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Abstract

In this note we survey some topics in random walks on countable groups. The main focus
is on quantitative estimates for random walk characteristics on amenable groups, in con-
nections to geometric and algebraic properties of the underlying groups.
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1. Introduction: a brief review of some history

Random walks on general countable groups were introduced by H. Kesten in his
thesis titled Symmetric Random Walks on Groups [63]. Let � be a countable group and let
� be a probability measure on � . We say that � is symmetric if �.g/ D �.g�1/ for all
g 2 � , and � is nondegenerate if the support of � generates � as a semigroup. Consider a
random walk on � in which every step consists of right multiplication by a random group
element distributed according to �. In other words, take a sequence of independent random
variables .Yn/1nD1 on � distributed as �. Let W0 D id� , Wn D Y1 � � � Yn. We refer to the
process .Wn/1nD0 as a �-random walk on � . The distribution of Wn is the nth convolution
power �.n/.

When � is generated by a finite subset S � � , consider the Cayley graph of .�; S/,
which is a graph with vertex set� and edge set ¹.g;gs/ W g 2 �;s 2 Sº. The word length jgjS

of a group element is the smallest integer n � 0 for which there exist s1; : : : ; sn 2 S [ S�1

such that g D s1 � � � sn. A random walk with step distribution � supported on S [ S�1 can
be visualized as a random nearest neighbor exploration process on the Cayley graph.

The questions considered in [62,63] regard the relation between the spectrum of the
associated linear operator P� on `2.�/ and the structure of the group � , where
P�f .x/ D

P
y2� f .xy/�.y/. The original definition of amenability, introduced by von

Neumann to explain the Hausdorff–Banach–Tarski paradox, says that � is amenable if
there is a �-invariant mean on `1.�/. Kesten’s characterization of amenability [62] states
that when � is a nondegenerate symmetric probability measure on � , the spectral radius
�.�; �/ D limn!1 �.2n/.id/1=2n is 1 if and only if � is amenable. When � is amenable,
one might further ask what is the behavior of the spectral distribution of P� near 1, or of the
decay of return probability �.2n/.id/ when n goes to infinity. Since the pioneering work of
Varopoulos, such questions are studied using both analytic and geometric tools. In particular,
there are close relations between the behavior of the heat semigroup .P n� /1nD0 on `2.G/ and
geometric properties captured through Sobolev-type inequalities, see the survey [98] and the
monograph [99].

A real-valued function f on � is called �-harmonic if it satisfies the mean value
property that f .x/D

P
y2� f .xy/�.y/ for all x 2 � . When all bounded �-harmonic func-

tions are constant, we say .�; �/ has the Liouville property. A theory for the non-Liouville
case, in the more general context of locally compact second countable (abbreviated as lcsc)
groups is initiated by Furstenberg [37,39,40], where a measure-theoretical object called Pois-
son boundary (also called Poisson–Furstenberg boundary) was introduced to represent the
space of bounded �-harmonic functions. In particular, the Poisson boundary of .G; �/ is
trivial if and only if .G; �/ has the Liouville property. Note that the measure-theoretical
Poisson–Furstenberg boundary is different from the topological Furstenberg boundary which
is also introduced in [37].
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Entropy is a crucial quantity in the study of Poisson boundaries. Let .Wn/1nD0 be a
�-random walk on a countable group � . Denote by H�.n/ the (Shannon) entropy of Wn,

H�.n/ D H.Wn/ D �

X
g2�

�.n/.g/ log�.n/.g/: (1.1)

The limit h� D limn!1H�.n/=n is called the (Avez) asymptotic entropy of the �-random
walk. The celebrated entropy criterion for the Liouville property, due to Avez [7], Derriennic
[28] and Kaimanovich–Vershik [60], states that if � has finite entropy, then the asymptotic
entropy is 0 if and only if .�; �/ is Liouville.

Suppose now � is generated by a finite subset S � � . When the measure � has
finite first moment with respect to the word norm j � jS , that is,

P
jgjS�.g/ < 1, we may

consider the speed function (also called rate of escape or drift), defined as

L�.n/ D E
�
jWnjS

�
D

X
g2�

jgjS�
.n/.g/: (1.2)

The limit l� D limn!1 L�.n/=n is called the asymptotic speed/drift. By Kingman’s sub-
additive ergodic theorem, we have jWnjS=n ! l� when n ! 1 almost surely.

By the so called “fundamental inequality” that h� � vl� (see, e.g., [19]), where
v is the asymptotic volume growth rate of .�; S/, we have that l� D 0 implies h� D 0.
A theorem of Karlsson and Ledrappier [61] combined with the entropy criterion imply the
following speed criterion: for a nondegenerate centered step distribution � on � with finite
first moment, the asymptotic speed l� D 0 if and only if .�;�/ is Liouville. In the special case
where � is a nondegenerate symmetric probability measure with finite support, the speed
criterion is proved earlier in [96] by showing a general off-diagonal estimate for transition
probabilities P n.x; y/, where P is a reversible Markov operator on a countable state space.
A generalization and improvement of this estimate is given in [22] (with a simpler proof)
and is now called the Varopoulos–Carne inequality. Applied to a �-random walk on � , the
inequality reads: let S D supp� and take the word distance on the Cayley graph .�;S/, then

P n� .x; y/ � 2e�dS .x;y/
2=2n: (1.3)

When .�; �/ is not Liouville, the Poisson boundary identification problem asks if
one can find an “explicit” �-spaceX , a � -algebra B onX and a probability measure � on B,
such that .X;B; �/ is isomorphic to the Poisson boundary of .�;�/ via a �-equivariant mea-
surable isomorphism. The entropy criterions of Kaimanovich [57] provide powerful tools for
the identification problem. As remarked in [59], a majority of known examples of nontrivial
boundary behaviors of random walks on countable groups fall into one of the following two
classes:

(i) Convergence of random walk sample paths to some suitable geometric bound-
ary, in the presence of hyperbolicity or nonpositive curvature.

(ii) Pointwise stabilization of some notion of “configurations” along random walk
sample paths.
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Based on the limit behavior of the random walks observed, one can define a space .X;B; �/
which is a quotient of the Poisson boundary (such a space is called a �-boundary). Roughly
speaking, the entropy criterion says that the candidate space .X;B; �/ is isomorphic to
the Poisson boundary if the random walk .Wn/1nD0 conditioned on its “limit” in X , has
asymptotic entropy 0 almost surely (see [57, Section 4] for a precise statement). The ray and
strip criterions in [57] provide more checkable sufficient conditions to ensure the conditional
asymptotic entropy given .X;B; �/ is 0 almost surely.

Prototype examples of (i) are random walks on nonelementary Gromov word hyper-
bolic groups, where the geometric boundary is the visual boundary. In this case for a step
distribution � of finite entropy and finite log-moment, the visual boundary equipped with
the hitting distribution is identified as the Poisson boundary of the �-random walk in [57].
This type of geometric boundary identification holds for a wide class of groups acting on
hyperbolic spaces (not necessarily proper or locally compact), see the work of Maher and
Tiozzo [76] and references therein.

Prototype examples of (ii) are random walks on the so called lamplighter groups
.Z=2Z/ o Zd D .˚ZdZ=2Z/ Ì Zd . Symmetric random walks on .Z=2Z/ o Zd , d � 3, are
considered in [60] as first examples of random walks on amenable groups with nontrivial
Poisson boundary. A crucial observation there is that for some suitably chosen step distribu-
tion �, when the projected random walk on Zd is transient, the configuration in ˚ZdZ=2Z

stabilizes pointwise along the random walk trajectory almost surely. The question whether
the �-boundary from pointwise stabilization is the full Poisson boundary remained open,
until resolved positively in the work of Erschler [33] for d � 5 and in Lyons and Peres [73]

for all d � 3.
In the rest of this note we survey in more details some aspects around asymptotic

behaviors of random walks. Because of limitations of space and the author’s knowledge,
this survey is not intended to be comprehensive; rather only a small selection of topics are
discussed.

2. A few themes

Here are some loosely phrased questions that have emerged from the study of
random walks on groups:

(1) Can some random walk behaviors (for classes of random walks on a group, say
finite range nondegenerate symmetric random walks, random walks satisfying
some moment condition, etc.) be deemed group invariant?

(2) What properties of the group can be characterized in terms of random walk
behaviors?

(3) Can random walk behavior be used to understand groups and their actions?

In each of these directions of research, many natural questions remain open.
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2.1. Stability problems
Question 1 is often casted as stability problems. It is interesting both from the point

of view of understanding random walk behaviors, and searching for group invariants arising
from stochastic processes on them. Regarding the behavior of return probabilities, the fol-
lowing stability theorem is established by Pittet and Saloff-Coste [87] using comparison of
Dirichlet form techniques (for the definition of Dirichlet form in this context see Section 3.1).
Given two nonincreasing functions f; g W N ! R, we say they are equivalent if there is a
constant C � 1 such that g.Cx/=C � f .x/ � Cg.x=C/. We say a probability measure �
on � has finite ˛-moment (with respect to the word distance) if

P
g2� jgj˛S�.g/ < 1.

Theorem 2.1 ([87]). The equivalence class of the decay function n 7! �.2n/.id/, where � is
the step distribution of a nondegenerate symmetric random walk of finite second moment on
� , is a quasiisometry invariant.

The finite second moment condition in the theorem is necessary. For example, on
Z consider an ˛-stable-like measure �˛.x/ D

c˛
.1Cjxj/˛C1 , where ˛ 2 .0; 2/ and c˛ is the

normalizing constant so that �˛ has total mass 1. Then the decay function behaves like
�
.2n/
˛ .0/' n� 1

˛ , which is not equivalent to the decay function of symmetric simple random
walk on Z.

In [16], Bendikov and Saloff-Coste considered the question of fastest decay of return
probability under a given moment condition. Given ˛ 2 .0; 2/ and a constant C > 0, let ��;˛

be the set of all symmetric probability measures � on � such that
P
g2� jgj˛S�.g/ � C .

Consider the following function of fastest decay under ˛-moment condition:

ˆ�;˛ W n 7! inf
®
�.2n/.id/; � 2 ��;˛

¯
:

It turns out to be convenient to consider the version defined using weak ˛-moment as well.
For some specific classes of groups the behavior of ˆ�;˛ can be understood rather well,
see [16, 90]. However, the question whether the equivalence class of the function ˆ�;˛ is a
quasiisometry invariant remains open.

In contrast to the decay of return probabilities, where tools such as comparison of
Dirichlet forms are available, for entropy and speed functions stability is a well-known open
problem for general amenable groups. For instance, fix the group � , it is an important open
question whether the behavior of the entropy function n 7! H�.n/ or the speed function
n 7! EŒjXnjS �, is stable among nondegenerate, symmetric, finitely supported step distribu-
tions on � . Note that it is known that the Liouville property is not stable under quasiisometry
for general graphs, see [17,75].

2.2. Characterizations in terms of random walks
Kesten’s characterization of amenability cited earlier can be viewed as a first result

in the direction of Question 2. Kesten asked in [64] for a characterization of recurrent groups.
What are the finitely generated groups that can carry a nondegenerate recurrent symmetric
random walk? This problem was settled by Varopoulos in the 1980s, invoking Gromov’s
polynomial growth theorem.
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Theorem 2.2 ([97]). Suppose� is a finitely generated group and there exists a nondegenerate
symmetric probability measure � on � such that the �-random walk is recurrent. Then � is
a finite extension of the trivial group ¹idº, Z; or Z2.

The growth function is an important geometric invariant of a group. Let � be a
finitely generated group and S be a finite generating set of � . The growth function v�;S .n/
counts the number of elements with word length j
 jS � n, that is,

v�;S .n/ D
ˇ̌®

 2 � W j
 jS � n

¯ˇ̌
:

A finitely generated group � is of polynomial growth if there exists 0 < D < 1 and a
constant C > 0 such that v�;S .n/ � CnD . It is of exponential growth if there exist � > 1
and c > 0 such that v�;S .n/ � c�n. If v�;S .n/ is subexponential, but � is not of polynomial
growth, we say � is a group of intermediate growth. By Gromov’s theorem [46], any group
of polynomial growth is virtually nilpotent. For some classes of groups, the growth is either
polynomial or exponential (for example, for solvable groups by results of Milnor and Wolf
[79,101], and for linear groups as it follows from the Tits alternative [93]).

The first examples of groups of intermediate growth are constructed by Grigorchuk
in [43], answering a question of Milnor. These groups are indexed by infinite strings ! in
¹0; 1; 2º1: for any such !, four automorphisms a; b! ; c! ; d! of the rooted binary tree are
associated. The group G! is generated by S D ¹a; b! ; c! ; d!º. By [43], if ! is eventually
constant thenG! is virtually abelian (hence of polynomial growth); otherwiseG! is of inter-
mediate growth. The group G! is periodic (also called torsion) if and only if ! contains all
three letters 0; 1; 2 infinitely often. A special example of such a string is .012/1; the corre-
sponding group is called the first Grigorchuk group, which was introduced and shown to be
an infinite torsion group Grigorchuk in [45]. First examples of simple groups of intermediate
growth are constructed in the recent work of Nekrashevych [83,84].

A key point in Varopoulos’ proof is that a volume growth lower bound (geometric
property of the underlying group) implies an upper bound for the decay of return probabilities
(analytic property of the heat semigroup). More precisely, suppose that there are constants
c; d > 0 such that the volume growth of the group � satisfies v�;S .n/ � cnd for all n, then
there is a constant c1 > 0 such that�.2n/.id/� c1n

� d
2 . Since, by Gromov’s theorem [46] and

its version in van den Dries and Wilkie [94], a group of weak polynomial growth is virtually
nilpotent, this estimate leads to a proof of Theorem 2.2.

We now discuss some results that characterize properties of the underlying group
� in terms of boundary behaviors of random walks. In [37] Furstenberg proved that if � is
nonamenable, then for any nondegenerate step distribution � on � , the Poisson boundary of
.�; �/ is nontrivial; and the converse to this statement was conjectured to be true as well.
This conjecture was proved independently by Kaimanovich and Vershik [60], Rosenblatt [88]:

Theorem 2.3 ([60,88]). A countable group � is amenable if and only if there is a nondegen-
erate symmetric random walk on � with trivial Poisson boundary.

It is classical that for any step distribution on a virtually nilpotent group, the asso-
ciated Poisson boundary is trivial, see [30]. In [60] it is conjectured that on any group of
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exponential growth, there exists a symmetric step distribution (of infinite support in gen-
eral) with nontrivial Poisson boundary. The first result on nontrivial boundary behavior of
random walks on intermediate growth groups is due to Erschler [32]. Note that by the entropy
criterion for the Liouville property, any finite range random walk on a group of intermedi-
ate growth has trivial Poisson boundary. Thus to observe nontrivial boundary behavior, it is
necessary to take random walk step distributions with infinite support.

Theorem 2.4 ([32]). Let� DG! be a Grigorchuk group with! 2 ¹0;1º1, where! contains
infinite numbers of 0 and 1. Then � admits a symmetric measure � of finite entropy such that
the Poisson boundary of .�; �/ is nontrivial.

We mention that the nontrivial limit behavior observed in Theorem 2.4 is of type
(ii) as described in the Introduction.

The longstanding problem which groups admit random walks with nontrivial Pois-
son boundary is completely settled in the recent work of Frisch, Hartman, Tamuz, and Vahidi
Ferdowsi [36]. Recall that � has the infinite conjugacy class property (ICC) if each of its non-
trivial elements has an infinite conjugacy class. Note that in some works the definition of ICC
also requires the group to be nontrivial. For a finitely generated group � , having no ICC quo-
tient except the trivial one ¹idº is equivalent to being virtually nilpotent.

Theorem 2.5 ([36]). Let � be a countable group. The following are equivalent:

(i) � has a quotient group N� such that N� is a nontrivial ICC group.

(ii) There is a probability measure � on � with nontrivial Poisson boundary.

The direction (ii) implies (i) in the statement is known from the earlier work of
Jaworski in [52]. The direction (i) implies (ii) is proved in [36] by a novel construction of step
distributions with nontrivial Poisson boundary, directly using the ICC property. Moreover,
the measure � can be taken to be a symmetric measure with finite Shannon entropy whose
support generates � . Theorem 2.5 solves the aforementioned conjecture of Kaimanovich
and Vershik positively; and moreover brings in the key insight that the algebraic condition of
having a nontrivial ICC quotient plays a crucial role. We mention that the similar problem
for nondiscrete locally compact groups remains open: for instance, how to characterize a
locally compact group G which admits a step distribution � with nontrivial Poisson bound-
ary, where � is absolutely continuously with respect to the Haar measure of G. For this
formulation, an answer is known for connected compactly generated lcsc groups by [50]:
the characterization is that G is not of polynomial growth. The question is open for totally
disconnected locally compact groups. One may also drop the constraint on � and formulate
the problem for any step distribution on the group G. Dropping the assumption on � may
change possible boundary behaviors even on polynomial growth groups, see [51,53].

2.3. Random walks as tools
Now we turn to Question 3. Random walks provide a natural tool to study stationary

measures. Consider an action of � on a compact spaceX by homeomorphims and let � be a
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probability measure on� . Denote byP.X/ the space of probability measures on the Borel � -
field ofX . Then by a standard compact argument, there always exists a�-stationary measure
� 2 P.X/, that is, � satisfies

P
g2� g:��.g/ D � where g:�.A/ D �.g�1:A/. One funda-

mental observation in [37] is that the martingale convergence theorem implies that almost
surely, along the �-random walk .Wn/1nD0, the sequence of measures .Wn:�/ converges in
the weak topology of P.X/. In particular, the limit measures give rise to a �-equivariant
map from the Poisson boundary of .�;�/ to P.X/. This map is sometimes referred to as the
affine boundary map associated to � Õ .X; �/. Ideas of using Poisson boundaries to answer
algebraic questions appear in the work of Furstenberg on lattice envelopes [38]. Furstenberg’s
ideas inspire the use of boundary theory in later works on rigidity phenomena, which we do
not touch on here.

Next we discuss some works in which random walks are used as tools to prove
amenability of groups. It is shown in von Neumann’s work that finite groups and abelian
groups are amenable and that the class of amenable groups (AG) is closed under four standard
operations: taking (i) subgroups, (ii) quotients, (iii) group extensions, and (iv) direct unions.
The term elementary amenable is coined by Day: denote by EG be the smallest class of
groups which contains all finite groups and all abelian groups and is closed under operations
(i)–(iv).

A finitely generated group � of subexponential growth is amenable: subexponential
growth implies that there exists a subsequence of balls B.id; ri / forming a Følner sequence.
Chou shows in [23] that a finitely generated group in EG is either virtually nilpotent or of
exponential growth; a torsion group in EG is locally finite; and a finitely generated simple
group in EG is finite. Thus Grigorchuk groups of intermediate growth are in AG but not EG.
As in [27], denote by SG the closure of all groups of subexponential growth under (i)–(iv). It
is clear that EG � SG � AG.

A first example to separate SG and AG is shown in Bartholdi and Virág [14]. The
example is called the Basilica group, which was first studied in [44]. The Basilica group
B is a two-generated group acting on the rooted binary tree. One key idea in [14] is certain
random walk onB enjoys self-similar properties compatible with the wreath recursions down
the tree. The self-similarity allows one to efficiently use the recursion on the tree to study
behaviors of the random walk. In [14] it is shown that the return probability of such a random
walk on B decays subexponentially, thus B is amenable by Kesten’s criterion. The idea
of self-similar random walks is later extended to larger classes of groups acting on trees
in [2, 13, 20, 58]. It is later understood that for proving amenability, one crucial property is
that the induced random walk on certain orbital Schreier graph is recurrent. For instance,
amenability of B can be shown in the unified framework of “extensive amenability,” which
emerges from the seminal work [54] and is developed in [55,56].

For the rest of this subsection we focus on the relation of random walks with nontriv-
ial Poisson boundary to volume growth of the group. The most direct way to obtain a growth
lower bound is to exhibit distinct elements within a given radius. For instance, if � contains
two elements a; b such that they generate a free semigroup, then thIS semigroup provides 2n

distinct elements within radius nmax¹jajS ; jbjSº. In general, it can be rather challenging to
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find explicit elements within a given distance, see [11,71] on the first Grigorchuk group. As a
consequence of the entropy criterion and Shannon’s theorem, random walks with nontrivial
Poisson boundary on � can provide lower bounds on volume growth of � . Heuristically,
instead of exhibiting many distinct elements in a ball, one constructs random walks with
positive asymptotic entropy, which indirectly imply there must be sufficiently many points
in balls. The quantitative relation between the tail decay of the step distribution� and growth
of � can be made precise:

Lemma 2.6. Suppose � admits a �-random walk with nontrivial Poisson boundary, where
the probability measure � has finite entropy H.�/ < 1 and finite ˛-moment, for some
˛ 2 .0; 1�. Then there is a constant c > 0 such that the volume function satisfies

v�;S .r/ � exp.cn˛/:

See [35, Lemma 2.1] for a more general statement. To avoid possible periodicity issues,
we may always assume that �.¹id�º/ > 0: changing � to a convex combination of � and the
ı-mass at id does not change the space of harmonic functions. To make use of Lemma 2.6,
one first constructs a random walk � with finite entropy, which is designed to guarantee that
there exists a tail event A of the �-random walk whose probability is not in ¹0; 1º. Then we
have:

Observation of one nontrivial tail event for �-random walk

m

Poisson boundary of .G;�/ is nontrivial

+

Volume lower bound from the moment condition satisfied by �:

The random walks with nontrivial Poisson boundary on the Grigorchuk group G.01/1 con-
structed by Erschler in Theorem 2.4 yield lower bounds which match rather tightly with
upper bounds. More precisely, by [32, Theorems 2 and 3], the growth function ofG D G.01/1

satisfies

exp
�

n

log2C�.n/

�
. vG;S .n/ . exp

�
n

log1��.n/

�
; for any � > 0:

The construction in [32] uses the fact thatG.01/1 contains an infinite dihedral group. For the
Grigorchuk group G.012/1 , which is a torsion group by [45], random walks with nontrivial
Poisson boundary and tight control over the tail decay are constructed in [35].

Theorem 2.7 ([35]). Let ˛0 D
log2

log�0 � 0:7674, where�0 is the positive root of the polynomial
X3 � X2 � 2X � 4. For any � > 0, there exists a constant C� > 0 and a nondegenerate
symmetric probability measure � on G D G.012/1 of finite entropy and nontrivial Poisson
boundary, where the tail decay of � satisfies that for all r � 1,

�
�®
g W lS .g/ � r

¯�
� C�r

�˛0C�:
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As a consequence, for any � > 0, there exists a constant c� > 0 such that for all n � 1,

vG;S .n/ � exp.c�n˛0��/:

The volume lower bound in Theorem 2.7 matches up in exponent with the growth
upper bound in [10]. In particular, combined with the upper bound we conclude that the
volume exponent of the first Grigorchuk group G D G.012/1 exists and is equal to ˛0, that
is,

lim
n!1

log log vG;S .n/
logn

D ˛0:

A detailed sketch of the construction of measure � stated in Theorem 2.7 can be found in
[35, Introduction].

The method also applies to other period strings ! in ¹0; 1; 2º1, which contains
all three symbols infinitely often, to show the corresponding Grigorchuk group G! has a
volume exponent ˛! 2 .0; 1/, see [35, Theorem B]. When ! is not periodic, it is shown in
[43] that for some choices of !, the growth of G! exhibits oscillating behavior: limit of
log log vG! ;S .n/= log n does not exist. Indeed, the family ¹G!º provides a continuum of
mutually nonequivalent growth functions. This statement is shown in [43] with the introduc-
tion of the space of marked groups, see more discussion in Section 3.2. In [35, Theorems C and

8.5] it is shown that for a large collection of nonperiodic !, the oscillating growth function
of G! can be estimated with good precision. In particular, combined with the upper bounds
from [12], the estimates show that given any ˛ � ˇ in the interval Œ˛0; 1�, where ˛0 is the
growth exponent of G.012/1 , there is an ! 2 ¹0; 1; 2º1 with

lim inf
n!1

log log vG! ;S .n/
logn

D ˛ and lim sup
n!1

log log vG! ;S .n/
logn

D ˇ:

We mention that it is an open problem whether one can find an example of intermediate
growth group whose lower growth exponent is strictly less than ˛0. Such questions are related
to Grigorchuk’s gap conjecture, see [42].

3. Quantitative behavior of random walk characteristics

In this section we focus on quantitative estimates for random walks on groups. Here
are some of the key interrelated aspects:

(i) What are the spectral properties of the convolution operator f 7! f ��when
� is a symmetric probability measure on �? What is the behavior of the prob-
ability of return of a symmetric random walk driven by step distribution �?

(ii) What is the asymptotic entropic behavior, that is, the behavior of n 7!H�.n/

as n tends to infinity? Here H�.n/ is the Shannon entropy of Wn as in (1.1).

(iii) What is the escape behavior of transient random walks captured in terms
of some given distance function on the group, say, in the form of average
displacement as in (1.2) or more refined descriptions?
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(iv) What is the structure of sets �-harmonic functions (bounded, positive, of
polynomial growth, of a given growth type, slow or fast, etc.)?

In this section we mainly focus on topics around (i)–(iii); unbounded harmonic functions are
discussed in the next section.

3.1. Isoperimetric profiles
We first introduce some notations for (i). Let R� be the right convolution operator

`2.�/ ! `2.�/ defined as R�.f /.x/ D .f � �/.x/ D
P
g2� f .xg

�1/�.g/. The return
probability to identity at time n is given by �.n/.id/D hRn�ıid; ıidi`2.�/. When � is symmet-
ric, R� is a self-adjoint operator. Denote by ER�

�
D 1.�1;��.R�/ the spectral projections

of R�. The spectral measure of R� is given by

NR�
�
.�1; ��

�
D

˝
E
R�
�
.ıid/; ıid

˛
`2.�/

:

The relation between return probabilities and the spectral measure is expressed through the
transform

�.2n/.id/ D

Z
R
�2ndNR�.�/ D

Z 1

�1

�2ndNR�.�/:

The last equality is becauseR� is a Markov operator. When � is an infinite amenable group,
one may draw information on the behavior of the spectral measure near 1 from the decay of
return probabilities, using Tauber–Karamata theorems for Laplace transforms.

The decay of return probability �.2n/.id/ is closely related to isoperimetric pro-
files of R�, which in the discrete setting can be introduced for more general reversible
Markov operators. Let V be a countable set, typically the vertex set of a graph, and let
P W V � V ! Œ0; 1� be the transition probabilities of a reversible Markov chain on V . Denote
by � a reversing measure for P , that is, �.x/P.x; y/ D �.y/P.y; x/ for all x; y 2 V . Con-
sider the associated Dirichlet form

EP .f1; f2/ D
1

2

X
x;y

�
f1.y/ � f1.x/

��
f2.y/ � f2.x/

�
�.x/P.x; y/;

which is a bilinear form on Dom.EP / D ¹f 2 L2.V; �/ W EP .f; f / < 1º. The
L2-isoperimetric profile of P , also called the spectral profile, is defined as

ƒ2;P W RC ! Œ0; 1�;

v 7! inf
®
�P .�/ W � � V; �.�/ � v

¯
;

where �P .�/ is the lowest eigenvalue of the Laplacian operator I �P with Dirichlet bound-
ary condition in �,

�P .�/ D inf
®
EP .f; f / W supp .f / � �; kf kL2.V;�/ D 1

¯
:

The L1-isoperimetric profile is defined analogously. Using an appropriate coarea formula,
ƒ1;P can equivalently be defined more geometrically as

ƒ1;P .v/ D inf
²P

x;y2V 1�.x/1V n�.y/�.x/P.x; y/

�.�/
W �.�/ � v

³
;
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where the quantity
P
x;y2V 1�.x/1V n�.y/�.x/P.x; y/ measures the size of the boundary

of � with respect to P .
Between the L1- and L2-isoperimetric profiles, we have the following inequality,

often referred to as Cheeger’s inequality (see, e.g., [68]):
1

2
ƒ21;P � ƒ2;P � ƒ1;P : (3.1)

The nonobvious directionƒ2;P �
1
2
ƒ21;P is useful for transferringL1-expansion inequalities

to spectral profile lower bounds. The Coulhon–Saloff-Coste inequality [26], which implies,
for example,

ƒ1;Ru

�
2v�;S .r/

�
�

1

2r
;

where u is the uniform measure on S [ S�1 and v�;S is the volume function function of
.�; S/, can be proved by an elementary mass displacement type argument. Sharp
L1-expansion inequalities on Zd can be derived from Loomis–Whitney inequalities, see,
e.g., [72, Section 6.6]; further connections between isoperimetric inequalities and entropy
inequalities (and consequences such as Loomis–Whitney, Harper inequalities) are investi-
gated in [48].

The use of Nash-type inequalities to estimate return probabilities in the discrete set-
ting was introduced in [95]. It turns out Nash inequalities are equivalent to Faber–Krahn-type
inequalities, where the latter is of the form ƒ2;P .v/ � f .v/ for some positive function f .
In fact, in very general settings, it is known that various forms of functional inequalities
are equivalent, see [8] and references therein. Comparison of forms, considered in [29] for
random walks on finite groups, is a useful tool to deduce isoperimetric inequalities for a
Markov operator P of interest from known results on other Markov operators.

Through a series of works by Coulhon and Grigor’yan [24, 25], it is shown that
under some mild conditions, the asymptotic decay of return probability supx2V P

2n.x; x/

and the L2-isoperimetric profile of P determine each other. More precisely, suppose that
�� D infx2V �.x/ > 0. Let 
.t/ be the function defined by the equation

t D

Z  .t/

��

dv

ƒ2;P .v/v
; (3.2)

then under a mild regularity assumption, the return probabilities satisfy

sup
x2V

P 2n.x; x/

�.x/
'

1

 .2n/
: (3.3)

For the Markov operator R�, where � is a probability measure on a countable amenable
group, a precise formula relating the behavior of the spectral measure NR� near 1 and ƒR�
near infinity is obtained in [15], under the assumption thatƒR� ı exp is doubling near infinity.

For classes of groups where explicit estimates of return probabilities and isoperi-
metric profiles are known, the read may consult [15, Table 1] and pointers to references there.
In addition to the Table, for free solvable groups see [89], and for discrete subgroups of upper
triangular matrices over a local field see [92].
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A consequence of (3.2) and (3.3) is the following isoperimetry test for transience.
Suppose we have a Faber–Krahn inequality for an irreducible reversible Markov operator
P of the form ƒ2;P .s/ � f .s/, s 2 Œ1;1/, where f is a continuous positive decreasing
function on Œ1;1/. If Z 1

1

ds

s2f .s/
< 1; (3.4)

then the Markov chain with transition operatorP is transient, see [41, Theorem 6.12]. Recall the
type (ii) boundary behavior described in the Introduction, which often relies on the transience
of induced random walks on certain orbits. In particular, isoperimetry of induced random
walks on Schreier graphs play an important role in the construction of random walks with
nontrivial Poisson boundary in Theorem 2.7.

3.2. The space of marked groups and realization problems
The speed function realization problem, which is often attributed to Vershik, asks

what kind of functions can be realized as the speed function of a simple random walk on
some finitely generated group. By realizing a given function f as a speed function, we mean
finding .�;�/ such that the speed of the�-random walk satisfies f .n/=C �L�.n/�Cf .n/

for some constant C � 1. Similar realization problems can be posed for other random walk
characteristics such as the entropy functionH�.n/; and for geometric invariants such as the
growth function v�;S .

A complete solution to a realization problem consists of two parts. The first part
identifies constraints on the functions; the second part shows that all functions under the
necessary constraints can be realized. Consider the speed function L�.n/, where � is a
nondegenerate symmetric probability measure of finite support on � . Then the triangle
inequality for the norm j � jS and translation invariance imply that L�.n/ is a subadditive
function, L�.n C m/ � L�.n/ C L�.m/. Another constraint is known as the “universal
diffusive lower bound”, which is proved in Lee and Peres [69] building on an earlier idea
of Erschler: there is a universal constant c > 0 such that for any infinite amenable group
� equipped with a finite generating set S , for any symmetric probability measure � on �
whose support contains S , we have

L�.n/ � c
p
p�n; where p� D min


2S
�.
/:

For more discussion on the connection of such a general bound to harmonic embeddings
into a Hilbert space, see Section 4. The diffusive lower bound is achieved, for example, by
simple random walk on Z: take � D Z and �.˙1/ D

1
2
. Given these constraints, the speed

function realization problem asks what functions between
p
n and n can be realized as speed

function of finite range symmetric random walks on groups.

Theorem 3.1 ([21]). There exists a universal constant C > 1 such that the following holds.
For any function f W Œ1;1/ ! Œ1;1/ such that f .1/ D 1 and x=f .x/ is nondecreasing,
there exist a group� equipped with a finite generating set T and a nondegenerate symmetric
probability measure � on � of finite support such that

3352 T. Zheng



• the speed and entropy functions satisfy L�.n/ 'C H�.n/ 'C

p
nf .

p
n/;

• the Lp-isoperimetric profile satisfies ƒp;R�.v/ 'C .
f .log.eCv//

log.eCv/
/p for any

p 2 Œ1; 2�;

• the return probability satisfies � log.�.2n/.id// 'C w.n/, where w.n/ is deter-
mined by n D

R w.n/
1

. s
f .s/

/2ds.

When the function f is sublinear, that is, limx!1 f .x/=x D 0, the group � can be chosen
to be elementary amenable with asymptotic dimension 1.

Here the notation f 'C g means g.x/=C � f .x/ � Cg.x/. In particular, the first
item gives a satisfying answer to the speed function realization problem. The statement for
speed function realization between n3=4 and n
 , 
 < 1, is obtained earlier by Amir and
Virag in [4]. The group� constructed in Theorem 3.1 is of exponential growth. It is an open
problem for the entropy function, whether a nondegenerate symmetric random walk � on a
group � of exponential growth always satisfies H�.n/ &

p
n.

As cited in Section 2.3, the space of marked groups is introduced by Grigorchuk
in [43] to show that there are 2@0 groups with pairwise inequivalent growth functions.
A k-marked group is a pair .�; T /, where T D .t1; : : : ; tk/ is an ordered k-tuple in �k

which generates � . Equivalently, let Fk be the rank k free group; .�; T / corresponds to
the kernel of the homomorphism Fk ! � which sends the j th free generator of Fk to tj ,
1 � j � k. Denote by Mk the space of k-marked groups. The product topology on 2Fk

induces a topology on Mk , via the identification described above. This topology on Mk is
sometimes called the Cayley–Grigorchuk topology, as two marked groups are close if their
labeled Cayley graphs agree on a large ball around the identity. Under this topology, Mk is
a metrizable compact Hausdorff space.

The product operation in Mk is called a diagonal product: consider a collection of
marked groups ..�i ; Ti //i2I their diagonal product, denoted by

N
i2I .�i ; Ti /, is the quo-

tient of Fk with kernel
T
i2I ker.Fk ! �i /. In some situations it is possible to understand

well the structure of a diagonal product. Consider a converging sequence of marked groups
..�i ; Ti //

1
iD1 in Mk and denote by .�0; T0/ D limi!1.�i ; Ti /. Then the limit .�0; T0/ is a

marked quotient of the diagonal product�D
N1

iD1.�i ; Ti /. When the sequence �i consists
of finite groups, � is a FC-central extension of �0. The construction in [21] takes diagonal
product of a sequence of marked groups which converges to a wreath product of the form
�0 D .A � B/ o Z where A; B are finite groups. The sequence is chosen so that one can
understand what elements in ker.� ! �0/ are, and, moreover, explicitly estimate the word
length of such elements with respect to the marking on�. The flexibility in the construction
allows proving Theorem 3.1.

3.3. Relations between random walk characteristics
The three random walk characteristic functions, namely the decay of return proba-

bilities, the entropy function, and the speed function post constraints on each other.
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3.3.1. Between speed and entropy
As a consequence of the Varopoulos–Carne inequality and the fundamental inequal-

ity mentioned earlier, for a symmetric probability measure � on G with finite support,
entropy and speed satisfy

1

n

�
1

4
L�.n/

�2
� 1 � H�.n/ � .v C "/L�.n/C lognC C; (3.5)

where v is the exponential volume growth rate of .G; supp�/, C > 0 is an absolute constant,
see [4, 31]. For example, if we know H�.n/ ' n� (that is, the entropy exponent is � ), then
the speed function is constrained by n� . L�.n/ . n.1C�/=2.

In [1], the joint realization problem of speed and entropy is considered. The con-
struction in [21] with a sequence of expanders as input and the one with finite dihedral groups
allows showing that for any entropy exponent � 2 Œ1=2; 1�, all speed exponents allowed by
the constraint (3.5) can be realized. That is, for any � 2 Œ1

2
; 1� and 
 2 Œ1

2
; 1� satisfying

� � 
 �
1
2
.� C 1/, there exists a finitely generated group G and a symmetric probability

measure � of finite support on G, such that the random walk on G with step distribution �
has entropy exponent � and speed exponent 
 , see [21, Corollary 1.3, Proposition 3.17]. The
case where both exponents �; 
 belong to Œ3

4
; 1� was treated by Amir [1].

3.3.2. Between return probabilities and entropy
Let � be a symmetric probability measure of finite entropy on a group G. In

[86,90], the following connection between return probability and entropy is shown. Let � be
a symmetric probability measure of finite entropy on � . Then:

• if � log�.2n/.id/=n1=2 ! 0 as n ! 1, then the pair .G; �/ has the Liouville
property;

• furthermore, if � log�.2n/.id/. nˇ whereˇ 2 .0;1=2/, then the entropy function
satisfies

H�.n/ . n
ˇ
1�ˇ ;

see [86, Theorems 1.1 and 3.2]. The sharpness of this bound, which turns a return probability
lower estimate into an entropy upper estimate, is demonstrated on a family of groups called
bubble groups, which are considered in [67].

If instead of slow decay of return probabilities, one has estimates on the spectral pro-
files of balls, �R�.B.id; r//. r�� , then, by [86, Theorem 1.6], the ˛-moment of displacement
of the �-random walk .Wn/1nD1 satisfies

E
h

max
1�k�n

jWkj
˛
S

i
� Cn˛=� ; for any ˛ 2 .0; �/:

3.4. Connection to metric embeddings
The study of embeddings of finitely generated groups (viewed as a metric space

with word distance on its Cayley graph) into Hilbert space was initiated by Gromov [47]. In
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the seminal work [102], G. Yu proved that groups that admit coarse embeddings into Hilbert
space satisfy the coarse Baum–Connes conjecture.

Distortion of embeddings of finite metric spaces has been extensively studied in the
theory of Banach spaces. Similar to the notion of distortion, Guentner and Kaminker [49]

introduce a natural quasiisometry invariant that characterizes how close to bi-Lipschitz can
an embedding of an infinite group into a Banach space be. Let � be a group generated by
a finite set S and equipped with the associated left-invariant word metric dS . For a Banach
spaceX let ˛�

X .�/ be the supremum over all ˛ � 0 such that there exists a Lipschitz mapping
f W� !X and c > 0 such that for all x;y 2� we have kf .x/� f .y/kX � cdS .x;y/

˛ . Sim-
ilarly, one can define the equivariant compression exponent ˛#

X .�/ by restricting to equiv-
ariant Lipschitz maps, namely kf .gx/� f .gy/kX D kf .x/� f .y/kX for all g; x; y 2 G.
When the target space is the classical Lebesgue space Lp.Œ0; 1�/, we write ˛�

p .�/ and ˛#
p.�/

for the compression exponents.
The idea of connecting the notion of Markov type, which is an important metric

invariant introduced by K. Ball [9], to Banach compression exponent of infinite groups first
appears in Austin, Naor, and Peres [6]. For wreath products, in [81] an explicit formula for the
Hilbert compression exponent ofH o Z is shown, assuming that the lamp groupH satisfies
˛#
2.H/ D

1
2ˇ�.H/

, where ˇ�.H/ is the supremum of upper speed exponent of symmetric
random walk of bounded step distribution onH . Further, in [82] which significantly extends
the method in [6,81], theLp-compression exponent of Z o Z was determined forp � 1. In [21]

it is shown that for any p 2 Œ1; 2� and a finitely generated infinite group H , the equivariant
Lp-compression exponent of the wreath product H o Z is

˛#
p.H o Z/ D min

²
˛#
p.H/

˛#
p.H/C .1 �

1
p
/
; ˛#
p.H/

³
:

When applying the Markov-type method, one has the flexibility of choosing which Markov
chains to consider: for instance, ˛-stable like random walks in [82] and jumping processes
confined on finite subsets of H o Z in [21].

It is known that distortion of metric embeddings can be captured by Poincaré
inequalities of general forms. In particular, the Markov-type inequalities mentioned above
can be viewed as a special form of Poincaré inequalities. Other types of obstructions to low
distortion embeddings can be observed in the metric geometry of finitely generated groups.
The construction of diagonal product � with infinite dihedral groups as input in [21] con-
tains scaled `1-cubes of growing sizes in �. Sharp estimates of distortion of embeddings
of `1-cubes into Lp-spaces are provided by the deep work of Mendel and Naor on metric
cotype in [77]. Explicit evaluation of compression exponents of such diagonal products yields
the following. With certain choice of parameters, such groups also provide the first exam-
ples where Lp-compression exponent, p > 2, is strictly larger than the Hilbert compression
exponent. It might be interesting to investigate this collection of groups in the program on
quasiisometric rigidity of solvable groups.
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Theorem 3.2 ([21]). For any 2
3

� ˛ � 1, there exists a 3-step solvable group� such that for
any p 2 Œ1; 2�,

˛�
p .�/ D ˛#

p.�/ D ˛:

Further, there exists a 3-step solvable group �1 such that for all p 2 .2;1/,

˛#
p.�1/ �

3p � 4

4p � 5
> ˛#

2.�1/ D
2

3
:

4. Unbounded harmonic functions and equivariant

embeddings into Hilbert spaces

Besides bounded harmonic functions one may consider other classes of harmonic
functions and their relation to random walks. In this section we focus on harmonic func-
tions of at most linear growth on amenable groups. Unlike the boundary theory associated
with bounded harmonic functions, there is no systematic theory developed for this class of
harmonic functions. Throughout this section, let � be a finitely generated group and take a
symmetric probability measure � of finite generating support on � .

Let � W � ! U.H / be a unitary representation of � on a separable Hilbert space H .
A map b W � ! H is a 1-cocycle if b.gh/D b.g/C �gb.h/ for all g; h 2 � . Because of the
cocycle equality, given a probability measure� onG, b is�-harmonic if

P
s2�b.s/�.s/D 0.

A �-harmonic 1-cocycle b W G ! H is also referred to as an equivariant harmonic embed-
ding of G into H .

As a special case of results in [80] (for the finitely presented case) and [66], a finitely
generated group G does not have Kazhdan’s Property .T / if and only if it admits a noncon-
stant equivariant �-harmonic embedding into a Hilbert space. For an exposition of the proof
in the setting of finitely generated groups, see [65, Appendix]. In the amenable case, nontrivial
�-harmonic embeddings can be constructed more explicitly by using �-random walks, see,
for example, [69, Section 3] and [34].

One may ask about properties of unitary representations associated with noncon-
stant �-harmonic 1-cocycles. In [91] Shalom introduced the following notions in connection
to the large-scale geometry of the groups. We say � has Property HFD (HF, or HT, respec-
tively) if for every nonconstant �-harmonic 1-cocycle b W G ! H , the associated represen-
tation � has a finite-dimensional (finite, or trivial, respectively) subrepresentation. We say
� is weakly mixing if it does not admit any finite-dimensional subrepresentations. It is clear
that PropertiesHFD,HF, andHT are in increasing strength, while the sharpest one of them,
HT, implies that all �-harmonic 1-cocyles are homomorphisms to H .

4.1. Martingale small-ball probabilities
The existence of a nontrivial equivariant�-harmonic embedding b W� ! H implies

the a diffusive lower bound for speed of a �-random walk on G, see [69]. In this subsec-
tion, we review bounds on small-ball probabilities of the martingale b.Wt /, which provide
additional information about the behavior of the random walk. Note that from the cocycle
equality, kb.gs/ � b.g/kH D kb.s/kH , in particular the map b is Lipschitz.
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Consider a martingale .Xt /1tD0 with respect to filtration .Ft /1tD0 taking values in
a Hilbert space H . Under the assumption of bounded increments and that the conditional
variances EŒkXtC1 � Xtk

2jFt � are constant, general small-ball probabilities estimates are
proved independently in [70] and [5]. Applied to the martingale .b.Wt //1tD0, where .Wt /1tD0
is a �-random walk on � , we have:

Theorem 4.1 ([5,70]). For any nonconstant equivariant�-harmonic embedding b WG ! H ,
there is a constant C > 0, such that for all t; r � 1,

P
�

b.Wt /

 � r

�
�
Cr
p
t
:

Note that this general bound cannot be improved, since, for instance, it is sharp for
a simple random walk .Wt / on Z where �.˙1/ D 1=2 and b W Z ! R given by b.z/ D z.
Note that in this example the representation associated with b is trivial.

When b W G ! H is a nonconstant harmonic 1-cocycle with weakly mixing repre-
sentation � , the martingaleXt D b.Wt / satisfies an asymptotic orthogonality condition: for
large k, the direction of the incrementXtCk �Xt is almost orthogonal toXt . More precisely,
when the representation � is weakly mixing, there exists a sequence of nonincreasing con-
stants .�k/k2N such that limk!1 �k D 0 and for any t; k 2 N, the martingale Xt D b.Wt /

satisfies
1

k
E

��
Xt

kXtk
; XtCk �Xt

�2
jFt

�
� �k almost surely: (4.1)

This claim can be deduced directly from [85, Lemma], which is a step in Ozawa’s functional
analytic proof of the Gromov polynomial growth theorem.

It turns out for H -valued martingales with bounded increments and asymptotic
orthogonality property (4.1), one can obtain superpolynomial decay bounds for small-ball
probabilities, following a classical Foster–Lyapunov drift-type supermartingale argument.
Applied to the martingale .b.Wt //1tD0, we have the following superpolynomial decay esti-
mate for small-ball probabilities. If b W G ! H is a nontrivial harmonic 1-cocycle with
weakly mixing representation � , then for any ˇ > 0, there exists a constant C > 0 depend-
ing on ˇ such that

P
�

b.Wt /

 � r

�
� C

�
r

p
t

�ˇ
for all t; r � 1: (4.2)

4.2. Some open problems
Since its introduction in [91], it is believed that for amenable groups, Property HFD

is a rather strong property only satisfied by certain “small” groups. This is reflected in the
state that the only known examples of groups with PropertyHFD are nilpotent groups, poly-
cyclic groups, wreath product F o Z with finite F , and certain extensions of such groups.
There are very limited known tools to establish that a given group has Property HFD. If �
embeds as a lattice in a nondiscrete locally compact group G, then one might use the repre-
sentation theory of G: this approach is carried out in [91] to establish that polycyclic groups
have Property HFD. Probabilistic approaches using random walks, see [85], require strong
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coupling properties. For instance, it is still not known whether the wreath product F o Z2,
where F is finite, has Property HFD.

In this subsection, we discuss two problems on general amenable groups, in both sit-
uations knowing that the group � does not have PropertyHF implies positive answers. These
problems provide motivations to understand better the class of groups with Property HF.

4.2.1. Dimension of the space of linear growth harmonic functions
Problem 4.2 ([78]). Let HF1.�; �/ denote the space of �-harmonic functions on � whose
growth is bounded by a linear function. Is it true that HF1.�; �/ is finite dimensional if and
only if � is of polynomial growth?

For more background and discussions around this question see [78, Introduction].
The “if” direction is known: it is a step in Kleiner’s proof [65] of Gromov’s polynomial growth
theorem. Towards the “only if” direction, when � does not have Property HFD, there exists
an irreducible unitary representation � W � ! H which is weakly mixing and associated
with a nonconstant �-harmonic cocycle b W � ! H . Consider the subspace of Lipschitz
�-harmonic functions ¹fvºv2H given by fv.g/ D hb.g/; vi. One can check that since � is
weakly mixing, the space ¹fvºv2H is infinite dimensional. When � has Property HFD but
not HF, then it virtually admits a solvable group of exponential growth as a quotient group,
see [91, Proposition 4.2.3]. In this case applying the results in [78] to a solvable quotient group
then lifting back to � show that HF1.�; �/ is infinite dimensional. Therefore the problem
remains open only for groups with Property HF.

4.2.2. Occupation time of balls
For a transient�-random walkW D .Wn/

1
nD1 on� , one can consider the occupation

time of a finite set, that is, the total amount of time the random walk spent in the given set.
Of particular interest is the occupation time of balls:

NW .r/ WD
ˇ̌®
n 2 N W Wn 2 BS .id; r/

¯ˇ̌
D

X

2BS .id;r/

G�.id; 
/;

where BS .id; r/ is the set of vertices within graph distance r to the identity on the Cayley
graph .�; S/, and G�.x; y/ D

P1

nD0 �
.n/.x�1y/ is the Green function of the �-random

walk.

Problem 4.3 ([74]). If .Wn/1nD0 is a transient symmetric random walk on a finitely generated
group G, then

E
�
NW .r/

�
. r2;

where NW .r/ is the occupation time of the ball BS .id; r/ as defined above.

The motivation for the conjectured quadratic bound is as follows. Let �r be the first
exit time of the ball B.id; r/ of a random walk starting at the identity. Take a equivariant
�-harmonic embedding b W G ! H normalized such that Ekb.W1/k

2 D 1. Applying the
optional stopping theorem to the martingale kb.Wt /k

2 � t , we deduce that E.�r / . r2.
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Heuristically, since the random walk is assumed to be transient, once it has left a ball
BS .id; C r/, where C is a large constant, the chances that it comes back to B.id; r/ is
small. Hence conjecturally, the expected occupation time of balls should admit a quadratic
upper bound as well.

In [74], it is shown that in general, for any nondegenerate symmetric transient random
walk .Wn/1nD0 on a finitely generated infinite group � , we have

E
�
NW .r/

�
. r2

p
log v�;S .r/; (4.3)

where v�;S .r/ is the volume growth function of .�; S/. In particular, on groups of exponen-
tial volume growth it yields the upper bound r5=2. The bound E.NW .r//. r3 on exponential
growth groups is shown in [18] relying only on the Varopoulos bound that on such groups
�.2n/.id/ . e�n1=3 .

We mention a connection of polynomial upper bounds on occupation times of balls
to positive �-harmonic functions. See [100, Chapter IV] for a treatment of the Martin bound-
ary, which is a topological boundary representing positive harmonic functions. The bound
E.NW .r// � CrD implies that the minimum of the Green function of the �-random walk
satisfies

min

2B.id;r/

G�.id; 
/ �
CrD

jB.id; r/j
:

In particular, when � is of exponential growth, by the classical bound E.NW .r// . r3,
the minimum of the Green function in B.id; r/ decays exponentially in r . By translation
invariance, we can write the Green function as a telescoping product

G�.id; y1y2 � � �yn/

G�.id; id/
D

n�1Y
iD0

G�.yi ; yiC1 � � �yn/

G�.yiC1; yiC1 � � �yn/
; where y0 D id; yi 2 �:

Then an argument by contradiction shows that exponential decay of min
2B.id;r/G�.id; 
/
in r implies that there exists s 2 S2 and a sequence .
n/1nD0 in � going to infinity such
that limn!1 G�.s; 
n/=G�.id; 
n/ < 1. This shows that the Martin kernel K.�; �/ is not
constant in the first coordinate for some point � in the Martin boundary; equivalently, there
are nonconstant positive �-harmonic functions on � . Thus it gives another proof (though
similar in spirit) of the result in [3], for any nondegenerate symmetric probability measure �
on a group � of exponential growth.

For Problem 4.3, when when � does not have PropertyHFD, we can apply the esti-
mate (4.2) to a nonconstant �-harmonic cocycle b W � ! H with weakly mixing � . Indeed,
choose any ˇ > 2, since b is C -Lipschitz, we have

E
�
NW .r/

�
� r2 C

1X
tDr2

P
�

b.Wt /

 � Cr

�
� r2 C C 0

1X
tDr2

�
r

p
t

�ˇ
� C 00r2:

When � has Property HFD but not HF, then one can verify the quadratic bound by directly
examining the random walk on a virtual quotient which is solvable of exponential growth.
Therefore the problem is open only for groups with PropertyHF that are not virtually nilpo-
tent.
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