(and in the separably acting case equivalent).

Murray and von Neumann constructed an example of a II1 factor R as a suitable
completion of the algebraic tensor product of infinitely many copies of the algebra M2

of 2 � 2 matrices, where the trace comes from extending the product of the normalised
traces on the matrix algebras. This led them to isolate a key internal approximation prop-
erty: hyperfiniteness. A von Neumann algebra is hyperfinite if finite families of operators
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can be approximated in strong operator topology by finite dimensional subalgebras (in R

one uses finite tensor products of copies of M2 to perform these approximations).
Murray and von Neumann’s celebrated uniqueness theorem from [23] shows that all

separably acting hyperfinite II1 factors are isomorphic. In particular, there is nothing special
about the 2� 2matrices above. Any choice of matrix size would lead to the same hyperfinite
II1 factor, denoted R.

Examples of II1 factors appear naturally from groups and dynamics. The von Neu-
mann algebra of an infinite discrete group G is a II1 factor if and only if G is an ICC group:
one where all non-trivial elements have infinite conjugacy classes. When G is an inductive
limit of finite groups, L.G/ will be hyperfinite. If G is additionally ICC (such as the group
S1 of all finitely supported permutations of the natural numbers) thenL.G/will be isomor-
phic to R by Murray and von Neumann’s uniqueness theorem. Approximating an irrational
rotation by a rational rotation one gets hyperfiniteness for the II1 factors L1.T / Ì Z asso-
ciated to irrational rotations.

For C �-algebras, approximate finite dimensionality (AF) is defined analogously
to hyperfiniteness working with the operator norm in place of the strong topology. This
changes things significantly: the infinite C �-tensor products M21 WD

N1

nD1 M2 and
M31 WD

N1

nD1M3 are not isomorphic. Indeed, there is no unital embedding of M2 into
M31 , as this would give rise (by a perturbation argument) to a unital embedding ofM2 into
some M3n , which is impossible. The difference is that norm-close projections are equiv-
alent, whereas strong-operator-close projections need not be. This line of reasoning led
Glimm to classify all such C �-algebra infinite tensor products of matrices (known as uni-
formly hyperfinite (UHF) algebras) by the supernatural number consisting of the infinite
product of primes appearing in the matrix sizes. Later, Bratelli examined isomorphisms
between separable AF C �-algebras in terms of diagrammatic data for inclusions of finite-
dimensional C �-algebras, and Elliott gave an algebraic classification which turned out to be
in terms of K-theory.

OperatorK-theory is a non-commutative generalisation of Atiyah and Hirzebruch’s
topological K-theory. For a unital C �-algebra A, K0.A/ is defined as the Grothendieck
group of the abelian semigroup of projections in matrices over A up to equivalence (addi-
tion is given by a diagonal direct sum). Elliott’s invariant for unital AF-algebras is then
.K0.A/; K0.A/C; Œ1A�0/, where K0.A/C is the positive cone arising from projections in
matrices over A, and Œ1A�0 is the class of the unit. The unital case of Elliott’s theorem shows
that for separable unital AF C �-algebras A and B , any isomorphism ˆ W K0.A/ ! K0.B/

withˆ.K0.A/C/DK0.B/C andˆ.Œ1A�0/D Œ1B �0 comes from an isomorphism � WA!B .
TheK0-functor preserves inductive limits, so one can easily computeK0.M21/ as

the dyadic rationals ¹m=2n Wm 2 Z; nD 0; 1; : : : º with positivity inherited from the positive
reals, and Œ1M21 �0 D 1, whereas K0.M31/ is the triadic rationals.
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3. Connes’ theorem

While Murray and von Neumann’s uniqueness theorem is a beautiful result, it is not
easy to apply directly; obtaining hyperfiniteness explicitly is out of reach in many examples.
Connes resolved this issue in a landmark abstract characterisation from the 1970s.

Theorem 3.1 (Connes, [5]). Let M � B.H / be a von Neumann algebra. The following are
equivalent:

(1) M is injective, i.e., there is a linear contractionˆ W B.H /! M withˆ.x/D x

for x 2 M.

(2) M is semidiscrete.

(3) M is hyperfinite.

Injectivity is so named because it is equivalent to injectivity of M in the category
of von Neumann algebras and completely positive and contractive (cpc) maps. The defi-
nition is independent of the representation of M. Semidiscreteness is a finite-dimensional
approximation property, though a priori of a much weaker nature than hyperfiniteness. It
asks for point weak� approximations of the identity map by cpc maps factoring through
finite-dimensional C �-algebras—such maps preserve the adjoint and order structure (at all
levels of matrix amplification), but are not required to preserve the product. Both injectivity
and semidiscreteness are much easier to access than hyperfiniteness in examples; indeed, the
equivalence of amenablility of a discrete groupG with both injectivity and semidiscreteness
of L.G/ significantly predates Connes’ theorem. Likewise all actions of amenable groups
on injective von Neumann algebras produce injective crossed products.

The marriage of Connes’ structural theorem with Murray and von Neumann’s
uniqueness theorem gives a definitive classification result—there is a unique injective separa-
ble II1 factor—with readily verifiable hypotheses. All the von Neumann algebras associated
to countably infinite discrete amenable ICC groups are isomorphic. Moreover, Connes was
able to apply Theorem 3.1 to his earlier work on type III factors, giving an almost complete
classification of separable injective factors. The puzzle was completed 10 years later when
Haagerup established the uniqueness of the hyperfinite III1 factor [13].

Theorem 3.2 (Connes, Haagerup, Murray–von Neumann). There is a complete classifica-
tion of separable injective factors.

The impact of Theorem 3.1 goes well beyond classification results. It shows that
hyperfiniteness passes to subalgebras of the hyperfinite II1 factor, which is vital to Jones’
theory of subfactors, and directly inspired the classification of amenable equivalence rela-
tions by Connes, Feldman, and Weiss.

Connes proved Theorem 3.1 in the II1 factor case, and deduced the other cases from
this. A central component of his argument is a deep generalisation of characterisations of
amenability in terms of invariant means and Følner sets to traces on operator algebras. As
such it is highly non-constructive, and it remains completely out of reach to describe hyper-
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finiteness of L.G/ explicitly in terms of Følner sets for an amenable groupG. Both Connes’
theorem and the techniques involved remain completely instrumental today; for example they
play a major role in Popa’s deformation-rigidity theory.

Various aspects of Connes’ arguments, and the later proofs of Theorem 3.1 by
Haagerup and Popa have heavily influenced developments for C �-algebras. Here I highlight
two ingredients of Connes’ proof for later comparison.

(1) Connes approximates the trace on a separable injective II1 factor M externally
by a sequence of approximately trace preserving, approximately multiplicative
cpc maps (in normalised Hilbert–Schmidt norm) to matrices. Such a sequence
is conveniently encoded by an embedding of M into the ultrapower R! of the
hyperfinite II1 factor.

(2) It is clear that the infinite algebraic tensor product of matrices satisfiesN1

nD1M2 Š
N1

nD1M2 ˝
N1

nD1M2. This persists in the weak operator clo-
sure used to obtain R, which becomes idempotent for the von Neumann tensor
product, R Š R ˝ R. This is known as self-absorption. A major aspect of
Connes’ proof is to show that R is a tensorial unit for all separable injective
II1 factors M, i.e., M Š M ˝ R. This condition had been previously devel-
oped by McDuff, who characterised these McDuff factors by the existence of
approximately central matrix subalgebras [22].

4. Simple nuclear C �-algebras and the Elliott

classification programme

In a nutshell, the Elliott classification programme aims for a C �-analogue of the
Connes, Haagerup, and Murray and von Neumann classification theorem. Ideally, we seek
complete classification results, with abstract hypotheses that are widely verifiable in a range
of examples. A fundamental question is: which C �-algebras should be classified, and by
what data? This is illustrated over the next two sections by the crossed products C.X/ Ìr G
associated to the action of a discrete group G on a compact Hausdorff space X .

Semidiscreteness has a direct analogue for C �-algebras—the completely positive
approximation property (CPAP). The only change to the definition is to use the point-norm
topology in the C �-setting. The CPAP is in turn equivalent to nuclearity, which is char-
acterised by the uniqueness of a C �-norm on the algebraic tensor product A ˇ B for all
C �-algebrasB . These conditions give the appropriate notion of amenability forC �-algebras.
For instance, a discrete groupG is amenable if and only ifC �

�
.G/ is nuclear and nuclearity is

preserved by actions of amenable groups. Moreover, as a surprising application of Connes’
theorem, a C �-algebra A has the CPAP if and only if its bidual A�� (which is naturally a
von Neumann algebra) is semidiscrete.

The most naive attempt to generalise Connes’ theorem fails spectacularly: nuclear
C �-algebras will rarely be AF (for example, C Œ0; 1� is nuclear, but certainly not AF).
Nonetheless, there are many situations where nuclear C �-algebras have properties akin
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to those of injective von Neumann algebras, after making some subtle adjustments to allow
for topological phenomena. For example, separable nuclear C �-algebras acting on the same
separable Hilbert spaces whose unit balls are close in the Hausdorff metric are spatially iso-
morphic [4]. This is analogous to existing results for injective von Neumann algebras [3]—in
both cases amenability is the key hypothesis—but one has to accept somewhat less strong
control on the spatial isomorphism in the C �-setting.

For group actions, C.X/ Ìr G is nuclear whenever G is amenable. One can also
define amenable actions of non-amenable groups, such as hyperbolic groups acting on their
boundary. Then C.X/ Ìr G is nuclear precisely when G Õ X is amenable.

Within the class of nuclear C �-algebras, the classification programme has mainly
focused on simple C �-algebras. From one point of view, these are analogous to factors—the
simple von Neumann algebras—but, on the other hand (and unlike von Neumann alge-
bras) we cannot decompose a general C �-algebra in terms of simple algebras. Nevertheless,
simple C �-algebras have proved a very fertile ground. For example, the construction of
the Cuntz algebras On led Cuntz to identify the C �-analogue of type III factors—purely
infinite simple C �-algebras. These have an abundance of projections (simple purely infi-
nite C �-algebras have real rank zero, and hence are the closed linear span of their projec-
tions) and any two nonzero projections p and q satisfy p - q and q - p. In a von Neu-
mann factor, this would force p � q, but this need not hold in a C �-algebra. In fact, the
equivalence classes of projections can be very complex: any pair .G0; G1/ of countable
abelian groups can appear as the K-theory of a separable simple nuclear purely infinite
C �-algebra. Two particularly important examples are O2 and O1 which have K-theories
.0; 0/ and .Z; 0/, respectively. In the setting of amenable group actions G Õ X , paradoxi-
cality can be used to obtain simple purely infinite nuclear C �-algebras.

The Elliott programme to classify separable simple nuclear C �-algebras began in
earnest after twin breakthroughs in the 1990s. In the infinite setting, Kirchberg’s revolu-
tionary work led to the Kirchberg–Phillips theorem: a complete K-theoretic classification
of simple separable nuclear and purely infinite C �-algebras—now called Kirchberg alge-
bras—satisfying Rosenberg and Schochet’s universal coefficient theorem (see Section 5).

Theorem 4.1 (Unital Kirchberg–Phillips theorem [16,24]). Let A and B be unital Kirchberg
algebras satisfying Rosenberg and Schochet’s universal coefficient theorem. Then A Š B if
and only if there is an isomorphism ˛� W K�.A/

Š
! K�.B/ with ˛0.Œ1A�0/ D Œ1B �0.

In the finite setting, Elliott’s classification of AT -algebras (inductive limits of C �-
algebras C.T ; F /, where F is finite dimensional) of real rank zero by ordered K-theory,
combined with the Elliott–Evans theorem that irrational rotation C �-algebras are AT , to
spark substantial work on inductive limit C �-algebras. Thomsen soon realised that ordered
K-theory alone was not enough to classify all simple AT algebras. Traces are also needed.

As with von Neumann algebras, a trace � on a simple C �-algebra A ensures finite-
ness: if v�v � vv�, then �.vv� � v�v/ D 0, forcing vv� D v�v. Moreover,Mn.A/ will be
finite for all n 2 N, i.e., A is stably finite. A deep theorem of Haagerup shows that stably
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finite simple nuclear (and, more generally, exact) C �-algebras always admit traces. So one
can detect stable finiteness by traces. However, there is not a direct dichotomy between the
finite and infinite: Rørdam produced a finite simple nuclearC �-algebraAwhich is not stably
finite [25]. Such an algebra does not have a von Neumann counterpart.

We write T .A/ for the set of traces on A. When A is unital, T .A/ is compact in the
weak�-topology, and convex Moreover T .A/ is a Choquet simplex (this ensures that T .A/
can be written as an inverse limit of finite simplices, a fact which is very useful in producing
C �-algebras with given trace spaces). We view T .A/ as a family of non-commutative mea-
sures, and in many examples it can be determined explicitly. Indeed, traces on simple crossed
products C.X/ Ìr G correspond to G invariant measures on X . In this way, the irrational
rotation C �-algebras have a unique trace coming from the Lebesgue measure on the circle.

It is often convenient to work with the space AffT .A/ of continuous affine functions
T .A/ ! R. By Kadison duality, this is canonically dual to T .A/. (One reason for working
with A 7! Aff T .A/ is that makes the entire classification invariant covariant). Every trace
induces a well-defined order-preserving map K0.A/ ! R mapping Œ1A�0 to 1, and so there
is a pairing between K-theory and traces. At the level of affine functions this is given by

�A W K0.A/ ! AffT .A/; �A.x/.�/ D �.x/; x 2 K0.A/; � 2 T .A/: (4.1)

Putting these ingredients together, the Elliott invariant of a unital C �-algebra A is

Ell.A/ D
�
K0.A/;K0.A/C; Œ1A�0; K1.A/;AffT .A/; �A

�
; (4.2)

and Elliott conjectured that this should classify all non-elementary simple separable unital
nuclear C �-algebras, analogously to the classification of injective factors [7].

For the irrational rotation algebrasA� DC.T /Ìr;� Z, one hasK�.A� /Š .Z2;Z2/.
The unique trace � embedsK0.A/� R by �.m;n/DmC �n form;n 2 Z and here the trace
determines the positive cone on K0.A/: x � 0 in K0.A/ if and only if x D 0 or �.x/ > 0.
A computation then shows A� Š A� if and only if � 2 ˙� C Z.

For irrational rotation algebras both K0.A/C and the trace pairing carry the same
information. In generality, neither of K0.A/C and .T .A/; �A/ can be recovered from the
other. However, in all cases where classification has been obtained K0.A/C is determined
by T .A/ as above. Thus, although the historical evolution of the Elliott invariant includes
K0.A/C (this dates back to the classification of AF algebras, whereas traces were only added
to the invariant later), with hindsight it is perhaps natural to work with the smaller invariant
KTu.A/ consisting of .K0.A/; Œ1A�0;K1.A/; T .A/; �A/. I prefer this approach for a number
of reasons: it makes it clear that the order structure on K0 does not play an explicit role; the
range ofKTu on simple separable unital and nuclear C �-algebras is completely understood
(it remains a very challenging problem to determine all possible orders on K0.A/C when
they are not given by the trace pairing); and KTu interacts very cleanly with the crucial
tensorial absorption condition of Z-stability (see Section 5.2 below). I choose to use the
Elliott invariant in the main classification theorems, reflecting both the important role Ell has
played historically and the amazing vision Elliott showed in his conjecture, and subsequent
programme.
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5. The unital classification theorem

Rørdam’s examples (and precursors by Villadsen) showed that there are highly
exotic simple nuclear C �-algebras with phenomena that have no von Neumann algebraic
counterpart. Toms later refined these ideas, constructing simple nuclear C �-algebras which
can never be classified by reasonably tractable data [31]. Thus we need additional, more
subtle, hypotheses to divide the classifiable stably finite simple nuclear C �-algebras from
the exotic. By the late 1990s two necessary conditions were known:

(1) A satisfies the universal coefficient theorem;

(2) A is stable under tensoring by the Jiang–Su algebra Z, i.e., A Š A˝ Z.

5.1. The universal coefficient theorem
Kasparov’s bivariant KK-theory is one of the fundamental tools in the classifi-

cation of C �-algebras, providing a tool unifying K-theory and extension theory
(K0.A/ Š KK.C; A/ and Ext.A/ Š KK.A; C0.R//). In fact, Kirchberg and Phillips both
showed that equivalence in KK-theory (viewed as a very weak kind of homotopy equiv-
alence) gives rise to an isomorphism for Kirchberg algebras. Thus the Kirchberg–Phillips
theorem has the flavour of a homotopy rigidity result.

Theorem 5.1 (Classification of unital Kirchberg algebras by KK-theory). Let A and B be
unital Kirchberg algebras. Then A Š B if and only if there is a KK-equivalence
˛ 2 KK.A;B/ with ˛ � Œ1A�0 D Œ1B �0.

The key tool for computing KK-theory is Rosenberg and Schochet’s universal
coefficient theorem (UCT) from [26]. The Kasparov product gives a map KK.A; B/ !

Hom.K�.A/;K�.B//, and a C �-algebra A satisfies the UCT when this map fits into a short
exact sequence

0 ! Ext1Z
�
K�.A/;K�C1.B/

�
! KK.A;B/ ! Hom

�
K�.A/;K�.B/

�
! 0 (5.1)

for all separableC �-algebrasB . In particular, when bothA andB satisfy the UCT, an isomor-
phismK�.A/ŠK�.B/ lifts to aKK-equivalence; this is how one returns from Theorem 5.1
to the K-theoretic classification of Theorem 4.1.

Rosenberg and Schochet established their universal coefficient theorem for abelian
C �-algebras, and then showed that the class of nuclear C �-algebras satisfying the UCT is
closed under various natural operations (in particular, all C �-inductive limits covered by
various classification results lie in the UCT class). It is a major and rather pressing open
problem whether all separable nuclear C �-algebras satisfy the UCT, but for the purposes
of applying the classification theorem to concrete examples, this is rarely a difficulty. Pretty
much all separable nuclear C �-algebras that can be explicitly described are known to satisfy
the UCT, often through Tu’s result (building on Higson and Kasparov’s work on the Baum–
Connes conjecture) that all C �-algebras associated to amenable groupoids satisfy the UCT.
In particular, all crossed products C.X/ Ìr G coming from amenable actions satisfy the
UCT.
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Moreover as the examples realising the invariant for Kirchberg algebras all satisfy
the UCT, the UCT is necessary for a K-theoretic classification.

5.2. Z-stability
The Cuntz algebra O1 satisfiesK�.O1/ŠK�.C/D .Z; 0/. Since O1 satisfies the

UCT, one can apply the Künneth formula to obtain K�.A˝ O1/ Š K�.A/ for all separa-
bleA. So classification predicts that a Kirchberg algebraA should be isomorphic toA˝ O1,
i.e.,A is O1-stable. This was confirmed in one of Kirchberg’s famous absorption theorems:

Theorem 5.2 (Kirchberg’s absorption theorems [16,17]). LetA be a separable simple nuclear
C �-algebra. Then:

(1) A is purely infinite if and only if A˝ O1 Š A;

(2) A˝ O2 Š O2.

Just as Connes goes via R-stability of injective II1 factors en-route to hyperfinite-
ness, the published approaches to the classification of Kirchberg algebras all use the O1-
absorption theorem in a crucial way. With hindsight O1-absorption is the key hypothesis
which enables the classification of Kirchberg algebras. The absorption theorem then enables
classification to be accessed via the more elementary condition of pure infiniteness. This
view point is strengthened by Kirchberg’s subsequent classification (by ideal related KK-
theory) of all separable nuclear O1-stable C �-algebras.

Returning to stably finite C �-algebras, it is natural to ask what is the right analogue
of the hyperfinite II1 factor? A naive first answer might be the CAR-algebra, M21 , but this
is not canonical. Or one could try the universal UHF-algebra Q D

N1

nD2Mn, but this is too
big: M21 is a tensorial unit for Q, not the other way round. No UHF-algebra is a tensorial
unit for all its fellows. We want a stably finite unital simpleC �-algebra withK-theory .Z; 0/
generated by the class of the unit and a unique trace, so that (assuming the Künneth formula)
it will be a tensorial unit at the level of K-theory and traces, just as O1 is for Kirchberg
algebras. One such C �-algebra is C. Are there others?

In the mid-1990s, Elliott constructed infinite dimensional stably finite simple sepa-
rable nuclear C �-algebras with arbitraryK-theory/trace pairings and so implicitly obtained
a C �-algebra with the properties above. A few years later Jiang and Su tackled this question
more explicitly from the view point of tensorial absorption, giving another construction of
what we now call the Jiang–Su algebra Z (though at the time it would not have been obvious
that Elliott and Jiang and Su produced the same algebra) proving Z Š Z ˝ Z. Accordingly,
it makes sense to consider Z-stable C �-algebras—those A for which A Š A ˝ Z—and,
moreover, through the later abstract framework of strongly self-absorbing algebras, Winter
showed that Z-stability is, in a precise sense, the minimal tensorial absorption hypothesis
akin to the McDuff property of a II1 factor.

While Z is a little tricky to construct, Z-stability of a separable C �-algebra can
be described without direct reference to Z and in a comparable fashion to McDuff’s char-
acterisation of R-stable II1 factors in terms of approximately central matrix subalgebras.
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Via Matui and Sato’s breakthrough [20], this is particularly clean for a stably finite simple
separable nuclear C �-algebra which is Z-stable when it contains tracially large approxi-
mately central cones over matrices. This is vital in Kerr’s approach to detecting Z-stability
of crossed products [14] (leading to the recent touchstone result that all free minimal actions
of elementary amenable groups on finite dimensional spaces have Z-stable crossed product
[15]). I will describe Z and Z-stability further in the companion survey article [32].

Just as the UCT is necessary for classification, so too is Z-stability. Not only
are the models realising all K-theory/trace pairings Z-stable, but tensoring by Z acts as
the identity on KTu, and, when A is exact, the order on K0.A ˝ Z/ is always given by
traces. Moreover, combining work of Kirchberg and Rørdam, for a unital separable nuclear
C �-algebra without traces, Z-stability and O1-stability are equivalent. In particular, Z-
stability is a generalisation of the classifiability hypothesis for Kirchberg algebras.

5.3. The unital classification theorem, dichotomy, and Toms–Winter
regularity
The combined efforts of large numbers of researchers over close to 30 years have cul-

minated in the definitive classification theorems for simple nuclear C �-algebras, providing
the topological counterpart to Connes’ theorem. The two subtle hypotheses in the previ-
ous subsections are sufficient as well as necessary. We state this in the unital case (and call
C �-algebras satisfying the hypothesis of the following theorem classifiable). In particular,
all crossed products C.X/ Ìr G arising from free minimal actions of countable elementary
amenable groups on compact metrisable spaces of finite covering dimension are classifiable.

Theorem 5.3 (The unital classification theorem). Let A and B be unital separable simple
nuclear C �-algebras which are Z-stable and satisfy the UCT. ThenA andB are isomorphic
if and only if Ell.A/ Š Ell.B/.

As noted above the unital classification theorem is accompanied by a “range of
the invariant theorem”: any K-theory/trace pairing can arise. This can be used to estab-
lish properties of all classifiable C �-algebras through models. For example, all stably finite
classifiable C �-algebras are approximately subhomogeneous (with at most 2-dimensional
building blocks); inductive limit structure is a consequence of classification. Recently Li
used this to show that all classifiable C �-algebras arise from twisted étale groupoids [18].

Although the unital classification theorem covers both stably finite and purely infi-
nite C �-algebras, the two cases are handled separately. A beautiful dichotomy theorem of
Kirchberg shows that any unital simple exact C �-algebra which is a tensor product of two
infinite-dimensional C �-algebras (such as a Z-stable nuclear C �-algebra) is either purely
infinite or stably finite. Moreover, the presence or absence of traces decides in which camp a
classifiableC �-algebra is found. The unital classification theorem is then the combination of
the Kirchberg–Phillips theorem, and the stably finite case of the unital classification theorem.
The rest of the article focuses on the stably finite situation.

The stably finite unital classification theorem was originally obtained in 2015 by
combining [8, 11, 12, 30] (and with Z-stability being replaced with the at the time stronger
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hypothesis of finite nuclear dimension, of which a tiny bit more below). These in turn build
on decades of work—the unital classification theorem is the collective result of the entire
C �-research community—but in this millennium two names stand out: Lin and Winter.
They drove two major strands of activity in parallel: classification through tracial approx-
imations and regularity through dimension and Z-stability. The cross fertilisations between
these directions have been the source of many of the breakthroughs which have peppered the
route to Theorem 5.3.

On the classification side, inspired by Popa’s local quantisation technique (a C �-
version of the ideas in his proof of injectivity implies hyperfiniteness) Lin introduced the
notion of tracial approximations in the early 2000s. These are a kind of internal approxima-
tion by subalgebras whose unit is a projection which is uniformly large in trace. Weakening
the approximation in this way allows more algebras to be reached; the class of tracially
AF-algebras is larger than the class of AF-algebras. Lin and collaborators then massively
developed these ideas in a huge body of work culminating in [11,12].

Meanwhile, Winter and his collaborators developed non-commutative versions of
covering dimension (decomposition rank, and then nuclear dimension) for C �-algebras
through refined versions of the completely positive approximation property. This is one of
the central concepts in the Toms–Winter conjecture, and combining Winter’s Z-stability
theorem from [33] with the recent [2] (which completes a line of work going back to Matui
and Sato’s breakthrough [21]) a simple separable unital nuclear non-elementary C �-algebra
is Z-stable if and only if it has finite nuclear dimension. In the setting of the action of a
group G on a finite-dimensional compact metrizable space X , one can directly estimate the
nuclear dimension of C.X/ÌG whenG is nilpotent, but one cannot expect direct estimates
to work much more generally. In contrast, Z-stability can be obtained much more generally:
now when G is elementary amenable. A detailed discussion of regularity is out of scope
here; I will discuss this further in [32].

The two strands come together in a number of landmarks, such as Winter’s strat-
egy [34] for converting a strong form of classification for UHF-stable C �-algebras to the
classification of Z-stable C �-algebras. The later result is used in the monumental work of
Gong, Lin, and Niu [11,12] to classify all Z-stable C �-algebras A with the property that for
a UHF-algebra U , A˝ U has a certain 1-dimensional tracial approximation. As they show,
such algebras exhaust the invariant, so the challenge is to access these very general approx-
imations. This is achieved in [8] using [30] by combining finite nuclear dimension and the
UCT.

The ideas in the 2015 proof of the unital classification theorem and the regularity
programme are described in more detail in Winter’s survey [35]. In the rest of this article,
I will outline some ingredients in a new abstract and short(er) approach to the stably finite
unital classification theorem which is joint work with Carrión, Gabe, Schafhauser, and Tikui-
sis [1], which makes more direct contact with von Neumann classification results.
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6. Elliott intertwining: Classifying C �-algebras by

classifying maps

The route towards the unital classification theorem, like many classification results
before it, is through a classification of maps together with an Elliott intertwining argument.
This overarching technique goes back to Elliott’s classification of AF-algebras, and aspects
can even be seen in Murray and von Neumann’s uniqueness theorem. We start out by revis-
iting the classification of AF-algebras via a framework which applies much more generally.

6.1. Classifying AF algebras
We consider the classification of countable inductive limits of finite-dimensional

algebras by ordered K0, dividing this into three steps.

Step 1. Classify maps from finite-dimensional C �-algebras. A C �-algebra B has cance-
lation if K0 determines Murray–von Neumann equivalence of projections, i.e.,
Œp�0 D Œq�0 H) p � q. This ensures that unital �-homomorphisms from finite dimen-
sional algebras into B are classified up to unitary equivalence by ordered K0 and the class
of the unit. As ever, classification of maps consists of two components: existence (here that
any unital ordered K0-morphism is realised by a unital �-homomorphism) and uniqueness
(here two �-homomorphisms are unitarily equivalent if and only if they induce the same map
on K0).

Step 2. Intertwine to classify maps from inductive limits. Step 1 can be boosted by
taking inductive limits to classify maps from a countable inductive limit A D

S1

nD1An of
finite dimensional C �-algebras into a C �-algebraB with cancelation. The invariant remains
ordered K0 and the class of the unit, but one can only expect uniqueness up to approx-
imate unitary equivalence (�;  W A ! B are approximately unitary equivalent, written
� �au  , when for all finite subsets F � A and � > 0 there exists a unitary u 2 B with
ku�.x/u� �  .x/k < � for x 2 F ).

That the invariant gives uniqueness of maps A ! B up to approximate unitary
equivalence is immediate from the uniqueness up to unitary equivalence of maps An !

B in step 1. Existence needs a (one-sided) Elliott intertwining argument. Given a homo-
morphism ˆ W .K0.A/; K0.A/C; Œ1A�0/! .K0.B/; K0.B/C; Œ1B �0/, construct compatible
�-homomorphisms �n W An ! B inductively. Existence in step 1 gives a map Q�n imple-
menting ˆ on K0.An/. Then uniqueness gives a unitary conjugate �n of Q�n agreeing with
the previously defined �n�1 on An�1. The resulting map defined on

S1

nD1 An extends by
continuity to a �-homomorphism � inducing ˆ.

Step 3. Symmetrise assumptions to classify separable AF-algebras. The following ab-
stract form of Elliott’s intertwining argument converts a classification of maps up to approx-
imate unitary equivalence to a classification of algebras.

Proposition 6.1 (Elliott’s two-sided intertwining argument). Suppose thatA andB are sep-
arable unitalC �-algebras and there are �-homomorphisms � WA! B and W B !A such
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that  ı � �au idA and � ı  �au idB . Then A and B are isomorphic. Moreover, � and  
are approximately unitarily equivalent to mutually inverse isomorphisms.

In particular, if a functor F classifies unital maps on a class A of separable unital
C �-algebras up to approximate unitary equivalence, then F also classifies A. Indeed, given
A;B 2 A and an isomorphismˆ W F.A/! F.B/, the existence component of classification
gives �-homomorphisms � W A ! B and  W B ! A with F.�/ D ˆ and F. / D ˆ�1,
and the uniqueness component shows that � and  satisfy the conditions of Proposition 6.1.

This process classifies those C �-algebras which are both inductive limits of finite
dimensional C �-algebras and have cancelation by ordered K0 together with the unit. But
the latter hypothesis is readily seen to be automatic for an AF-algebra, so in fact it classifies
countable inductive limits of finite dimensional C �-algebras.

6.2. Reducing the unital classification theorem to the classification of
approximately multiplicative maps
Let us now return to the general setting, and follow the same 3 step strategy.

Step 1. Classify approximately multiplicative maps A ! B. When A D
S1

nD1An is
an AF-algebra as in Section 6.1, a sequence .�n/ of �-homomorphisms An ! B can be
viewed as an approximately multiplicative map on A. Indeed, each �n has a cpc extension to
A which is approximately multiplicative in that k�n.x/�n.y/� �n.xy/k ! 0 for x; y 2 A.
Such approximately multiplicative cpc mapsA!B provide a starting point for classification
results in the general setting.

A uniqueness theorem is of the form: for all finite subsets F � A and " > 0, there
exists a finite subset G � A and ı > 0 such that any two cpc maps �; W A ! B which are
.G ; ı/-approximately multiplicative, and approximately agree on the invariant are approxi-
mately unitary equivalent on F up to ". Such statements (and their counterparts for existence)
can very quickly become a morass of quantifiers, so it is convenient to use sequence algebras
or ultraproducts (just as Connes did in his proof that injectivity implies hyperfiniteness).

Definition 6.2. The sequence algebraB1 of a C �-algebra B is the quotient `1.B/=c0.B/.
It is typical to use representative bounded sequences in B to denote elements of B1.

Reindexing—the art of turning approximate statements into exact ones—is a key
feature of sequence algebras and ultraproducts. For example, when A is a separable
C �-algebra, and B a unital C �-algebra, �-homomorphisms �;  W A ! B1 are approx-
imately unitary equivalent if and only if they are unitarily equivalent. So we aim to classify
maps A ! B1 up to unitary equivalence. Such a result cleanly encodes a classification of
approximately multiplicative maps up to approximate unitary equivalence.

Step 2. Intertwine to classify maps A ! B. Using separability of A and an intertwining
argument we boost the classification of approximately multiplicative maps to a classification
of �-homomorphisms A ! B . There is a very clean way to do this through intertwining
through reparameterisations. Under very mild conditions (namely that inclusions B ! B1
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induce an injective map at the level of invariants), this uses classification intoB1 to show that
if � W A ! B1 looks like it factors through B (i.e., it has an invariant factoring through B),
then it is approximately unitary equivalent to a map that really does factor through B .

One can also use this approach for finite von Neumann algebras (suitably adjusted
to k � k2-approximations and ultrapowers). Here the classification of maps from finite-
dimensional C �-algebras into finite von Neumann algebras N by traces (essentially Murray
and von Neumann’s analysis of projections) gives rise to a classification of maps M ! N !

when M is separable and hyperfinite, and N ! is a tracial ultrapower of N . Then a one-
sided intertwining classifies maps M ! N , and a two-sided intertwining gives Murray
and von Neumann’s uniqueness of the hyperfinite II1 factor (avoiding a number of explicit
perturbation results).

Moreover, via Connes’s theorem we have:

Theorem 6.3. Maps from a separable nuclear C �-algebra A to a finite von Neumann alge-
bra N are classified up to strong operator approximate unitary equivalence by traces.

The point is that any map A ! N will factor through a tracial von Neumann com-
pletion of A which is injective, so hyperfinite. Then the previous paragraph applies to give
Theorem 6.3. We use this well-known result explicitly in our proof of the unital classifica-
tion theorem, and it is the only point in the argument where we use some form of internal
approximation by subalgebras (namely that the finite part of A�� is hyperfinite).

Step 3. Symmetrise assumptions to classify C �-algebras. In both steps 1 and 2, the
assumptions on the domainA and codomain B are likely to be quite different, and there may
also be assumptions on the map (such as nuclearity). Now we symmetrise all the assumptions
(requiring that the identity maps on all algebras under consideration satisfy any morphism
assumptions) and obtain a classification of algebras using the two-sided Elliott intertwining
argument (Proposition 6.1).

The upshot of this section is that the unital classification theorem can be expected
to follow from a classification of maps A ! B1. The rest of the article examines this.

7. The total invariant for classifying approximate

multiplicative maps

Examples from the 1990s show thatK-theory and traces are not enough to classify
�-homomorphisms. For example, the tensor flip

� W O3 ˝ O3 ! O3 ˝ O3I x ˝ y 7! y ˝ x (7.1)

on the Cuntz algebra O3 is trivial on K-theory. However, � ˝ idO3 does not act trivially
on K0, and so is not approximately inner. This section discusses the additional ingredients
which must be added to the invariant to obtain uniqueness theorems.

The underlying obstruction behind the example in (7.1) is found in K-theory with
coefficients. Introduced by Schochet, the groups K�.AI Z=nZ/ fit into a natural six-term

3328 S. White



exact sequence
K0.A/ K0.AI Z=nZ/ K1.A/

K0.A/ K1.AI Z=nZ/ K1.A/

�n�n (7.2)

and so provide a framework for studying torsion inK-theory (namely the kernel of the maps
of multiplication by n) at the C �-algebraic level. An efficient way to define K.AI Z=nZ/ is
as K�.A˝ Cn/ for any separable nuclear C �-algebra Cn in the UCT class with K�.Cn/ Š

.Z=nZ ; 0/, such as Cn D OnC1. The total K-theory of A, K.A/ is the combination of
K�.A/ and

L
n�2K�.AI Z=nZ/ together with the natural maps in (7.2) (and other natural

maps connecting the groups with different coefficients). Each of the groups Ki .AI Z=nZ/

is determined by K�.A/ but in an unnatural fashion. It is on morphisms � W A ! B where
K.�/ carries more information than K�.�/, e.g., K�.�n/ D K�.idOn˝On/ while K.�n/ ¤

K.idOn˝On/.
While KK-theory determines whether UCT-Kirchberg algebras are isomorphic, it

is a little too refined for detecting approximate unitary equivalence: maps �;  W A ! B

with � �au � can differ inKK.A;B/. Rørdam (in the UCT case) and later Dadarlat (in gen-
eral) identified a quotientKL.A;B/ ofKK.A;B/which is constant on approximate unitary
equivalence classes of morphisms; for Kirchberg algebras, the converse holds andKL.A;B/
determines approximate unitary equivalence. One computesKL.A;B/ through Dadarlat and
Loring’s universal multicoefficient theorem [6]:KL.A;B/Š Hom.K.A/;K.B//whenever
A has the UCT. In this way, total K-theory classifies morphisms between UCT-Kirchberg
algebras. This works in much more generality (see, for example, Gabe’s retreatment of Kirch-
berg’s O1-stable classification [10]).

Theorem 7.1. Let A be a separable exact unital C �-algebra satisfying the UCT, and let B
be a unital simple O1-stableC �-algebra. Then unital full nuclear �-homorphismsA!B1

are classified up to approximate unitary equivalence by totalK-theory (with maps preserving
the class of the unit in K0).

In the stably finite setting, one needs yet further information. Examples due to
Nielsen and Thomsen in the setting of AT -algebras show the importance of a certain alge-
braic K1-group. Given a unital C �-algebra A, equip U1.A/ D

S1

nD1 U.Mn.A// with the
inductive limit topology. The map U1.A/ ! K1.A/ factors through the abelianisation
U1.A/=DU1.A/, where DU1.A/ is the group generated by commutators in U1.A/,
but this functor is not invariant under approximate unitary equivalence of morphisms.
The solution is to form the Hausdorffised unitary algebraic K1-group, Kalg

1 .A/ of A as
U1.A/=DU1.A/. We write �aA W K

alg
1 .A/ ! K1.A/ for the canonical quotient map.

The group Kalg
1 .A/ was systematically studied by Thomsen [29] who used the

de la Harpe–Skandalis determinant to relate it to K-theory and traces through a natural
map ThA W Aff T .A/ ! K

alg
1 .A/ which fits into a sequence

Aff T .A/
ThA
! K

alg
1 .A/

�aA! K1.A/: (7.3)
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The kernel of ThA is precisely the closure of �A.K0.A// in Aff T .A/, so that
ker�aA Š AffT .A/=�A.K0.A//. This is a divisible group, so there is a non-canonical splitting

K
alg
1 .A/ Š K1.A/˚ ker�aA: (7.4)

Given a �-homomorphism � W A ! B , there is no reason why Kalg
1 .�/ should respect the

splittings. In general, there is a rotation map r� W K1.A/ ! ker �aB so that, with respect to
decompositions (7.4), Kalg

1 .�/ W K1.A/˚ ker�aA ! K1.B/˚ ker�aB is given by

K
alg
1 .�/ D

 
K1.�/ 0

r� K
alg
1 .�/jker �aA

!
: (7.5)

Example 7.2. Consider the crossed product A D .
N1

�1 Z/ Ì Z, where the action is given
by a Bernoulli shift on the tensor product. The Pimsner–Voiculescu 6-term exact sequence
can be used to calculate K�.A/ Š .Z;Z/, with K1.A/ being generated by the canonical
unitary u implementing the action. Moreover, A has a unique trace (from the unique trace
on Z). So ker�aA Š Aff T .A/=�A.K0.A//Š R=Z Š T , andKalg

1 .A/Š Z ˚ T . The elements
¹�1A W � 2 Tº give representatives of ker�aA (by an easy de la Harpe–Skandalis determinant
calculation).

There are just two automorphisms ofK�.A/ fixing Œ1A�0: the identity and .m;n/ 7!

.m;�n/. These can be paired with any rotation map Z ! T . The combination of idK�.A/

with rotation map � is implemented by the automorphism of A fixing
N1

�1 Z and sending
u to �u, while the automorphism of A which reverses the order of the infinite tensor product
and sends u 7! �u� acts as the flip on K1.A/ with rotation map �.

It turns out that the extra data described above is now enough for uniqueness. It is
formalised in the total invariant.

Definition 7.3. The total invariant KTu.A/ of a unital C �-algebra A consists of K.A/,
AffT .A/, and Kalg

1 .A/, together with all the natural maps between these objects.

While it is necessary to adjoin K.�/ and Kalg
1 .�/ to Elliott’s invariant to obtain

uniqueness of morphisms, doing so increases the difficulty of proving the corresponding
existence result. We must now determine exactly which maps between these invariants arise
from �-homomorphisms. In addition to the pairing maps ��, the maps Th� and �a�, it turns
out that there are natural maps

�
.n/
A W K0.AI Z=nZ/ ! K

alg
1 .A/; n � 2; (7.6)

relating total K-theory and Kalg
1 . Compatibility with the �.n/� is an extra obstruction for

maps .K.A/;Aff T .A/; Kalg
1 .A// ! .K.B/;Aff T .B/; Kalg

1 .B// to come from a �-homo-
morphism. We use the last clause of Definition 7.3 to regard the maps �.n/� as part of KTu
so that by definition KTu-morphisms are compatible with �.n/� . This completes the total
invariant—no more compatibility requirements are needed for an existence theorem.

The maps �.n/A are a little fiddly to set up in general (see [1, Section 3], which also sets
out how they interact with the other natural maps making upKTu), but they are readily iden-
tified in straightforward examples. For example, under the identifications K0.ZI Z=nZ/ Š
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Z=nZ, andKalg
1 .Z/ Š T , the maps �.n/

Z
are just the inclusions of the nth roots of unity into

the circle. Moreover, the maps �.n/� do not play a role when K1.A/ is torsion free; in this
case compatibility with the �.n/� is automatic from the other compatibility requirements.

Everything is now in place to state a general version of the classification of unital
approximate morphisms. Note how the hypotheses found in the unital classification theorem
split up amongst the domain, codomain, and morphism in Theorem 7.4.

Theorem 7.4 (Stably finite classification of approximately multiplicative maps [1]). Let A
be a separable unital nuclear C �-algebra satisfying the UCT, and let B be a unital simple
Z-stable nuclear C �-algebra with T .B/ ¤ ;. Then the total invariant KTu classifies full
unital nuclear maps A ! B1 up to unitary equivalence.

Once Theorem 7.4 has been established, the Elliott intertwining techniques dis-
cussed in Section 6 can be used to obtain classification results for algebras. Applying Step 2
of Section 6 to Theorem 7.4 classifies unital nuclear maps A ! B , and then symmetrising
assumptions following Step 3 of Section 6 classifies the algebras in the unital classification
theorem. But the invariant isKTu notKTu or Ell. So the final ingredient in the unital classi-
fication theorem is to extend an isomorphism KTu.A/ Š KTu.B/ toKTu.A/ Š KTu.B/.
The extension to K-theory, and Kalg

1 .�/ are purely algebraic results appearing in earlier
classification work. A last little detail is required to correct these extensions and ensure com-
patibility with the �.n/� when K1.A/ has torsion. Such an extension is highly non-canonical
(and typically far from unique).

8. Quasidiagonality

It is easier to construct approximately multiplicative maps (existence in Step 6.1)
as compared with a �-homomorphism (existence in Step 6.2). This is exemplified by con-
trasting quasidiagonality with embeddings into the universal UHF-algebra Q. Voiculescu
showed that quasidiagonality of a C �-algebra A can be viewed as an external approxima-
tion property: the existence of approximately multiplicative, approximately isometric cpc
maps from A into matrix algebras. When A is separable, these can be packaged into to an
embedding of A into Q1 (this characterises quasidiagonality when A is nuclear).

ManyC �-algebras are quasidiagonal; a deep theorem of Voiculescu shows that qua-
sidiagonality is invariant under homotopy, so that all conesC0.0;1�˝A are quasidiagonal—
a result Kirchberg uses in his O2-embedding theorem. On the other hand, as Q has a faith-
ful trace, no cone over a simple purely infinite C �-algebra embeds in Q. As one cannot
model an infinite projection in a matrix algebra, quasidiagonal C �-algebras are stably finite.
The Blackadar–Kirchberg problem asks whether this is the only obstruction for nuclear
C �-algebras: are all stably finite nuclear C �-algebras quasidiagonal? This question parallels
Connes’ important observation that injective II1 factors always embed into R! . Moreover,
the constructions of stably finite simple separable nuclear C �-algebras which exhaust the
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Elliott invariant are all quasidiagonal. Finding an abstract source of quasidiagonality is nec-
essary for stably finite classification theorems.

This was achieved for simple stably finite nuclear C �-algebras with the UCT in
the quasidiagonality theorem [30]. The idea is to use traces as a kind of measuring device,
by showing that all traces on A are quasidiagonal. One definition of quasidiagonality of
� 2 T .A/ is the existence of a sequence .�n/n of approximately multiplicative cpc maps
A ! Q with �.x/ D limn �Q.�n.x// for all x 2 A.

Theorem 8.1 (The quasidiagonality theorem [30]). LetA be a separable nuclearC �-algebra
satisfying the UCT. Then all faithful amenable traces on A are quasidiagonal. Accordingly,
stably finite simple separable nuclear C �-algebras satisfying the UCT are quasidiagonal.

With hindsight the quasidiagonality theorem has turned out to be just the right level
of difficulty to isolate and simplify fundamental tools in classification. The original proof was
inspired by a stable uniqueness across the interval technique from the tracial approximation
approach to classification, and the quasidiagonality theorem is then used to construct tra-
cial approximations from abstract conditions in [8]. A major breakthrough was subsequently
made by Schafhauser [27]. Reframing the problem in terms of liftings, he gave a conceptual
new proof using Ext-groups. This idea provides the main framework for our approach to the
classification of approximate morphisms (as outlined in the next section).

To sketch Schafhauser’s plan, we begin with the trace-kernel extension. At this point
is preferable to work with ultrapowers rather than sequence algebras, so let ! 2 ˇN n N

be a free ultrafilter. We form Q! as the quotient of `1.Q/ by those sequences .xn/ with
limn!! kxnk D 0; it behaves analogously to Q1. The ultrapower R! is the quotient of
`1.R/ by those sequences with limn!! �.x

�
nxn/ D 0; the point is that this is a von Neu-

mann algebra, whereas a sequence algebra version is not. Since Q is weakly dense in R,
Kaplansky’s density theorem gives rise to a surjection of Q! onto R! with kernel J .

Given a trace � on a separable nuclear C �-algebra A, one has an embedding
� W A ! R! realising � (by Theorem 6.3). Via the Choi–Effros lifting theorem in one direc-
tion, and Theorem 6.3 in the other, � is quasidiagonal if and only if � lifts to Q� W A ! Q! ,

A

0 J Q! R! 0:

�
Q� (8.1)

Forming the pullback extension

� W 0 J E A 0

0 J Q! R! 0;

(8.2)

liftability of � is equivalent to the existence of a �-homomorphism splitting A ! E of �.
Extension theory provides the ideal tool for tackling problems of this nature, as �

induces a class in Ext.A; J /. However, there is a problem, the trace-kernel ideal J appears
somewhat unwieldy. In particular, it is neither stable nor � -unital, which is a deterrent to
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using Ext. Schafhauser’s key observation is that comparison properties of Q ensure that J
is separably stable: for every separable C �-subalgebra J0 � J , there is a stable separable
J1 with J0 � J1 � J . With a fair bit of care, this is enough stability to use Ext.

A computation using the UCT and theK-theory of R! readily shows that Œ��D 0 in
Ext.A;J /. This does not yet mean that � splits, but rather that after adjoining a further trivial
extension �1, say, the sum �˚ �1 splits. So the final step is to ensure that � is absorbing so
that � Š � ˚ �1. This is achieved using an abstract Weyl–von Neumann/Voiculescu-type
theorem of Elliott and Kucerovsky [9] which heavily exploits Kirchberg’s work for infinite
C �-algebras. When A is non-unital, absorption is a consequence of the faithfulness of � via
injectivity of � . There is an important detail when A (and hence � ) are unital. In this case
� can never be absorbing and we can only ask for absorption of unital extensions. The trick
is to pass to a non-unital 2 � 2 matrix amplification to replace � by a non-unital map. This
de-unitization idea recurs extensively in the classification of approximate morphisms.

9. Classification of approximately multiplicative maps

We end with a brief discussion of some ingredients in the classification of approxi-
mately multiplicative maps. For the rest of the article, let A and B be as in Theorem 7.4.

Crudely the plan is to solve the classification problem at the von Neumann level, and
lift this back to the C �-setting. Slightly more precisely, we look for a quotient RB of B1

into which we can classify maps A! B1 by traces. This will fit into a short exact sequence

0 ! JB ! B1 ! RB ! 0: (9.1)

We then try and classify unital lifts of a given unital �-homomorphism � W A ! RB , i.e.,
characterise when a lift Q� WA!B1 of � exists, and classify these up to unitary equivalence.
Successfully combining these steps will classify maps A ! B1.

When B has unique trace � , it is natural to take RB to be the II1 factor ultrapower
.�� .B/

00/! , which is a quotient of B1 by Kaplansky’s density theorem. Via Connes’ theo-
rem, unital �-homomorphisms � W A ! RB are classified up to unitary equivalence by the
trace they induce on A (Theorem 6.3). Assuming additionally that A has the UCT and B is
Q-stable withK1.B/ D 0, and working with B! in place of B1 Schafhauser classified lifts
of a given � W A ! RB byK0. Combining these two statements and then intertwining gives
a classification of maps A ! B by K0 and traces. Symmetrising hypotheses in the spirit of
Section 6 gives the first truly abstract proof of a stably finite classification theorem. While the
hypotheses are quite stringent, they are powerful enough to show that a separable exact C �-
algebra satisfying the UCT and with a faithful trace embeds into a monotracial AF-algebra
[28]. It is vital that the ideal JB is separably stable, which one gets from Q-stability of B
(the need for separable stability also forces the use of B! when we work with an ultrapower
quotient).

Outside the unique trace setting, it is tempting to take RB to be a suitable von Neu-
mann ultrapower of B��

fin , as Connes’ theorem would classify maps A ! RB by traces.
However, using positive elements .xn/1nD1 in B1 for which limn �.xn/ D 0 pointwise but
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not uniformly in � , one can easily obstruct separable stability of the resulting JB . A more
refined choice of quotient is needed to handle traces in a uniform fashion. Such constructions
came to the fore through Matui and Sato’s work [20]. This is the point where Schafhauser’s
abstract classification machinery merges with the Toms–Winter regularity programme. Write
kxk2;T .B/ D sup�2T.B/ �.x

�x/1=2. Then we define the uniform tracial sequence algebra by

B1
D `1.B/=

°
.xn/

1
nD1 2 `1.B/ W lim

n!1
kxnk2;T .B/ D 0

±
: (9.2)

In this way, B1 quotients onto B1 leading to the uniform trace-kernel extension

0 ! JB
jb
! B1

qb
! B1

! 0: (9.3)

This is the right framework to classify unital maps A ! B1 by traces and their lifts back to
B1 by the other aspects ofKTu. The former uses regularity techniques, while the latter uses
abstract classification. The essential point is that Z-stability of B gives separable stability of
JB allowing KK.A; JB/ to be used. In what follows, I pretend that JB is stable.

9.1. Classifying unital maps A ! B1

When B has a unique trace, B1 is not quite the von Neumann algebra ultrapower
.�� .B/

00/! used in Schafhauser’s unique trace UHF-stable argument. But for the purposes
of classifying maps from separable nuclear C �-algebras A, there is no real difference. The
real challenge comes when B has infinitely many extremal traces, particularly if the extreme
boundary @eT .B/ is not compact. In this case, for each � 2 T .B1/, Connes’ theorem clas-
sifies maps � W A ! �� .B

1/00. We must glue these together to a classification of maps
A ! B1 by traces.

Problems of this nature have been at the heart of work on Toms–Winter regular-
ity conjecture, and a general strategy for gluing properties from each �� .B1/00 together
to obtain global statements which hold uniformly in all traces was developed in [2]. These
techniques give B1 a “von Neumann-like” flavour when B is nuclear and Z-stable, and in
particular they can be used to obtain the required classification of maps A ! B1. Conse-
quently, given two maps �1; �2 W A ! B1 which agree on traces, the compositions qB ı �1

and qB ı �2 are unitarily equivalent via a unitary u 2 B1 say. For each trace � on B1, we
can write �� .u/ as an exponential eih� for a self-adjoint h� 2 �� .B

1/00. Another applica-
tion of the gluing procedure can be used to find a single self-adjoint h 2 B1 with u D eih.
Therefore, u lifts to a unitary in B1, and by conjugating by a lift of u, we can assume
that qB ı �1 D qB ı �2. In this way, the remainder of the uniqueness problem for a pair of
maps �1; �2 W A ! B1, becomes a question about the uniqueness of lifts of the common
�-homomorphism qB ı �1 D qB ı �2 W A ! B1 back to B1.

In fact, the full force of Z-stability is not needed, and one can get away with a weaker
central sequence condition in the spirit of Murray and von Neumann’s property � . There is
a lot going on behind the scenes here, and I will describe the ideas behind these techniques
a bit further in the more regularity focused companion survey [32].
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9.2. Classifying unital lifts
In the second part we are given a unital map � W A ! B1 and aim to classify

lifts back to B1. A necessary condition for a lift is the existence of � 2 KK.A; B1/ with
ŒqB �� D Œ� � in KK. We can produce these � using the universal (multi)coefficient theorem
from the total K-theory component of a map KTu.A/ ! KTu.B

1/.
Given such a �, small modifications of Schafhauser’s proof of the quasidiagonal-

ity theorem produces some lift  � W A ! B1 of � . But this might not have Œ �� D �

in KK.A; B1/, and it must be corrected so that it does. By construction, � � Œ �� will
map to 0 under the mapKK.A;B1/ ! KK.A;B1/ induced by (9.3) so half-exactness of
KK.A; �/ gives that � � Œ �� is in the image of KK.A; jB/ W KK.A; JB/ ! KK.A;B1/.
Write � � Œ �� D KK.A; jB/.�/ for some � 2 KK.A; JB/.

Cuntz’s quasihomomorphism picture of KK-theory is particularly well suited to
C �-classification problems. This defines KK.A; JB/ as homotopy classes of Cuntz-pairs:
maps .�C; ��/ W A ! M.JB/ such that �C.x/� ��.x/ 2 JB . In order to translate between
KK-theory and �-homomorphisms into B1, we need KK-existence and uniqueness theo-
rems, both of which rely on absorption. The existence theorem says that if �� W A! M.JB/

is absorbing, then given any � 2 KK.A; JB/ we can find �C W A ! M.JB/ such that
the Cuntz-pair .�C; ��/ realises �. This works in vast generality and has been regularly
used in classification (in our situation all one needs is the separable-stability to work with
KK.A; JB/). Following the map  � above by the natural map B1 ! M.JB/ gives rise to
�� W A ! M.JB/. Using the Elliott–Kucerovsky theorem (and modulo the de-unitisation
trick alluded to at the end of Section 8, which is suppressed here), �� is absorbing. Thus we
can find �C W A ! M.JB/ such that .�C; ��/ forms a Cuntz-pair representing �. A fairly
standard pullback calculation then produces a map  C W A ! B1 also lifting � (as a con-
sequence of .�C; ��/ being a Cuntz-pair) so thatKK.A; jB/.�/ D Œ C�� Œ ��. Therefore
 C realizes the element � 2 KK.A;B1/.

How unique is  C? Given two lifts  1;  2 W A ! B1 of � , we obtain a Cuntz-pair
.�1; �2/ W A! M.JB/ representing a class inKK.A;JB/. AKK- orKL-uniqueness theo-
rem is designed to give asymptotic or approximate unitary equivalence of absorbing �1 and
�2 when Œ�1;�2� vanishes inKK.A;JB/ andKL.A;JB/, respectively. WhileKK-existence
holds very generally,KK- and KL-uniqueness are more subtle, going back to Dadarlat and
Eilers in the setting of KK.A;K/, and it is currently unclear how generally such results
can hold. For us, Z-stability of B is the key ingredient through a Z-stable KL-uniqueness
theorem developed in [1] (extending a Q-stable KK-uniqueness theorem from [28]). This
gives approximate unitary equivalence (with unitaries in the unitisation of JB ˝ Z) of the
Z-stabilisations �1 ˝ 1Z; �2 ˝ 1Z W A ! M.JB/ ˝ Z from Œ�1; �2� D 0 in KL.A; JB/.
Using separable Z-stability of B1 and the fact we work in a sequence algebra, this gives
unitary equivalence of  1 and  2. So lifts are classified by KL.A; JB/, which fits into an
exact sequence

kerKL.A; jB/ ! KL.A; JB/ ! KL.A;B1/: (9.4)
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Dadarlat and Loring’s universal (multi)coefficient theorem (obtained from the UCT) com-
putes KL.A; B1/ Š Hom.K.A/; K.B1//. We need to interpret kerKL.A; jB/ in terms
of Kalg

1 and in particular the rotation maps r� from (7.5).
This is achieved through an isomorphism

RA;B W kerKL.A; jB/ ! Hom
�
K1.A/=Tor

�
K1.A/

�
; ker�aB1

�
(9.5)

with the property that RA;B.Œ 1;  2�/ ı tA D r 1 � r 2 when . 1;  2/ W A ! B1 realise a
class in kerKL.A; jB/. Here tA WK1.A/!K1.A/=Tor.K1.A// is the quotient map, which
removes torsion from K1.A/. While the individual rotation maps r 1 and r 2 depend on a
choice of decomposition in (7.4), when  1 and  2 agree on KTu the difference r 1 � r 2
does not. In this case .r 1 � r 2/ ı�aA DK

alg
1 . 1/�K

alg
1 . 2/ WK

alg
1 .A/!K

alg
1 .B1/. Then,

given �1; �2 W A! B1 agreeing onKTu, by successively using traces (to reduce to the case
that qB ı �1 D qB ı �2/, and then totalK-theory, andKalg

1 (to see that �1 and �2 induce the
same class in KL.A; JB/), these tools combine to give unitary equivalence of �1 and �2.

The pairing maps �.n/� from (7.6) are required for existence. When we attempt
to realise maps ˛ W K.A/ ! K.B1/, ˇ W K

alg
1 .A/ ! K

alg
1 .B1/, and  W Aff T .A/ !

Aff T .B1/, one first constructs � W A ! B1 using  . Then one lifts to � W A ! B1

realising a lift � of ˛. As both Kalg
1 .�/ and .˛; ˇ; / are KTu-morphisms, one can use

compatibility with �.n/� to show that the rotation map induced by ˇ �K
alg
1 .�/ vanishes on

Tor.K1.A//. This enables RA;B to be used to modify the behaviour of � on Kalg
1 .A/.

The isomorphism RA;B is an abstract sequence algebra version of the rotation map
computations developed by Lin (see [19], for an example of the use of a rotation map in an
asymptotic classification result). It is built in two steps. First, the UCT gives an isomorphism
ker.KL.A; jB// to ker Hom.K.A/;K.jB//. The second part of the isomorphism is then a
direct computation, which relies heavily on the “von Neumann like” structure of B1 (in
particular, K�.B

1/ Š .AffT .B1/; 0/) via the techniques in [2] hinted at in Section 9.1.
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