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Abstract

This note tells a story of an open problem on the asymptotic behavior of the minimal
number of generators of groups that motivated several of my research directions.
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In this note I will attempt to tell the story of an open problem on the minimal number
of generators of groups that I am interested in for a long time and that motivated several of my
research directions, sometimes in surprising ways. As stories go, the focus on the protagonist
(the rank gradient problem) tends to do injustice to the other characters. This means that for
some of the connected math described, even major results will get suppressed. I will also
attempt to build up the character subjectively and from its birth, so not every result will be
stated in its strongest form immediately, like Pallas Athene jumping out of her father’s head
in her full strength. In any case, the note circles around unsolved problems, which is the
very opposite of this image. I will try to mitigate the damages with side stories and remarks.
Finally, I believe that the truth, even mathematical, is inherently subjective and is born from
a dialogue of people arriving from infinitely far. I attempt to tell this story from my own
perspective but this should not be taken as a suggestion on my role in the projects I describe.

For a discrete group � , let d.�/ denote the minimal number of generators of � , that
is, the minimal size of a subset S of � that generates � . We will also call this the rank of � ,
although the word “rank” is used by a lot of other notions already. We are interested in the
case when � is also residually finite, that is, the intersection of its subgroups of finite index
is the trivial subgroup. A rich source of residually finite groups is finitely generated matrix
groups.

The rank is a rather mysterious invariant, already for finite groups. While natural
(geometric) generating sets give suggestions for the rank, other generating sets may beat
them to the punch. The finite symmetric group Sym.n/ can be generated by all transpositions
.i; j / and also by the neighboring transpositions .i; i C 1/. But it can also be generated by
just 2 elements. On this track, we know that every finite simple group can be generated by
at most 2 elements, but as of now, this only follows from the classification of finite simple
groups.

When dealing with infinite groups, the picture does not get clearer, either. Virtually
the only general way to bound the rank from below is to use the first homology, and when this
does not help, one has to play it by the ears. A beautiful exception is the Grushko–Neumann
theorem. The rank is not only hard to control for abstract groups. When � arises as the
fundamental group of a nice manifold, say, one would expect that a minimal generating set,
as a family of loops, will carry some geometric meaning. While there are examples when
this is indeed the case, in general this is too much to hope for.

When an invariant of a residually finite group is rather unruly, one can attempt to
stabilize it by looking at its growth over its subgroups of finite index and hope that this
will give a more robust invariant. The biggest success story here is L2 cohomology, or,
more generally, spectral theory and representation theory, as we will discuss later on. On the
geometric side, this means that instead of the defining manifold or complex M of � , we look
at the family of finite sheeted coverings of M and try to build a geometric understanding of
asymptotic homotopy on these spaces.
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Rank gradient. By the Nielsen–Schreier theorem, when � is a free group, and H is a finite
index subgroup of � , we have d.H/ � 1 D .d.�/ � 1/j� W H j. In other words, the number

r.�; H/ D
d.H/ � 1

j� W H j

is constant d.�/ � 1 when � is free, hence for an arbitrary � , we have the inequality
r.�; H/ � d.�/ � 1. A little exercise then shows that for K � H � � , we have r.�; K/ �

r.�; H/. This implies that for a chain of finite index subgroups � D H0 � H1 � � � � , the
limit

RG
�
�; .Hn/

�
D lim

n!1
r.�; Hn/

will exist. We call this the rank gradient of � with respect to the chain .Hn/. The notion
comes from Marc Lackenby [32], see also an early profinite version in [36]. One can also
define it to an arbitrary subset ¹Hnº of finite index subgroups of � as

RG
�
�; ¹Hnº

�
D inf

n
r.�; Hn/:

Many years ago, we started to study this notion by ourselves with Nik Nikolov, proved some
initial results using elementary group theory, and soon realized that we do not know a con-
vincing example for when the rank gradient in fact depends on the chain. A nonconvincing
example comes from � D F2 � F2: normal chains in � with trivial intersection have rank
gradient zero, but chains that only walk down on one of the factors have positive rank gra-
dient. We could not find an example, however, when the Hn are normal subgroups of finite
index and their intersection is trivial. We still cannot.

Problem 1 (Rank gradient). Let � be finitely generated and let .Hn/ and .Kn/ be normal
chains in � with trivial intersection. Does

RG
�
�; .Hn/

�
D RG

�
�; .Kn/

�
?

What do you do when you encounter an elusive but attractive invariant? 1. Prove
that it vanishes in some natural cases; 2. Try to look for translations or analogues in other
fields and try to make mathematical energy flow through; 3. Connect it to some other, maybe
tamer invariants; 4. Extend the notion wildly and see what happens. In what follows, I will
describe some attempts of these points and where they lead.

The cost correspondence. A good starting exercise for the reader is to prove by hand that
if � has a central element of infinite order, then the rank gradient vanishes for any normal
chain with trivial intersection. After proving some starting results like this with Nik Nikolov
on rank gradient, we managed to connect the rank gradient to cost.

The notion of cost was introduced by Gilbert Levitt [34] and most of the subsequent,
deep work on it was done by Damien Gaboriau [24]. I will not define the notion here, just
state that every probability measure preserving (p.m.p.) action of a countable group � has a
cost, which is a real number between 1 and d.�/. A major question on cost is the following
[24].
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Problem 2 (Fixed price). Let � be a countable group. Does every free p.m.p. action of �

have the same cost?

In his hallmark result [24], Damien Gaboriau showed that this is true for free groups.
Since the cost only depends on the equivalence relation spanned by the action, it immediately
follows that the free groups F2 and F3 are not orbit equivalent, a well-known open problem
at the time.

In [9] we established the following correspondence. For a chain .�n/ in � , one can
associate its coset tree T .�; .�n// as follows. The vertex set of T is the union of cosets
�=�n and the edges are defined by immediate inclusion of cosets. The group � acts on T

by automorphisms and this action extends to the boundary @T of T as a continuous action.
There is a natural measure on the boundary (the product measure on infinite walks) and the
action preserves this measure.

Theorem 3 (Cost correspondence). Let � be finitely generated and let .�n/ be a normal
chain in � with trivial intersection. Then

RG
�
�; .�n/

�
D c

�
�; .�n/

�
� 1;

where c.�; .�n// denotes the cost of � acting on @T .�; .�n//.

So, for chains, the rank gradient problem is a special case of the fixed price problem
for profinite actions.

The existing cost theory immediately gave new vanishing results on rank gradient
for a large class of groups, including amenable groups and more importantly, the so called
right angled groups. These are groups that admit a list of generators of infinite order such
that neighboring generators commute. It is an important class as it contains many nonuniform
lattices, like SL.3; Z/.

Looking at the cost literature, we also realized that a seemingly innocent result on
cost would actually positively solve the RG problem. The question is whether the cost minus
1 is multiplicative for finite-index subrelations, just like rank minus 1 is for free groups. The
result was announced to be solved at the time with versions of a preprint circulating but by
now the community agrees that it should be considered unsolved. I still think that this could
lead to a fruitful attack on either fixed price, or the rank gradient problem.

The rank vs. Heegaard genus problem. In our project with Nik Nikolov, we studied
Marc Lackenby’s work and its topological motivations [32, 33] and got aware that using
his results on Heegaard genus and expansion [31], proving the vanishing of rank gradient for
� D SL.2; ZŒi �/ would solve a famous old problem in 3-manifold theory. The problem that
is still open is whether for finite volume 3-manifolds, the ratio of the Heegaard genus and
the rank can get arbitrarily large. Note that for hyperbolic manifolds, it was also open for
a long time whether the rank can even differ from the Heegaard genus. Now this is solved
by Tao Li [35]. The deal for the ratio is that by [31] the Heegaard genus grows linearly for
any chain of subgroups with property (� ) and it is easy to produce a normal chain in � with
vanishing rank gradient, since it is virtually a finitely generated free by cyclic group. So if the
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rank gradient is independent of the chain, then a chain of principal congruence subgroups
in � will have property (� ) and hence positive Heegaard genus growth but vanishing rank
gradient, which makes the ratio of the two invariants go to infinity. On the other hand, if the
rank gradient may depend on the chain, then the fixed price problem is solved negatively.

That is, we managed to show that at least one of these well-studied problems have
a negative solution, but we still do not know which one(s). This is certainly a good joke, but
a word of caution is due here. It could very well be that eventually both problems have a
negative solution but for entirely different reasons, and then our bridge between them will
not prove to be useful, as no one walks through it.

Homology growth and Lück approximation. The first rational homology bQ of a group
is a trivial lower bound for its rank, in fact, it is the only general lower bound people use. As
a consequence, the growth of homology satisfies

lim
n!1

sup
bQ.�n/

j� W �nj
� RG

�
�; .�n/

�
:

The good news here is that when � is finitely presented, a famous theorem of Wolfgang Lück
[37] implies that the limit of the left-hand side exists and is independent of the chain.

Theorem 4 (Lück approximation). Let � be a finitely presented group and let .�n/ be a
chain of normal subgroups of finite index in � with trivial intersection. Then we have

lim
n!1

bQ.�n/

j� W �nj
D ˇ1.�/;

where ˇ1.�/ is the first L2 Betti number of � .

The L2 story that starts here is quite extensive and beautiful (see [37] and around),
but for us what matters now is that for finitely presented groups we have

RG
�
�; .Hn/

�
� ˇ1.�/.

We still do not know an example where there is a proper inequality here. Note that for a clas-
sical group theorist, it sounds quite weird that the abelianization of �n should asymptotically
control its rank! For instance, this suggests that if the �n are perfect groups, then by some
miracle we should be able to generate them by fewer elements than the trivial bound.

When turning to the measured setting and use the cost correspondence, this takes
the form of a question already asked in the initial paper of Gaboriau [24]. He shows that for
every free action of � the cost of the action minus 1 is at least ˇ1.�/ and no one knows an
example when they are not equal.

I will not state the full generality of the Lück approximation result, but need to
make some side comments here. First, the proof is really about spectral convergence. It is
easy to see that for normal chains with trivial intersection, the eigenvalue distribution of any
locally defined operator on the finite quotient will weakly converge to the spectral measure
of the same operator in the limit. The gist of Lück approximation is to show that the measure
of the set ¹0º will also converge. This is a tightness result that does not follow from weak
convergence in general. The result was later generalized by Andreas Thom [41] for arbitrary
real values instead of 0.

3378 M. Abért



Graph sequences, combinatorial cost, and the Farber condition. In our project leading
to [9], we also studied what happens with arbitrary instead of normal subgroups or when we
ease up on having trivial intersection. These were not arbitrary questions. First, we hoped
to find counterexamples easier in this bigger class. Second, in a lot of cases when one is
interested in the asymptotic behavior of an invariant on a family of finite index subgroups,
they do not form a chain and are not normal. For instance, in number theory we often care
about the congruence subgroups �0.N /: they are not normal and do not form a chain. These
questions has lead to a connection to graph limit theory.

What connects two different chains of normal subgroups in � with trivial intersec-
tion? The best answer I know is that they are locally indistinguishable. That is, from every
vertex, the corresponding Schreier graphs locally look more and more like the infinite Cayley
graph of � . When you only ask that the same holds for most vertices, you get the notion of
Benjamini–Schramm convergence [13].

In the homological direction, we found Michael Farber’s extension of the Lück
approximation theorem [22] and the subsequent work of Nicolas Bergeron and Damien Gabo-
riau [14] on when and how such an extension may fail. It is clear that the Farber condition is
equivalent to asking that the action of � on the boundary of the coset tree is essentially free.
We called these chains Farber chains.

For a fixed generating set S of � , one can visualize the chain .�n/ by looking
at the sequence of finite Schreier graphs .Sch.�=�n; S// and attempt to understand rank
gradient using the asymptotic metric geometry of this graph sequence. Now we can state
what the Farber condition is, in various ways. For a permutation action of � and g 2 � , let
Fix.g; �=�n/ denote the number of fixed points of g.

Proposition 5. Let � be a group generated by the finite symmetric set S and let .�n/ be a
sequence of subgroups in � . Then the following are equivalent:

1. For every 1 ¤ g 2 � , we have

lim
n!1

Fix.g; �=�n/

j� W �nj
D 0 (Farber condition);

2. A random conjugate of �n as an invariant random subgroup weakly converges
to the trivial one;

3. Sch.�=�n; S/ Benjamini–Schramm converges to Cay.�; S/;

4. The coset actions of � on �=�n form a sofic approximation of � .

These equivalences are all easy once one learns the language. However, these forms
are important to note, as they highlight the fields that got connected by this theory: in order,
representation theory, ergodic theory, graph limits, and soficity.

An example for a Farber sequence is the above mentioned congruence subgroups
�0.p/ (p prime). Let me remark that the notion of Farber sequence can be naturally extended
to a sequence of lattices in a fixed locally compact group. In [12] that some people call the
7 samurai paper, we prove that in a higher rank simple Lie group, every sequence of lattices
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with covolume tending to infinity is Farber! We use invariant random subgroups in the proof,
a notion that was coined (but not invented) in [6]. There would be a lot to tell here, but this
story is about rank gradient, so we stop at this point.

When looking at it as a graph theory problem, the rank gradient problem asks
if the asymptotic rank is a local invariant, or whether it depends on global properties of
Sch.�=�n; S/.

The idea of bringing graph limit theory to cost and L2 theory is due to Gabor Elek
[21], who in an early paper [20] defined the combinatorial cost of a graph sequence and proved
the analogues of the known results on cost and homology growth in this setting. A quick
definition of combinatorial cost is as follows. For a sequence of finite graphs, a bi-Lipshitz
rewiring of the sequence is another graph sequence using the same vertex sets, such that
there exists a constant L where the distance of every edge in one graph can be substituted
by a path of length at most L in the other. The combinatorial cost is the infimum of edge
densities that can be achieved by such a rewiring. Note that much later, two groups consisting
of Alessandro Carderi, Damien Gaboriau, and Mikael de la Salle, and me and Laszlo Toth,
respectively, independently showed that using an ultraproduct language [19] or local–global
convergence [10], the combinatorial cost is, in fact, equal to the cost of a suitable limiting
object. But by then, the damage was done and graph limit theory was affecting the field in
various ways.

When you ease up on normality, the intersection of the subgroups really will not
matter, even for chains, and it is the Farber condition that will really affect the behavior.
By [24], every aperiodic p.m.p. action of an amenable group has vanishing cost, but the
rank gradient correspondence only works for Farber chains. Indeed, it is not true that for an
amenable group the rank gradient vanishes for any normal chain, an easy counterexample
comes from the lamplighter group. However, Marc Lackenby [33] showed that for finitely
presented amenable groups, the rank gradient vanishes for arbitrary normal chains, that is,
trivial intersection is not needed there. By pushing his trichotomy theorem a bit further,
together with Nik Nikolov and Andrei Jaikin-Zapirain, we managed to show that for finitely
presented amenable groups, the rank gradient also vanishes for arbitrary chains [7]. This
is one of the examples I know where a result on rank gradient does not seem to have an
immediate cost counterpart.

Weak containment. Using the above observation on local behavior, with Gabor Elek we
attempted to solve the rank gradient problem by showing that the Schreier graphs of any
two normal chains in the same group can be asymptotically “massaged onto each other”
by almost covering maps. We soon realized that what we look at is already investigated for
p.m.p. actions by Alekos Kechris [29] under the name weak containment and is also strongly
connected to the notion of local–global convergence introduced by Bela Bollobas and Oliver
Riordan [16] and developed by Hamed Hatami, Laszlo Lovasz, and Balazs Szegedy [27].
Ironically, we found that, in fact, the opposite of what we attempted holds, and proved the
following rigidity result in [4].
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Theorem 6 (Weak containment rigidity). If a strongly ergodic p.m.p. action of � weakly
contains a finite action of � then it factors onto it. In particular, if two normal chains in
� with property (� ) define weakly equivalent coset tree actions, then the two chains are
refinements of each other.

From the point of view of the rank gradient problem, this can be considered as a
harsh no entry sign, but it does show that arithmetic lattices admit uncountably many weakly
inequivalent p.m.p. actions.

Although weak containment has not yet been successful to prove new results on
rank gradient, let me mention a quite elegant application by Alekos Kechris [30]. A result of
Lewis Bowen [17] implies that for the free group Fn, its profinite completion weakly contains
any free p.m.p. action of Fn. By the cost monotonicity result for weak containment [29], this
implies that among free p.m.p. actions of Fn, the cost isminimal for the profinite completion.
Now using the cost–rank-gradient correspondence above, one yields that the cost of any free
action of Fn is at least n, hence Fn has fixed price n, giving an alternate proof for the famous
starting result of Damien Gaboriau.

The graph limit language suggested another possible attempt at the rank gradient
problem, using a factor of iid generating set for the �n. For a Farber chain, the quotient
Schreier graphs look like the infinite limiting Cayley graph from most points. So, one may
apply the same rule using an iid seed, to get a cheap generating set, and since the seed was iid,
the resulting cheap rewiring also works for any Farber sequence the same way. This attempt
also did not work (yet) but it did eventually lead to the result with Benjy Weiss [11] that
every free action of a countable group � weakly contains its iid actions, hence showing that
iid actions of � have maximal cost.

Homology torsion growth. When trying to interpret the fixed price 1 result of Damien
Gaboriau for right angled groups with Tsachik Gelander and Nik Nikolov in the finite setting,
we realized that there is an interesting rewiring complexity notion hiding behind it and that
the notion can be used to prove vanishing of the first homology torsion growth.

More precisely, when building the cheap rewiring on the finite level, using Damien
Gaboriau’s trick, not only the rewiring gets cheap, but at the same time its complexity also
stays low. In particular, it gives cost 1 C " with a bi-Lipschitz constant that is polynomial in
1=". We then realized that this is enough to prove not only the vanishing of rank gradient,
but also the vanishing of the first homology torsion growth.

For a finitely presented group, it is easy to show that the size of the torsion part of
the abelianization of a subgroup is at most exponential in the index of the subgroup. Hence,
the right growth notion to consider is

t
�
�; .�n/

�
D lim

n!1

log.tor.�n//

j� W �nj
;

assuming this limit exists. Torsion homology growth is studied by various groups for various
reasons, see [15] and references therein. In [5] we prove the following.
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Theorem 7 (First torsion homology growth). Let � be a right angled group and let .�n/ be
a Farber sequence in � . Then

t
�
�; .�n/

�
D 0.

In fact, the proof works for any Farber sequence where the above defined by-
Lipschitz constant is subexponential in the index. This brought an interesting connection
to the Bergeron–Venkatesh conjecture [15], that made me understand something about how
unruly the notion of rank may be in reality.

A special case of the Bergeron–Venkatesh conjecture says that for a principal con-
gruence chain in � D SL.2; ZŒi �/, the first torsion homology growth is a positive constant.
If we believe this, and also that the rank gradient is zero for these chains (these are both tall
orders of course), then the previous theorem implies that while these congruence subgroups
may admit cheap generating sets, their complexity must be exponential in the error 1=". That
is, we may not be able to find them in a nice and geometric way as they hide deep in the cruel
and dark embrace of algebra.

Vanishing theorems can be cool, but they tend to emit a somewhat pessimistic aura.
After all, at the end, we reach zero. However, in the case of first homology torsion growth,
currently no one can do better, as the following is still open.

Problem 8. Is there a finitely presented group � and a Farber sequence .�n/ in � such that
t.�; .�n// > 0?

While there are lower bounds for the torsion, currently they do not get this high.
It is a natural question whether there is a natural “higher rank” notion of being

right angled so that the above vanishing theorem generalizes for higher homology tor-
sion. Recently this was addressed in the paper [2], together with Nicolas Bergeron, Mikolaj
Fraczyk, and Damien Gaboriau.

Uniform rank gradient and Poisson processes. As we discussed above, to solve the rank
vs Heegaard genus problem, it would be enough to effectively estimate the rank of principal
congruence subgroups of SL.2;ZŒi �/. Note that this approach is a blessing and a curse at the
same time. Indeed, while the ambient group and its congruence subgroups seem very con-
crete, they are inherently number-theoretic which means that any attempt would also involve
some possibly rather nontrivial number theory. In fact, the same could be said when we want
to estimate the rank gradient of any discrete group, using geometric methods. Indeed, unless
the group is of some quite special form, like close to free, right angled, or amenable, the
geometry of its Cayley graphs seem quite complicated.

It turns out, however, that when we ask for much more, it immediately forces our
hand in a good way and seems to give a much simpler image to deal with. Let G be a locally
compact group, but for simplicity just concentrate on when G is a simple real Lie group.
When � is a lattice in G, it is finitely generated, moreover, by the work of Tsachik Gelander
[26], we have

d.�/ � C vol.G=�/;
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where C is an absolute constant. The notion of Farber sequences make perfect sense, using
either Benjamini–Schramm convergence of the quotient spaces G=� (or X=� where X is
the symmetric space for G) or invariant random subgroups.

Problem 9. Let G be a semisimple Lie group and let .�n/ be a Farber sequence of lattices
in G. Does

RG
�
G; .�n/

�
D lim

d.�n/ � 1

vol.G=�n/

exist?

If it does, then the limit is independent of the sequence, since you can merge two
Farber sequences and they stay Farber. This is one of the advantages over using chains of
lattices. In fact, one can define Benjamini-Schramm convergence in the realm of Riemannian
manifolds [3]. On this language one gets the Poisson point process on a symmetric space as
the limit of independent random subsets of the finite volume manifolds.

To address this problem, with Sam Mellick [8], we recently introduced a cost theory
for point processes of locally compact groups. Note that Alessandro Carderi has already
introduced the cost of p.m.p. actions of locally compact groups in his nice paper [18] and used
an ultraproduct language to prove that the maximal cost of a p.m.p. action of G dominates the
rank gradient, at least for uniformly discrete Farber sequences of lattices. Our approach of
using point processes allows us to remove his uniform discreteness assumption and answer
his question whether G � Z has fixed price 1.

In the paper [8] we prove that the Poisson processes have maximal cost among free
point processes and that this number dominates the rank gradient of any Farber sequence
in G. This is an analogue of my theorem with Benjy Weiss for discrete groups [11], as Pois-
son processes are arguably the substitutes of iid actions in the locally compact setting. In
particular, if the cost of the Poisson process is 1, then any free point process has cost 1 and
the rank gradient vanishes for any Farber sequence of lattices.

Instead of G, one can again consider Poisson processes on its symmetric space X ,
as they have the same cost. In particular, to settle the rank vs Heegaard genus problem, it
would be enough to show that Poisson processes on the hyperbolic space H 3 have cost 1.

Problem 10 (Poisson cost). Does the Poisson process on H 3 of intensity 1 have cost 1?

This seems to be a much simpler and more direct geometric-stochastic question than
estimating the rank of congruence subgroups directly. On the other hand, if this cost happens
to be greater than 1, this would not tell anything about the rank gradient, but it would still
imply the existence of a countable equivalence relation whose cost does not equal to its first
L2 Betti number, answering a question of Damien Gaboriau (see [25] on L2 numbers of
countable equivalence relations).

Apart from the case when X is the upper half-plane, as of now, nothing is known for
semisimple Lie groups. The reasonable conjecture is that for every other G, the cost of the
Poisson processes should vanish. When we look at homological counterparts, we still get a
nontrivial task. For rational homology growth, the 7 samurai project [12] and [1] settled most
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of the questions. In the direction of mod p homology growth, Mikolaj Fraczyk [23] proved
in a beautiful paper that when G has higher rank and property (T), then the first mod 2

homology growth vanishes for arbitrary Farber sequences of lattices. In fact, he showed that
every homology class admits a cycle of length that is sublinear in the volume. The difficulty
is clearly shown in the fact that for odd primes, these are still open, although it would follow
from the vanishing of the cost of Poisson processes.

Further questions on rank gradient. Kazhdan’s property (T) is a strong property that can
be used in manifold ways, in particular, it implies that the first L2 Betti number vanishes.
So, it makes sense to ask the following.

Problem 11 (Kazhdan groups). Does the rank gradient vanish for finitely presented, resid-
ually finite groups with property (T)?

In other words, does it vanish for every normal chain with trivial intersection? When
switching to the ergodic side, this asks whether property (T) groups have fixed price 1. This
is also open, however, Tom Hutchcroft and Gabor Pete recently showed in a recent, very nice
paper [28] that such groups always admit an action with cost 1, that is, the infimal cost of �

is 1. It would be natural to use [11] here, but the processes they ingeniously generate are not
factor of iid, so their result does not establish fixed price 1, and also does not seem to settle
the rank gradient problem for these groups. Nevertheless, it is still tempting to try to adapt
their method somehow in the finite setting and yield a vanishing result on rank gradient.

In another direction, it would be interesting to say something meaningful on groups
with positive rank gradient. Marc Lackenby’s trichotomy theorem [32] gives some restric-
tions and also his theorem that finitely presented groups with positive p-gradient are large.
On the other hand, if we omit the finite presentation condition, we will have some positive
rank gradient monsters lurking around, as Denis Osin [39] and Jan-Christoph Schlage-Puchta
[40] showed. A specific question due to Nik Nikolov is as follows.

Problem 12. Can a group satisfying a nontrivial identity have a positive rank gradient?

Nik Nikolov recently managed to show that in this case, the profinite gradient does
vanish [38].
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